path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
DIP_PA4_2616298.ipynb
###Markdown Digital Image Processing - Programming Assignment \4The following progamming assignment involves image enhancement tasks in spatial and frequency domain. The deadline for returning your work is **April 18th, 2019 at 23:59. Please, follow carefully the submission instructions given in the end of this notebook.** You are encouraged to seek information in other places than the course book and lecture material but remember **list all your sources under references**.If you experience problems that you cannot solve using the course material, or related Python documentation, or have any questions regarding to the programming assignments in general, please **do not hesitate to contact the course assistant** by e-mail at address `[email protected]`. **Please, fill in your personal details below.** Personal details:* **Name(s) and student ID(s):** `Berke Esmer - 2616298`* **Contact information:** `[email protected]` 4. Image enhancement in spatial domainThe gray-scale images `cameraman_noise1.tif` and `cameraman_noise2.tif` and the binary image `logo_noise3.png` contain different types of noise. Your task is to perform image enhancement in spatial domain so that the noise in all three images is reduced. Please note that you cannot to restore the original image (i. e. remove the noise completely). For instance, __[`scipy.ndimage`](https://docs.scipy.org/doc/scipy/reference/ndimage.html)__ and __[`scipy.signal`](https://docs.scipy.org/doc/scipy/reference/signal.html)__ packages provide useful tools for filtering the noise types. Additive Gaussian noiseThe image `cameraman_noise1.tif` suffers from additive Gaussian noise: ###Code # read image the original 'cameraman.tif' and its noisy version 'cameraman_noise1.tif' orig = io.imread('cameraman.tif').astype('int32') noisy1 = io.imread('cameraman_noise1.tif') # extract the additive noise from the noisy image by subtracting the original image from the noisy one noise1 = noisy1.astype('int32') - orig # display the noisy image, noise and histogram of the noise fig, ax = plt.subplots(1, 3, figsize=(15,5)) ax[0].imshow(noisy1, vmin=0, vmax=255, cmap=plt.get_cmap('gray')) ax[0].set_title('cameraman_noise1') ax[0].axis('off') ax[1].imshow(noise1, cmap=plt.get_cmap('gray')) ax[1].set_title('noise1') ax[1].axis('off') ax[2].hist(noise1.flatten(), bins=30, fc='black') ax[2].set_title('Histogram of noise1') fig.tight_layout() ###Output _____no_output_____ ###Markdown **4.1. Perform image enhancement on the `cameraman_noise1.tif` image using a `3x3` mean filter and compute the root mean squared error (RMSE) with the original image before and after filtering the noise. Then, display the noisy, enhanced and original image in the same figure.**Hint: You can perform the filtering by first constructing the `3x3` mean filter mask (`NumPy array`) and then convolving the image with it using e.g. __[`scipy.signal.convolve2d()`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html)__ function. Please note the __[difference in (integer) division between Python versions 2 and 3](https://stackoverflow.com/questions/21316968/division-in-python-2-7-and-3-3)__. ###Code from scipy import signal # construct mean filter mask meanFilter = np.array([[1/9, 1/9, 1/9], [1/9, 1/9, 1/9], [1/9, 1/9, 1/9]]) # 1/9 is a valid division in Python3 # convolve the noisy image with the constructed filter mask enhancedImage = signal.convolve2d(noisy1, meanFilter, mode='same') # mode = "same" is necessary for RMSE values # display the noisy, enhanced and original images fig, ax = plt.subplots(1, 3, figsize=(15,5)) ax[0].imshow(noisy1, cmap=plt.get_cmap('gray')) ax[0].set_title('Noisy Image') ax[1].imshow(enhancedImage, cmap=plt.get_cmap('gray')) ax[1].set_title('Enhanced Image') ax[2].imshow(orig, cmap=plt.get_cmap('gray')) ax[2].set_title('Original Image') fig.tight_layout() # print RMSE before enhancement RMSE_BEFORE = np.array(orig - noisy1) RMSE_BEFORE = RMSE_BEFORE * RMSE_BEFORE RMSE_BEFORE = RMSE_BEFORE.sum() / (256 * 256) # mean value RMSE_BEFORE = np.sqrt(RMSE_BEFORE) print("Before: ", RMSE_BEFORE) # print RMSE after enhancement RMSE_AFTER = np.array(orig - enhancedImage) RMSE_AFTER = RMSE_AFTER * RMSE_AFTER RMSE_AFTER = RMSE_AFTER.sum() / (256 * 256) # mean value RMSE_AFTER = np.sqrt(RMSE_AFTER) print("After: ", RMSE_AFTER) ###Output _____no_output_____ ###Markdown **4.2. Perform image enhancement on the `cameraman_noise1.tif` image a `3x3` __[median filter](https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median_filter.htmlscipy.ndimage.median_filter)__ and compute the RMSE with the original image before and after filtering the noise. Then, display the noisy, enhanced and original image in the same figure.** ###Code from scipy.ndimage import median_filter # apply 3x3 median filter on the noisy image image enhancedMedian = median_filter(noisy1, size = (3,3)) # Median filter 3x3 # display the noisy, enhanced and original images fig, ax = plt.subplots(1, 3, figsize=(15,5)) ax[0].imshow(noisy1, cmap=plt.get_cmap('gray')) ax[0].set_title('Noisy Image') ax[1].imshow(enhancedMedian, cmap=plt.get_cmap('gray')) ax[1].set_title('Enhanced Image') ax[2].imshow(orig, cmap=plt.get_cmap('gray')) ax[2].set_title('Original Image') fig.tight_layout() # print RMSE before enhancement RMSE_BEFORE = np.array(orig - noisy1) RMSE_BEFORE = RMSE_BEFORE * RMSE_BEFORE RMSE_BEFORE = RMSE_BEFORE.sum() / (256 * 256) # mean value RMSE_BEFORE = np.sqrt(RMSE_BEFORE) print("Before: ", RMSE_BEFORE) # print RMSE after enhancement RMSE_AFTER = np.array(orig - enhancedMedian) RMSE_AFTER = RMSE_AFTER * RMSE_AFTER RMSE_AFTER = RMSE_AFTER.sum() / (256 * 256) # mean value RMSE_AFTER = np.sqrt(RMSE_AFTER) print("After: ", RMSE_AFTER) ###Output _____no_output_____ ###Markdown **4.3. Perform image enhancement on the `cameraman_noise1.tif` image using a `5x5` __[Wiener filter](https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.wiener.html)__ and compute the RMSE with the original image before and after filtering the noise. Then, display the noisy, enhanced and original image in the same figure. Please note that you need to convert the input image into `float64` using `astype('float64')` before applying __[`scipy.signal.wiener()`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.wiener.html)__ function!** ###Code # apply 5x5 Wiener filter on the noisy image # first convert the input image to float64 using 'astype('float64')'! noisyAsFloat64 = noisy1.astype('float64') enhancedWiener = signal.wiener(noisyAsFloat64, mysize = (5,5)) # 5x5 Wiener filter # display the noisy, enhanced and original images fig, ax = plt.subplots(1, 3, figsize=(15,5)) ax[0].imshow(noisy1, cmap=plt.get_cmap('gray')) ax[0].set_title('Noisy Image') ax[1].imshow(enhancedWiener, cmap=plt.get_cmap('gray')) ax[1].set_title('Enhanced Image') ax[2].imshow(orig, cmap=plt.get_cmap('gray')) ax[2].set_title('Original Image') fig.tight_layout() # print RMSE before enhancement RMSE_BEFORE = np.array(orig - noisy1) RMSE_BEFORE = RMSE_BEFORE * RMSE_BEFORE RMSE_BEFORE = RMSE_BEFORE.sum() / (256 * 256) # mean value RMSE_BEFORE = np.sqrt(RMSE_BEFORE) print("Before: ", RMSE_BEFORE) # print RMSE after enhancement RMSE_AFTER = np.array(orig - enhancedWiener) RMSE_AFTER = RMSE_AFTER * RMSE_AFTER RMSE_AFTER = RMSE_AFTER.sum() / (256 * 256) # mean value RMSE_AFTER = np.sqrt(RMSE_AFTER) print("After: ", RMSE_AFTER) ###Output _____no_output_____ ###Markdown **4.4. Finally, display the three images obtained with mean, median and Wiener filters in the same figure.** ###Code # display the mean, median and Wiener filtered images fig, ax = plt.subplots(1, 3, figsize=(15,5)) ax[0].imshow(enhancedImage, cmap=plt.get_cmap('gray')) ax[0].set_title('Enhanced Mean Filtered Image') ax[1].imshow(enhancedMedian, cmap=plt.get_cmap('gray')) ax[1].set_title('Enhanced Median Filtered Image') ax[2].imshow(enhancedWiener, cmap=plt.get_cmap('gray')) ax[2].set_title('Enhanced Wiener Filtered Image') fig.tight_layout() ###Output _____no_output_____ ###Markdown **Which method gave the best result? Why??**`It is clear that wiener filter removed the noise at best. It made the picture more smooth. Weiner filters are far and away the most common deblurring technique used because it mathematically returns the best results.[4]` Salt-and-pepper noiseThe image `cameraman_noise2.tif` suffers from salt-and-pepper noise: ###Code # read the 'cameraman_noise2.tif' image noisy2 = io.imread('cameraman_noise2.tif') # extract additive noise2 noise2 = noisy2.astype('int32') - orig # display the noisy image and additive noise fig, ax = plt.subplots(1, 2) ax[0].imshow(noisy2, vmin=0, vmax=255, cmap=plt.get_cmap('gray')) ax[0].set_title('cameraman_noise2') ax[0].axis('off') ax[1].imshow(noise2, cmap=plt.get_cmap('gray')) ax[1].set_title('noise2') ax[1].axis('off') fig.tight_layout() ###Output _____no_output_____ ###Markdown **4.5. Utilizing your knowledge in image enhancement, choose a proper filter for reducing the noise in the `cameraman_noise2.tif` image and compute the RMSE with the original image before and after filtering the noise. Then, display the noisy, enhanced and original image in the same figure.** ###Code # reduce the noise with the method of your choice ## I tried all of them and found median as best ## enhancedMedian2 = median_filter(noisy2, size = (3,3)) # Median filter 3x3 # display the noisy, enhanced and original images fig, ax = plt.subplots(1, 3, figsize=(15,5)) ax[0].imshow(noisy2, cmap=plt.get_cmap('gray')) ax[0].set_title('Noisy Image') ax[1].imshow(enhancedMedian2, cmap=plt.get_cmap('gray')) ax[1].set_title('Enhanced Image') ax[2].imshow(orig, cmap=plt.get_cmap('gray')) ax[2].set_title('Original Image') fig.tight_layout() # print RMSE before enhancement RMSE_BEFORE = np.array(orig - noisy2) RMSE_BEFORE = RMSE_BEFORE * RMSE_BEFORE RMSE_BEFORE = RMSE_BEFORE.sum() / (256 * 256) # mean value RMSE_BEFORE = np.sqrt(RMSE_BEFORE) print("Before: ", RMSE_BEFORE) # print RMSE after enhancement RMSE_AFTER = np.array(orig - enhancedMedian2) RMSE_AFTER = RMSE_AFTER * RMSE_AFTER RMSE_AFTER = RMSE_AFTER.sum() / (256 * 256) # mean value RMSE_AFTER = np.sqrt(RMSE_AFTER) print("After: ", RMSE_AFTER) ###Output _____no_output_____ ###Markdown The binary image `logo_noise3.png` suffers from salt-and-pepper noise as well: ###Code # read 'logo_noise3.png' as binary image noisy3 = io.imread('logo_noise3.png').astype('bool_') # display the noisy binary image fig, ax = plt.subplots(figsize=(10,7)) ax.imshow(noisy3, cmap=plt.get_cmap('gray')) ax.set_title('logo_noise3') ax.axis('off') fig.tight_layout() ###Output _____no_output_____ ###Markdown **4.6. Again, utilizing your knowledge in image enhancement, find a way for reducing the noise in the noisy binary image `logo_noise3.png` and display the noisy and enhanced images in the same figure.** ###Code # remove the noise with the method of your choice ## I again use the same method as before since it is again salt-and-pepper ## enhancedMedian3 = median_filter(noisy3, size = (3,3)) # Median filter 3x3 # display the noisy and enhanced images fig, ax = plt.subplots(1, 2, figsize=(15,5)) ax[0].imshow(noisy3, cmap=plt.get_cmap('gray')) ax[0].set_title('Noisy Image') ax[1].imshow(enhancedMedian3, cmap=plt.get_cmap('gray')) ax[1].set_title('Enhanced Image') fig.tight_layout() ###Output _____no_output_____ ###Markdown 5. Image enhancement in frequency domain ###Code from scipy import fftpack # read noisy image 'periodic.tif' and compute its Fourier transform (see Assignment #2) periodic = io.imread('periodic.tif') periodic_fft = fftpack.fftshift(fftpack.fft2(periodic)) # display the noisy image and the magnitude of its Fourier transform in the same figure fig, ax = plt.subplots(1, 2) ax[0].imshow(periodic, vmin=0, vmax=255, cmap=plt.get_cmap('gray')) ax[0].set_title('Periodic perturbation') ax[0].axis('off') ax[1].imshow(np.log(np.abs(periodic_fft)+1), cmap=plt.get_cmap('gray')) ax[1].set_title('Magnitude of the FFT') fig.tight_layout() ###Output _____no_output_____ ###Markdown The image `periodic.tif` contains a periodic, i.e. sinusoidal, perturbation (see e.g. Section 5.2.3 in course book). You task is to remove the noise as well as you can. In practice, this consists of two main steps 1) locating the noise in the frequency domain, and 2) filtering the perturbation frequency using a proper filter. Let's take first a look at what a 2D sinusoidal signal looks like in the 2D Fourier space by plotting three signals with different frequencies, `f=2`, `f=4` and `f=8` and their Fourier transforms (FT): ###Code # sample (x,y) image coordinate space linearly nx = 100; ny = 100; x = np.linspace(-1, 1, nx); y = np.linspace(-1, 1, ny); [X, Y] = np.meshgrid(x, y); # plot the three 2D sinusoids and the magnitudes of their FTs fig, ax = plt.subplots(2, 3) f = 2; z = np.sin(2*np.pi*f*X); ax[0,0].imshow(z, cmap=plt.get_cmap('gray')) ax[0,0].axis('off') ax[0,0].set_title('sinusoid of frequency f = 2') Z = fftpack.fftshift(fftpack.fft2(z)) ax[1,0].imshow((np.abs(Z)+1), cmap=plt.get_cmap('gray')) ax[1,0].axis('off') ax[1,0].set_title('magnitude of the respective FT') f = 4; z = np.sin(2*np.pi*f*X); ax[0,1].imshow(z, cmap=plt.get_cmap('gray')) ax[0,1].axis('off') ax[0,1].set_title('sinusoid of frequency f = 4') Z = fftpack.fftshift(fftpack.fft2(z)) ax[1,1].imshow((np.abs(Z)+1), cmap=plt.get_cmap('gray')) ax[1,1].axis('off') ax[1,1].set_title('magnitude of the respective FT') f = 8; z = np.sin(2*np.pi*f*X); ax[0,2].imshow(z, cmap=plt.get_cmap('gray')) ax[0,2].axis('off') ax[0,2].set_title('sinusoid of frequency f = 8') Z = fftpack.fftshift(fftpack.fft2(z)) ax[1,2].imshow((np.abs(Z)+1), cmap=plt.get_cmap('gray')) ax[1,2].axis('off') ax[1,2].set_title('magnitude of the respective FT') fig.tight_layout() ###Output _____no_output_____ ###Markdown As you can see, a horizontal 2D sinusoid corresponds to two horizontal peaks symmetric to the zero frequency in the magnitude of the Fourier domain and the higher the frequency the further away these peaks are from the origo. Now, let's take a look at what happens if we rotate the horizontal 2D sinusoid 15, 45 and 75 degrees: ###Code # plot rotated 2D sinusoids and the magnitudes of their FTs fig, ax = plt.subplots(2, 3) theta = 15*np.pi/180; z = np.sin(2*np.pi*f*(Y*np.sin(theta) + X*np.cos(theta))); ax[0,0].imshow(z, cmap=plt.get_cmap('gray')) ax[0,0].axis('off') ax[0,0].set_title('sinusoid tilted at angle 15') Z = fftpack.fftshift(fftpack.fft2(z)) ax[1,0].imshow((np.abs(Z)+1), cmap=plt.get_cmap('gray')) ax[1,0].axis('off') ax[1,0].set_title('magnitude of the respective FT') theta = 45*np.pi/180; z = np.sin(2*np.pi*f*(Y*np.sin(theta) + X*np.cos(theta))); ax[0,1].imshow(z, cmap=plt.get_cmap('gray')) ax[0,1].axis('off') ax[0,1].set_title('sinusoid tilted at angle 45') Z = fftpack.fftshift(fftpack.fft2(z)) ax[1,1].imshow((np.abs(Z)+1), cmap=plt.get_cmap('gray')) ax[1,1].axis('off') ax[1,1].set_title('magnitude of the respective FT') theta = 75*np.pi/180; z = np.sin(2*np.pi*f*(Y*np.sin(theta) + X*np.cos(theta))); ax[0,2].imshow(z, cmap=plt.get_cmap('gray')) ax[0,2].axis('off') ax[0,2].set_title('sinusoid tilted at angle 75') Z = fftpack.fftshift(fftpack.fft2(z)) ax[1,2].imshow((np.abs(Z)+1), cmap=plt.get_cmap('gray')) ax[1,2].axis('off') ax[1,2].set_title('magnitude of the respective FT') fig.tight_layout() ###Output _____no_output_____ ###Markdown Due to the properties of the 2D FT, the corresponding frequency peaks rotate exactly the same manner. Now, it should be clear(er) what the periodic perturbation we are dealing with looks like in the FT of the noisy image, i.e. where to look for it. Can you now spot the reason for the periodic perturbation in the spectral image of the image `periodic.tif`? ###Code # display the magnitude of the FT fig, ax = plt.subplots() ax.imshow(np.log(np.abs(periodic_fft)+1), cmap=plt.get_cmap('gray')) ax.set_title('magnitude of the FT of the image periodic.tif') fig.tight_layout() ###Output _____no_output_____ ###Markdown This kind of periodic perturbation should be filtered with a notch filter. However, in the following, an ideal band-reject filter is used for the sake of simplicity. So perform the following operations in the reserved code cells in order to remove the periodic perturbation from the test image.(Please note that you can also implement a notch filter instead if you prefer.) **5.1. Modify the ideal lowpass (or highpass) filter code from Assignment \2 to construct an ideal band-reject filter `Hbr` and display band-reject filters with cut-off frequency `D0=0.2` and bandwidths `W=0.05` and `W=0.01` in the same figure.**Hint: See lecture notes or course book what an ideal band-reject filter looks like. An ideal band-reject filter is just a combination of lowpass and highpass filtering, so now you need to combine the conditions `` into one filter in order to reject frequencies within the narrow band. ###Code # create matrix D with absolute frequency values and size of the FT of the image 'periodic.tif' n = periodic_fft.shape f1 = ( np.arange(0,n[0])-np.floor(n[0]/2) ) * (2./(n[0])) f2 = ( np.arange(0,n[1])-np.floor(n[1]/2) ) * (2./(n[1])) f1, f2 = np.meshgrid(f1, f2) D = np.sqrt(f1**2 + f2**2) # set cut-off frequency 'D0' to 0.2 D0 = 0.2 # set the bandwidth 'W' to 0.05 W = 0.05 # initialize filter matrix 'Hbr' with ones (same size as the fft2 of the test image) Hbr = np.ones(n) # set frequencies > or < the threshold to zero, other remain unaltered Hbr[D < W] = 0 Hbr[D > D0] = 0 # do the same to construct ideal band-reject filter with 'W' of 0.01 W2 = 0.01 Hbr2 = np.ones(n) Hbr2[D < W2] = 0 Hbr2[D > D0] = 0 # display both filters with different bandwidths in the same figure fig, ax = plt.subplots(1, 2, figsize=(15,5)) ax[0].imshow(Hbr, cmap=plt.get_cmap('gray')) ax[0].set_title('W = 0.05 Plot') ax[1].imshow(Hbr2, cmap=plt.get_cmap('gray')) ax[1].set_title('W = 0.01 Plot') fig.tight_layout() ###Output _____no_output_____ ###Markdown **5.2. Find the perturbation frequency in the magnitude of the FT that should be filtered out and filter the noisy image with a band-reject filter having proper `D0` and `W`. Then. display the reconstructed filtered image and the magnitude of its FT in the same figure.**Hint: You should see two sharp peaks in the spectral image which should be filtered out. They are somewhat hard to spot but you should know where to look if you followed the introduction part of this assignment carefully. You can either try to determine the perturbation frequency: 1. manually by trial and error, or 2. automatically by finding the peak coordinates with __[`skimage.feature.peak_local_max()`](http://scikit-image.org/docs/dev/api/skimage.feature.htmlskimage.feature.peak_local_max)__ function and picking the corresponding relative frequency from the frequency matrix `D` based on the found peak locations.Please note that you will receive the same amount of points no matter which of the two approaches you choose! ###Code # find perturbation frequency 'D0' manually or automatically ## Actually, it is easy to see peak values on 250s level but still, trying to see the result ## from skimage import feature print(feature.peak_local_max(np.abs(periodic_fft), threshold_rel = 0.1)) D0 = 0.256 W = 0.01 # create a filter mask 'Hbr' size of the FT of the test image Hbr = np.ones(n) # set frequencies within a _narrow_ reject band 'W' to zero, other remain unaltered Hbr[D > D0] = 0.0 Hbr[D < W] = 0.0 # apply the ideal band-reject filter to fft the test image HbrTest = Hbr * periodic_fft # reconstruct the enhanced image (see Assignment #2) HbrShifted = fftpack.ifftshift(HbrTest) HbrT2 = fftpack.ifft2(HbrShifted) HbrReal = np.real(HbrT2) HbrClip = np.clip(HbrReal, 0, 255) HbrClipFT = fftpack.fft2(HbrClip) HbrClipFTCenter = fftpack.fftshift(HbrClipFT) HbrValue = np.log(np.abs(HbrClipFTCenter) + 1) # display the enhanced image and the magnitude of its FT fig, ax = plt.subplots(1, 2, figsize=(15,5)) ax[0].imshow(HbrClip, cmap=plt.get_cmap('gray')) ax[0].set_title('Enhanced Image') ax[1].imshow(HbrValue, cmap=plt.get_cmap('gray')) ax[1].set_title('FT') fig.tight_layout() ###Output _____no_output_____ ###Markdown **5.3. Finally, display the noisy image `periodic.tif` and the enhanced image in the same figure.** ###Code # display noisy and "restored" image fig, ax = plt.subplots(1, 2, figsize=(15,5)) ax[0].imshow(periodic, cmap=plt.get_cmap('gray')) ax[0].set_title('Noisy Image') ax[1].imshow(HbrClip, cmap=plt.get_cmap('gray')) ax[1].set_title('Restored Image') fig.tight_layout() ###Output _____no_output_____
output/train.ipynb
###Markdown Optiver Realized Volatility Prediction - Train**This notebook seeks to EDITS HERE**--------- Files**book_[train/test].parquet** - A [parquet](https://arrow.apache.org/docs/python/parquet.html) file partitioned by `stock_id`. Provides order book data on the most competitive buy and sell orders entered into the market. The top two levels of the book are shared. The first level of the book will be more competitive in price terms, it will then receive execution priority over the second level. - `stock_id` - ID code for the stock. Not all `stock_id`s exist in every time bucket. Parquet coerces this column to the categorical data type when loaded; you may wish to convert it to int8. - `time_id` - ID code for the time bucket. `time_id`s are not necessarily sequential but are consistent across all stocks. - `seconds_in_bucket` - Number of seconds from the start of the bucket, always starting from 0. - `bid_price[1/2]` - Normalized prices of the most/second most competitive buy level. - `ask_price[1/2]` - Normalized prices of the most/second most competitive sell level. - `bid_size[1/2]` - The number of shares on the most/second most competitive buy level. - `ask_size[1/2]` - The number of shares on the most/second most competitive sell level. **trade_[train/test].parquet** - A [parquet](https://arrow.apache.org/docs/python/parquet.html) file partitioned by `stock_id`. Contains data on trades that actually executed. Usually, in the market, there are more passive buy/sell intention updates (book updates) than actual trades, therefore one may expect this file to be more sparse than the order book. - `stock_id` - Same as above. - `time_id` - Same as above. - `seconds_in_bucket` - Same as above. Note that since trade and book data are taken from the same time window and trade data is more sparse in general, this field is not necessarily starting from 0. - `price` - The average price of executed transactions happening in one second. Prices have been normalized and the average has been weighted by the number of shares traded in each transaction. - `size` - The sum number of shares traded. - `order_count` - The number of unique trade orders taking place. **train.csv** The ground truth values for the training set. - `stock_id` - Same as above, but since this is a csv the column will load as an integer instead of categorical. - `time_id` - Same as above. - `target` - The realized volatility computed over the 10 minute window following the feature data under the same `stock_id`/`time_id`. There is no overlap between feature and target data. **test.csv** Provides the mapping between the other data files and the submission file. As with other test files, most of the data is only available to your notebook upon submission with just the first few rows available for download. - `stock_id` - Same as above. - `time_id` - Same as above. - `row_id` - Unique identifier for the submission row. There is one row for each existing `stock_id`/`time_id` pair. Each time window is not necessarily containing every individual stock. **sample_submission.csv** - A sample submission file in the correct format. - `row_id` - Same as in test.csv. - `target` - Same definition as in **train.csv**. The benchmark is using the median target value from **train.csv**. Prepare Environment Import Packages ###Code # General packages import pandas as pd import numpy as np import pyarrow.parquet as pq # To handle parquet files import os import gc import random from tqdm import tqdm, tqdm_notebook from pathlib import Path import multiprocessing from joblib import Parallel, delayed import time import warnings warnings.filterwarnings('ignore') # Data vis packages import matplotlib.pyplot as plt %matplotlib inline # Data prep from sklearn.preprocessing import RobustScaler from sklearn.ensemble import RandomForestRegressor from sklearn.feature_selection import SelectFromModel from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA # Modelling packages import tensorflow as tf from tensorflow import keras from tensorflow.python.keras import backend as k # Key layers from tensorflow.keras.models import Model, Sequential, load_model from tensorflow.keras.layers import Input, Add, Dense, Flatten # Activation layers from tensorflow.keras.layers import ReLU, LeakyReLU, ELU, ThresholdedReLU # Dropout layers from tensorflow.keras.layers import Dropout, AlphaDropout, GaussianDropout # Normalisation layers from tensorflow.keras.layers import BatchNormalization # Embedding layers from tensorflow.keras.layers import Embedding, Concatenate, Reshape # Callbacks from tensorflow.keras.callbacks import Callback, EarlyStopping, LearningRateScheduler, ModelCheckpoint # Optimisers from tensorflow.keras.optimizers import SGD, RMSprop, Adam, Adadelta, Adagrad, Adamax, Nadam, Ftrl # Model cross validation and evaluation from sklearn.model_selection import StratifiedKFold from tensorflow.keras.losses import binary_crossentropy # For Bayesian hyperparameter searching from skopt import gbrt_minimize, gp_minimize from skopt.utils import use_named_args from skopt.space import Real, Categorical, Integer strategy = tf.distribute.get_strategy() REPLICAS = strategy.num_replicas_in_sync # Data access gpu_options = tf.compat.v1.GPUOptions(allow_growth=True) session = tf.compat.v1.InteractiveSession(config=tf.compat.v1.ConfigProto(gpu_options=gpu_options)) # Get number of cpu cores for multiprocessing try: cpus = int(multiprocessing.cpu_count()) except NotImplementedError: cpus = 1 # Default number of cores print(f"Num GPUs Available: {len(tf.config.experimental.list_physical_devices('GPU'))}") print(f"Num CPU Threads Available: {cpus}") print(f'REPLICAS: {REPLICAS}') ###Output _____no_output_____ ###Markdown Read in Data ###Code # Set whether raw data need to be transformed raw_data = True # Data paths comp_dir_path = Path("../input/optiver-realized-volatility-prediction") if raw_data == True: # Train paths train_book_path = comp_dir_path/"book_train.parquet" train_trade_path = comp_dir_path/"trade_train.parquet" train_labels_path = comp_dir_path/"train.csv" # Test paths test_book_path = comp_dir_path/"book_test.parquet" test_trade_path = comp_dir_path/"trade_test.parquet" test_labels_path = comp_dir_path/"test.csv" # Sample submission path sample_sub_path = comp_dir_path/"sample_submission.csv" # Define helper functions for data reading def get_stock_ids_list(data_dir_path): data_dir = os.listdir(data_dir_path) # Get list of stock ids in directory stock_ids = list(map(lambda x: x.split("=")[1], data_dir)) return stock_ids def load_book_stock_id_data(stock_id): # Get stock id extension stock_id_ext = f"stock_id={stock_id}" # Read individual stock parquet file if is_train_test == "train": book_stock_id_path = os.path.join(train_book_path, stock_id_ext) elif is_train_test == "test": book_stock_id_path = os.path.join(test_book_path, stock_id_ext) book_stock_id = pd.read_parquet(book_stock_id_path) # Add stock id feature from filename book_stock_id["stock_id"] = int(stock_id) return book_stock_id def load_trade_stock_id_data(stock_id): # Get stock id extension stock_id_ext = f"stock_id={stock_id}" # Read individual stock parquet file if is_train_test == "train": trade_stock_id_path = os.path.join(train_trade_path, stock_id_ext) elif is_train_test == "test": trade_stock_id_path = os.path.join(test_trade_path, stock_id_ext) trade_stock_id = pd.read_parquet(trade_stock_id_path) # Add stock id feature from filename trade_stock_id["stock_id"] = int(stock_id) return trade_stock_id %%time # Get list of stock ids train_stock_ids = get_stock_ids_list(train_book_path) test_stock_ids = get_stock_ids_list(test_book_path) if raw_data == True: # Read train data is_train_test = "train" # Create worker pool and read pool = multiprocessing.Pool(processes=cpus) train_book = pd.concat(pool.map(load_book_stock_id_data, train_stock_ids)) train_trade = pd.concat(pool.map(load_trade_stock_id_data, train_stock_ids)) train_labels = pd.read_csv(train_labels_path) # Close worker pool pool.close() pool.join() else: train = pd.read_csv(comp_dir_path/"train_transformed.csv") # Read test data is_train_test = "test" # Create worker pool and read pool = multiprocessing.Pool(processes=cpus) test_book = pd.concat(pool.map(load_book_stock_id_data, test_stock_ids)) test_trade = pd.concat(pool.map(load_trade_stock_id_data, test_stock_ids)) test_labels = pd.read_csv(test_labels_path) # Read sample submission sample_sub = pd.read_csv(sample_sub_path) # Print data dimensions print("TRAIN DATA DIMENSIONS") if raw_data == True: print(f"train_book shape: {train_book.shape}") print(f"train_trade shape: {train_trade.shape}") print(f"train_labels shape: {train_labels.shape}") else: print(f"train shape: {train.shape}") print("\nTEST DATA DIMENSIONS") print(f"test_book shape: {test_book.shape}") print(f"test_trade shape: {test_trade.shape}") print(f"test_labels shape: {test_labels.shape}\n") ###Output _____no_output_____ ###Markdown Data Preparation Define Feature Engineering Functions ###Code # Define helper functions for data manipulation def apply_parallel(df_grouped, func): """ Uses multithreading for groupby and apply operations. Equivalent to df_grouped.apply(func) """ with multiprocessing.Pool(processes=cpus) as p: ret_list = p.map(func, [group for name, group in df_grouped]) return pd.concat(ret_list) def get_log_return(list_stock_prices): return np.log(list_stock_prices).diff() def get_trade_log_return(df_trade, col_stock_id, col_time_id, col_price): """ Returns the Log Return at each time ID. """ # Create worker pool and apply function #trade_log_return = trade_log_return = apply_parallel(df_trade.groupby([col_stock_id, col_time_id])[col_price], get_log_return) trade_log_return = trade_log_return.fillna(0) return trade_log_return def get_agg_feature(df, col_name, func): """ Returns aggregated feature by stock ID and time ID based on input df and feature. """ if "function" in str(func): func_str = str(func).split(" ")[1] agg_feat_col_name = f"{col_name}_{func_str}" else: agg_feat_col_name = f"{col_name}_{func}" agg_feat = df.groupby(by=["stock_id", "time_id"])[col_name].agg(func) agg_feat = agg_feat.replace([np.inf, -np.inf], np.nan).fillna(0) agg_feat = agg_feat.reset_index().rename(columns={col_name: agg_feat_col_name}) return agg_feat def get_wap(df_book, col_bid_price, col_ask_price, col_bid_size, col_ask_size): """ Returns Weighted Average Price. """ wap_numerator = df_book[col_bid_price] * df_book[col_ask_size] wap_numerator += df_book[col_ask_price] * df_book[col_bid_size] wap_denominator = df_book[col_bid_size] + df_book[col_ask_size] return wap_numerator / wap_denominator def get_wap_combined(df_book, col_bid_price1, col_ask_price1, col_bid_size1, col_ask_size1, col_bid_price2, col_ask_price2, col_bid_size2, col_ask_size2): """ Returns the Combined Weighted Average Price for both Bid and Ask features. """ wap_numerator1 = df_book[col_bid_price1] * df_book[col_ask_size1] wap_numerator1 += df_book[col_ask_price1] * df_book[col_bid_size1] wap_numerator2 = df_book[col_bid_price2] * df_book[col_ask_size2] wap_numerator2 += df_book[col_ask_price2] * df_book[col_bid_size2] wap_denominator = df_book[col_bid_size1] + df_book[col_ask_size1] wap_denominator += df_book[col_bid_size2] + df_book[col_ask_size2] return (wap_numerator1 + wap_numerator2) / wap_denominator def get_wap_avg(df_book, col_bid_price1, col_ask_price1, col_bid_size1, col_ask_size1, col_bid_price2, col_ask_price2, col_bid_size2, col_ask_size2): """ Returns the Combined Average Weighted Average Price for both Bid and Ask features. """ wap_numerator1 = df_book[col_bid_price1] * df_book[col_ask_size1] wap_numerator1 += df_book[col_ask_price1] * df_book[col_bid_size1] wap_numerator1 /= df_book[col_bid_size1] + df_book[col_ask_size1] wap_numerator2 = df_book[col_bid_price2] * df_book[col_ask_size2] wap_numerator2 += df_book[col_ask_price2] * df_book[col_bid_size2] wap_numerator2 /= df_book[col_bid_size2] + df_book[col_ask_size2] return (wap_numerator1 + wap_numerator2) / 2 def get_vol_wap(df_book, col_stock_id, col_time_id, col_wap): """ Returns the Volume Weighted Average Price at each time ID. """ vol_wap = df_book.groupby([col_stock_id, col_time_id])[col_wap].apply(get_log_return) vol_wap = vol_wap.fillna(0) return vol_wap def get_bid_ask_spread(df_book, col_bid_price1, col_ask_price1, col_bid_price2, col_ask_price2): """ Get Combined bid ask spread using both Bid and Ask features. """ bas_numerator = df_book[[col_ask_price1, col_ask_price2]].min(axis=1) bas_denominator = df_book[[col_bid_price1, col_bid_price2]].max(axis=1) - 1 return bas_numerator / bas_denominator def get_vertical_spread(df_book, col_price1, col_price2): """ Returns the vertical spread for Bid/Ask price features inputted. """ v_spread = df_book[col_price1] - df_book[col_price2] return v_spread def get_spread_feature(df_book, col_price_a, col_price_b): """ Returns a spread feature based on the price features inputted. """ spread_feat = df_book[col_price_a] - df_book[col_price_b] return spread_feat def realized_volatility(series_log_return): """ Returns the realized volatility for a given period. """ return np.sqrt(np.sum(series_log_return**2)) def rmspe(y_true, y_pred): """ Returns the Root Mean Squared Prediction Error. """ rmspe = np.sqrt(np.mean(np.square((y_true - y_pred) / y_true))) return rmspe def get_row_id(df, col_stock_id, col_time_id): """ Returns row ids in format required for submission. """ row_ids = df[col_stock_id].astype("str") + "-" + df[col_time_id].astype("str") return row_ids # Compile data manipulation helper functions into complete functions def extract_trade_feature_set(df_trade): """ Returns engineered trade dataset, where each row is a unique stock ID/time ID pair. """ print("Calculating trade log returns...") # Get the Log return for trades by stock ID and time ID df_trade["trade_log_return"] = get_trade_log_return(df_trade, "stock_id", "time_id", "price") # Get aggregate statistics for specified numerical features trade_features = ["price", "size", "order_count", "trade_log_return"] print("Extracting aggregated trade features...") time.sleep(1) for trade_feature in tqdm(trade_features): # Get min aggregations df_trade = df_trade.merge( get_agg_feature(df=df_trade, col_name=trade_feature, func="min"), how="left", on=["stock_id", "time_id"] ) # Get max aggregations df_trade = df_trade.merge( get_agg_feature(df=df_trade, col_name=trade_feature, func="max"), how="left", on=["stock_id", "time_id"] ) # Get mean aggregations df_trade = df_trade.merge( get_agg_feature(df=df_trade, col_name=trade_feature, func="mean"), how="left", on=["stock_id", "time_id"] ) # Get std aggregations df_trade = df_trade.merge( get_agg_feature(df=df_trade, col_name=trade_feature, func="std"), how="left", on=["stock_id", "time_id"] ) # Get sum aggregations df_trade = df_trade.merge( get_agg_feature(df=df_trade, col_name=trade_feature, func="sum"), how="left", on=["stock_id", "time_id"] ) print("Finalising trade features...") # Reduce trade df to just unique stock ID and time ID pairs df_trade = df_trade.drop(["seconds_in_bucket", "price", "size", "order_count", "trade_log_return"], axis=1) df_trade = df_trade.drop_duplicates().reset_index(drop=True) return df_trade def extract_book_feature_set(df_book): """ Returns engineered book dataset, where each row is a unique stock ID/time ID pair. """ # WAP for both bid/ask price/size features df_book["wap1"] = get_wap(df_book, "bid_price1", "ask_price1", "bid_size1", "ask_size1") df_book["wap2"] = get_wap(df_book, "bid_price2", "ask_price2", "bid_size2", "ask_size2") # Combined WAP df_book["wap_combined"] = get_wap_combined( df_book, "bid_price1", "ask_price1", "bid_size1", "ask_size1", "bid_price2", "ask_price2", "bid_size2", "ask_size2" ) # Average WAP for both bid/ask price/size features df_book["wap_avg"] = get_wap_avg( df_book, "bid_price1", "ask_price1", "bid_size1", "ask_size1", "bid_price2", "ask_price2", "bid_size2", "ask_size2" ) # Get VWAPS based on different WAP features df_book["vol_wap1"] = get_vol_wap(df_book, "stock_id", "time_id", "wap1") df_book["vol_wap2"] = get_vol_wap(df_book, "stock_id", "time_id", "wap2") df_book["vol_wap_combined"] = get_vol_wap(df_book, "stock_id", "time_id", "wap_combined") df_book["vol_wap_avg"] = get_vol_wap(df_book, "stock_id", "time_id", "wap_avg") # Get different spread features df_book["bid_ask_spread"] = get_bid_ask_spread(df_book, "bid_price1", "ask_price1", "bid_price2","ask_price2") df_book["bid_v_spread"] = get_vertical_spread(df_book, "bid_price1", "bid_price2") df_book["ask_v_spread"] = get_vertical_spread(df_book, "ask_price1", "ask_price2") df_book["h_spread1"] = get_spread_feature(df_book, "ask_price1", "bid_price1") df_book["h_spread2"] = get_spread_feature(df_book, "ask_price2", "bid_price2") df_book["spread_diff1"] = get_spread_feature(df_book, "ask_price1", "bid_price2") df_book["spread_diff2"] = get_spread_feature(df_book, "ask_price2", "bid_price1") print("Extracting aggregated VWAP book features") time.sleep(1) # Get aggregated volatility features for each VWAP vol_features = ["vol_wap1", "vol_wap2", "vol_wap_combined", "vol_wap_avg"] for vol_feature in tqdm(vol_features): df_book = df_book.merge( get_agg_feature(df=df_book, col_name=vol_feature, func=realized_volatility), how="left", on=["stock_id", "time_id"] ) print("Extracting aggregated spread book features") time.sleep(1) # Get aggregated features for different spread features spread_features = [ "bid_ask_spread", "bid_v_spread", "ask_v_spread", "h_spread1", "h_spread2", "spread_diff1", "spread_diff2" ] for spread_feature in tqdm(spread_features): # Get min aggregations df_book = df_book.merge( get_agg_feature(df=df_book, col_name=spread_feature, func="min"), how="left", on=["stock_id", "time_id"] ) # Get max aggregations df_book = df_book.merge( get_agg_feature(df=df_book, col_name=spread_feature, func="max"), how="left", on=["stock_id", "time_id"] ) # Get mean aggregations df_book = df_book.merge( get_agg_feature(df=df_book, col_name=spread_feature, func="mean"), how="left", on=["stock_id", "time_id"] ) # Get std aggregations df_book = df_book.merge( get_agg_feature(df=df_book, col_name=spread_feature, func="std"), how="left", on=["stock_id", "time_id"] ) # Get sum aggregations df_book = df_book.merge( get_agg_feature(df=df_book, col_name=spread_feature, func="sum"), how="left", on=["stock_id", "time_id"] ) # Reduce trade df to just unique stock ID and time ID pairs df_book = df_book.drop([ "seconds_in_bucket", "bid_price1", "ask_price1", "bid_price2", "ask_price2", "bid_size1", "ask_size1", "bid_size2", "ask_size2", # WAP features "wap1", "wap2", "wap_combined", "wap_avg", "vol_wap1", "vol_wap2", "vol_wap_combined", "vol_wap_avg", # Spread features "bid_ask_spread", "bid_v_spread", "ask_v_spread", "h_spread1", "h_spread2", "spread_diff1", "spread_diff2" ], axis=1) df_book = df_book.drop_duplicates().reset_index(drop=True) return df_book def get_initial_feature_set(df_train, df_trade, df_book): """ Returns engineered feature set with labels, before preprocessing """ # Extract trade and book features df_trade = extract_trade_feature_set(df_trade) df_book = extract_book_feature_set(df_book) # Merge trade and book features to labels df_train = pd.merge(df_train, df_trade, how="inner", on=["stock_id", "time_id"]) df_train = pd.merge(df_train, df_book, how="inner", on=["stock_id", "time_id"]) return df_train ###Output _____no_output_____ ###Markdown Full Data Manipulation Pipeline ###Code # Define key parameters baseline_model = True SEED = 14 np.random.seed(SEED) SCALER_METHOD = RobustScaler() FEATURE_SELECTOR = RandomForestRegressor(random_state=SEED) NUM_FEATURES = 500 PCA_METHOD = PCA(random_state=SEED) EPOCHS = 100 BATCH_SIZE = 16 KFOLDS = 2 PATIENCE = 10 if baseline_model == True: MODEL_TO_USE = "nn" model_name_save = f"{MODEL_TO_USE}_final_classifier_seed_{str(SEED)}_baseline" else: MODEL_TO_USE = "nn" model_name_save = f"{MODEL_TO_USE}_final_classifier_seed_{str(SEED)}" print(f"Model name: {model_name_save}") # Define full dataset transformation pipeline def transform_dataset(X_train, X_val, y_train, y_val, verbose=0, scaler=SCALER_METHOD, feature_selector=FEATURE_SELECTOR, num_features=NUM_FEATURES, pca=PCA_METHOD, seed=SEED ): """ Takes in train and validation datasets, and applies feature transformations, feature selection, scaling and pca (dependent on arguments). Returns transformed X_train and X_val data ready for training/prediction. """ ## DATA PREPARATION ## # Get indices for train and validation dfs - we'll need these later train_idx = list(X_train.index) val_idx = list(X_val.index) # Get train colnames before scaling and feature selection (minus ID features) feat_cols = X_train.drop(["stock_id", "time_id"], axis=1).columns # Get subset for ID features train_id_feats = X_train[["stock_id", "time_id"]] val_id_feats = X_val[["stock_id", "time_id"]] ## SCALING ## if scaler != None: if verbose == 1: print("APPLYING SCALER...") # Fit and transform scaler to train and val scaler.fit(X_train.drop(["stock_id", "time_id"], axis=1)) X_train = scaler.transform(X_train.drop(["stock_id", "time_id"], axis=1)) X_val = scaler.transform(X_val.drop(["stock_id", "time_id"], axis=1)) # Convert scaled array back dataframe X_train = pd.DataFrame(X_train, index=train_idx, columns=feat_cols) X_train = pd.merge(train_id_feats, X_train, how="left", left_index=True, right_index=True) X_val = pd.DataFrame(X_val, index=val_idx, columns=feat_cols) X_val = pd.merge(val_id_feats, X_val, how="left", left_index=True, right_index=True) ## FEATURE SELECTION ## # Feature selection is only ran on numerical data if feature_selector != None: if verbose == 1: print("APPLYING FEATURE SELECTOR...") cols_num = X_train.shape[1] # Fit tree based classifier to select features feature_selector_fit = SelectFromModel(estimator=feature_selector) feature_selector_fit = feature_selector_fit.fit(X_train, y_train) # Retrieve the names of the features selected for each label feature_idx = feature_selector_fit.get_support() selected_features = list(X_train.columns[feature_idx]) # Subset datasets to selected features only X_train = X_train[selected_features] X_val = X_val[selected_features] if verbose == 1: print(f"{cols_num - X_train.shape[1]} features removed in feature selection.") ## PCA ## if pca != None: if verbose == 1: print("APPLYING PCA...") # Fit and transform pca to train and val pca.fit(X_train) X_train = pca.transform(X_train) X_val = pca.transform(X_val) if verbose == 1: print(f"NUMBER OF PRINCIPAL COMPONENTS: {pca.n_components_}") # Convert numerical features into pandas dataframe and clean colnames X_train = pd.DataFrame(X_train, index=train_idx).add_prefix("pca_") X_val = pd.DataFrame(X_val, index=val_idx).add_prefix("pca_") if verbose == 1: print(f"TRAIN SHAPE: \t\t{X_train.shape}") print(f"VALIDATION SHAPE: \t{X_val.shape}") return X_train, X_val, selected_features # If running baseline model, split into training data into train/test split if baseline_model == True: if raw_data == True: # Run feature generation pipeline train = get_initial_feature_set(train_labels, train_trade, train_book) del train_labels, train_trade, train_book X = train.drop("target", axis=1) y = train[["target"]] X_tdx, X_vdx, y_tdx, y_vdx = train_test_split(X, y, test_size=0.33, random_state=SEED) X_tdx, X_vdx, selected_features = transform_dataset(X_tdx, X_vdx, y_tdx, y_vdx, verbose=1) del X, y train.to_csv(comp_dir_path/"train_transformed.csv") ###Output _____no_output_____ ###Markdown Modelling Learning Scheduler ###Code def build_lrfn(lr_start = 0.00001, lr_max = 0.0008, lr_min = 0.00001, lr_rampup_epochs = 20, lr_sustain_epochs = 0, lr_exp_decay = 0.8): lr_max = lr_max * strategy.num_replicas_in_sync def lrfn(epoch): if epoch < lr_rampup_epochs: lr = (lr_max - lr_start) / lr_rampup_epochs * epoch + lr_start elif epoch < lr_rampup_epochs + lr_sustain_epochs: lr = lr_max else: lr = (lr_max - lr_min) * lr_exp_decay**(epoch - lr_rampup_epochs - lr_sustain_epochs) + lr_min return lr return lrfn lrfn = build_lrfn() lr = LearningRateScheduler(lrfn, verbose=0) plt.plot([lrfn(epoch) for epoch in range(EPOCHS)]) plt.title('Learning Rate Schedule') plt.xlabel('Epochs') plt.ylabel('Learning Rate') plt.show() ###Output _____no_output_____ ###Markdown Define Baseline ModelThe below model was the original architecture, however when we conduct our Bayesian Hyperparameter search, we'll be playing around with the architecture of this baseline model a little. Parameter tuning will affect the model depth as well as the numbers of nodes at each layer, the dropout layers, activation functions and optimisers. ###Code if baseline_model == True: def get_model(X_train, y_train): input_ = Input(shape=(X_train.shape[1], )) x = Dense(2048, activation='relu')(input_) x = BatchNormalization()(x) x = Dropout(0.5)(x) x = Dense(1024, activation='relu')(x) x = BatchNormalization()(x) x = Dropout(0.5)(x) x = Dense(512, activation='relu')(x) x = BatchNormalization()(x) x = Dropout(0.5)(x) x = Dense(256, activation='relu')(x) x = BatchNormalization()(x) x = Dropout(0.5)(x) output = Dense(1, activation='linear')(x) model = Model(input_, output) return model if baseline_model == True: # Create model directory path if does not exist already if not os.path.exists(f"models/{model_name_save}"): os.mkdir(f"models/{model_name_save}") fold = 0 model_name_save_path = f"models/{model_name_save}/{model_name_save}_{str(fold)}.h5" # Define model model = get_model(X_tdx, y_tdx) # Compile model model.compile( optimizer="adam", loss="mean_squared_error", metrics=[rmspe] ) # Define learning rate schedule lr = LearningRateScheduler(lrfn, verbose=0) # Define early stopping parameters es = EarlyStopping( monitor="val_loss", mode="min", restore_best_weights=True, verbose=0, patience=PATIENCE ) # Define model checkpoint parameters mc = ModelCheckpoint( filepath=model_name_save_path, save_best_only=True, save_weights_only=False, monitor="val_loss", mode="min", verbose=0 ) history = model.fit( X_tdx, y_tdx, epochs=EPOCHS, batch_size=BATCH_SIZE, callbacks = [es, lr, mc], verbose=1, validation_split=0.25, use_multiprocessing=True ) ###Output _____no_output_____ ###Markdown Hotel Recognition to Combat Human Trafficking | Train 2021-05-09 Edward Sims 1.00 Import Packages ###Code # General packages import pandas as pd import numpy as np import os import gc import random from tqdm import tqdm, tqdm_notebook import cv2 from datetime import datetime as dt import pickle import time import warnings import multiprocessing # Data vis packages import matplotlib.pyplot as plt %matplotlib inline # Modelling packages import tensorflow as tf from tensorflow import keras from tensorflow.python.keras import backend as k # Key layers from tensorflow.keras.models import Model, Sequential, load_model from tensorflow.keras.layers import Input, Add, Dense, Flatten # Activation layers from tensorflow.keras.layers import ReLU, LeakyReLU, ELU, ThresholdedReLU # Dropout layers from tensorflow.keras.layers import Dropout, AlphaDropout, GaussianDropout # Normalisation layers from tensorflow.keras.layers import BatchNormalization # Embedding layers from tensorflow.keras.layers import Embedding, Concatenate, Reshape # Callbacks from tensorflow.keras.callbacks import Callback, EarlyStopping, LearningRateScheduler, ModelCheckpoint # Optimisers from tensorflow.keras.optimizers import SGD, RMSprop, Adam, Adadelta, Adagrad, Adamax, Nadam, Ftrl # Model cross validation and evaluation from collections import Counter, defaultdict from sklearn.model_selection import KFold, GroupKFold from tensorflow.keras.losses import sparse_categorical_crossentropy # For Bayesian hyperparameter searching from skopt import gbrt_minimize, gp_minimize from skopt.utils import use_named_args from skopt.space import Real, Categorical, Integer # Package options warnings.filterwarnings("ignore") pd.set_option("display.max_columns", 50) plt.rcParams["figure.figsize"] = [14, 8] # Check GPU config print(f"Number of GPUs Available: {len(tf.config.experimental.list_physical_devices('GPU'))}") STRATEGY = tf.distribute.get_strategy() REPLICAS = STRATEGY.num_replicas_in_sync AUTO = tf.data.experimental.AUTOTUNE print(f'REPLICAS: {REPLICAS}') # Data access GPU_OPTIONS = tf.compat.v1.GPUOptions(allow_growth=True) # Get number of cpu cores for multiprocessing try: CPUS = 1#int(multiprocessing.cpu_count() / 2) except NotImplementedError: CPUS = 1 # Default number of cores print(f"Number of CPU Cores: {CPUS}") # Disable eager execution for mAP metric #tf.compat.v1.disable_eager_execution() ###Output Number of GPUs Available: 1 REPLICAS: 1 Number of CPU Cores: 1 ###Markdown 2.00 Data Preparation 2.01 Read in Data ###Code # Data paths data_dir_path = "../input/hotel-id-2021-fgvc8" train_images_dir_path = os.path.join(data_dir_path, "train_images") test_images_dir_path = os.path.join(data_dir_path, "test_images") train_metadata_path = os.path.join(data_dir_path, "train.csv") sample_sub_path = os.path.join(data_dir_path, "sample_submission.csv") # Read csv data train_metadata = pd.read_csv(train_metadata_path, parse_dates=["timestamp"]) sample_sub = pd.read_csv(sample_sub_path) # Remove 2 duplicated records from metadata train_metadata_dupes = train_metadata.loc[train_metadata.groupby("image")["image"].transform("count") > 1, ] train_metadata_dupes_idx = train_metadata_dupes.iloc[[1, 3]].index train_metadata = train_metadata.drop(train_metadata_dupes_idx, axis=0) ###Output _____no_output_____ ###Markdown 2.02 Set default parameters ###Code # Define key parameters SEED = 14 np.random.seed(SEED) # Default image dimensions ROWS = 128 # Default row size COLS = 128 # Default col size CHANNELS = 3 # Default modelling parameters EPOCHS = 100 BATCH_SIZE = 64 PATIENCE = 10 KFOLDS = 5 # Uncomment as appropriate #MODEL_TO_USE = "densenet121" #MODEL_TO_USE = "densenet169" #MODEL_TO_USE = "densenet201" #MODEL_TO_USE = "efficientnet_b0" #MODEL_TO_USE = "efficientnet_b1" #MODEL_TO_USE = "efficientnet_b2" #MODEL_TO_USE = "efficientnet_b3" #MODEL_TO_USE = "efficientnet_b4" #MODEL_TO_USE = "efficientnet_b5" #MODEL_TO_USE = "inception_resnetv2" #MODEL_TO_USE = "inceptionv3" #MODEL_TO_USE = "resnet50v2" #MODEL_TO_USE = "resnet101v2" #MODEL_TO_USE = "resnext50" #MODEL_TO_USE = "resnext101" #MODEL_TO_USE = "resnet152v2" #MODEL_TO_USE = "vgg19" MODEL_TO_USE = "xception" # Initialise dataset for first time or use previously written data INITIALISE_DATA = True # Treat model as baseline or not IS_BASELINE = True if IS_BASELINE == True: model_name_save = f"baseline_{MODEL_TO_USE}_{str(ROWS)}x{str(COLS)}_{str(KFOLDS)}folds_seed{str(SEED)}" elif IS_BASELINE == False: model_name_save = f"{MODEL_TO_USE}_{str(ROWS)}x{str(COLS)}_{str(KFOLDS)}folds_seed{str(SEED)}" # Create models path if does not exist already if not os.path.exists(f"models/{model_name_save}"): os.mkdir(f"models/{model_name_save}") print(f"Model name: {model_name_save}") # Metadata preparation def get_is_weekend(timestamp_col): """ Returns boolean for whether timestamp is a weekend. """ timestamp_col_weekday = timestamp_col.dt.weekday # Allocate booleans - Weekends are designated 6 & 7 timestamp_col_weekday = timestamp_col_weekday.apply(lambda x: False if x < 5 else True) return timestamp_col_weekday # Extract year, month and hour from timestamp feature train_metadata["year"] = train_metadata["timestamp"].dt.year train_metadata["month"] = train_metadata["timestamp"].dt.month train_metadata["hour"] = train_metadata["timestamp"].dt.hour # Extract is_weekend from timestamp train_metadata["is_weekend"] = get_is_weekend(train_metadata["timestamp"]) train_metadata = train_metadata.drop("timestamp", axis=1) # Create full image path feature train_metadata["image_path"] = train_images_dir_path + "/" + train_metadata["chain"].astype("str") train_metadata["image_path"] = train_metadata["image_path"] + "/" + train_metadata["image"] # Extract labels from metadata y_train_vector = np.array(train_metadata["hotel_id"]) # Get all full image paths train_images_path_vector = np.array(train_metadata["image_path"]) # Following metadata preparation, get number of classes and groups constants NUM_CLASSES = np.max(y_train_vector) + 1 GROUPS = np.array(train_metadata["chain"], train_metadata["month"]) ###Output _____no_output_____ ###Markdown 2.03 Read Images ###Code def load_image(image_path, augment=False): """ Read an image from a file, decode it into a dense tensor, and resize. """ try: image = tf.io.read_file(image_path) image = tf.image.decode_jpeg(image) image = tf.image.convert_image_dtype(image, tf.float32) image = tf.image.resize(image, [ROWS, COLS]) if augment: image = tf.image.random_flip_left_right(image) image = tf.image.random_hue(image, 0.01) image = tf.image.random_saturation(image, 0.7, 1.3) image = tf.image.random_contrast(image, 0.8, 1.2) image = tf.image.random_brightness(image, 0.1) return image except: pass def load_all_images(images_paths): """ Read in multiple images asynchrously using load_image() function. """ pool = multiprocessing.Pool(processes=CPUS) images = pool.map(load_image, images_paths) pool.close() pool.join() return images # Create TFRecords from data if INITIALISE_DATA is True - otherwise skip this step if INITIALISE_DATA == True: # Helper functions to make feature definitions more readable def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) # Load data into a numpy array category = train_metadata.loc[train_metadata.image == train_images_path_vector[0].split("/")[-1], "chain"] category = category.item() # Create TFRecord filewriter writer = tf.io.TFRecordWriter("../input/tfrecords/test") for image_path in train_images_path_vector[0:2]: image = load_image(image_path) image_name = image_path.split("/")[-1] label = train_metadata.loc[train_metadata.image == image_name, "hotel_id"].item() category = train_metadata.loc[train_metadata.image == image_name, "chain"].item() feature = { "label": _int64_feature(label), "image": _bytes_feature(np.array(image).tostring()) } example = tf.train.Example(features=tf.train.Features(feature=feature)) writer.write(example.SerializeToString()) writer.close() ###Output _____no_output_____ ###Markdown 2.04 Image Augmentations ###Code def make_train_img_augmentations(img, y): """Make augmentations to single train image and copy label accordingly Parameters ---------- img : array Image to augment y : array Label array to copy as per number of augmentations Returns ------- np.array np.array of original image and augmented images, and their corresponding labels. """ img_augs = np.concatenate( ( np.expand_dims(img, axis=0), # Flip left-right np.expand_dims(np.fliplr(img), axis=0), # Rotate 90 degrees clockwise np.expand_dims(np.rot90(img, 1), axis=0), # Rotate 180 degrees np.expand_dims(np.rot90(img, 2), axis=0), # Rotate 270 degrees clockwise np.expand_dims(np.rot90(img, 3), axis=0) ), axis=0 ) # Copy labels accordingly y_augs = img_augs.shape[0] y = np.repeat(y, y_augs) return img_augs, y def make_test_img_augmentations(img): """ Returns augmented test images and original for prediction. """ img_augs = np.concatenate( ( np.expand_dims(img, axis=0), np.expand_dims(np.rot90(img, 1), axis=0), np.expand_dims(np.rot90(img, 2), axis=0), np.expand_dims(np.rot90(img, 3), axis=0), np.expand_dims(np.fliplr(img), axis=0), np.expand_dims(np.fliplr(np.rot90(img, 1)), axis=0), np.expand_dims(np.fliplr(np.rot90(img, 2)), axis=0), np.expand_dims(np.fliplr(np.rot90(img, 3)), axis=0)), axis=0 ) return(img_augs) ###Output _____no_output_____ ###Markdown 3.00 Modelling 3.01 Learning Rate ###Code def build_lrfn(lr_start = 0.00001, lr_max = 0.0008, lr_min = 0.00001, lr_rampup_epochs = 20, lr_sustain_epochs = 0, lr_exp_decay = 0.8): lr_max = lr_max * STRATEGY.num_replicas_in_sync def lrfn(epoch): if epoch < lr_rampup_epochs: lr = (lr_max - lr_start) / lr_rampup_epochs * epoch + lr_start elif epoch < lr_rampup_epochs + lr_sustain_epochs: lr = lr_max else: lr = (lr_max - lr_min) * lr_exp_decay**(epoch - lr_rampup_epochs - lr_sustain_epochs) + lr_min return lr return lrfn lrfn = build_lrfn() lr = LearningRateScheduler(lrfn, verbose=0) plt.plot([lrfn(epoch) for epoch in range(EPOCHS)]) plt.title('Learning Rate Schedule') plt.xlabel('Epochs') plt.ylabel('Learning Rate') plt.show() ###Output _____no_output_____ ###Markdown 3.02 Compiler Metrics ###Code # Define Mean Average Precision at K metric map_at_k = tf.compat.v1.metrics.average_precision_at_k #y_true = np.array([[4], [4], [4], [4], [4]]).astype(np.int64) #y_true = tf.identity(y_true) # #y_pred = np.array([[0.1, 0.3, 0.5, 0.7, 0.9, 0.1, 0.1, 0.2, 0.6], # [0.1, 0.3, 0.5, 0.7, 0.9, 0.1, 0.1, 0.2, 0.6], # [0.1, 0.3, 0.5, 0.7, 0.9, 0.1, 0.1, 0.2, 0.6], # [0.1, 0.3, 0.5, 0.7, 0.9, 0.1, 0.1, 0.2, 0.6], # [0.1, 0.3, 0.5, 0.7, 0.9, 0.1, 0.1, 0.2, 0.6] # ]).astype(np.float32) #y_pred = tf.identity(y_pred) # #_, m_ap = map_at_k(y_true, y_pred, 5) # #sess = tf.Session() #sess.run(tf.local_variables_initializer()) # #stream_vars = [i for i in tf.local_variables()] # #tf_map = sess.run(m_ap) #print(tf_map) # #tmp_rank = tf.nn.top_k(y_pred, 5) # #print(sess.run(tmp_rank)) ###Output _____no_output_____ ###Markdown 3.03 CNN Models ###Code # The model we'll feed the images into before concatenation def get_cnn_model(model_to_use=MODEL_TO_USE): """Get the pretrained CNN model specified. Parameters ---------- kfold : int Fold that the CV is currently on (to determine img size) model_to_use : str Model to retrieve Returns ------- model_return : tensorflow.python.keras.engine.functional.Functional A pretrained CNN model without top included. """ input_shape = (ROWS, COLS, CHANNELS) # DenseNet121 if model_to_use == "densenet121": from tensorflow.keras.applications import DenseNet121 return DenseNet121(input_shape=input_shape, include_top=False) # DenseNet169 elif model_to_use == "densenet169": from tensorflow.keras.applications import DenseNet169 return DenseNet169(input_shape=input_shape, include_top=False) # DenseNet201 elif model_to_use == "densenet201": from tensorflow.keras.applications import DenseNet201 return DenseNet201(input_shape=input_shape, include_top=False) # EfficientNet_B0 elif model_to_use == "efficientnet_b0": import efficientnet.tfkeras as efficientnet return efficientnet.EfficientNetB0( input_shape=input_shape, include_top=False ) # EfficientNet_B1 elif model_to_use == "efficientnet_b1": import efficientnet.tfkeras as efficientnet return efficientnet.EfficientNetB1( input_shape=input_shape, include_top=False ) # EfficientNet_B2 elif model_to_use == "efficientnet_b2": import efficientnet.tfkeras as efficientnet return efficientnet.EfficientNetB2( input_shape=input_shape, include_top=False ) # EfficientNet_B3 elif model_to_use == "efficientnet_b3": import efficientnet.tfkeras as efficientnet return efficientnet.EfficientNetB3( input_shape=input_shape, include_top=False ) # EfficientNet_B4 elif model_to_use == "efficientnet_b4": import efficientnet.tfkeras as efficientnet return efficientnet.EfficientNetB4( input_shape=input_shape, include_top=False ) # EfficientNet_B5 elif model_to_use == "efficientnet_b5": import efficientnet.tfkeras as efficientnet return efficientnet.EfficientNetB5( input_shape=input_shape, include_top=False ) # InceptionResNetV2 elif model_to_use == "inception_resnetv2": from tensorflow.keras.applications import InceptionResNetV2 return InceptionResNetV2(input_shape=input_shape, include_top=False) # InceptionV3 elif model_to_use == "inceptionv3": from tensorflow.keras.applications import InceptionV3 return InceptionV3(input_shape=input_shape, include_top=False) # NasNetLarge elif model_to_use == "nasnetlarge": from tensorflow.keras.applications import NASNetLarge return NASNetLarge(input_shape=input_shape, include_top=False) # ResNet50V2 elif model_to_use == "resnet50v2": from tensorflow.keras.applications import ResNet50V2 return ResNet50V2(input_shape=input_shape, include_top=False) # ResNet101V2 elif model_to_use == "resnet101v2": from tensorflow.keras.applications import ResNet101V2 return ResNet101V2(input_shape=input_shape, include_top=False) # ResNet152V2 elif model_to_use == "resnet152v2": from tensorflow.keras.applications import ResNet152V2 return ResNet152V2(input_shape=input_shape, include_top=False) # ResNeXt50 elif model_to_use == "resnext50": from keras_applications.resnext import ResNeXt50 return ResNeXt50( input_shape=input_shape, include_top=False, classes=classes, backend=keras.backend, layers=keras.layers, models=keras.models, utils=keras.utils ) # ResNeXt101 elif model_to_use == "resnext101": from keras_applications.resnext import ResNeXt101 return ResNeXt101( input_shape=input_shape, include_top=False, classes=classes, backend=keras.backend, layers=keras.layers, models=keras.models, utils=keras.utils ) # VGG19 elif model_to_use == "vgg19": from tensorflow.keras.applications import VGG19 return VGG19(input_shape=input_shape, include_top=False) # Xception elif model_to_use == "xception": from tensorflow.keras.applications import Xception return Xception(input_shape=input_shape, include_top=False) ###Output _____no_output_____ ###Markdown 3.04 Create TF Record Dataset ###Code def get_dataset(files, augment = False, shuffle = False, repeat = False, labeled=True, return_image_names=True, batch_size=16, dim=256): ds = tf.data.TFRecordDataset(files, num_parallel_reads=AUTO) ds = ds.cache() if repeat: ds = ds.repeat() if shuffle: ds = ds.shuffle(1024*8) opt = tf.data.Options() opt.experimental_deterministic = False ds = ds.with_options(opt) if labeled: ds = ds.map(read_labeled_tfrecord, num_parallel_calls=AUTO) else: ds = ds.map(lambda example: read_unlabeled_tfrecord(example, return_image_names), num_parallel_calls=AUTO) ds = ds.map(lambda img, imgname_or_label: (prepare_image(img, augment=augment, dim=dim), imgname_or_label), num_parallel_calls=AUTO) ds = ds.batch(batch_size * REPLICAS) ds = ds.prefetch(AUTO) return ds class DataGenerator(keras.utils.Sequence): """ Generates data for Keras """ def __init__(self, list_IDs, labels, batch_size, dim, n_channels, n_classes, shuffle): "Initialization" self.dim = dim self.batch_size = batch_size self.labels = labels self.list_IDs = list_IDs self.n_channels = n_channels self.n_classes = n_classes self.shuffle = shuffle self.on_epoch_end() def __len__(self): """ Denotes the number of batches per epoch """ return int(np.floor(len(self.list_IDs) / self.batch_size)) def __getitem__(self, index): """ Generate one batch of data """ # Generate indexes of the batch indexes = self.indexes[index*self.batch_size: (index + 1)*self.batch_size] # Find list of IDs list_IDs_temp = [self.list_IDs[k] for k in indexes] # Generate data X, y = self.__data_generation(list_IDs_temp) return X, y def on_epoch_end(self): """ Updates indexes after each epoch """ self.indexes = np.arange(len(self.list_IDs)) if self.shuffle == True: np.random.shuffle(self.indexes) def __data_generation(self, list_IDs_temp): """ Generates data containing batch_size samples """ # Initialization X = np.empty((self.batch_size, *self.dim, self.n_channels)) y = np.empty((self.batch_size), dtype=int) # Generate data for i, ID in enumerate(list_IDs_temp): # Store sample X[i,] = load_image(train_images_path_list[int(ID)]) # Store class y[i] = self.labels[ID] # Amend any inconsistent y label dimensions y = np.append(y, np.expand_dims(np.array(self.n_classes - 1), axis=0), axis=0) #print(f"self.n_classes: {self.n_classes}") #print(f"np.max(y): {np.max(y)}") return X, keras.utils.to_categorical(y) ###Output _____no_output_____ ###Markdown 3.05 Define and Train Baseline Model ###Code def get_baseline_model(model_cnn=MODEL_TO_USE, verbose=1): model_cnn = get_cnn_model(model_cnn) # Add a global spatial average pooling layer x = model_cnn.output x = keras.layers.GlobalAveragePooling2D()(x) # Define output layer output = Dense(NUM_CLASSES, activation="softmax")(x) # Define final model model = Model(inputs=model_cnn.input, outputs=output) return model if IS_BASELINE == True: # Define CV strategy gkf = GroupKFold(n_splits=KFOLDS) loss_scores = [] for fold, (tdx, vdx) in enumerate(gkf.split(train_images_path_list[0:1000], y_train_vector[0:1000], groups=GROUPS[0:1000])): print(f"FOLD {fold}") print("--------------------------------------------------------------------------------------------") # Create name to save model by model_save_path = f"models/{model_name_save}/{model_name_save}_{str(fold)}.h5" print("\nGathering data...") # Shuffle tdx and vdx np.random.shuffle(tdx) np.random.shuffle(vdx) # Set parameter dictionary params = { "dim": (ROWS, COLS), "batch_size": BATCH_SIZE, "n_classes": NUM_CLASSES, "n_channels": CHANNELS, "shuffle": True } # Set dictionaries for generator partition = {"train": tdx.astype('str'), "validation": vdx.astype('str')} labels = dict( zip( np.concatenate((tdx, vdx)).astype('str'), list(y_train_vector[np.concatenate((tdx, vdx))]) ) ) # Define data generators training_generator = DataGenerator(partition["train"], labels, **params) validation_generator = DataGenerator(partition["validation"], labels, **params) # Get baseline model print("Loading model...") model = get_baseline_model() # Compile model model.compile(optimizer="adam", loss="categorical_crossentropy") # Define learning rate schedule lr = LearningRateScheduler(lrfn, verbose=0) # Define early stopping parameters es = EarlyStopping( monitor="val_loss", mode="min", restore_best_weights=True, verbose=0, patience=PATIENCE ) # Define model checkpoint parameters mc = ModelCheckpoint( filepath=model_save_path, save_best_only=True, save_weights_only=False, monitor="val_loss", mode="min", verbose=0 ) # Fit model print("Training model...") history = model.fit( x=training_generator, validation_data=validation_generator, epochs=EPOCHS, batch_size=BATCH_SIZE, callbacks = [es, lr, mc], use_multiprocessing=True, workers=CPUS, verbose=1 ) # Get val_loss for the best model (one saved with ModelCheckpoint) loss = min(history.history["val_loss"]) print(f"LOSS: \t\t{loss}") #print('MAKING VALIDATION PREDICTIONS...') # Load best model #model = load_model(model_save_name) # Make validation predictions #preds = model.predict(X_vdx_best_model) # ## Calculate OOF loss #oof_loss = metric(np.array(y_vdx_best_model), np.array(preds)) #print('FOLD ' + str(fold) + ' LOSS: ' + str(oof_loss)) #print('--------------------------------------------------------------------------------------------') #time.sleep(2) #loss_scores.append(oof_loss) ## Clean up k.clear_session() #gc.collect() #os.remove(model_save_name_temp) ###Output _____no_output_____ ###Markdown 3.06 Bayesian Hyperparameter Search ###Code # Define hyperparameter search dimensions dim_learning_rate = Real(low=1e-4, high=1e-2, prior='log-uniform', name='learning_rate') dim_num_dense_layers = Integer(low=1, high=6, name='num_dense_layers') dim_num_input_nodes = Integer(low=1, high=4096, name='num_input_nodes') dim_num_dense_nodes = Integer(low=1, high=4096, name='num_dense_nodes') dim_activation = Categorical(categories=['relu','leaky_relu','elu','threshold_relu'], name='activation') dim_batch_size = Integer(low=1, high=64, name='batch_size') dim_patience = Integer(low=3, high=15, name='patience') dim_optimiser = Categorical( categories=['sgd','adam','rms_prop','ada_delta','ada_grad', 'ada_max','n_adam','ftrl'], name='optimiser' ) dim_optimiser_decay = Real(low=1e-6, high=1e-2, name='optimiser_decay') dim_dropout_layer = Categorical(categories=['dropout','gaussian_dropout','alpha_dropout'],name='dropout_layer') dim_dropout_val = Real(low=0.1, high=0.8, name='dropout_val') dimensions = [ dim_learning_rate, dim_num_dense_layers, dim_num_input_nodes, dim_num_dense_nodes, dim_activation, dim_batch_size, dim_patience, dim_optimiser, dim_optimiser_decay, dim_dropout_layer, dim_dropout_val, ] # Set default hyperparameters default_parameters = [ 1e-3, # learning_rate 1, # num_dense_layers 512, # num_input_nodes 16, # num_dense_nodes 'relu', # activation 64, # batch_size 3, # patience 'adam', # optimiser 1e-3, # optimiser_decay 'dropout', # dropout_layer 0.1, # dropout_val ] ###Output _____no_output_____ ###Markdown 3.07 Train Model with Bayesian Hyperparameter Search ###Code # Define CV strategy kf = KFold(n_splits=KFOLDS, random_state=SEED) loss_scores = [] best_params = pd.DataFrame( columns=['kfold','selected_features','num_features', 'num_components', 'use_embedding', 'seed']) for fold, (tdx, vdx) in enumerate(kf.split(X, y)): print(f'FOLD {fold}') print('--------------------------------------------------------------------------------------------------') # Create name to save model by model_save_name = 'models/' + model_name_save + '/' + model_name_save + '_' + str(fold) + '.h5' model_save_name_temp = 'models/' + model_name_save + '/' + 'TEMP_'+ model_name_save+ '_' + str(fold) + '.h5' @use_named_args(dimensions=dimensions) def get_hyperopts(learning_rate, num_dense_layers, num_input_nodes, num_dense_nodes, activation, batch_size, patience, optimiser, optimiser_decay, dropout_layer, dropout_val): # Define key parameters - these are affected by parameter search so must be done inside function BATCH_SIZE = batch_size PATIENCE = patience # Fetch in-fold data X_tdx, X_vdx, y_tdx, y_vdx = X.iloc[tdx, :], X.iloc[vdx, :], y.iloc[tdx, :], y.iloc[vdx, :] # Define activation layers if activation == 'relu': ACTIVATION = ReLU() elif activation == 'leaky_relu': ACTIVATION = LeakyReLU() elif activation == 'elu': ACTIVATION = ELU() elif activation == 'threshold_relu': ACTIVATION = ThresholdedReLU() # Define regularisation layers if dropout_layer == 'dropout': REG_LAYER = Dropout(dropout_val) elif dropout_layer == 'gaussian_dropout': REG_LAYER = GaussianDropout(dropout_val) elif dropout_layer == 'alpha_dropout': REG_LAYER = AlphaDropout(dropout_val) # Define optimisers # if optimiser == 'sgd': OPTIMISER = SGD(lr=learning_rate, decay=optimiser_decay) elif optimiser == 'adam': OPTIMISER = RMSprop(lr=learning_rate, decay=optimiser_decay) elif optimiser == 'rms_prop': OPTIMISER = Adam(lr=learning_rate, decay=optimiser_decay) elif optimiser == 'ada_delta': OPTIMISER = Adadelta(lr=learning_rate, decay=optimiser_decay) elif optimiser == 'ada_grad': OPTIMISER = Adagrad(lr=learning_rate, decay=optimiser_decay) elif optimiser == 'ada_max': OPTIMISER = Adamax(lr=learning_rate, decay=optimiser_decay) elif optimiser == 'n_adam': OPTIMISER = Nadam(lr=learning_rate, decay=optimiser_decay) elif optimiser == 'ftrl': OPTIMISER = Ftrl(lr=learning_rate, decay=optimiser_decay) ## BUILD MODEL BASED ON INPUTTED BAYESIAN HYPERPARAMETERS ## # Input layer # if USE_EMBEDDING == 1: inputs = [] embeddings = [] for col in cat_cols: # Create categorical embedding for each categorical feature input_ = Input(shape=(1,)) input_dim = int(X_tdx[col].max() + 1) embedding = Embedding(input_dim=input_dim, output_dim=10, input_length=1)(input_) embedding = Reshape(target_shape=(10,))(embedding) inputs.append(input_) embeddings.append(embedding) input_numeric = Input(shape=(len(num_cols),)) embedding_numeric = Dense(num_input_nodes)(input_numeric) embedding_numeric = ACTIVATION(embedding_numeric) inputs.append(input_numeric) embeddings.append(embedding_numeric) x = Concatenate()(embeddings) if USE_EMBEDDING == 0: input_ = Input(shape=(X_tdx.shape[1], )) x = Dense(num_input_nodes)(input_) # Hidden layers # for i in range(num_dense_layers): layer_name = f'layer_dense_{i+1}' x = Dense(num_dense_nodes, name=layer_name)(x) x = ACTIVATION(x) x = BatchNormalization()(x) x = REG_LAYER(x) # Output layer # output = Dense(y.shape[1], activation='softmax')(x) if USE_EMBEDDING == 1: model = Model(inputs, output) elif USE_EMBEDDING == 0: model = Model(input_, output) # COMPILE MODEL # model.compile(optimizer=OPTIMISER, loss='binary_crossentropy') # Define learning rate schedule lr = LearningRateScheduler(lrfn, verbose=0) # Define early stopping parameters es = EarlyStopping(monitor='val_loss', mode='min', restore_best_weights=True, verbose=0, patience=PATIENCE) # Define model checkpoint parameters mc = ModelCheckpoint(filepath=model_save_name_temp, save_best_only=True, save_weights_only=False, monitor='val_loss', mode='min', verbose=0) if USE_EMBEDDING == 1: # Separate data to fit into embedding and numerical input layers X_tdx = [np.absolute(X_tdx[i]) for i in cat_cols] + [X_tdx[num_cols]] X_vdx = [np.absolute(X_vdx[i]) for i in cat_cols] + [X_vdx[num_cols]] # FIT MODEL # print('TRAINING...') history = model.fit(X_tdx, y_tdx, epochs=EPOCHS, batch_size=BATCH_SIZE, callbacks = [es, lr, mc], verbose=0, validation_split=0.25 ) # Get val_loss for the best model (one saved with ModelCheckpoint) loss = min(history.history['val_loss']) print(f'CURRENT LOSS: \t\t{loss}') # Save best loss and parameters to global memory global best_loss global best_params # If the classification loss of the saved model is improved if loss < best_loss: model.save(model_save_name) best_loss = loss # Save transformed validation arrays (so they can be used for prediction) global X_vdx_best_model, y_vdx_best_model X_vdx_best_model, y_vdx_best_model = X_vdx, y_vdx ### SAVE MODEL PARAMETERS ### best_params = best_params.loc[best_params.kfold != fold] best_params = best_params.append({'kfold' : fold, 'selected_features': selected_features, 'num_features' : NUM_FEATURES, 'num_components' : NUM_COMPONENTS, 'use_embedding' : USE_EMBEDDING, 'seed' : SEED}, ignore_index=True) best_params.to_csv('final_classifier_parameters/' + model_name_save + '.csv', index=False) print(f'BEST LOSS: \t\t{best_loss}\n') del model k.clear_session() return(loss) ## RUN BAYESIAN HYPERPARAMETER SEARCH ## print('RUNNING PARAMETER SEARCH...\n') time.sleep(2) best_loss = np.Inf search_iteration = 1 gp_result = gp_minimize(func = get_hyperopts, dimensions = dimensions, acq_func = 'EI', # Expected Improvement. n_calls = 50, noise = 0.01, n_jobs = -1, kappa = 5, x0 = default_parameters, random_state = SEED ) print('\nSEARCH COMPLETE.') print('MAKING VALIDATION PREDICTIONS...') # Load best model model = load_model(model_save_name) # Make validation predictions preds = model.predict(X_vdx_best_model) # Calculate OOF loss oof_loss = metric(np.array(y_vdx_best_model), np.array(preds)) print('FOLD ' + str(fold) + ' LOSS: ' + str(oof_loss)) print('--------------------------------------------------------------------------------------------------') time.sleep(2) loss_scores.append(oof_loss) # Clean up gc.collect() os.remove(model_save_name_temp) ###Output _____no_output_____ ###Markdown SIIM-ISIC - Train In this notebook we focus on: 1. Reading in the data - Data manipulation and preparation - Image augmentation - Model architecture creation - Cross Validation strategy creation - Model training - Test-time augmentations (TTAs) - Submission creation Ideas I wasn't able to explore:- External data- Focal loss- TFRecords- Having different img size inputs within CV strategy (e.g. fold 0 = 128x128, fold 1 = 256x256)- Pixel normalisation / centering. For some reason this was computationally too expensive, so maybe I didn't do it properly... Things I learned: - Setting up the entire pipeline simply from the start. All the way from data reading to submission - a baseline procedure in place at the beginning makes it so much easier to plug and play. - It is so important to track and record all your experiments! And in as much detail as possible!! - Having a development environment style notebook, where if you want to change parameters it is very easy to do and the code doesn't break. - Test time augmentations are critical in both OOF training validation AND test predictions. Under the impression so far that any TTAs you do in generating submission predictions should be the same as in making OOF predictions (although would appreciate being corrected if this is not the case). - Looping through images and individually doing augmentations are more time effective than doing augmentations to an entire batch. - Learning rate schedules are so important - they need to fit in with your own specific model patterns and nuances. There is no one-size-fits all schedule. - Definitely consider model checkpoints, and early stopping continues to be effective (particularly on a second validation set). - Doing slightly different things in each fold (changing augs slightly, for example) can be effective. - Starting training iterations on small image sizes (128x128) while you work out baseline architecture, before increasing to larger images with a more established architecture can save a lot of time. But be careful about memory capability! - If possible, train the same model arhitectures under different seeds and compare CV differences as a way to avoid overfitting. These can even be ensembled at the end. - Batch normalisation and image normalistion are completely different, and some people don't realise this! - The secret to success, is a robust and effective CV strategy. 1.00 Load Packages ###Code # General packages import pandas as pd import numpy as np import re import os import gc import json import math import random from tqdm import tqdm, tqdm_notebook #tqdm_notebook().pandas() import datetime import time import warnings warnings.filterwarnings('ignore') from collections import Counter, defaultdict # Data vis packages import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns # Data prep import pydicom as dicom # to handle dicom files import cv2 import imgaug.augmenters as iaa from sklearn.utils import shuffle from sklearn.model_selection import train_test_split from sklearn import metrics # Modelling packages import tensorflow as tf from tensorflow import keras from tensorflow.python.keras import backend as k from tensorflow.keras.layers import Input, Add, Dense, BatchNormalization, Flatten from tensorflow.keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, GlobalAveragePooling2D, concatenate from tensorflow.keras.models import Model, load_model from tensorflow.keras.callbacks import Callback, EarlyStopping, LearningRateScheduler, ModelCheckpoint from sklearn.model_selection import GroupKFold print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU'))) strategy = tf.distribute.get_strategy() REPLICAS = strategy.num_replicas_in_sync print(f'REPLICAS: {REPLICAS}') # Data access gpu_options = tf.compat.v1.GPUOptions(allow_growth=True) ###Output Num GPUs Available: 1 REPLICAS: 1 ###Markdown 2.00 Read Data ###Code # Define paths - mel stands for melanoma input_path = '../input' mel_dir_path = os.path.join(input_path, 'siim-isic-melanoma-classification') train_metadata_path = os.path.join(mel_dir_path, 'train.csv') test_metadata_path = os.path.join(mel_dir_path, 'test.csv') sample_sub_path = os.path.join(mel_dir_path, 'sample_submission.csv') train_img_path = os.path.join(mel_dir_path, 'train') test_img_path = '512x512_jpgs/test' # Read train metadata train_metadata = pd.read_csv(train_metadata_path) # Read sample submission sample_sub = pd.read_csv(sample_sub_path) preprocessed_images_path = 'preprocessed_images/' # Remove duplicates duplicates = pd.read_csv('2020_Challenge_duplicates.csv') train_metadata = train_metadata[(~train_metadata['image_name'].isin(duplicates['ISIC_id_paired']))] # Some definitions going forward ROWS = 512 # Default row size COLS = 512 # Default col size CHANNELS = 3 EPOCHS = 8 BATCH_SIZE = 4 CLASSES = 2 # Read all images in and subset in CV? Or Read images inside each fold in CV? read_images_in_fold = True # Uncomment as appropriate #MODEL_TO_USE = 'densenet201' #MODEL_TO_USE = 'inception_resnetv2' #MODEL_TO_USE = 'xception' #MODEL_TO_USE = 'inceptionv3' #MODEL_TO_USE = 'vgg19' MODEL_TO_USE = 'efficientnet_b5' ####MODEL_TO_USE = 'resnext101' #MODEL_TO_USE = 'resnet152v2' ####MODEL_TO_USE = 'efficientnet_b0' ####MODEL_TO_USE = 'efficientnet_b1' ####MODEL_TO_USE = 'efficientnet_b2' ####MODEL_TO_USE = 'efficientnet_b3' ####MODEL_TO_USE = 'efficientnet_b4' ####MODEL_TO_USE = 'densenet169' ####MODEL_TO_USE = 'densenet121' ####MODEL_TO_USE = 'resnet50v2' ####MODEL_TO_USE = 'resnet101v2' ####MODEL_TO_USE = 'resnext50' # Parameters for each fold # standard_models = [128, 256, 384, 512] # efficient_nets = [224, 240, 260, 300, 380, 456] kfold_params = { 0: {'ROWS':ROWS,'COLS':COLS,'AUG':'fliplr'}, 1: {'ROWS':ROWS,'COLS':COLS,'AUG':'rot90' }, 2: {'ROWS':ROWS,'COLS':COLS,'AUG':'rot180'}, 3: {'ROWS':ROWS,'COLS':COLS,'AUG':'rot270'}, 4: {'ROWS':ROWS,'COLS':COLS,'AUG':'fliplr'}, 5: {'ROWS':ROWS,'COLS':COLS,'AUG':'rot90' }, 6: {'ROWS':ROWS,'COLS':COLS,'AUG':'rot180'}, 7: {'ROWS':ROWS,'COLS':COLS,'AUG':'rot270'} } KFOLDS = len(kfold_params) SEED = 14 np.random.seed(SEED) model_name_save = MODEL_TO_USE + '_' + str(ROWS) + 'x' + str(COLS) + '_seed' + str(SEED) # Create weights path if does not exist already if not os.path.exists(f'weights/{model_name_save}'): os.mkdir(f'weights/{model_name_save}') print(f'Model name: {model_name_save}') y_train = train_metadata['target'] def read_jpgs(filenames, rows, cols, loading_bar=True): # Read images in image_list = [] if loading_bar == True: for image_name in tqdm(filenames): image_path = os.path.join(preprocessed_images_path, image_name) + '.jpg' image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = cv2.resize(image,(rows,cols)) image_list.append(image) elif loading_bar == False: for image_name in filenames: image_path = os.path.join(preprocessed_images_path, image_name) + '.jpg' image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = cv2.resize(image,(rows,cols)) image_list.append(image) return(image_list) def prepare_images(use_raw_images=False): if use_raw_images == True: for del_filename in os.listdir(preprocessed_images_path): del_file_path = os.path.join(preprocessed_images_path, del_filename) try: if os.path.isfile(del_file_path) or os.path.islink(del_file_path): os.unlink(del_file_path) elif os.path.isdir(del_file_path): shutil.rmtree(del_file_path) except Exception as e: print('Failed to delete %s. Reason: %s' % (del_file_path, e)) # Read images in image_list = [] filenames = train_metadata['image_name'] for image_name in tqdm(filenames): image_path = os.path.join(train_img_path, image_name) + '.dcm' # Read the dcm image in image = dicom.dcmread(image_path).pixel_array res = cv2.resize(image,(ROWS,COLS)) image_list.append(res) # Save processed image new_filename = preprocessed_images_path + image_name + '.jpg' cv2.imwrite(new_filename, res) elif use_raw_images == False: image_list = read_jpgs(filenames=train_metadata['image_name']) return image_list if read_images_in_fold == False: X_train_img = np.array(prepare_images()) print(f'X_train_img shape: {X_train_img.shape}') y_train = np.array(y_train) ###Output _____no_output_____ ###Markdown 3.00 Data Preprocessing 3.01 Train Metadata ###Code # Remove diagnosis as too many 'unknown' values # Remove benign_malignant as the same as target variable train_df = train_metadata.drop(['diagnosis','benign_malignant'], axis=1) # Replace whitespace in anatom_site_general_challenge with underscore train_df['anatom_site_general_challenge'] = train_df[ 'anatom_site_general_challenge'].replace(' ', '_', regex=True) # Encode sex feature train_df = train_df.merge(pd.get_dummies(train_df[ ['sex','anatom_site_general_challenge']]), left_index=True, right_index=True) train_df['age_approx'] = train_df['age_approx'].fillna(0) train_df.drop(['sex', 'anatom_site_general_challenge'], axis=1, inplace=True) train_df.head() X_train_df = np.asarray(train_df.drop(['patient_id', 'target'], axis=1)) y_train = np.asarray(train_df['target']) groups = list(train_df['patient_id']) del [train_metadata, train_df, duplicates] ###Output _____no_output_____ ###Markdown 3.02 Train ImagesStandardise images by subtracting the per-channel mean for the training dataset and dividing by the per-channel standard deviation for the whole training dataset. ###Code def preprocess_imgs(train_imgs, test_imgs): """ Centers images by minusing the mean and dividing by std *train_imgs: (array) train images to read in and normalise *test_imgs: (array) test images to read in and normalise """ print('Preprocessing images...\n') # Convert pixel values to float train_imgs = train_imgs.astype(float) test_imgs = test_imgs.astype(float) # Get per-channel means and stds train_means = train_imgs.reshape(-1, train_imgs.shape[-1]).mean(axis=0) train_stds = train_imgs.reshape(-1, train_imgs.shape[-1]).std(axis=0) # Standardise images train_imgs -= train_means train_imgs /= train_stds test_imgs -= train_means test_imgs /= train_stds #print(f'Train per-channel means: {train_imgs.reshape(-1, train_imgs.shape[-1]).mean(axis=0)}') #print(f'Trin per-channel stds: {train_imgs.reshape(-1, train_imgs.shape[-1]).std(axis=0)}') return(train_imgs, test_imgs) ###Output _____no_output_____ ###Markdown 4.00 Train Data Augmentation ###Code # Create augmentation pipelines def make_train_augmentations(X_img, X_met, y, p, aug): """ Make a random subset of p proportion. Apply augmentations to the subset and append back to the original dataset, making necessary changes to labels. *X_img: (array) Train images to read in and augment *X_met: (array) Train metadata to copy as per augmentated images *y: (array) Train labels to copy as per augmented images *p: (float) sample size probability *aug: (string) ['fliplr', 'rot90', 'rot180', 'rot270'] """ print('Augmenting images...') # Get a sample of X and y based on p proportion sample_size = int(round(len(y) * p)) idx_sample = random.sample(range(0, len(y), 1), sample_size) # Make augmentations to sample if aug == 'fliplr': X_img = np.concatenate((X_img, np.array([np.fliplr(X_img[i]) for i in idx_sample])), axis=0) elif aug == 'rot90': X_img = np.concatenate((X_img, np.array([np.rot90(X_img[i], 1) for i in idx_sample])), axis=0) elif aug == 'rot180': X_img = np.concatenate((X_img, np.array([np.rot90(X_img[i], 2) for i in idx_sample])), axis=0) elif aug == 'rot270': X_img = np.concatenate((X_img, np.array([np.rot90(X_img[i], 3) for i in idx_sample])), axis=0) # Copy metadata accordingly X_met_sample = np.array([X_met[i] for i in idx_sample]) X_met = np.concatenate((X_met, X_met_sample), axis=0) del X_met_sample # Copy labels accordingly y_sample = np.array([y[i] for i in idx_sample]) y = np.concatenate((y, y_sample), axis=0) del y_sample #X_img, X_met, y = shuffle(X_img, X_met, y, random_state=SEED) return(X_img, X_met, y) if read_images_in_fold == False: print(f'Train imgs shape: {X_train_img.shape}') print(f'Train dataframe shape: {X_train_df.shape}') print(f'Train targets shape: {y_train.shape}') ###Output Train dataframe shape: (32701, 10) Train targets shape: (32701,) ###Markdown 5.00 Modelling 5.01 Class Weighting ###Code # Due to the high data imbalance, we add extra weight to the target class neg, pos = np.bincount(y_train) weight_for_0 = (1 / neg)*(len(y_train)) / 2.0 weight_for_1 = (1 / pos)*(len(y_train)) / 2.0 class_weight = {0: weight_for_0, 1: weight_for_1} print('Weight for class 0: {:.2f}'.format(weight_for_0)) print('Weight for class 1: {:.2f}'.format(weight_for_1)) ###Output Weight for class 0: 0.51 Weight for class 1: 28.14 ###Markdown 5.02 Learning Scheduler ###Code def build_lrfn(lr_start = 0.000005, lr_max = 0.000020 * strategy.num_replicas_in_sync, lr_min = 0.000001, lr_rampup_epochs = 4, lr_sustain_epochs = 0, lr_decay = 0.8): def lrfn(epoch): if epoch < lr_rampup_epochs: lr = (lr_max - lr_start) / lr_rampup_epochs * epoch + lr_start elif epoch < lr_rampup_epochs + lr_sustain_epochs: lr = lr_max else: lr = (lr_max - lr_min) * lr_decay**(epoch - lr_rampup_epochs - lr_sustain_epochs) + lr_min return lr return lrfn lrfn = build_lrfn() plt.plot([lrfn(epoch) for epoch in range(EPOCHS)]) plt.title('Learning Rate Schedule') plt.xlabel('Epochs') plt.ylabel('Learning Rate') plt.show() ###Output _____no_output_____ ###Markdown 5.03 Compiler Metrics ###Code # Define metrics to observe while training METRICS = [keras.metrics.AUC(name='auc')] ###Output _____no_output_____ ###Markdown 5.04 Metdata Model ###Code # The model we'll feed the metadata into before concatenation model_metadata = keras.Sequential() if read_images_in_fold == True: model_metadata.add(keras.layers.Dense(256, activation='relu', input_shape=(X_train_df.shape[1] - 1,))) elif read_images_in_fold == False: model_metadata.add(keras.layers.Dense(256, activation='relu', input_shape=(X_train_df.shape[1],))) model_metadata.add(keras.layers.BatchNormalization()) model_metadata.add(keras.layers.Dropout(0.2)) model_metadata.add(keras.layers.Dense(256, activation='relu')) model_metadata.add(keras.layers.BatchNormalization()) model_metadata.add(keras.layers.Dropout(0.4)) ###Output _____no_output_____ ###Markdown 5.05 CNN Models ###Code # The model we'll feed the images into before concatenation def get_cnn_model(kfold, model_to_use=MODEL_TO_USE, verbose=1): """ Returns the model object and the name of the final layer in the model. *kfold: (int) fold that the CV is currently on (to determine img size) *model_to_use: (string) model to retrieve *verbose: ([0,1]) level of output communication. 0=None, 1=All. """ if verbose == 1: print('\nLoading pretrained model...') densenet121_weights = 'pretrained/densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5' densenet169_weights = 'pretrained/densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5' densenet201_weights = 'pretrained/densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5' efficientnet_b0_weights = 'pretrained/efficientnet-b0_imagenet_1000_notop.h5' efficientnet_b1_weights = 'pretrained/efficientnet-b1_imagenet_1000_notop.h5' efficientnet_b2_weights = 'pretrained/efficientnet-b2_imagenet_1000_notop.h5' efficientnet_b3_weights = 'pretrained/efficientnet-b3_imagenet_1000_notop.h5' efficientnet_b4_weights = 'pretrained/efficientnet-b4_imagenet_1000_notop.h5' efficientnet_b5_weights = 'pretrained/efficientnet-b5_imagenet_1000_notop.h5' inception_resnetv2_weights = 'pretrained/inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5' inceptionv3_weights = 'pretrained/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5' resnet50v2_weights = 'pretrained/resnet50v2_weights_tf_dim_ordering_tf_kernels_notop.h5' resnet101v2_weights = 'pretrained/resnet101v2_weights_tf_dim_ordering_tf_kernels_notop.h5' resnet152v2_weights = 'pretrained/resnet152v2_weights_tf_dim_ordering_tf_kernels_notop.h5' resnext50_weights = 'pretrained/resnext50_weights_tf_dim_ordering_tf_kernels_notop.h5' resnext101_weights = 'pretrained/resnext101_weights_tf_dim_ordering_tf_kernels_notop.h5' vgg19_weights = 'pretrained/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5' xception_weights = 'pretrained/xception_weights_tf_dim_ordering_tf_kernels_notop.h5' input_shape = ( kfold_params[kfold]['ROWS'], kfold_params[kfold]['COLS'], CHANNELS ) # DenseNet121 if model_to_use == 'densenet121': from tensorflow.keras.applications import DenseNet121 model_return = DenseNet121(include_top=False, weights=densenet121_weights, input_shape=input_shape) # DenseNet169 elif model_to_use == 'densenet169': from tensorflow.keras.applications import DenseNet169 model_return = DenseNet169(include_top=False, weights=densenet169_weights, input_shape=input_shape) # DenseNet201 elif model_to_use == 'densenet201': from tensorflow.keras.applications import DenseNet201 model_return = DenseNet201(include_top=False, weights=densenet201_weights, input_shape=input_shape) # EfficientNet_B0 elif model_to_use == 'efficientnet_b0': import efficientnet.tfkeras as efficientnet model_return = efficientnet.EfficientNetB0(include_top=False, weights=efficientnet_b0_weights, input_shape=input_shape) # EfficientNet_B1 elif model_to_use == 'efficientnet_b1': import efficientnet.tfkeras as efficientnet model_return = efficientnet.EfficientNetB1(include_top=False, weights=efficientnet_b1_weights, input_shape=input_shape) # EfficientNet_B2 elif model_to_use == 'efficientnet_b2': import efficientnet.tfkeras as efficientnet model_return = efficientnet.EfficientNetB2(include_top=False, weights=efficientnet_b2_weights, input_shape=input_shape) # EfficientNet_B3 elif model_to_use == 'efficientnet_b3': import efficientnet.tfkeras as efficientnet model_return = efficientnet.EfficientNetB3(include_top=False, weights=efficientnet_b3_weights, input_shape=input_shape) # EfficientNet_B4 elif model_to_use == 'efficientnet_b4': import efficientnet.tfkeras as efficientnet model_return = efficientnet.EfficientNetB4(include_top=False, weights=efficientnet_b4_weights, input_shape=input_shape) # EfficientNet_B5 elif model_to_use == 'efficientnet_b5': import efficientnet.tfkeras as efficientnet model_return = efficientnet.EfficientNetB5(include_top=False, weights=efficientnet_b5_weights, input_shape=input_shape) # InceptionResNetV2 elif model_to_use == 'inception_resnetv2': from tensorflow.keras.applications import InceptionResNetV2 model_return = InceptionResNetV2(include_top=False, weights=inception_resnetv2_weights, input_shape=input_shape) # InceptionV3 elif model_to_use == 'inceptionv3': from tensorflow.keras.applications import InceptionV3 model_return = InceptionV3(include_top=False, weights=inceptionv3_weights, input_shape=input_shape) # ResNet50V2 elif model_to_use == 'resnet50v2': from tensorflow.keras.applications import ResNet50V2 model_return = ResNet50V2(include_top=False, weights=resnet50v2_weights, input_shape=input_shape) # ResNet101V2 elif model_to_use == 'resnet101v2': from tensorflow.keras.applications import ResNet101V2 model_return = ResNet101V2(include_top=False, weights=resnet101v2_weights, input_shape=input_shape) # ResNet152V2 elif model_to_use == 'resnet152v2': from tensorflow.keras.applications import ResNet152V2 model_return = ResNet152V2(include_top=False, weights=resnet152v2_weights, input_shape=input_shape) # ResNeXt50 elif model_to_use == 'resnext50': from keras_applications.resnext import ResNeXt50 model_return = ResNeXt50(include_top=False, weights=resnext50_weights, input_shape=input_shape, backend=keras.backend, layers=keras.layers, models=keras.models, utils=keras.utils) # ResNeXt101 elif model_to_use == 'resnext101': from keras_applications.resnext import ResNeXt101 model_return = ResNeXt101(include_top=False, weights=resnext101_weights, input_shape=input_shape, backend=keras.backend, layers=keras.layers, models=keras.models, utils=keras.utils) # VGG19 elif model_to_use == 'vgg19': from tensorflow.keras.applications import VGG19 model_return = VGG19(include_top=False, weights=vgg19_weights, input_shape=input_shape) # Xception elif model_to_use == 'xception': from tensorflow.keras.applications import Xception model_return = Xception(include_top=False, weights=xception_weights, input_shape=input_shape) return(model_return) ###Output _____no_output_____ ###Markdown 5.06 Concatenating Models ###Code def get_complete_model(model_cnn, model_metadata, verbose=1): """ Concatenate multiple models, add hidden layers after concatenation and return complete concatenated model *model_cnn: the loaded cnn model object to input *model_metadata: the loaded metadata model object to input *verbose: ([0,1]) level of output communication. 0=None, 1=All. """ if verbose == 1: print('Creating complete model...\n') # Pretrained cnn model with GlobalAveragePooling model_cnn_base = keras.Sequential([ Model(model_cnn.input, model_cnn.output), keras.layers.GlobalAveragePooling2D() ]) # Concatenate CNN model with metadata model model_concat = concatenate([model_cnn_base.output, model_metadata.output], axis=1) # Output layer model_concat = keras.layers.Dense(1, activation='sigmoid', name='final_output')(model_concat) model_complete = Model(inputs=[model_cnn_base.input, model_metadata.input], outputs=model_concat) return model_complete ###Output _____no_output_____ ###Markdown 5.07 Stratified Group Cross Validation ###Code def stratified_group_k_fold(X, y, groups, k, seed=SEED): """ https://www.kaggle.com/jakubwasikowski/stratified-group-k-fold-cross-validation """ labels_num = np.max(y) + 1 y_counts_per_group = defaultdict(lambda: np.zeros(labels_num)) y_distr = Counter() for label, g in zip(y, groups): y_counts_per_group[g][label] += 1 y_distr[label] += 1 y_counts_per_fold = defaultdict(lambda: np.zeros(labels_num)) groups_per_fold = defaultdict(set) def eval_y_counts_per_fold(y_counts, fold): y_counts_per_fold[fold] += y_counts std_per_label = [] for label in range(labels_num): label_std = np.std([y_counts_per_fold[i][label] / y_distr[label] for i in range(k)]) std_per_label.append(label_std) y_counts_per_fold[fold] -= y_counts return np.mean(std_per_label) groups_and_y_counts = list(y_counts_per_group.items()) random.Random(seed).shuffle(groups_and_y_counts) for g, y_counts in sorted(groups_and_y_counts, key=lambda x: -np.std(x[1])): best_fold = None min_eval = None for i in range(k): fold_eval = eval_y_counts_per_fold(y_counts, i) if min_eval is None or fold_eval < min_eval: min_eval = fold_eval best_fold = i y_counts_per_fold[best_fold] += y_counts groups_per_fold[best_fold].add(g) all_groups = set(groups) for i in range(k): train_groups = all_groups - groups_per_fold[i] test_groups = groups_per_fold[i] train_indices = [i for i, g in enumerate(groups) if g in train_groups] test_indices = [i for i, g in enumerate(groups) if g in test_groups] yield train_indices, test_indices ###Output _____no_output_____ ###Markdown 5.08 Train Model ###Code def get_in_fold_data(kfold, tdx, vdx, read_images_in_fold=read_images_in_fold, loading_bar=False): """ *kfold: (int) the current fold in CV *tdx: (list of ints) train indices for the current fold *vdx: (list of ints) validation indices for the current fold *read_images_in_fold: (bool) whether to read the images inside or outside of folds *loading_bar: (bool) include a loading bar when loading CV images """ print('Fetching data...') # Get values for metadata X_met, X_met_val, = X_train_df[tdx], X_train_df[vdx] # Get values for target y, y_val = y_train[tdx], y_train[vdx] if read_images_in_fold == False: # Extract images from full image array X_met, X_met_val = X_met[:, 1:], X_met_val[:, 1:] # Remove name col X_met, X_met_val = X_met.astype(np.uint8), X_met_val.astype(np.uint8) # Change np type - must be uint8 # Get values for imgs X_img = cv2.resize(X_train_img[tdx], (kfold_params[kfold]['ROWS'], # Row size for current fold kfold_params[kfold]['COLS'])) # Col size for current fold X_img_val = cv2.resize(X_train_img[vdx], (kfold_params[kfold]['ROWS'], # Row size for current fold kfold_params[kfold]['COLS'])) # Col size for current fold elif read_images_in_fold == True: # Read images in from scratch X_img = np.array(read_jpgs(X_met[:,0], # Img names rows=kfold_params[kfold]['ROWS'], # Row size for current fold cols=kfold_params[kfold]['COLS'], # Col size for current fold loading_bar=loading_bar)) X_img_val = np.array(read_jpgs(X_met_val[:,0], # Img names rows=kfold_params[kfold]['ROWS'], # Row size for current fold cols=kfold_params[kfold]['COLS'], # Col size for current fold loading_bar=loading_bar)) X_met, X_met_val = X_met[:, 1:], X_met_val[:, 1:] # Remove name col X_met, X_met_val = X_met.astype(np.uint8), X_met_val.astype(np.uint8) return X_img, X_img_val, X_met, X_met_val, y, y_val def make_test_augmentations(img): """ Returns augmented image(s) and original. """ img_augs = np.concatenate((#np.expand_dims(img, axis=0), np.expand_dims(np.rot90(img, 1), axis=0), np.expand_dims(np.rot90(img, 2), axis=0), np.expand_dims(np.rot90(img, 3), axis=0), np.expand_dims(np.fliplr(img), axis=0), np.expand_dims(np.fliplr(np.rot90(img, 1)), axis=0), np.expand_dims(np.fliplr(np.rot90(img, 2)), axis=0), np.expand_dims(np.fliplr(np.rot90(img, 3)), axis=0)), axis=0) return(img_augs) def train_model(model_to_use=MODEL_TO_USE): k.clear_session() skf = stratified_group_k_fold(X=X_train_df, y=y_train, groups=groups, k=KFOLDS, seed=SEED) rocauc_scores = [] print(f'TRAINING {model_to_use.upper()} ON ' + str(KFOLDS) + ' FOLDS\n') for fold, (tdx, vdx) in enumerate(skf): print(f'Fold : {fold}') print('Img size: ' + str(kfold_params[fold]['ROWS']) + 'x' + str(kfold_params[fold]['ROWS'])) print('Augmentation: ' + str(kfold_params[fold]['AUG'])) print(f'Training on {len(tdx)} samples.') print(f'Validating on {len(vdx)} samples.') # Load pretrained model & create name to save weights by model_cnn = get_cnn_model(kfold=fold, model_to_use=MODEL_TO_USE) model_save_name = 'weights/' + model_name_save + '/' + model_name_save + '_' + str(fold) + '.h5' # Fetch in-fold data X_img, X_img_val, X_met, X_met_val, y, y_val = get_in_fold_data(kfold=fold, tdx=tdx, vdx=vdx) # Image Preprocessing #X_img, X_img_val = preprocess_imgs(train_imgs=X_img, test_imgs=X_img_val) # Image augmentations X_img, X_met, y = make_train_augmentations(X_img=X_img, X_met=X_met, y=y, p=0.4, aug=kfold_params[fold]['AUG']) # CONCATENATED MODEL - Edit below model = get_complete_model(model_cnn=model_cnn, model_metadata=model_metadata) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=METRICS) # Define learning rate schedule lr = LearningRateScheduler(lrfn, verbose=True) # Define early stopping parameters es = EarlyStopping(monitor='val_auc', mode='max', restore_best_weights=True, verbose=1, patience=3) # Define model checkpoint parameters mc = ModelCheckpoint(filepath=model_save_name, save_best_only=True, save_weights_only=True, monitor='val_auc', mode='max', verbose=0) # Fit model model.fit([X_img, X_met], y, epochs=EPOCHS, batch_size=BATCH_SIZE, callbacks = [es, lr, mc], class_weight=class_weight, verbose=1, validation_split=0.25) del [X_img, X_met, y] # TTAs and validation predictions print('\nMaking val predictions') preds = [] for val_idx in range(len(X_img_val)): # Add augmented images to each img in X_img_val X_img_val_augs = np.concatenate((np.expand_dims(X_img_val[val_idx], axis=0), make_test_augmentations(X_img_val[val_idx]))) # Add copies of each corresponding X_met_val for the augmented imgs X_met_val_augs = np.array([X_met_val[val_idx]] * len(X_img_val_augs)) # Make prediction for each record pred = model.predict([X_img_val_augs, X_met_val_augs]) pred = np.mean(pred, axis=0) preds.append(pred) # Calculate OOF ROCAUC following TTAs oof_rocauc = metrics.roc_auc_score(y_val, preds) print('') print('\nFold ' + str(fold) + ' ROCAUC: ' + str(oof_rocauc)) print('') rocauc_scores.append(oof_rocauc) # Clean up del [X_img_val, X_met_val, y_val, pred, tdx, vdx, model, oof_rocauc] gc.collect() print('\n\n############################') print('Mean OOF ROCAUC: '+ str(np.mean(rocauc_scores))+' (±'+str(round(np.std(rocauc_scores), 5))+')') print('############################\n\n') return(rocauc_scores) rocauc_scores = train_model(model_to_use=MODEL_TO_USE) # Save the fold results rocauc_scores = pd.DataFrame({'rocauc':rocauc_scores}) rocauc_scores_name = f'scores/{model_name_save}_scores.csv' rocauc_scores.to_csv(rocauc_scores_name, index=False) print(f'--------------\nFOLD SCORES\n--------------\n{rocauc_scores}') print(f'\n--------------\nFOLD STATS\n--------------\n{rocauc_scores.describe()}') plt.plot(rocauc_scores.index, rocauc_scores, marker='.') plt.title('ROCAUC Fold Results') plt.xlabel('Fold') plt.ylabel('ROCAUC') plt.show() ###Output _____no_output_____ ###Markdown 6.00 Testing 6.01 Test metadata ###Code # Clean up memory try: del [X_train_img, X_train_df, y_train] except: pass test_df = pd.read_csv(test_metadata_path) duplicates = pd.read_csv('2020_Challenge_duplicates.csv') # Replace whitespace in anatom_site_general_challenge with underscore test_df['anatom_site_general_challenge'] = test_df['anatom_site_general_challenge'].replace(' ', '_', regex=True) # Encode sex feature test_df = test_df.merge(pd.get_dummies(test_df[['sex','anatom_site_general_challenge']]), left_index=True, right_index=True) test_df.drop(['patient_id','sex', 'anatom_site_general_challenge'], axis=1, inplace=True) # Remove duplicates test_df[(~test_df['image_name'].isin(duplicates['ISIC_id_paired']))] test_df = np.asarray(test_df) del duplicates test_df ###Output _____no_output_____ ###Markdown 6.02 Test CNN Model ###Code def import_model(kfolds, model_to_use=MODEL_TO_USE): """ *kfolds: list object of applicable folds. (Not an int) """ models = [] for fold in tqdm(range(kfolds)): model_cnn = get_cnn_model(kfold=fold, model_to_use=MODEL_TO_USE, verbose=0) model = get_complete_model(model_cnn=model_cnn, model_metadata=model_metadata, verbose=0) model.load_weights('../output/weights/' + model_name_save + '/' + model_name_save + '_' + str(fold) + '.h5') models.append(model) return(models) ###Output _____no_output_____ ###Markdown 6.03 Test Augmention Pipeline ###Code def make_test_augmentations(img): """ Returns augmented image(s) and original. """ img_augs = np.concatenate((np.expand_dims(img, axis=0), np.expand_dims(np.rot90(img, 1), axis=0), np.expand_dims(np.rot90(img, 2), axis=0), np.expand_dims(np.rot90(img, 3), axis=0), np.expand_dims(np.fliplr(img), axis=0), np.expand_dims(np.fliplr(np.rot90(img, 1)), axis=0), np.expand_dims(np.fliplr(np.rot90(img, 2)), axis=0), np.expand_dims(np.fliplr(np.rot90(img, 3)), axis=0)), axis=0) return(img_augs) ###Output _____no_output_____ ###Markdown 6.04 Make Submission ###Code def make_submission(test_df): # Read images in and predict preds_test = [] # We'll store the final prediction for each image here # Convert pixel values to float #print('Preparing image standardiser...') #train_imgs = train_imgs.astype(float) # Get per-channel means and stds #train_means = train_imgs.reshape(-1, train_imgs.shape[-1]).mean(axis=0) #train_stds = train_imgs.reshape(-1, train_imgs.shape[-1]).std(axis=0) print('Getting models...') time.sleep(2) # Retrieve model to use - as per fold image sizes models = import_model(kfolds=KFOLDS, model_to_use=MODEL_TO_USE) print('Generating predictions...') time.sleep(2) # Loop through all the test images for image_row in tqdm(test_df): # Get image data from dicom file image_path = os.path.join(test_img_path, image_row[0]) + '.jpg' # Read the dcm image in image = cv2.imread(image_path) # Drop image name from metadata image_row = np.delete(image_row, 0).astype(np.uint8) image_row = np.expand_dims(image_row, axis=0) # AUGMENTATIONS images_all = make_test_augmentations(image) pred_proba_list = [] for image in images_all: image = np.expand_dims(image, axis=0) pred_proba = np.mean([model.predict([image, image_row]) for model in models], axis=0) pred_proba_list.append(pred_proba) pred_proba = np.mean(pred_proba_list, axis=0) preds_test.append(pred_proba.tolist()[0][0]) # Create submission df submission = pd.DataFrame({sample_sub.columns[0]:test_df[:,1], sample_sub.columns[1]:preds_test}) return(submission) # Create submission submission = make_submission(test_df=test_df) submission_name = f'submissions/{model_name_save}_submission.csv' submission.to_csv(submission_name, index=False) submission.head() del submission # Some definitions going forward ROWS = 512 # Default row size COLS = 512 # Default col size CHANNELS = 3 EPOCHS = 8 BATCH_SIZE = 8 CLASSES = 2 # Read all images in and subset in CV, or Read images inside each fold in CV read_images_in_fold = True # -- Models ran -- #MODEL_TO_USE = 'densenet201' #MODEL_TO_USE = 'inception_resnetv2' #MODEL_TO_USE = 'xception' #MODEL_TO_USE = 'inceptionv3' # -- Submissions generated -- MODEL_TO_USE = 'vgg19' # -- Staged for running -- #MODEL_TO_USE = 'efficientnet_b5' ####MODEL_TO_USE = 'resnext101' #MODEL_TO_USE = 'resnet152v2' ####MODEL_TO_USE = 'efficientnet_b0' ####MODEL_TO_USE = 'efficientnet_b1' ####MODEL_TO_USE = 'efficientnet_b2' ####MODEL_TO_USE = 'efficientnet_b3' ####MODEL_TO_USE = 'efficientnet_b4' ####MODEL_TO_USE = 'densenet169' ####MODEL_TO_USE = 'densenet121' ####MODEL_TO_USE = 'resnet50v2' ####MODEL_TO_USE = 'resnet101v2' ####MODEL_TO_USE = 'resnext50' # Parameters for each fold # standard_models = [128, 256, 384, 512] # efficient_nets = [224, 240, 260, 300, 380, 456] kfold_params = { 0: {'ROWS':ROWS,'COLS':COLS,'AUG':'fliplr'}, 1: {'ROWS':ROWS,'COLS':COLS,'AUG':'rot90' }, 2: {'ROWS':ROWS,'COLS':COLS,'AUG':'rot180'}, 3: {'ROWS':ROWS,'COLS':COLS,'AUG':'rot270'}, 4: {'ROWS':ROWS,'COLS':COLS,'AUG':'fliplr'}, 5: {'ROWS':ROWS,'COLS':COLS,'AUG':'rot90' }, 6: {'ROWS':ROWS,'COLS':COLS,'AUG':'rot180'}, 7: {'ROWS':ROWS,'COLS':COLS,'AUG':'rot270'} } KFOLDS = len(kfold_params) SEED = 14 np.random.seed(SEED) model_name_save = MODEL_TO_USE + '_' + str(ROWS) + 'x' + str(COLS) + '_seed' + str(SEED) # Create weights path if does not exist already if not os.path.exists(f'weights/{model_name_save}'): os.mkdir(f'weights/{model_name_save}') print(f'Model name: {model_name_save}') # Create submission submission = make_submission(test_df=test_df) submission_name = f'submissions/{model_name_save}_submission.csv' submission.to_csv(submission_name, index=False) submission.head() ###Output _____no_output_____ ###Markdown TrainFollowing from [Preprocessing](https://github.com/TheNerdyCat/deepfake-detection-challenge/blob/master/output/preprocessing.ipynb), this stage will look at data augmentation and subsequently training the model.First we will undersample the images to balance REAL and FAKE images in both the train and validation sets. There are actually more FAKE images than REAL in this dataset, so this will be addressed accordingly.We will read our extracted faces using OpenCV and perform any data augmentation. Following this, we will define X and X_test. Then we'll read the metadata to label the extracted faces as FAKE or REAL, defining them into y and y_test.After we have our training data and validation data ready and shuffled, we'll train our model. ###Code import pandas as pd import numpy as np import os import json # To read the metadata import tensorflow as tf from tensorflow import keras from tensorflow.python.keras import backend as k from tensorflow.keras import layers from tensorflow.keras.layers import Input, Add, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D from tensorflow.keras.layers import LeakyReLU from tensorflow.keras.models import Model, load_model from tensorflow.keras.initializers import glorot_uniform from tensorflow.keras.callbacks import Callback, EarlyStopping #import torch #import keras #from keras import Model, Sequential #from keras.layers import * #from keras.optimizers import * #from keras.callbacks import LearningRateScheduler import cv2 from sklearn.model_selection import KFold from sklearn.metrics import log_loss from tqdm.notebook import tqdm import random import gc import warnings warnings.filterwarnings("ignore") #tf.debugging.set_log_device_placement(True) # Enable GPU logging print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU'))) train_images_path = '../input/train_images/' train_images = os.listdir(train_images_path) metadata_path = '../input/train_metadata/' metadata_dir = os.listdir(metadata_path) # Read in all the metadata files to make one inclusive dict metadata = {} for i, file in enumerate(metadata_dir): with open('../input/train_metadata/' + file) as json_file: metadata = {**metadata, **json.load(json_file)} X_paths = [] for img in train_images: img = train_images_path + img X_paths.append(img) y = [] for label in train_images: if metadata[label.split('_')[0] + '.mp4']['label'] == 'REAL': y.append(0) else: y.append(1) def shuffle(X, y): new_train = [] for m, n in zip(X, y): new_train.append([m, n]) random.shuffle(new_train) X, y = [], [] for x in new_train: X.append(x[0]) y.append(x[1]) return X, y X_paths, y = shuffle(X_paths, y) # Create X_test from 10% of X X_test_paths = X_paths[:round(len(X_paths) / 100 * 25)] X_paths = X_paths[round(len(X_paths) / 100 * 25):] # Create y_test from 10% of y y_test = y[:round(len(y) / 100 * 25)] y = y[round(len(y) / 100 * 25):] X_paths, y = shuffle(X_paths, y) X_test_paths, y_test = shuffle(X_test_paths, y_test) print('There are ' + str(y.count(1)) + ' fake train samples') print('There are ' + str(y.count(0)) + ' real train samples') print('There are ' + str(y_test.count(1)) + ' fake test samples') print('There are ' + str(y_test.count(0)) + ' real test samples') ###Output _____no_output_____ ###Markdown UndersamplingNext we'll balance our data, using undersampling techniques. Source for this method can be found [here](https://www.kaggle.com/unkownhihi/starter-kernel-with-cnn-model-ll-lb-0-69235Apply-Underbalancing-Techinique) ###Code real = [] fake = [] for m, n in zip(X_paths, y): if n == 0: real.append(m) else: fake.append(m) fake = random.sample(fake, len(real)) X_paths, y = [], [] for x in real: X_paths.append(x) y.append(0) for x in fake: X_paths.append(x) y.append(1) real = [] fake = [] for m, n in zip(X_test_paths, y_test): if n == 0: real.append(m) else: fake.append(m) fake = random.sample(fake, len(real)) X_test_paths, y_test = [], [] for x in real: X_test_paths.append(x) y_test.append(0) for x in fake: X_test_paths.append(x) y_test.append(1) X_paths, y = shuffle(X_paths, y) X_test_paths, y_test = shuffle(X_test_paths, y_test) print('There are ' + str(y.count(1)) + ' fake train samples') print('There are ' + str(y.count(0)) + ' real train samples') print('There are ' + str(y_test.count(1)) + ' fake test samples') print('There are ' + str(y_test.count(0)) + ' real test samples') ###Output _____no_output_____ ###Markdown Data AugmentationData augmentation will go here ###Code ROWS = 256 COLS = 256 CHANNELS = 3 CLASSES = 2 def read_image(file_path): img = cv2.imread(file_path, cv2.IMREAD_COLOR) return cv2.resize(img, (ROWS, COLS), interpolation=cv2.INTER_CUBIC) def prepare_data(images): m = len(images) X = np.zeros((m, ROWS, COLS, CHANNELS), dtype=np.uint8) y = np.zeros((1, m), dtype=np.uint8) for i, image_file in enumerate(images): X[i,:] = read_image(image_file) if metadata[image_file.split('/')[3].split('_')[0]+'.mp4']['label'] == 'REAL': y[0, i] = 1 elif metadata[image_file.split('/')[3].split('_')[0]+'.mp4']['label'] == 'FAKE': y[0, i] = 0 return X, y def convert_to_one_hot(Y, C): Y = np.eye(C)[Y.reshape(-1)].T return Y train_set_x, train_set_y = prepare_data(X_paths) test_set_x, test_set_y = prepare_data(X_test_paths) X_train = train_set_x / 255 X_test = test_set_x / 255 Y_train = convert_to_one_hot(train_set_y, CLASSES).T Y_test = convert_to_one_hot(test_set_y, CLASSES).T print ("Number of training examples =", X_train.shape[0]) print ("Number of test examples =", X_test.shape[0]) print ("X_train shape:", X_train.shape) print ("Y_train shape:", Y_train.shape) print ("X_test shape:", X_test.shape) print ("Y_test shape:", Y_test.shape) ###Output _____no_output_____ ###Markdown As per the DFDC research paper, we apply the following augmentation techniques: - ~~1/3 of the videos I kept unchanged~~ - ~~2/9 of the videos I resized to 1/4 of their sizes~~ - 2/9 of the videos I reduced FPS to 15 - 2/9 of the videos I applied a hard compressionI suspect the key is the last bullet: apply a hard compression. This reduces the videos' file sizes to <1/10 of their original sizes, and make it much harder for our algos to correctly classify as fake or real.**IMPORTANT**: I made sure these 4 proportions are respected in both training and validation sets. ###Code def resize_images(X, size=4): """ Resizes images, then resizes again back to original size """ for img in X: img = cv2.resize(img, (int(ROWS / size), int(COLS / size))) img = cv2.resize(img, (int(ROWS), int(COLS))) return X def apply_img_function(X, func, proportion, seed=123): """ Extracts sample from images array and applies function given """ np.random.seed(seed) idxs = np.random.choice(X.shape[0], int(len(X)*proportion), replace=False) X_sample = X[idxs] X_sample_applied = func(X_sample) X[idxs] = X_sample_applied return X X_train = apply_img_function(X_train, func=resize_images, proportion=1/3, seed=14) X_test = apply_img_function(X_test, func=resize_images, proportion=1/3, seed=14) ###Output _____no_output_____ ###Markdown ModellingWe implement our ResNet using Keras. ###Code def identity_block(X, f, filters, stage, block): # defining name basis conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' # Retrieve Filters F1, F2, F3 = filters # Save the input value. We'll need this later to add back to the main path. X_shortcut = X # First component of main path X = Conv2D(filters=F1, kernel_size=(1, 1), strides=(1,1), padding='valid', name=conv_name_base + '2a', kernel_initializer=glorot_uniform(seed=0))(X) X = BatchNormalization(axis=3, name=bn_name_base + '2a')(X) X = Activation('relu')(X) # Second component of main path X = Conv2D(filters=F2, kernel_size=(f, f), strides=(1,1), padding='same', name=conv_name_base + '2b', kernel_initializer=glorot_uniform(seed=0))(X) X = BatchNormalization(axis=3, name=bn_name_base + '2b')(X) X = Activation('relu')(X) # Third component of main path X = Conv2D(filters=F3, kernel_size=(1, 1), strides=(1,1), padding='valid', name=conv_name_base + '2c', kernel_initializer=glorot_uniform(seed=0))(X) X = BatchNormalization(axis=3, name=bn_name_base + '2c')(X) # Final step: Add shortcut value to main path, and pass it through a RELU activation X = Add()([X, X_shortcut]) X = Activation('relu')(X) return X def convolutional_block(X, f, filters, stage, block, s=2): # defining name basis conv_name_base='res' + str(stage) + block + '_branch' bn_name_base='bn' + str(stage) + block + '_branch' # Retrieve Filters F1, F2, F3 = filters # Save the input value X_shortcut = X ##### MAIN PATH ##### # First component of main path X = Conv2D(F1, (1, 1), strides=(s,s), name=conv_name_base + '2a', kernel_initializer=glorot_uniform(seed=0))(X) X = BatchNormalization(axis=3, name=bn_name_base + '2a')(X) X = Activation('relu')(X) # Second component of main path X = Conv2D(filters=F2, kernel_size=(f, f), strides=(1, 1), padding='same', name=conv_name_base + '2b', kernel_initializer=glorot_uniform(seed=0))(X) X = BatchNormalization(axis=3, name=bn_name_base + '2b')(X) X = Activation('relu')(X) # Third component of main path X = Conv2D(filters=F3, kernel_size=(1, 1), strides=(1, 1), padding='valid', name=conv_name_base + '2c', kernel_initializer=glorot_uniform(seed=0))(X) X = BatchNormalization(axis=3, name=bn_name_base + '2c')(X) ##### SHORTCUT PATH #### X_shortcut = Conv2D(F3, (1, 1), strides=(s,s), name = conv_name_base + '1', kernel_initializer=glorot_uniform(seed=0))(X_shortcut) X_shortcut = BatchNormalization(axis=3, name=bn_name_base + '1')(X_shortcut) # Final step: Add shortcut value to main path, and pass it through a RELU activation X = Add()([X, X_shortcut]) X = Activation('relu')(X) return X def ResNet50(input_shape = (256, 256, 3), classes=2): # Define the input as a tensor with shape input_shape X_input = Input(input_shape) # Zero-Padding X = ZeroPadding2D((3, 3))(X_input) # Stage 1 X = Conv2D(64, (7, 7), strides=(2, 2), name='conv1', kernel_initializer=glorot_uniform(seed=0))(X) X = BatchNormalization(axis=3, name='bn_conv1')(X) X = Activation('relu')(X) X = MaxPooling2D((3, 3), strides=(2, 2))(X) # Stage 2 X = convolutional_block(X, f=3, filters=[256, 256, 1024], stage=2, block='a', s=1) X = identity_block(X, 3, [256, 256, 1024], stage=2, block='b') X = identity_block(X, 3, [256, 256, 1024], stage=2, block='c') # Stage 3 X = convolutional_block(X, f=3, filters=[512, 512, 2048], stage=3, block='a', s=2) X = identity_block(X, 3, [512, 512, 2048], stage=3, block='b') X = identity_block(X, 3, [512, 512, 2048], stage=3, block='c') X = identity_block(X, 3, [512, 512, 2048], stage=3, block='d') # Stage 4 X = convolutional_block(X, f=3, filters=[1024, 1024, 4096], stage=4, block='a', s=2) X = identity_block(X, 3, [1024, 1024, 4096], stage=4, block='b') X = identity_block(X, 3, [1024, 1024, 4096], stage=4, block='c') X = identity_block(X, 3, [1024, 1024, 4096], stage=4, block='d') X = identity_block(X, 3, [1024, 1024, 4096], stage=4, block='e') X = identity_block(X, 3, [1024, 1024, 4096], stage=4, block='f') # Stage 5 X = convolutional_block(X, f=3, filters=[2048, 2048, 8192], stage=5, block='a', s=2) X = identity_block(X, 3, [2048, 2048, 8192], stage=5, block='b') X = identity_block(X, 3, [2048, 2048, 8192], stage=5, block='c') # AVGPOOL. X = AveragePooling2D((2, 2), name='avg_pool')(X) # output layer X = Flatten()(X) X = Dense(classes, activation='softmax', name='fc' + str(classes), kernel_initializer=glorot_uniform(seed=0))(X) # Create model model = Model(inputs=X_input, outputs=X, name='ResNet50') return model kfolds = 5 kf = KFold(n_splits=kfolds) losses = [] for fold, (tdx, vdx) in enumerate(kf.split(X_train, Y_train)): print(f'Fold : {fold}') X, X_val, Y, Y_val = X_train[tdx], X_train[vdx], Y_train[tdx], Y_train[vdx] model = ResNet50(input_shape=(256, 256, 3), classes=2) model.compile(optimizer='adam', loss='binary_crossentropy') es = EarlyStopping(monitor='loss', mode='min', restore_best_weights=True, verbose=2, patience=10) model.fit(X_train, Y_train, callbacks=[es], epochs=10, batch_size=64, verbose=1) pred = model.predict([X_val]) loss = log_loss(Y_val, pred) model.save_weights(f'resnet50_{fold}.h5') print('') print('Fold ' + str(fold) + ' log loss: ' + str(loss)) print('') losses.append(loss) gc.collect() print(np.mean(losses)) preds = model.evaluate(X_test, Y_test, verbose=0) print ("Loss = " + str(preds)) kfolds = 5 # Import the weights of our model models = [] for i in range(kfolds): model = ResNet50(input_shape=(64, 64, 3), classes=2) model.load_weights(f'../output/resnet50_{i}.h5') models.append(model) np.mean([model.predict(X_test) for model in models], axis=0) ###Output _____no_output_____
utilities/Make JSONs.ipynb
###Markdown ---Filter out the teachers / nan stuff ###Code not_yet_graduated = ['Grady'] website_info = website_info[ ~( (website_info['Last Name'] == 'Test') | website_info['First Name'].isnull() | website_info['First Name'].isin(not_yet_graduated) ) ] website_info.head(20) ###Output _____no_output_____ ###Markdown ---Rename the columns to something that can be ingested by the js ###Code column_map = { 'First Name': 'firstName', 'Last Name': 'lastName', 'Tagline': 'reelThemIn', 'Bio': 'bio', 'GitHub': 'github', 'LinkedIn': 'linkedin', 'Is Job Searching': 'job_searching', 'Website Portfolio': 'portfolio', 'Capstone Video': 'capstoneVideo', 'Podcast iframe': 'podcast' } website_info = website_info.rename(column_map, axis=1) website_info = website_info[column_map.values()] website_info.columns ###Output _____no_output_____ ###Markdown ---Make the paragraphs ###Code def html_paragraph(v): if pd.isna(v): return "" return str(v) website_info['reelThemIn'] = website_info['reelThemIn'].apply(html_paragraph) website_info['bio'] = website_info['bio'].apply(html_paragraph) ###Output _____no_output_____ ###Markdown ---Clean up some excess characters ###Code for col in website_info.columns: try: website_info[col] = website_info[col] \ .str.replace('“', '"') \ .str.replace('”', '"') \ .str.replace("’", "'") \ .str.replace("—", "-") except: pass ###Output _____no_output_____ ###Markdown ---Gather the image paths ###Code def image_path(name, idx): return f"../assets/img/resized/{name.lower()}{idx}.jpeg" website_info['proImg'] = website_info['firstName'].apply(image_path, idx=1) website_info['funImg'] = website_info['firstName'].apply(image_path, idx=2) website_info['proImg'].head() ###Output _____no_output_____ ###Markdown ---Resume paths ###Code def resume_path(name): path = f"../assets/resume/{name.lower()}.pdf" if os.path.exists(path): return path website_info['resume'] = website_info['firstName'].apply(resume_path) website_info[['firstName', 'resume']] ###Output _____no_output_____ ###Markdown ---Assign Ids ###Code website_info['id'] = website_info.index + 1 ###Output _____no_output_____ ###Markdown ---Take a peek ###Code website_info.head(1) website_info.to_json("./../data/cohort.json", orient='records') ###Output _____no_output_____
docs/Tutorial/logi_and_multiclass.ipynb
###Markdown Logistic Regression and Multinomial ExtensionWe would like to use an example to show how the best subset selection for logistic regression work in our program. Titanic DatasetConsider the Titanic dataset obtained from the Kaggle competition: https://www.kaggle.com/c/titanic/data. The dataset consists of data about 889 passengers, and the goal of the competition is to predict the survival (yes/no) based on features including the class of service, the sex, the age etc. ###Code import numpy as np import pandas as pd import csv dt = pd.read_csv("./train.csv") print(dt.head(5)) ###Output PassengerId Survived Pclass \ 0 1 0 3 1 2 1 1 2 3 1 3 3 4 1 1 4 5 0 3 Name Sex Age SibSp \ 0 Braund, Mr. Owen Harris male 22.0 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 2 Heikkinen, Miss. Laina female 26.0 0 3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 4 Allen, Mr. William Henry male 35.0 0 Parch Ticket Fare Cabin Embarked 0 0 A/5 21171 7.2500 NaN S 1 0 PC 17599 71.2833 C85 C 2 0 STON/O2. 3101282 7.9250 NaN S 3 0 113803 53.1000 C123 S 4 0 373450 8.0500 NaN S ###Markdown We only focus on some numeric or classification variables:- predictor variables: $Pclass,\ Sex,\ Age,\ SibSp,\ Parch,\ Fare,\ Embarked$;- response variable is $Survived$. ###Code dt = dt.iloc[:, [1,2,4,5,6,7,9,11]] # variables interested dt['Pclass'] = dt['Pclass'].astype(str) print(dt.head(5)) ###Output Survived Pclass Sex Age SibSp Parch Fare Embarked 0 0 3 male 22.0 1 0 7.2500 S 1 1 1 female 38.0 1 0 71.2833 C 2 1 3 female 26.0 0 0 7.9250 S 3 1 1 female 35.0 1 0 53.1000 S 4 0 3 male 35.0 0 0 8.0500 S ###Markdown However, some rows contain missing value (NaN) and we need to drop them. ###Code dt = dt.dropna() print('sample size: ', dt.shape) ###Output sample size: (712, 8) ###Markdown Then use dummy variables to replace classification variables: ###Code dt1 = pd.get_dummies(dt) print(dt1.head(5)) ###Output Survived Age SibSp Parch Fare Pclass_1 Pclass_2 Pclass_3 \ 0 0 22.0 1 0 7.2500 0 0 1 1 1 38.0 1 0 71.2833 1 0 0 2 1 26.0 0 0 7.9250 0 0 1 3 1 35.0 1 0 53.1000 1 0 0 4 0 35.0 0 0 8.0500 0 0 1 Sex_female Sex_male Embarked_C Embarked_Q Embarked_S 0 0 1 0 0 1 1 1 0 1 0 0 2 1 0 0 0 1 3 1 0 0 0 1 4 0 1 0 0 1 ###Markdown Now we split `dt1` into training set and testing set: ###Code from sklearn.model_selection import train_test_split X = np.array(dt1.drop('Survived', axis = 1)) Y = np.array(dt1.Survived) train_x, test_x, train_y, test_y = train_test_split(X, y, test_size = 0.33, random_state = 0) print('train size: ', train_x.shape[0]) print('test size:', test_x.shape[0]) ###Output train size: 477 test size: 235 ###Markdown Here `train_x` contains:- V0: dummy variable, 1st ticket class (1-yes, 0-no)- V1: dummy variable, 2nd ticket class (1-yes, 0-no)- V2: dummy variable, sex (1-male, 0-female)- V3: Age- V4: of siblings / spouses aboard the Titanic- V5: of parents / children aboard the Titanic- V6: Passenger fare- V7: dummy variable, Cherbourg for embarkation (1-yes, 0-no)- V8: dummy variable, Queenstown for embarkation (1-yes, 0-no)And `train_y` indicates whether the passenger survived (1-yes, 0-no). ###Code print('train_x:\n', train_x[0:5, :]) print('train_y:\n', train_y[0:5]) ###Output train_x: [[54. 1. 0. 59.4 1. 0. 0. 1. 0. 1. 0. 0. ] [30. 0. 0. 8.6625 0. 0. 1. 1. 0. 0. 0. 1. ] [47. 0. 0. 38.5 1. 0. 0. 0. 1. 0. 0. 1. ] [28. 2. 0. 7.925 0. 0. 1. 0. 1. 0. 0. 1. ] [29. 1. 0. 26. 0. 1. 0. 1. 0. 0. 0. 1. ]] train_y: [1 0 0 0 1] ###Markdown Best Subset Selection for Logistic RegressionThe `abessLogistic()` function in the `abess.linear` allows you to perform best subset selection in a highly efficient way. For example, in the Titanic sample, if you want to look for a best subset with no more than 5 variables on the logistic model, you can call: ###Code from abess.linear import abessLogistic s = 5 # target sparsity model = abessLogistic(support_size = range(0, s + 1)) model.fit(train_x, train_y) ###Output _____no_output_____ ###Markdown Now the `model.coef_` contains the coefficients of logistic model with no more than 5 variables. That is, those variables with a coefficient 0 is unused in the model: ###Code print(model.coef_) ###Output [-0.05410776 -0.53642966 0. 0. 1.74091231 0. -1.26223831 2.7096497 0. 0. 0. 0. ] ###Markdown By default, the `abessLogistic` function set the `support_size = range(0, min(p,n/log(n)p)` and the best support size is determined by theExtended Bayesian Information Criteria (EBIC). You can change the tunging criterion by specifying the argument `ic_type`. The available tuning criterion now are `gic`, `aic`, `bic`, `ebic`. For a quicker solution, you can change the tuning strategy to a golden section path which trys to find the elbow point of the tuning criterion over the hyperparameter space. Here we give an example. ###Code model_gs = abessLogistic(path_type = "pgs", s_min = 0, s_max = s) model_gs.fit(train_x, train_y) print(model_gs.coef_) ###Output [-0.05410776 -0.53642966 0. 0. 1.74091231 0. -1.26223831 2.7096497 0. 0. 0. 0. ] ###Markdown where `s_min` and `s_max` bound the support size and this model give the same answer as before. Interpret the ResultAfter fitting with `model.fit()`, we can further do more exploring work to interpret it. As we show above, `model.coef_` contains the sparse coefficients of variables and those non-zero values indicates "important" varibles chosen in the model. ###Code print('Intercept: ', model.intercept_) print('coefficients: \n', model.coef_) print('Used variables\' index:', np.nonzero(model.coef_ != 0)[0]) ###Output Intercept: [0.57429775] coefficients: [-0.05410776 -0.53642966 0. 0. 1.74091231 0. -1.26223831 2.7096497 0. 0. 0. 0. ] Used variables' index: [0 1 4 6 7] ###Markdown The training loss and the score under information criterion: ###Code print('Training Loss: ', model.train_loss_) print('IC: ', model.ic_) ###Output Training Loss: [204.35270048] IC: [464.39204991] ###Markdown Make a PredictionPrediction is allowed for the estimated model. Just call `model.predict()` function like: ###Code fitted_y = model.predict(test_x) print(fitted_y) ###Output [0. 0. 1. 0. 0. 0. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 0. 1. 0. 0. 0. 1. 1. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 1. 1. 1. 0. 1. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 1. 0. 1. 1. 1. 0. 1. 0. 0. 0. 0. 1. 1. 0. 1. 1. 0. 0. 0. 1. 0. 0. 0. 1. 1. 1. 0. 1. 1. 0. 0. 0. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 1. 0. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 1. 1. 1. 1. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 1. 0. 1. 1. 0. 1. 1. 0. 0. 1. 1. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 1. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ###Markdown Besides, you can also call for the survival probability of each observation by `model.predict_proba()`. Actually, those who with a probability greater than 0.5 is classified to "1" (survived). ###Code fitted_p = model.predict_proba(test_x) print(fitted_p) ###Output [0.49256613 0.25942968 0.84928463 0.20204183 0.03801548 0.04022349 0.72351443 0.23115622 0.23115622 0.66834673 0.96775535 0.64905946 0.98461921 0.15238867 0.25004079 0.57640212 0.26995968 0.71264582 0.37791835 0.1771314 0.25773297 0.75392142 0.87974411 0.40251569 0.56441882 0.34057869 0.22005156 0.067159 0.57880531 0.33647767 0.15655122 0.02682661 0.14553043 0.69663788 0.89078445 0.87925152 0.91926004 0.59081387 0.42997279 0.45653474 0.38846964 0.09020182 0.05742461 0.07773719 0.0994852 0.11006334 0.9819574 0.14219863 0.1096089 0.96940171 0.71351188 0.69663788 0.63663757 0.25942968 0.54978583 0.53309793 0.07032472 0.0706292 0.86889888 0.37901167 0.43876674 0.03084541 0.14553043 0.19993615 0.29180956 0.11828599 0.94586145 0.30610513 0.98763221 0.80911714 0.25942968 0.93051703 0.9097025 0.51285362 0.04924417 0.53765354 0.48242039 0.26040948 0.09474175 0.3384564 0.55107315 0.88025271 0.09058398 0.81733446 0.86836852 0.09474175 0.04461544 0.28075505 0.78890012 0.13893026 0.02434171 0.04697945 0.70146853 0.91404969 0.66232291 0.0994852 0.93719603 0.8422183 0.1096089 0.15469685 0.15238867 0.85879022 0.22005156 0.24091195 0.21168044 0.15238867 0.60493878 0.32644935 0.26125213 0.07517093 0.13893026 0.74034636 0.84746075 0.45213182 0.0706292 0.25942968 0.22005156 0.01835698 0.14163263 0.20211369 0.15238867 0.09990237 0.23918546 0.73072611 0.26215016 0.03608545 0.03870124 0.16253688 0.74034636 0.97993672 0.08170611 0.64073592 0.84033393 0.85210036 0.80983396 0.97257783 0.63663757 0.01819022 0.04521358 0.11500215 0.35283318 0.0604244 0.80983396 0.65427173 0.56441882 0.21090587 0.09020182 0.15238867 0.09205769 0.13258298 0.07032472 0.10443874 0.67329436 0.91047691 0.87141113 0.13258298 0.13893026 0.69001575 0.9854175 0.74034636 0.95157309 0.09990237 0.97884484 0.51066947 0.04441775 0.04441775 0.28361352 0.03487023 0.49488971 0.1178021 0.64073592 0.62512052 0.97884484 0.0706292 0.50493039 0.62403068 0.86836852 0.13893026 0.17455761 0.3031159 0.07773719 0.37901167 0.11778441 0.4701259 0.40262288 0.9369219 0.17455761 0.16689812 0.66640667 0.87338811 0.24261599 0.58525135 0.76060241 0.09058398 0.958343 0.72981059 0.30511879 0.29180956 0.77425595 0.96775535 0.0858588 0.86836852 0.03084541 0.71900957 0.08726302 0.05295266 0.34866263 0.32853374 0.034404 0.15950977 0.91085503 0.52533827 0.80136124 0.55222273 0.07394554 0.24917023 0.76475846 0.73431446 0.27182894 0.8976234 0.67329436 0.04441775 0.30124969 0.97648392 0.16253688 0.14892722 0.02069282 0.28267012 0.05742461 0.05012194 0.12648308 0.06745077 0.08275843 0.09020182 0.067159 ] ###Markdown We can also generate an ROC curve and calculate tha AUC value. On this dataset, the AUC is 0.817, which is quite close to 1. ###Code from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt fpr, tpr, _ = roc_curve(test_y, fitted_p) plt.plot(fpr, tpr) plt.plot([0, 1], [0, 1], 'k--') plt.show() print('AUC: ', auc(fpr, tpr)) ###Output _____no_output_____ ###Markdown Extension: Multi-class Classification Best subset selection for multinomial logistic regressionWhen the number of classes is more than 2, we call it multi-class classification task. Logistic regression can be extended to model several classes of events such as determining whether an image contains a cat, dog, lion, etc. Each object being detected in the image would be assigned a probability between 0 and 1, with a sum of one. The extended model is multinomial logistic regression.To arrive at the multinomial logistic model, one can imagine, for $K$ possible classes, running $K−1$ independent logistic regression models, in which one class is chosen as a "pivot" and then the other $K−1$ classes are separately regressed against the pivot outcome. This would proceed as follows, if class K (the last outcome) is chosen as the pivot:$$ \ln (\mathbb{P}(y=1)/\mathbb{P}(y=K)) = x^T\beta^{(1)},\\ \dots\ \dots\\ \ln (\mathbb{P}(y=K-1)/\mathbb{P}(y=K)) = x^T\beta^{(K-1)}.$$Then, the probability to choose the j-th class can be easily derived to be:$$ \mathbb{P}(y=j) = \frac{\exp(x^T\beta^{(j)})}{1+\sum_{k=1}^{K-1} \exp(x^T\beta^{(k)})},$$and subsequently, we would predict the $j^*$-th class if the $j^*=\arg\max_j \mathbb{P}(y=j)$. Notice that, for $K$ possible classes case, there are $p\times(K−1)$ unknown parameters: $\beta^{(1)},\dots,\beta^{(K−1)}$ to be estimated. Because the number of parameters increase as $K$, it is even more urge to constrain the model complexity. And the best subset selection for multinomial logistic regression aims to maximize the log-likelihood function and control the model complexity by restricting $B=(\beta^{(1)},\dots,\beta^{(K−1)})$ with $||B||_{0,2}\leq s$ where $||B||_{0,2}=\sum_{i=1}^p I(B_{i\cdot}=0)$, $B_{i\cdot}$ is the $i$-th row of coefficient matrix $B$ and $0\in R^{K-1}$ is an all zero vector. In other words, each row of $B$ would be either all zero or all non-zero. Multinomial logistic regression with `abess` PackageWe shall conduct Multinomial logistic regression on an artificial dataset for demonstration. The `abess.gene_data()` provides a simple way to generate suitable for this task. The assumption behind is the response vector following a multinomial distribution. The artifical dataset contain 100 observations and 20 predictors but only five predictors have influence on the three possible classes. ###Code from abess.gen_data import gen_data_splicing n = 100 # sample size p = 20 # all predictors k = 5 # real predictors M = 3 # number of classes np.random.seed(0) dt = gen_data_splicing(n = n, p = p, k = k, family = "multinomial", M = M) print(dt.coef_) print('real variables\' index:\n', set(np.nonzero(dt.coef_)[0])) ###Output [[ 0. 0. 0. ] [ 0. 0. 0. ] [ 1.09734231 4.03598978 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 9.91227834 -3.47987303 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 8.93282229 8.93249765 0. ] [-4.03426165 -2.70336848 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [-5.53475149 -2.65928982 0. ] [ 0. 0. 0. ]] real variables' index: {2, 5, 10, 11, 18} ###Markdown To carry out best subset selection for multinomial logistic regression, we can call the `abessMultinomial()`. Here is an example. ###Code from abess.linear import abessMultinomial s = 5 model = abessMultinomial(support_size = range(0, s + 1)) model.fit(dt.x, dt.y) ###Output _____no_output_____ ###Markdown Its use is quite similar to `abessLogistic`. We can get the coefficients to recognize "in-model" variables. ###Code print('intercept:\n', model.intercept_) print('coefficients:\n', model.coef_) ###Output intercept: [21.42326269 20.715469 22.26781623] coefficients: [[ 0. 0. 0. ] [ 0. 0. 0. ] [ -3.48154954 5.76904948 -3.2394208 ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 23.04122134 -14.80633656 -7.28160058] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 13.76886614 11.64612255 -11.12983172] [ -3.73875599 0.62171172 3.80279815] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ -9.19066393 -2.17011988 11.44410734] [ 0. 0. 0. ]] ###Markdown So those variables used in model can be recognized and we ca find that they are the same as the data's "real" coefficients we generate. ###Code print('used variables\' index:\n', set(np.nonzero(model.coef_)[0])) ###Output used variables' index: {2, 5, 10, 11, 18} ###Markdown Logistic Regression and Multinomial ExtensionWe would like to use an example to show how the best subset selection for logistic regression work in our program. Real Data Example Titanic DatasetConsider the Titanic dataset obtained from the Kaggle competition: https://www.kaggle.com/c/titanic/data. The dataset consists of data about 889 passengers, and the goal of the competition is to predict the survival (yes/no) based on features including the class of service, the sex, the age etc. ###Code import numpy as np import pandas as pd dt = pd.read_csv("./train.csv") print(dt.head(5)) ###Output PassengerId Survived Pclass \ 0 1 0 3 1 2 1 1 2 3 1 3 3 4 1 1 4 5 0 3 Name Sex Age SibSp \ 0 Braund, Mr. Owen Harris male 22.0 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 2 Heikkinen, Miss. Laina female 26.0 0 3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 4 Allen, Mr. William Henry male 35.0 0 Parch Ticket Fare Cabin Embarked 0 0 A/5 21171 7.2500 NaN S 1 0 PC 17599 71.2833 C85 C 2 0 STON/O2. 3101282 7.9250 NaN S 3 0 113803 53.1000 C123 S 4 0 373450 8.0500 NaN S ###Markdown We only focus on some numeric or classification variables:- predictor variables: $Pclass,\ Sex,\ Age,\ SibSp,\ Parch,\ Fare,\ Embarked$;- response variable is $Survived$. ###Code dt = dt.iloc[:, [1,2,4,5,6,7,9,11]] # variables interested dt['Pclass'] = dt['Pclass'].astype(str) print(dt.head(5)) ###Output Survived Pclass Sex Age SibSp Parch Fare Embarked 0 0 3 male 22.0 1 0 7.2500 S 1 1 1 female 38.0 1 0 71.2833 C 2 1 3 female 26.0 0 0 7.9250 S 3 1 1 female 35.0 1 0 53.1000 S 4 0 3 male 35.0 0 0 8.0500 S ###Markdown However, some rows contain missing value (NaN) and we need to drop them. ###Code dt = dt.dropna() print('sample size: ', dt.shape) ###Output sample size: (712, 8) ###Markdown Then use dummy variables to replace classification variables: ###Code dt1 = pd.get_dummies(dt) print(dt1.head(5)) ###Output Survived Age SibSp Parch Fare Pclass_1 Pclass_2 Pclass_3 \ 0 0 22.0 1 0 7.2500 0 0 1 1 1 38.0 1 0 71.2833 1 0 0 2 1 26.0 0 0 7.9250 0 0 1 3 1 35.0 1 0 53.1000 1 0 0 4 0 35.0 0 0 8.0500 0 0 1 Sex_female Sex_male Embarked_C Embarked_Q Embarked_S 0 0 1 0 0 1 1 1 0 1 0 0 2 1 0 0 0 1 3 1 0 0 0 1 4 0 1 0 0 1 ###Markdown Now we split `dt1` into training set and testing set: ###Code from sklearn.model_selection import train_test_split X = np.array(dt1.drop('Survived', axis = 1)) Y = np.array(dt1.Survived) train_x, test_x, train_y, test_y = train_test_split(X, Y, test_size = 0.33, random_state = 0) print('train size: ', train_x.shape[0]) print('test size:', test_x.shape[0]) ###Output train size: 477 test size: 235 ###Markdown Here `train_x` contains:- V0: dummy variable, 1st ticket class (1-yes, 0-no)- V1: dummy variable, 2nd ticket class (1-yes, 0-no)- V2: dummy variable, sex (1-male, 0-female)- V3: Age- V4: of siblings / spouses aboard the Titanic- V5: of parents / children aboard the Titanic- V6: Passenger fare- V7: dummy variable, Cherbourg for embarkation (1-yes, 0-no)- V8: dummy variable, Queenstown for embarkation (1-yes, 0-no)And `train_y` indicates whether the passenger survived (1-yes, 0-no). ###Code print('train_x:\n', train_x[0:5, :]) print('train_y:\n', train_y[0:5]) ###Output train_x: [[54. 1. 0. 59.4 1. 0. 0. 1. 0. 1. 0. 0. ] [30. 0. 0. 8.6625 0. 0. 1. 1. 0. 0. 0. 1. ] [47. 0. 0. 38.5 1. 0. 0. 0. 1. 0. 0. 1. ] [28. 2. 0. 7.925 0. 0. 1. 0. 1. 0. 0. 1. ] [29. 1. 0. 26. 0. 1. 0. 1. 0. 0. 0. 1. ]] train_y: [1 0 0 0 1] ###Markdown Model FittingThe `abessLogistic()` function in the `abess.linear` allows you to perform best subset selection in a highly efficient way. For example, in the Titanic sample, if you want to look for a best subset with no more than 5 variables on the logistic model, you can call: ###Code from abess.linear import abessLogistic s = 5 # max target sparsity model = abessLogistic(support_size = range(0, s + 1)) model.fit(train_x, train_y) ###Output _____no_output_____ ###Markdown Now the `model.coef_` contains the coefficients of logistic model with no more than 5 variables. That is, those variables with a coefficient 0 is unused in the model: ###Code print(model.coef_) ###Output [-0.05410776 -0.53642966 0. 0. 1.74091231 0. -1.26223831 2.7096497 0. 0. 0. 0. ] ###Markdown By default, the `abessLogistic` function set the `support_size = range(0, min(p,n/log(n)p)` and the best support size is determined by theExtended Bayesian Information Criteria (EBIC). You can change the tunging criterion by specifying the argument `ic_type`. The available tuning criterion now are `gic`, `aic`, `bic`, `ebic`. For a quicker solution, you can change the tuning strategy to a golden section path which trys to find the elbow point of the tuning criterion over the hyperparameter space. Here we give an example. ###Code model_gs = abessLogistic(path_type = "gs", s_min = 0, s_max = s) model_gs.fit(train_x, train_y) print(model_gs.coef_) ###Output [-0.05410776 -0.53642966 0. 0. 1.74091231 0. -1.26223831 2.7096497 0. 0. 0. 0. ] ###Markdown where `s_min` and `s_max` bound the support size and this model give the same answer as before. More on the ResultsAfter fitting with `model.fit()`, we can further do more exploring work to interpret it. As we show above, `model.coef_` contains the sparse coefficients of variables and those non-zero values indicates "important" varibles chosen in the model. ###Code print('Intercept: ', model.intercept_) print('coefficients: \n', model.coef_) print('Used variables\' index:', np.nonzero(model.coef_ != 0)[0]) ###Output Intercept: [0.57429775] coefficients: [-0.05410776 -0.53642966 0. 0. 1.74091231 0. -1.26223831 2.7096497 0. 0. 0. 0. ] Used variables' index: [0 1 4 6 7] ###Markdown The training loss and the score under information criterion: ###Code print('Training Loss: ', model.train_loss_) print('IC: ', model.ic_) ###Output Training Loss: [204.35270048] IC: [464.39204991] ###Markdown Prediction is allowed for the estimated model. Just call `model.predict()` function like: ###Code fitted_y = model.predict(test_x) print(fitted_y) ###Output [0. 0. 1. 0. 0. 0. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 0. 1. 0. 0. 0. 1. 1. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 1. 1. 1. 0. 1. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 1. 0. 1. 1. 1. 0. 1. 0. 0. 0. 0. 1. 1. 0. 1. 1. 0. 0. 0. 1. 0. 0. 0. 1. 1. 1. 0. 1. 1. 0. 0. 0. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 1. 0. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 1. 1. 1. 1. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 1. 0. 1. 1. 0. 1. 1. 0. 0. 1. 1. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 1. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ###Markdown Besides, you can also call for the survival probability of each observation by `model.predict_proba()`. Actually, those who with a probability greater than 0.5 is classified to "1" (survived). ###Code fitted_p = model.predict_proba(test_x) print(fitted_p) ###Output [0.49256613 0.25942968 0.84928463 0.20204183 0.03801548 0.04022349 0.72351443 0.23115622 0.23115622 0.66834673 0.96775535 0.64905946 0.98461921 0.15238867 0.25004079 0.57640212 0.26995968 0.71264582 0.37791835 0.1771314 0.25773297 0.75392142 0.87974411 0.40251569 0.56441882 0.34057869 0.22005156 0.067159 0.57880531 0.33647767 0.15655122 0.02682661 0.14553043 0.69663788 0.89078445 0.87925152 0.91926004 0.59081387 0.42997279 0.45653474 0.38846964 0.09020182 0.05742461 0.07773719 0.0994852 0.11006334 0.9819574 0.14219863 0.1096089 0.96940171 0.71351188 0.69663788 0.63663757 0.25942968 0.54978583 0.53309793 0.07032472 0.0706292 0.86889888 0.37901167 0.43876674 0.03084541 0.14553043 0.19993615 0.29180956 0.11828599 0.94586145 0.30610513 0.98763221 0.80911714 0.25942968 0.93051703 0.9097025 0.51285362 0.04924417 0.53765354 0.48242039 0.26040948 0.09474175 0.3384564 0.55107315 0.88025271 0.09058398 0.81733446 0.86836852 0.09474175 0.04461544 0.28075505 0.78890012 0.13893026 0.02434171 0.04697945 0.70146853 0.91404969 0.66232291 0.0994852 0.93719603 0.8422183 0.1096089 0.15469685 0.15238867 0.85879022 0.22005156 0.24091195 0.21168044 0.15238867 0.60493878 0.32644935 0.26125213 0.07517093 0.13893026 0.74034636 0.84746075 0.45213182 0.0706292 0.25942968 0.22005156 0.01835698 0.14163263 0.20211369 0.15238867 0.09990237 0.23918546 0.73072611 0.26215016 0.03608545 0.03870124 0.16253688 0.74034636 0.97993672 0.08170611 0.64073592 0.84033393 0.85210036 0.80983396 0.97257783 0.63663757 0.01819022 0.04521358 0.11500215 0.35283318 0.0604244 0.80983396 0.65427173 0.56441882 0.21090587 0.09020182 0.15238867 0.09205769 0.13258298 0.07032472 0.10443874 0.67329436 0.91047691 0.87141113 0.13258298 0.13893026 0.69001575 0.9854175 0.74034636 0.95157309 0.09990237 0.97884484 0.51066947 0.04441775 0.04441775 0.28361352 0.03487023 0.49488971 0.1178021 0.64073592 0.62512052 0.97884484 0.0706292 0.50493039 0.62403068 0.86836852 0.13893026 0.17455761 0.3031159 0.07773719 0.37901167 0.11778441 0.4701259 0.40262288 0.9369219 0.17455761 0.16689812 0.66640667 0.87338811 0.24261599 0.58525135 0.76060241 0.09058398 0.958343 0.72981059 0.30511879 0.29180956 0.77425595 0.96775535 0.0858588 0.86836852 0.03084541 0.71900957 0.08726302 0.05295266 0.34866263 0.32853374 0.034404 0.15950977 0.91085503 0.52533827 0.80136124 0.55222273 0.07394554 0.24917023 0.76475846 0.73431446 0.27182894 0.8976234 0.67329436 0.04441775 0.30124969 0.97648392 0.16253688 0.14892722 0.02069282 0.28267012 0.05742461 0.05012194 0.12648308 0.06745077 0.08275843 0.09020182 0.067159 ] ###Markdown We can also generate an ROC curve and calculate tha AUC value. On this dataset, the AUC is 0.817, which is quite close to 1. ###Code from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt fpr, tpr, _ = roc_curve(test_y, fitted_p) plt.plot(fpr, tpr) plt.plot([0, 1], [0, 1], 'k--') plt.show() print('AUC: ', auc(fpr, tpr)) ###Output _____no_output_____ ###Markdown Extension: Multi-class Classification Multinomial logistic regressionWhen the number of classes is more than 2, we call it multi-class classification task. Logistic regression can be extended to model several classes of events such as determining whether an image contains a cat, dog, lion, etc. Each object being detected in the image would be assigned a probability between 0 and 1, with a sum of one. The extended model is multinomial logistic regression.To arrive at the multinomial logistic model, one can imagine, for $K$ possible classes, running $K−1$ independent logistic regression models, in which one class is chosen as a "pivot" and then the other $K−1$ classes are separately regressed against the pivot outcome. This would proceed as follows, if class K (the last outcome) is chosen as the pivot:$$\begin{aligned} \ln (\mathbb{P}(y=1)/\mathbb{P}(y=K)) = x^T\beta^{(1)},\\ \dots\ \dots\\ \ln (\mathbb{P}(y=K-1)/\mathbb{P}(y=K)) = x^T\beta^{(K-1)}.\end{aligned}$$Then, the probability to choose the j-th class can be easily derived to be:$$ \mathbb{P}(y=j) = \frac{\exp(x^T\beta^{(j)})}{1+\sum_{k=1}^{K-1} \exp(x^T\beta^{(k)})},$$and subsequently, we would predict the $j^*$-th class if the $j^*=\arg\max_j \mathbb{P}(y=j)$. Notice that, for $K$ possible classes case, there are $p\times(K−1)$ unknown parameters: $\beta^{(1)},\dots,\beta^{(K−1)}$ to be estimated. Because the number of parameters increase as $K$, it is even more urge to constrain the model complexity. And the best subset selection for multinomial logistic regression aims to maximize the log-likelihood function and control the model complexity by restricting $B=(\beta^{(1)},\dots,\beta^{(K−1)})$ with $||B||_{0,2}\leq s$ where $||B||_{0,2}=\sum_{i=1}^p I(B_{i\cdot}=0)$, $B_{i\cdot}$ is the $i$-th row of coefficient matrix $B$ and $0\in R^{K-1}$ is an all zero vector. In other words, each row of $B$ would be either all zero or all non-zero. Simulated Data ExampleWe shall conduct Multinomial logistic regression on an artificial dataset for demonstration. The `make_multivariate_glm_data()` provides a simple way to generate suitable for this task. The assumption behind is the response vector following a multinomial distribution. The artifical dataset contain 100 observations and 20 predictors but only five predictors have influence on the three possible classes. ###Code from abess.datasets import make_multivariate_glm_data n = 100 # sample size p = 20 # all predictors k = 5 # real predictors M = 3 # number of classes np.random.seed(0) dt = make_multivariate_glm_data(n = n, p = p, k = k, family = "multinomial", M = M) print(dt.coef_) print('real variables\' index:\n', set(np.nonzero(dt.coef_)[0])) ###Output [[ 0. 0. 0. ] [ 0. 0. 0. ] [ 1.09734231 4.03598978 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 9.91227834 -3.47987303 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 8.93282229 8.93249765 0. ] [-4.03426165 -2.70336848 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [-5.53475149 -2.65928982 0. ] [ 0. 0. 0. ]] real variables' index: {2, 5, 10, 11, 18} ###Markdown To carry out best subset selection for multinomial logistic regression, we can call the `abessMultinomial()`. Here is an example. ###Code from abess.linear import abessMultinomial s = 5 model = abessMultinomial(support_size = range(0, s + 1)) model.fit(dt.x, dt.y) ###Output _____no_output_____ ###Markdown Its use is quite similar to `abessLogistic`. We can get the coefficients to recognize "in-model" variables. ###Code print('intercept:\n', model.intercept_) print('coefficients:\n', model.coef_) ###Output intercept: [21.42326269 20.715469 22.26781623] coefficients: [[ 0. 0. 0. ] [ 0. 0. 0. ] [ -3.48154954 5.76904948 -3.2394208 ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 23.04122134 -14.80633656 -7.28160058] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 13.76886614 11.64612255 -11.12983172] [ -3.73875599 0.62171172 3.80279815] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ -9.19066393 -2.17011988 11.44410734] [ 0. 0. 0. ]] ###Markdown So those variables used in model can be recognized and we ca find that they are the same as the data's "real" coefficients we generate. ###Code print('used variables\' index:\n', set(np.nonzero(model.coef_)[0])) ###Output used variables' index: {2, 5, 10, 11, 18} ###Markdown Logistic Regression and Multinomial ExtensionWe would like to use an example to show how the best subset selection for logistic regression work in our program. Real Data Example Titanic DatasetConsider the Titanic dataset obtained from the Kaggle competition: https://www.kaggle.com/c/titanic/data. The dataset consists of data about 889 passengers, and the goal of the competition is to predict the survival (yes/no) based on features including the class of service, the sex, the age etc. ###Code import numpy as np import pandas as pd dt = pd.read_csv("./train.csv") print(dt.head(5)) ###Output PassengerId Survived Pclass \ 0 1 0 3 1 2 1 1 2 3 1 3 3 4 1 1 4 5 0 3 Name Sex Age SibSp \ 0 Braund, Mr. Owen Harris male 22.0 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 2 Heikkinen, Miss. Laina female 26.0 0 3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 4 Allen, Mr. William Henry male 35.0 0 Parch Ticket Fare Cabin Embarked 0 0 A/5 21171 7.2500 NaN S 1 0 PC 17599 71.2833 C85 C 2 0 STON/O2. 3101282 7.9250 NaN S 3 0 113803 53.1000 C123 S 4 0 373450 8.0500 NaN S ###Markdown We only focus on some numeric or classification variables:- predictor variables: $Pclass,\ Sex,\ Age,\ SibSp,\ Parch,\ Fare,\ Embarked$;- response variable is $Survived$. ###Code dt = dt.iloc[:, [1,2,4,5,6,7,9,11]] # variables interested dt['Pclass'] = dt['Pclass'].astype(str) print(dt.head(5)) ###Output Survived Pclass Sex Age SibSp Parch Fare Embarked 0 0 3 male 22.0 1 0 7.2500 S 1 1 1 female 38.0 1 0 71.2833 C 2 1 3 female 26.0 0 0 7.9250 S 3 1 1 female 35.0 1 0 53.1000 S 4 0 3 male 35.0 0 0 8.0500 S ###Markdown However, some rows contain missing value (NaN) and we need to drop them. ###Code dt = dt.dropna() print('sample size: ', dt.shape) ###Output sample size: (712, 8) ###Markdown Then use dummy variables to replace classification variables: ###Code dt1 = pd.get_dummies(dt) print(dt1.head(5)) ###Output Survived Age SibSp Parch Fare Pclass_1 Pclass_2 Pclass_3 \ 0 0 22.0 1 0 7.2500 0 0 1 1 1 38.0 1 0 71.2833 1 0 0 2 1 26.0 0 0 7.9250 0 0 1 3 1 35.0 1 0 53.1000 1 0 0 4 0 35.0 0 0 8.0500 0 0 1 Sex_female Sex_male Embarked_C Embarked_Q Embarked_S 0 0 1 0 0 1 1 1 0 1 0 0 2 1 0 0 0 1 3 1 0 0 0 1 4 0 1 0 0 1 ###Markdown Now we split `dt1` into training set and testing set: ###Code from sklearn.model_selection import train_test_split X = np.array(dt1.drop('Survived', axis = 1)) Y = np.array(dt1.Survived) train_x, test_x, train_y, test_y = train_test_split(X, y, test_size = 0.33, random_state = 0) print('train size: ', train_x.shape[0]) print('test size:', test_x.shape[0]) ###Output train size: 477 test size: 235 ###Markdown Here `train_x` contains:- V0: dummy variable, 1st ticket class (1-yes, 0-no)- V1: dummy variable, 2nd ticket class (1-yes, 0-no)- V2: dummy variable, sex (1-male, 0-female)- V3: Age- V4: of siblings / spouses aboard the Titanic- V5: of parents / children aboard the Titanic- V6: Passenger fare- V7: dummy variable, Cherbourg for embarkation (1-yes, 0-no)- V8: dummy variable, Queenstown for embarkation (1-yes, 0-no)And `train_y` indicates whether the passenger survived (1-yes, 0-no). ###Code print('train_x:\n', train_x[0:5, :]) print('train_y:\n', train_y[0:5]) ###Output train_x: [[54. 1. 0. 59.4 1. 0. 0. 1. 0. 1. 0. 0. ] [30. 0. 0. 8.6625 0. 0. 1. 1. 0. 0. 0. 1. ] [47. 0. 0. 38.5 1. 0. 0. 0. 1. 0. 0. 1. ] [28. 2. 0. 7.925 0. 0. 1. 0. 1. 0. 0. 1. ] [29. 1. 0. 26. 0. 1. 0. 1. 0. 0. 0. 1. ]] train_y: [1 0 0 0 1] ###Markdown Model FittingThe `abessLogistic()` function in the `abess.linear` allows you to perform best subset selection in a highly efficient way. For example, in the Titanic sample, if you want to look for a best subset with no more than 5 variables on the logistic model, you can call: ###Code from abess.linear import abessLogistic s = 5 # target sparsity model = abessLogistic(support_size = range(0, s + 1)) model.fit(train_x, train_y) ###Output _____no_output_____ ###Markdown Now the `model.coef_` contains the coefficients of logistic model with no more than 5 variables. That is, those variables with a coefficient 0 is unused in the model: ###Code print(model.coef_) ###Output [-0.05410776 -0.53642966 0. 0. 1.74091231 0. -1.26223831 2.7096497 0. 0. 0. 0. ] ###Markdown By default, the `abessLogistic` function set the `support_size = range(0, min(p,n/log(n)p)` and the best support size is determined by theExtended Bayesian Information Criteria (EBIC). You can change the tunging criterion by specifying the argument `ic_type`. The available tuning criterion now are `gic`, `aic`, `bic`, `ebic`. For a quicker solution, you can change the tuning strategy to a golden section path which trys to find the elbow point of the tuning criterion over the hyperparameter space. Here we give an example. ###Code model_gs = abessLogistic(path_type = "pgs", s_min = 0, s_max = s) model_gs.fit(train_x, train_y) print(model_gs.coef_) ###Output [-0.05410776 -0.53642966 0. 0. 1.74091231 0. -1.26223831 2.7096497 0. 0. 0. 0. ] ###Markdown where `s_min` and `s_max` bound the support size and this model give the same answer as before. More on the ResultsAfter fitting with `model.fit()`, we can further do more exploring work to interpret it. As we show above, `model.coef_` contains the sparse coefficients of variables and those non-zero values indicates "important" varibles chosen in the model. ###Code print('Intercept: ', model.intercept_) print('coefficients: \n', model.coef_) print('Used variables\' index:', np.nonzero(model.coef_ != 0)[0]) ###Output Intercept: [0.57429775] coefficients: [-0.05410776 -0.53642966 0. 0. 1.74091231 0. -1.26223831 2.7096497 0. 0. 0. 0. ] Used variables' index: [0 1 4 6 7] ###Markdown The training loss and the score under information criterion: ###Code print('Training Loss: ', model.train_loss_) print('IC: ', model.ic_) ###Output Training Loss: [204.35270048] IC: [464.39204991] ###Markdown Prediction is allowed for the estimated model. Just call `model.predict()` function like: ###Code fitted_y = model.predict(test_x) print(fitted_y) ###Output [0. 0. 1. 0. 0. 0. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 0. 1. 0. 0. 0. 1. 1. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 1. 1. 1. 0. 1. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 1. 0. 1. 1. 1. 0. 1. 0. 0. 0. 0. 1. 1. 0. 1. 1. 0. 0. 0. 1. 0. 0. 0. 1. 1. 1. 0. 1. 1. 0. 0. 0. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 1. 0. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 1. 1. 1. 1. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 1. 0. 1. 1. 0. 1. 1. 0. 0. 1. 1. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 1. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ###Markdown Besides, you can also call for the survival probability of each observation by `model.predict_proba()`. Actually, those who with a probability greater than 0.5 is classified to "1" (survived). ###Code fitted_p = model.predict_proba(test_x) print(fitted_p) ###Output [0.49256613 0.25942968 0.84928463 0.20204183 0.03801548 0.04022349 0.72351443 0.23115622 0.23115622 0.66834673 0.96775535 0.64905946 0.98461921 0.15238867 0.25004079 0.57640212 0.26995968 0.71264582 0.37791835 0.1771314 0.25773297 0.75392142 0.87974411 0.40251569 0.56441882 0.34057869 0.22005156 0.067159 0.57880531 0.33647767 0.15655122 0.02682661 0.14553043 0.69663788 0.89078445 0.87925152 0.91926004 0.59081387 0.42997279 0.45653474 0.38846964 0.09020182 0.05742461 0.07773719 0.0994852 0.11006334 0.9819574 0.14219863 0.1096089 0.96940171 0.71351188 0.69663788 0.63663757 0.25942968 0.54978583 0.53309793 0.07032472 0.0706292 0.86889888 0.37901167 0.43876674 0.03084541 0.14553043 0.19993615 0.29180956 0.11828599 0.94586145 0.30610513 0.98763221 0.80911714 0.25942968 0.93051703 0.9097025 0.51285362 0.04924417 0.53765354 0.48242039 0.26040948 0.09474175 0.3384564 0.55107315 0.88025271 0.09058398 0.81733446 0.86836852 0.09474175 0.04461544 0.28075505 0.78890012 0.13893026 0.02434171 0.04697945 0.70146853 0.91404969 0.66232291 0.0994852 0.93719603 0.8422183 0.1096089 0.15469685 0.15238867 0.85879022 0.22005156 0.24091195 0.21168044 0.15238867 0.60493878 0.32644935 0.26125213 0.07517093 0.13893026 0.74034636 0.84746075 0.45213182 0.0706292 0.25942968 0.22005156 0.01835698 0.14163263 0.20211369 0.15238867 0.09990237 0.23918546 0.73072611 0.26215016 0.03608545 0.03870124 0.16253688 0.74034636 0.97993672 0.08170611 0.64073592 0.84033393 0.85210036 0.80983396 0.97257783 0.63663757 0.01819022 0.04521358 0.11500215 0.35283318 0.0604244 0.80983396 0.65427173 0.56441882 0.21090587 0.09020182 0.15238867 0.09205769 0.13258298 0.07032472 0.10443874 0.67329436 0.91047691 0.87141113 0.13258298 0.13893026 0.69001575 0.9854175 0.74034636 0.95157309 0.09990237 0.97884484 0.51066947 0.04441775 0.04441775 0.28361352 0.03487023 0.49488971 0.1178021 0.64073592 0.62512052 0.97884484 0.0706292 0.50493039 0.62403068 0.86836852 0.13893026 0.17455761 0.3031159 0.07773719 0.37901167 0.11778441 0.4701259 0.40262288 0.9369219 0.17455761 0.16689812 0.66640667 0.87338811 0.24261599 0.58525135 0.76060241 0.09058398 0.958343 0.72981059 0.30511879 0.29180956 0.77425595 0.96775535 0.0858588 0.86836852 0.03084541 0.71900957 0.08726302 0.05295266 0.34866263 0.32853374 0.034404 0.15950977 0.91085503 0.52533827 0.80136124 0.55222273 0.07394554 0.24917023 0.76475846 0.73431446 0.27182894 0.8976234 0.67329436 0.04441775 0.30124969 0.97648392 0.16253688 0.14892722 0.02069282 0.28267012 0.05742461 0.05012194 0.12648308 0.06745077 0.08275843 0.09020182 0.067159 ] ###Markdown We can also generate an ROC curve and calculate tha AUC value. On this dataset, the AUC is 0.817, which is quite close to 1. ###Code from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt fpr, tpr, _ = roc_curve(test_y, fitted_p) plt.plot(fpr, tpr) plt.plot([0, 1], [0, 1], 'k--') plt.show() print('AUC: ', auc(fpr, tpr)) ###Output _____no_output_____ ###Markdown Extension: Multi-class Classification Multinomial logistic regressionWhen the number of classes is more than 2, we call it multi-class classification task. Logistic regression can be extended to model several classes of events such as determining whether an image contains a cat, dog, lion, etc. Each object being detected in the image would be assigned a probability between 0 and 1, with a sum of one. The extended model is multinomial logistic regression.To arrive at the multinomial logistic model, one can imagine, for $K$ possible classes, running $K−1$ independent logistic regression models, in which one class is chosen as a "pivot" and then the other $K−1$ classes are separately regressed against the pivot outcome. This would proceed as follows, if class K (the last outcome) is chosen as the pivot:$$\begin{aligned} \ln (\mathbb{P}(y=1)/\mathbb{P}(y=K)) = x^T\beta^{(1)},\\ \dots\ \dots\\ \ln (\mathbb{P}(y=K-1)/\mathbb{P}(y=K)) = x^T\beta^{(K-1)}.\end{aligned}$$Then, the probability to choose the j-th class can be easily derived to be:$$ \mathbb{P}(y=j) = \frac{\exp(x^T\beta^{(j)})}{1+\sum_{k=1}^{K-1} \exp(x^T\beta^{(k)})},$$and subsequently, we would predict the $j^*$-th class if the $j^*=\arg\max_j \mathbb{P}(y=j)$. Notice that, for $K$ possible classes case, there are $p\times(K−1)$ unknown parameters: $\beta^{(1)},\dots,\beta^{(K−1)}$ to be estimated. Because the number of parameters increase as $K$, it is even more urge to constrain the model complexity. And the best subset selection for multinomial logistic regression aims to maximize the log-likelihood function and control the model complexity by restricting $B=(\beta^{(1)},\dots,\beta^{(K−1)})$ with $||B||_{0,2}\leq s$ where $||B||_{0,2}=\sum_{i=1}^p I(B_{i\cdot}=0)$, $B_{i\cdot}$ is the $i$-th row of coefficient matrix $B$ and $0\in R^{K-1}$ is an all zero vector. In other words, each row of $B$ would be either all zero or all non-zero. Simulated Data ExampleWe shall conduct Multinomial logistic regression on an artificial dataset for demonstration. The `make_multivariate_glm_data()` provides a simple way to generate suitable for this task. The assumption behind is the response vector following a multinomial distribution. The artifical dataset contain 100 observations and 20 predictors but only five predictors have influence on the three possible classes. ###Code from abess.datasets import make_multivariate_glm_data n = 100 # sample size p = 20 # all predictors k = 5 # real predictors M = 3 # number of classes np.random.seed(0) dt = make_multivariate_glm_data(n = n, p = p, k = k, family = "multinomial", M = M) print(dt.coef_) print('real variables\' index:\n', set(np.nonzero(dt.coef_)[0])) ###Output [[ 0. 0. 0. ] [ 0. 0. 0. ] [ 1.09734231 4.03598978 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 9.91227834 -3.47987303 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 8.93282229 8.93249765 0. ] [-4.03426165 -2.70336848 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [-5.53475149 -2.65928982 0. ] [ 0. 0. 0. ]] real variables' index: {2, 5, 10, 11, 18} ###Markdown To carry out best subset selection for multinomial logistic regression, we can call the `abessMultinomial()`. Here is an example. ###Code from abess.linear import abessMultinomial s = 5 model = abessMultinomial(support_size = range(0, s + 1)) model.fit(dt.x, dt.y) ###Output _____no_output_____ ###Markdown Its use is quite similar to `abessLogistic`. We can get the coefficients to recognize "in-model" variables. ###Code print('intercept:\n', model.intercept_) print('coefficients:\n', model.coef_) ###Output intercept: [21.42326269 20.715469 22.26781623] coefficients: [[ 0. 0. 0. ] [ 0. 0. 0. ] [ -3.48154954 5.76904948 -3.2394208 ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 23.04122134 -14.80633656 -7.28160058] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 13.76886614 11.64612255 -11.12983172] [ -3.73875599 0.62171172 3.80279815] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ -9.19066393 -2.17011988 11.44410734] [ 0. 0. 0. ]] ###Markdown So those variables used in model can be recognized and we ca find that they are the same as the data's "real" coefficients we generate. ###Code print('used variables\' index:\n', set(np.nonzero(model.coef_)[0])) ###Output used variables' index: {2, 5, 10, 11, 18} ###Markdown Logistic Regression and Multinomial ExtensionWe would like to use an example to show how the best subset selection for logistic regression work in our program. Real Data Example Titanic DatasetConsider the Titanic dataset obtained from the Kaggle competition: https://www.kaggle.com/c/titanic/data. The dataset consists of data about 889 passengers, and the goal of the competition is to predict the survival (yes/no) based on features including the class of service, the sex, the age etc. ###Code import numpy as np import pandas as pd dt = pd.read_csv("./train.csv") print(dt.head(5)) ###Output PassengerId Survived Pclass \ 0 1 0 3 1 2 1 1 2 3 1 3 3 4 1 1 4 5 0 3 Name Sex Age SibSp \ 0 Braund, Mr. Owen Harris male 22.0 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 2 Heikkinen, Miss. Laina female 26.0 0 3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 4 Allen, Mr. William Henry male 35.0 0 Parch Ticket Fare Cabin Embarked 0 0 A/5 21171 7.2500 NaN S 1 0 PC 17599 71.2833 C85 C 2 0 STON/O2. 3101282 7.9250 NaN S 3 0 113803 53.1000 C123 S 4 0 373450 8.0500 NaN S ###Markdown We only focus on some numeric or classification variables:- predictor variables: $Pclass,\ Sex,\ Age,\ SibSp,\ Parch,\ Fare,\ Embarked$;- response variable is $Survived$. ###Code dt = dt.iloc[:, [1,2,4,5,6,7,9,11]] # variables interested dt['Pclass'] = dt['Pclass'].astype(str) print(dt.head(5)) ###Output Survived Pclass Sex Age SibSp Parch Fare Embarked 0 0 3 male 22.0 1 0 7.2500 S 1 1 1 female 38.0 1 0 71.2833 C 2 1 3 female 26.0 0 0 7.9250 S 3 1 1 female 35.0 1 0 53.1000 S 4 0 3 male 35.0 0 0 8.0500 S ###Markdown However, some rows contain missing value (NaN) and we need to drop them. ###Code dt = dt.dropna() print('sample size: ', dt.shape) ###Output sample size: (712, 8) ###Markdown Then use dummy variables to replace classification variables: ###Code dt1 = pd.get_dummies(dt) print(dt1.head(5)) ###Output Survived Age SibSp Parch Fare Pclass_1 Pclass_2 Pclass_3 \ 0 0 22.0 1 0 7.2500 0 0 1 1 1 38.0 1 0 71.2833 1 0 0 2 1 26.0 0 0 7.9250 0 0 1 3 1 35.0 1 0 53.1000 1 0 0 4 0 35.0 0 0 8.0500 0 0 1 Sex_female Sex_male Embarked_C Embarked_Q Embarked_S 0 0 1 0 0 1 1 1 0 1 0 0 2 1 0 0 0 1 3 1 0 0 0 1 4 0 1 0 0 1 ###Markdown Now we split `dt1` into training set and testing set: ###Code from sklearn.model_selection import train_test_split X = np.array(dt1.drop('Survived', axis = 1)) Y = np.array(dt1.Survived) train_x, test_x, train_y, test_y = train_test_split(X, Y, test_size = 0.33, random_state = 0) print('train size: ', train_x.shape[0]) print('test size:', test_x.shape[0]) ###Output train size: 477 test size: 235 ###Markdown Here `train_x` contains:- V0: dummy variable, 1st ticket class (1-yes, 0-no)- V1: dummy variable, 2nd ticket class (1-yes, 0-no)- V2: dummy variable, sex (1-male, 0-female)- V3: Age- V4: of siblings / spouses aboard the Titanic- V5: of parents / children aboard the Titanic- V6: Passenger fare- V7: dummy variable, Cherbourg for embarkation (1-yes, 0-no)- V8: dummy variable, Queenstown for embarkation (1-yes, 0-no)And `train_y` indicates whether the passenger survived (1-yes, 0-no). ###Code print('train_x:\n', train_x[0:5, :]) print('train_y:\n', train_y[0:5]) ###Output train_x: [[54. 1. 0. 59.4 1. 0. 0. 1. 0. 1. 0. 0. ] [30. 0. 0. 8.6625 0. 0. 1. 1. 0. 0. 0. 1. ] [47. 0. 0. 38.5 1. 0. 0. 0. 1. 0. 0. 1. ] [28. 2. 0. 7.925 0. 0. 1. 0. 1. 0. 0. 1. ] [29. 1. 0. 26. 0. 1. 0. 1. 0. 0. 0. 1. ]] train_y: [1 0 0 0 1] ###Markdown Model FittingThe `LogisticRegression()` function in the `abess.linear` allows you to perform best subset selection in a highly efficient way. For example, in the Titanic sample, if you want to look for a best subset with no more than 5 variables on the logistic model, you can call: ###Code from abess.linear import LogisticRegression s = 5 # max target sparsity model = LogisticRegression(support_size = range(0, s + 1)) model.fit(train_x, train_y) ###Output _____no_output_____ ###Markdown Now the `model.coef_` contains the coefficients of logistic model with no more than 5 variables. That is, those variables with a coefficient 0 is unused in the model: ###Code print(model.coef_) ###Output [-0.05410776 -0.53642966 0. 0. 1.74091231 0. -1.26223831 2.7096497 0. 0. 0. 0. ] ###Markdown By default, the `LogisticRegression` function set the `support_size = range(0, min(p,n/log(n)p)` and the best support size is determined by theExtended Bayesian Information Criteria (EBIC). You can change the tunging criterion by specifying the argument `ic_type`. The available tuning criterion now are `gic`, `aic`, `bic`, `ebic`. For a quicker solution, you can change the tuning strategy to a golden section path which trys to find the elbow point of the tuning criterion over the hyperparameter space. Here we give an example. ###Code model_gs = LogisticRegression(path_type = "gs", s_min = 0, s_max = s) model_gs.fit(train_x, train_y) print(model_gs.coef_) ###Output [-0.05410776 -0.53642966 0. 0. 1.74091231 0. -1.26223831 2.7096497 0. 0. 0. 0. ] ###Markdown where `s_min` and `s_max` bound the support size and this model give the same answer as before. More on the ResultsAfter fitting with `model.fit()`, we can further do more exploring work to interpret it. As we show above, `model.coef_` contains the sparse coefficients of variables and those non-zero values indicates "important" varibles chosen in the model. ###Code print('Intercept: ', model.intercept_) print('coefficients: \n', model.coef_) print('Used variables\' index:', np.nonzero(model.coef_ != 0)[0]) ###Output Intercept: [0.57429775] coefficients: [-0.05410776 -0.53642966 0. 0. 1.74091231 0. -1.26223831 2.7096497 0. 0. 0. 0. ] Used variables' index: [0 1 4 6 7] ###Markdown The training loss and the score under information criterion: ###Code print('Training Loss: ', model.train_loss_) print('IC: ', model.ic_) ###Output Training Loss: [204.35270048] IC: [464.39204991] ###Markdown Prediction is allowed for the estimated model. Just call `model.predict()` function like: ###Code fitted_y = model.predict(test_x) print(fitted_y) ###Output [0. 0. 1. 0. 0. 0. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 0. 1. 0. 0. 0. 1. 1. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 1. 1. 1. 0. 1. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 1. 0. 1. 1. 1. 0. 1. 0. 0. 0. 0. 1. 1. 0. 1. 1. 0. 0. 0. 1. 0. 0. 0. 1. 1. 1. 0. 1. 1. 0. 0. 0. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 1. 0. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 1. 1. 1. 1. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 1. 0. 1. 1. 0. 1. 1. 0. 0. 1. 1. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 1. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] ###Markdown Besides, you can also call for the survival probability of each observation by `model.predict_proba()`. Actually, those who with a probability greater than 0.5 is classified to "1" (survived). ###Code fitted_p = model.predict_proba(test_x) print(fitted_p) ###Output [0.49256613 0.25942968 0.84928463 0.20204183 0.03801548 0.04022349 0.72351443 0.23115622 0.23115622 0.66834673 0.96775535 0.64905946 0.98461921 0.15238867 0.25004079 0.57640212 0.26995968 0.71264582 0.37791835 0.1771314 0.25773297 0.75392142 0.87974411 0.40251569 0.56441882 0.34057869 0.22005156 0.067159 0.57880531 0.33647767 0.15655122 0.02682661 0.14553043 0.69663788 0.89078445 0.87925152 0.91926004 0.59081387 0.42997279 0.45653474 0.38846964 0.09020182 0.05742461 0.07773719 0.0994852 0.11006334 0.9819574 0.14219863 0.1096089 0.96940171 0.71351188 0.69663788 0.63663757 0.25942968 0.54978583 0.53309793 0.07032472 0.0706292 0.86889888 0.37901167 0.43876674 0.03084541 0.14553043 0.19993615 0.29180956 0.11828599 0.94586145 0.30610513 0.98763221 0.80911714 0.25942968 0.93051703 0.9097025 0.51285362 0.04924417 0.53765354 0.48242039 0.26040948 0.09474175 0.3384564 0.55107315 0.88025271 0.09058398 0.81733446 0.86836852 0.09474175 0.04461544 0.28075505 0.78890012 0.13893026 0.02434171 0.04697945 0.70146853 0.91404969 0.66232291 0.0994852 0.93719603 0.8422183 0.1096089 0.15469685 0.15238867 0.85879022 0.22005156 0.24091195 0.21168044 0.15238867 0.60493878 0.32644935 0.26125213 0.07517093 0.13893026 0.74034636 0.84746075 0.45213182 0.0706292 0.25942968 0.22005156 0.01835698 0.14163263 0.20211369 0.15238867 0.09990237 0.23918546 0.73072611 0.26215016 0.03608545 0.03870124 0.16253688 0.74034636 0.97993672 0.08170611 0.64073592 0.84033393 0.85210036 0.80983396 0.97257783 0.63663757 0.01819022 0.04521358 0.11500215 0.35283318 0.0604244 0.80983396 0.65427173 0.56441882 0.21090587 0.09020182 0.15238867 0.09205769 0.13258298 0.07032472 0.10443874 0.67329436 0.91047691 0.87141113 0.13258298 0.13893026 0.69001575 0.9854175 0.74034636 0.95157309 0.09990237 0.97884484 0.51066947 0.04441775 0.04441775 0.28361352 0.03487023 0.49488971 0.1178021 0.64073592 0.62512052 0.97884484 0.0706292 0.50493039 0.62403068 0.86836852 0.13893026 0.17455761 0.3031159 0.07773719 0.37901167 0.11778441 0.4701259 0.40262288 0.9369219 0.17455761 0.16689812 0.66640667 0.87338811 0.24261599 0.58525135 0.76060241 0.09058398 0.958343 0.72981059 0.30511879 0.29180956 0.77425595 0.96775535 0.0858588 0.86836852 0.03084541 0.71900957 0.08726302 0.05295266 0.34866263 0.32853374 0.034404 0.15950977 0.91085503 0.52533827 0.80136124 0.55222273 0.07394554 0.24917023 0.76475846 0.73431446 0.27182894 0.8976234 0.67329436 0.04441775 0.30124969 0.97648392 0.16253688 0.14892722 0.02069282 0.28267012 0.05742461 0.05012194 0.12648308 0.06745077 0.08275843 0.09020182 0.067159 ] ###Markdown We can also generate an ROC curve and calculate tha AUC value. On this dataset, the AUC is 0.817, which is quite close to 1. ###Code from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt fpr, tpr, _ = roc_curve(test_y, fitted_p) plt.plot(fpr, tpr) plt.plot([0, 1], [0, 1], 'k--') plt.show() print('AUC: ', auc(fpr, tpr)) ###Output _____no_output_____ ###Markdown Extension: Multi-class Classification Multinomial logistic regressionWhen the number of classes is more than 2, we call it multi-class classification task. Logistic regression can be extended to model several classes of events such as determining whether an image contains a cat, dog, lion, etc. Each object being detected in the image would be assigned a probability between 0 and 1, with a sum of one. The extended model is multinomial logistic regression.To arrive at the multinomial logistic model, one can imagine, for $K$ possible classes, running $K−1$ independent logistic regression models, in which one class is chosen as a "pivot" and then the other $K−1$ classes are separately regressed against the pivot outcome. This would proceed as follows, if class K (the last outcome) is chosen as the pivot:$$\begin{aligned} \ln (\mathbb{P}(y=1)/\mathbb{P}(y=K)) = x^T\beta^{(1)},\\ \dots\ \dots\\ \ln (\mathbb{P}(y=K-1)/\mathbb{P}(y=K)) = x^T\beta^{(K-1)}.\end{aligned}$$Then, the probability to choose the j-th class can be easily derived to be:$$ \mathbb{P}(y=j) = \frac{\exp(x^T\beta^{(j)})}{1+\sum_{k=1}^{K-1} \exp(x^T\beta^{(k)})},$$and subsequently, we would predict the $j^*$-th class if the $j^*=\arg\max_j \mathbb{P}(y=j)$. Notice that, for $K$ possible classes case, there are $p\times(K−1)$ unknown parameters: $\beta^{(1)},\dots,\beta^{(K−1)}$ to be estimated. Because the number of parameters increase as $K$, it is even more urge to constrain the model complexity. And the best subset selection for multinomial logistic regression aims to maximize the log-likelihood function and control the model complexity by restricting $B=(\beta^{(1)},\dots,\beta^{(K−1)})$ with $||B||_{0,2}\leq s$ where $||B||_{0,2}=\sum_{i=1}^p I(B_{i\cdot}=0)$, $B_{i\cdot}$ is the $i$-th row of coefficient matrix $B$ and $0\in R^{K-1}$ is an all zero vector. In other words, each row of $B$ would be either all zero or all non-zero. Simulated Data ExampleWe shall conduct Multinomial logistic regression on an artificial dataset for demonstration. The `make_multivariate_glm_data()` provides a simple way to generate suitable for this task. The assumption behind is the response vector following a multinomial distribution. The artifical dataset contain 100 observations and 20 predictors but only five predictors have influence on the three possible classes. ###Code from abess.datasets import make_multivariate_glm_data n = 100 # sample size p = 20 # all predictors k = 5 # real predictors M = 3 # number of classes np.random.seed(0) dt = make_multivariate_glm_data(n = n, p = p, k = k, family = "multinomial", M = M) print(dt.coef_) print('real variables\' index:\n', set(np.nonzero(dt.coef_)[0])) ###Output [[ 0. 0. 0. ] [ 0. 0. 0. ] [ 1.09734231 4.03598978 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 9.91227834 -3.47987303 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 8.93282229 8.93249765 0. ] [-4.03426165 -2.70336848 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [-5.53475149 -2.65928982 0. ] [ 0. 0. 0. ]] real variables' index: {2, 5, 10, 11, 18} ###Markdown To carry out best subset selection for multinomial logistic regression, we can call the `MultinomialRegression()`. Here is an example. ###Code from abess.linear import MultinomialRegression s = 5 model = MultinomialRegression(support_size = range(0, s + 1)) model.fit(dt.x, dt.y) ###Output _____no_output_____ ###Markdown Its use is quite similar to `LogisticRegression`. We can get the coefficients to recognize "in-model" variables. ###Code print('intercept:\n', model.intercept_) print('coefficients:\n', model.coef_) ###Output intercept: [21.42326269 20.715469 22.26781623] coefficients: [[ 0. 0. 0. ] [ 0. 0. 0. ] [ -3.48154954 5.76904948 -3.2394208 ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 23.04122134 -14.80633656 -7.28160058] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 13.76886614 11.64612255 -11.12983172] [ -3.73875599 0.62171172 3.80279815] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0. ] [ -9.19066393 -2.17011988 11.44410734] [ 0. 0. 0. ]] ###Markdown So those variables used in model can be recognized and we ca find that they are the same as the data's "real" coefficients we generate. ###Code print('used variables\' index:\n', set(np.nonzero(model.coef_)[0])) ###Output used variables' index: {2, 5, 10, 11, 18}
Sequences, Time Series and Prediction/Week 1/Create and Predict Synthetic Data.ipynb
###Markdown Now that we have the time series, let's split it so we can start forecasting ###Code split_time = 1100 time_train = time[:split_time] x_train = series[:split_time] time_valid = time[split_time:] x_valid = series[split_time:] plt.figure(figsize=(10, 6)) plot_series(time_train, x_train) plt.show() plt.figure(figsize=(10, 6)) plot_series(time_valid, x_valid) plt.show() ###Output _____no_output_____ ###Markdown Naive Forecast ###Code naive_forecast = series[split_time - 1:-1] plt.figure(figsize=(10, 6)) plot_series(time_valid, x_valid) plot_series(time_valid, naive_forecast) ###Output _____no_output_____ ###Markdown Let's zoom in on the start of the validation period: ###Code plt.figure(figsize=(10, 6)) plot_series(time_valid, x_valid, start=0, end=150) plot_series(time_valid, naive_forecast, start=1, end=151) ###Output _____no_output_____ ###Markdown You can see that the naive forecast lags 1 step behind the time series. Now let's compute the mean squared error and the mean absolute error between the forecasts and the predictions in the validation period: ###Code print(keras.metrics.mean_squared_error(x_valid, naive_forecast).numpy()) print(keras.metrics.mean_absolute_error(x_valid, naive_forecast).numpy()) ###Output 19.578304 2.6011972 ###Markdown That's our baseline, now let's try a moving average: ###Code def moving_average_forecast(series, window_size): """Forecasts the mean of the last few values. If window_size=1, then this is equivalent to naive forecast""" forecast = [] for time in range(len(series) - window_size): forecast.append(series[time:time + window_size].mean()) return np.array(forecast) moving_avg = moving_average_forecast(series, 30)[split_time - 30:] plt.figure(figsize=(10, 6)) plot_series(time_valid, x_valid) plot_series(time_valid, moving_avg) print(keras.metrics.mean_squared_error(x_valid, moving_avg).numpy()) print(keras.metrics.mean_absolute_error(x_valid, moving_avg).numpy()) ###Output 65.786224 4.3040023 ###Markdown That's worse than naive forecast! The moving average does not anticipate trend or seasonality, so let's try to remove them by using differencing. Since the seasonality period is 365 days, we will subtract the value at time *t* – 365 from the value at time *t*. ###Code diff_series = (series[365:] - series[:-365]) diff_time = time[365:] plt.figure(figsize=(10, 6)) plot_series(diff_time, diff_series) plt.show() ###Output _____no_output_____ ###Markdown Great, the trend and seasonality seem to be gone, so now we can use the moving average: ###Code diff_moving_avg = moving_average_forecast(diff_series, 50)[split_time - 365 - 50:] plt.figure(figsize=(10, 6)) plot_series(time_valid, diff_series[split_time - 365:]) plot_series(time_valid, diff_moving_avg) plt.show() ###Output _____no_output_____ ###Markdown Now let's bring back the trend and seasonality by adding the past values from t – 365: ###Code diff_moving_avg_plus_past = series[split_time - 365:-365] + diff_moving_avg plt.figure(figsize=(10, 6)) plot_series(time_valid, x_valid) plot_series(time_valid, diff_moving_avg_plus_past) plt.show() print(keras.metrics.mean_squared_error(x_valid, diff_moving_avg_plus_past).numpy()) print(keras.metrics.mean_absolute_error(x_valid, diff_moving_avg_plus_past).numpy()) ###Output 8.498155 2.327179 ###Markdown Better than naive forecast, good. However the forecasts look a bit too random, because we're just adding past values, which were noisy. Let's use a moving averaging on past values to remove some of the noise: ###Code diff_moving_avg_plus_smooth_past = moving_average_forecast(series[split_time - 370:-360], 10) + diff_moving_avg plt.figure(figsize=(10, 6)) plot_series(time_valid, x_valid) plot_series(time_valid, diff_moving_avg_plus_smooth_past) plt.show() print(keras.metrics.mean_squared_error(x_valid, diff_moving_avg_plus_smooth_past).numpy()) print(keras.metrics.mean_absolute_error(x_valid, diff_moving_avg_plus_smooth_past).numpy()) ###Output 12.527956 2.2034435
.ipynb_checkpoints/MC_Classifier_NN-checkpoint 21.ipynb
###Markdown Sequencial NN ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from config.config import * from config.constants import * from keras.callbacks import ModelCheckpoint from keras.models import load_model from sklearn.metrics import accuracy_score from collections import Counter from sklearn.model_selection import train_test_split def plot_model(hist): fig, axs = plt.subplots(nrows=1, figsize=(11, 9)) plt.rcParams['font.size'] = '14' for label in (axs.get_xticklabels() + axs.get_yticklabels()): label.set_fontsize(14) plt.plot(hist.history['accuracy']) plt.plot(hist.history['val_accuracy']) axs.set_title('Model Accuracy') axs.set_ylabel('Accuracy', fontsize=14) axs.set_xlabel('Epoch', fontsize=14) plt.legend(['train', 'val'], loc='upper left') plt.show() print("Model has training accuracy of {:.2f}%".format(hist.history['accuracy'][-1]*100)) def pre_process_split(path): dataset = pd.read_csv(path) dataset.dropna(inplace = True) # assigning new column names to the dataframe # dataset.columns = constants.cols + ['label'] # creating training set ignoring labels train_data = dataset[dataset.columns[:-1]].values labels = dataset['label'].values n_class = len(set(labels)) X_train, X_test, y_train, y_test = train_test_split(train_data, labels, test_size=0.20) X_train = X_train.reshape(-1, 1, train_data.shape[1]) X_test = X_test.reshape(-1, 1, train_data.shape[1]) y_train = y_train.reshape(-1, 1, 1) y_test = y_test.reshape(-1, 1, 1) return X_train, X_test, y_train, y_test, n_class def model_config_train(name,eps,bs,actvn,datalink): print("processing dataset") X_train, X_test, y_train, y_test, n_class = pre_process_split(datalink) print(n_class) model = Sequential() model.add(LSTM(100, input_shape=(X_train.shape[1], X_train.shape[2]))) model.add(Dense(n_class, activation=actvn)) print(model.summary()) chk = ModelCheckpoint(name+'.pkl',save_best_only=True, mode='auto', verbose=1) print("saving as:",name+'.pkl') model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) hist = model.fit(X_train, y_train, epochs=eps, batch_size=bs, callbacks=[chk], validation_split=0.2) plot_model(hist) return model ###Output _____no_output_____ ###Markdown Loading dataset for binary classifier ###Code def plotter(plot_data,unique_labels,n_plots): data = plot_data.copy() predicted_labels = data['label'] #print(len(set(predicted_labels)),unique_labels) #print(Counter(predicted_labels).values(),[unique_labels[each] for each in Counter(predicted_labels).keys()]) matrics = sorted(zip([unique_labels[each] for each in Counter(predicted_labels).keys()],Counter(predicted_labels).values() ), key=lambda x: x[1]) score = [list(j) for j in matrics][::-1] total = sum([i[1] for i in score]) c=0 for i in score: score[c][1] = str(round(i[1]*100/total,2))+"%" #print("Fault type:", i[-1], "Percentage: {:.2f}%".format(i[1]*100/total)) c+=1 print(pd.DataFrame.from_records(score,columns=['Fault type','Percentage'])) #print("changing numbers to labels again") data['label'] = [unique_labels[i] for i in predicted_labels] fig, ax = plt.subplots(n_plots,figsize=(15,4*n_plots)) for j in range(n_plots): legend_list = [] for i in range(len(set(predicted_labels))): extract = data[data.label==unique_labels[i]][cols[j]] #print(len(extract)) if unique_labels[i]==score[0][0] and score[0][0]!='NML' or unique_labels[i]== 'FAULT': temp = ax[j].scatter(extract.index,extract,marker='+',s=40) else: temp = ax[j].scatter(extract.index,extract,marker='.',s=10) legend_list.append(temp) ax[j].legend(legend_list,unique_labels,scatterpoints=3,ncol=1,fontsize=15) fig.tight_layout() plt.show() return score[0][0] def tester(model,frame): data = frame cols = ['A'+str(each+1) for each in range(int(col_len/2))] + ['V'+str(each+1) for each in range(int(col_len/2))] if data.shape[1]==6: data.columns = cols elif data.shape[1]==7: data.columns = cols + ['label'] data = data[cols] else: print("columns length is ",data.shape[1]) test_preds = model.predict(data.values.reshape(-1,1,6).tolist()) predicted_labels = np.argmax(test_preds,axis=1) data['label'] = predicted_labels return data ###Output _____no_output_____ ###Markdown Testing the models ###Code model_config_train('binary_clf',20,2000,'softmax','./KMTrainingSet/binary/bin_dataset_simulink.csv') model_config_train('multi_clf',20,2000,'softmax','./KMTrainingSet/multi/mul_dataset_simulink.csv') binary_labels_list = ['NML','FAULT'] binary_model = load_model('binary_clf.pkl') multi_labels_list = ['AB', 'AC', 'BC', 'ABC', 'AG', 'BG', 'ABG', 'CG', 'ACG', 'BCG', 'ABCG'] multi_model = load_model('multi_clf.pkl') import os # current directory path = "./TrainingSet/" # list of file of the given path is assigned to the variable file_list = [each for each in list(os.walk(path))[0][-1] if ".csv" in each] checker = [] for each in file_list: print("\n.\n.\n",each) temp = tester(binary_model,pd.read_csv('./TrainingSet/'+each)) plotter(temp,binary_labels_list,2) temp = tester(multi_model,temp[temp.label!=0]) high = plotter(temp,multi_labels_list,2) if high == ''.join([i for i in each.split(".")[0] if not i.isdigit()]): checker.append(high) else: checker.append('incorrect') files_failing_model = [file_list[i] for i in range(len(checker)) if checker[i]=='incorrect'] names = [''.join([i for i in each.split(".")[0] if not i.isdigit()]) for each in files_failing_model] Counter(names) temp = tester(binary_model,pd.read_csv('./TrainingSet/1AB.csv')) plotter(temp,binary_labels_list,2) temp = tester(multi_model,temp[temp.label!=0]) plotter(temp,multi_labels_list,2) data = pd.read_csv('./TrainingSet/1AG.csv') round(data['3V']) dat = Counter((round(data['3V'])/10)) matrics = sorted(zip([each for each in Counter(dat).keys()],Counter(dat).values() ), key=lambda x: x[0]) matrics import matplotlib.pyplot as plt from kneed import KneeLocator from sklearn.datasets import make_blobs from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from sklearn.preprocessing import StandardScaler import pandas as pd data = pd.read_csv('KMTrainingset/2ABG.csv') features = data[data.columns[:-1]].values.tolist() #true_labels = data['label'].values.tolist() scaler = StandardScaler() scaled_features = scaler.fit_transform(features) kmeans = KMeans( init="random", n_clusters=2, n_init=10, max_iter=500, random_state=42 ) kmeans.fit(scaled_features) kmeans.cluster_centers_ labels = kmeans.fit_predict(features) #data['label']=labels data.head() dic = Counter(labels) dic if dic[1]>dic[0]: print("1 = 0 , 0 =1") data['label']=[1 if i == 0 else 0 for i in labels] else: print(True) dic = Counter(data['label']) data n_plots = 6 fig, ax = plt.subplots(n_plots,figsize=(15,4*n_plots)) unique_labels = ['NML','Fault'] cols = data.columns[:-1] for j in range(6): legend_list = [] for i in list(set(data.label)): plo = data[data.label == i] temp = ax[j].scatter(plo.index,plo[cols[j]],marker='+',s=40) legend_list.append(temp) ax[j].legend(legend_list,unique_labels,scatterpoints=3,ncol=1,fontsize=15) fig.tight_layout() plt.show() org = [0,1,0,1,1,1,0,0,1,0,1] [1 if i == 0 else 0 for i in org] for x,y in zip(org,[1 if i == 0 else 0 for i in org]): print(x+y) ###Output _____no_output_____
ipynb to run experiments/MC Off Policy on Simple Day.ipynb
###Markdown Python Notebook to interact with gym-battery and battery-agentThis python notebook is a working document to interact with and test the environment and the agent.Note: In order for this to work, gym-battery needs to be installed as a package, using pip install -e gym-battery from wherever gym-battery exists.The ipython notebook should exist in battery dispatch by default and should be ableto access those resources so it does not necessarily need to be build/installed using pip. ###Code import gym import gym_battery import numpy as np import pandas as pd env = gym.make('gym_battery:battery-v0', **{'N_actions':5}) env.set_standard_system() import pickle simple_load = pd.read_pickle("simple_load_1d.pkl") #simple_load = pd.read_clipboard() simple_load.value.plot() env.load.initialize(simple_load) env.fit_load_to_space() env.terminal_state # Show the possible action mapping the agent can take env.action_mapping print(env.observation_space.low) print("to") print(env.observation_space.high) # Set how to structure the environment. 'count_days' will generate the a single day as an episode. THe number of days # given indicates how many differnet days to use. # This needs to be changed so that it generates LONGER episodes, not DIFFERENT episodes, but this hasn't been done yet. env.episode_type = 'count_days' env.run_N_episodes = 1 # Get the do-nothing value for taking no action def dict_key_by_val(d, val): for k in d.keys(): if d[k] == val: return k raise ValueError("value not found in dictionary") act0 = dict_key_by_val(env.action_mapping, 0) act0 ''' Set up the agent and the discretizer.''' from batterydispatch.agent.agents import MonteCarloAgent from batterydispatch.agent.discretizers import Box_Discretizer from batterydispatch.agent.policies import do_nothing agent = MonteCarloAgent() agent.set_policy(do_nothing, {'do_nothing_action': act0}) # Note, you can change the size of the state sapce by changing the number of buckets, below agent.set_discretizer(Box_Discretizer(env.observation_space, N=[6, 4, 12, 12])) agent.actions = env.action_space agent.learning_rate = 0.05 # used for the updates of the Q estimates agent.subtype = 'off-policy' # Setup the MC agent for off-policy learning global eps eps=0 agent.S_A_values agent.discretizer.buckets ###Output _____no_output_____ ###Markdown Plot the day of data that we will be trying to learn from ###Code done = False state = env.reset() i = 0 while not done: i+=1 _,reward,done, details = env.step(act0) from matplotlib import pyplot as plt plt.plot(env.grid_flow.net_flow) try: print(list(env.grid_flow.start_date)[0]) except: pass print(i) print(reward) default_reward = reward plt.show() # We then initialize the agent state-action estimates, based on the original billing period. # We also give the do_nothing action a small bonus of 100, in order to prevent the agent from arbitrarily taking action. agent.initialize_state_actions(new_default=default_reward, do_nothing_action = act0, do_nothing_bonus = 100) agent.policy_args ###Output _____no_output_____ ###Markdown Set up the function to run the episodes, and run episodes until convergence. ###Code from batterydispatch.agent.functions import log_history, run_episode # We then set the final parameters guiding the episodes: The agents proclivity for random actions, # the number of episodes without a policy change before we can say we've converge. agent.set_greedy_policy(eta=0.125) agent.patience = 10000 agent.name agent.learning_rate = 0.075 agent.initialize_state_actions(new_default=default_reward, do_nothing_action = act0, do_nothing_bonus = 100) from IPython.display import clear_output for iteration in [1]: notes = 'Rerun: Run of a Monte Carlo Off Policy agent on Simple Day with seeds, run for 10,000 episodes: Seed {}'.format(iteration) agent.set_greedy_policy(eta=0.1) starting_learning_rate = 0.075 agent.patience_counter = 0 agent.initialize_state_actions(new_default=default_reward, do_nothing_action = act0, do_nothing_bonus = 100) agent.set_seed(iteration) env.set_seed(iteration) i=30 eps=0 history = [] while eps < 10001: i+=1 eps+= 1 if i>30: i=0 clear_output() print(notes) print(eps, end=" | ") run_episode.run_episodes(env, agent, eps, history, default_reward, random_charge = False, run_type="once") agent.learning_rate = starting_learning_rate * np.exp(-0.0002*eps) agent.set_greedy_policy(eta=0) reward = run_episode.run_episodes(env, agent, eps, history, default_reward, random_charge=False, run_type='once') log_history.save_results(env, agent, history, reward, scenario = notes, agent_name=agent.name, notes='Iteration {}'.format(iteration)) # Save the state-action value estimates val = agent.S_A_values.copy() val = pd.DataFrame.from_dict(val, orient='index') val = val.reset_index() val['state'] = [[i.level_0, i.level_1, i.level_2, i.level_3] for ix, i in val.iterrows()] val = val.rename(columns={"state": "agent_state"}) val.index = val.agent_state val = val.drop(columns=['level_0', 'level_1', 'level_2', 'level_3', 'agent_state']) val.index = [tuple(x) for x in val.index] val reward = run_episode.run_episodes(env, agent, eps, history, default_reward, random_charge=False, run_type='once') reward log_history.save_results(env, agent, history, reward, scenario = notes, agent_name=agent.name, notes='Iteration {}'.format(iteration)) from matplotlib import pyplot as plt plt.plot(np.exp(-0.0002*np.arange(0,10000))*0.075) plt.show() agent.history Qs = pd.DataFrame.from_dict(agent.S_A_values, orient='index') Qs.to_clipboard() counts = pd.DataFrame.from_dict(agent.S_A_frequency, orient='index') counts.to_clipboard print(f"The agent converged after {eps} episodes") ###Output _____no_output_____ ###Markdown Agent has taken between 10 and 30 minutes, and between 700 and 2262 episodes, to converge on day 1. Optimal policy:Current reward of -397414.125 / -406791.825, 5600.0 / 6000.0, patience=21For 2 days, agent took 5 hours 8 minutes, and converged after 21200 episodes. Then we allow the agent to take entirely greedy actions and run the algorithm to see how much the agent learned. ###Code agent.set_greedy_policy(eta=0) state = env.reset(random_charge=False) done = False while not done: action = agent.get_action(state, list(env.action_mapping.keys()), 0.25) #print(state) #action = int(input("action:")) #print(action) state, reward, done, details = env.step(action) try: new_demand = max(env.grid_flow.net_flow) orig_demand = max(env.grid_flow.load) except AttributeError: new_demand = "???" orig_demand = "???" env.grid_flow['final_reward'] = reward env.grid_flow['original_reward'] = default_reward print(f"Current reward of {reward} / {default_reward}, {new_demand} / {orig_demand}, patience={agent.patience_counter}") DF = save_results(scenario='Day1_load', agent_name='DynaQ', notes="ran the DynaQ agent again on the Day1 data, for a second (same agent)") pd.to_datetime(DF.saved_timestamp) sum(DF.index.duplicated()) ###Output _____no_output_____
IPython_Notebooks/Fig4_Activity_sleep_1month.ipynb
###Markdown Timeseries figure for long recording from WT c57BL/6 mouse: activity and sleep ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline sns.set(style="white") sns.set_context("poster") ###Output _____no_output_____ ###Markdown Import 1 month of data captured with arduino/Processing programs ###Code ts_pre = pd.read_csv('../PIRdata/1monthPIRsleep.csv', parse_dates=True, index_col=0) #import data ts_pre.pop('PIR2') # remove unwarnted/empty columns ts_pre.pop('PIR4') ts_pre.pop('PIR5') ts_pre.pop('PIR6') ts_pre.pop('Device') ts_pre.head() # show top of dataframe ts_cutLDR = ts_pre.truncate(before='2014-08-14 06:59:0', after='2014-08-14 07:02:0') # find start of light period ts_cutLDR['LDR'].plot(figsize=(16,4)) ts_sH = pd.DataFrame.tshift(ts_pre,-7, freq='H', axis=0) # shift back 7 hours ts = pd.DataFrame.tshift(ts_sH,-1, freq='T', axis=0) # then shift this back 1 minutes, # so time is aligned to lights (enviromental time) ###Output _____no_output_____ ###Markdown Define sleep as period of immobilty of 40s or more (4 x 10second bins) ###Code # run through trace looking for bouts of sleep (defined as 4 or more sequential '0' values) variable 'a' is dataframe of PIR data def sleepscan(a,bins): ss = a.rolling(bins).sum() y = ss==0 return y.astype(int) # if numerical output is required def sleep_count(val): if val == 0: sleep_count.count = 0 elif val == 1: sleep_count.count +=1 return sleep_count.count sleep_count.count = 0 #static variable ss = sleepscan(ts,4) ts['count1'] =ss['PIR1'].apply(sleep_count) ts['count3'] =ss['PIR3'].apply(sleep_count) #new columns in dataframe ts['InvSleep1'] = (0-ts.count1)/6 # time (minutes approx) of sleep bout ts['InvSleep3'] = (0-ts.count3)/6 ss.head() ts_cut =ts.truncate(before='2014-08-14 00:00:00.000000',after='2014-09-14 00:00:00.000000') # ts_cut.plot(subplots=True, figsize=(24,8)) #uncomment to see plot ts_week = ts.truncate(before='2014-08-28 00:00:00.000000',after='2014-09-04 00:00:00.000000') # ts_week.plot(subplots=True, figsize=(24,8)) #uncomment to see plot ts_day = ts.truncate(before='2014-08-31 00:00:00.000000',after='2014-09-01 00:00:00.000000') # ts_day.plot(subplots=True, figsize=(24,8)) #uncomment to see plot ###Output _____no_output_____ ###Markdown Construct a figure showing 1 month, 1 week and 1 day of this data (to reveal density) ###Code # setup 3 plots for 1 month, 1 week and 1 day of data ax1 = plt.subplot2grid((9,1), (0,0), rowspan=2) ax2 = plt.subplot2grid((9,1), (2,0), rowspan=3) ax3 = plt.subplot2grid((9,1), (5,0), rowspan=4) # Plot 1 month of data, showing activity, dark period of each day and periods of immobility scored as sleep (downward deflection) ax1.fill_between(ts_cut.index, 0,ts_cut['PIR1'], label= "Activty",lw=0, facecolor='#002147') # activity ax1.fill_between(ts_cut.index, np.min(ts_cut['InvSleep1']),100, where=ts_cut.index.hour>=12,lw=0, alpha=0.2, facecolor='#aaaaaa') ax1.fill_between(ts_cut.index, 0,ts_cut['InvSleep1'],label= "Immobility >40sec", lw=0, facecolor="#030303") ax1.set_yticks([]) ax1.set_xticklabels([]) ax1.set_frame_on(0) # Plot 1 week of data ax2.fill_between(ts_week.index, 0,ts_week['PIR1'], label= "Activty",lw=0, facecolor='#002147') ax2.fill_between(ts_week.index, np.min(ts_week['InvSleep1']),100, where=ts_week.index.hour>=12,lw=0, alpha=0.2, facecolor='#aaaaaa') ax2.fill_between(ts_week.index, 0,ts_week['InvSleep1'],label= "Immobility >40sec", lw=0, facecolor="#030303") ax2.set_yticks([]) ax2.set_xticklabels([]) ax2.set_frame_on(0) # Plot 1 day of data, with axes ax3.fill_between(ts_day.index, 0,ts_day['PIR1'], label= "Activty",lw=0, facecolor='#002147') ax3.fill_between(ts_day.index, -100,100, where=ts_day.index.hour>=12,lw=0, alpha=0.1, facecolor='#aaaaaa') ax3.fill_between(ts_day.index, 95,100, where=ts_day.index.hour>=12,lw=0, alpha=1, facecolor='#000000') ax3.fill_between(ts_day.index, 0,ts_day['InvSleep1'],label= "Immobility >40sec", lw=0, facecolor='#030303') ax3.set_yticks([-100,-50,0, 50,100]) ax3.set_frame_on(1) plt.tight_layout(h_pad=4) #Save and show the figure #plt.savefig('Month_week_day.jpg',format='jpg',transparent=True, dpi=600,pad_inches=0.2, # frameon=2) plt.show() ###Output _____no_output_____
.ipynb_checkpoints/Izhkevich-Neurons-checkpoint.ipynb
###Markdown Dynamics of the Izhikevich Model ###Code %matplotlib inline %load_ext nb_black import numpy as np import matplotlib.pyplot as plt from scipy.signal import argrelmax def reset(p, v, u, i): """resets the values for v and u at a given index""" v[i] = p["c"] u[i] += p["d"] def neuron(p, I, t_max, dt): """ returns the membrane potential and the recovery variable u during a given time approximated with the euler method p : dictionary, contains the parameters a, b, c, d I : function, I(t) is the current at time t in mA t_max : float, time length of the simulation in ms dt : float, time step in ms """ # create arrays for t, u, v and set initial values t = np.arange(0, t_max, dt) u = np.zeros((len(t), 1)) u[0] = 0 v = np.zeros((len(t), 1)) v[0] = -80 for i in range(len(t) - 1): if v[i] >= 30: reset(p, v, u, i) u[i + 1] = u[i] + dt * p["a"] * (p["b"] * v[i] - u[i]) v[i + 1] = v[i] + dt * (0.04 * (v[i]) ** 2 + 5 * v[i] + 140 - u[i] + I(t[i])) return t, v, u def find_spikes(v): """returns the indices of spikes in a given simulation array v""" extrema = argrelmax(v) return np.extract(v[extrema] > 0, extrema) # exclude maxima that are not spikes def neuron_fires(p, I, t_max=300, dt=0.2): """returns whether the neuron fires with parameters p and current I or not""" t, v, _ = neuron(p, I, t_max, dt) return len(find_spikes(v)) > 1 def find_threshold(p, acc): """finds the threshold needed for the neuron to fire with a given accuracy""" # setup arbitray binary search borders lower = 0 upper = 100 while upper - lower >= acc: mid = (lower + upper) / 2 I = lambda t: mid if neuron_fires(p, I): upper = mid else: lower = mid return upper def firing_rate(current, p, t_max=200): """computes the firing rate in kHz given an input current I and parameters p""" dt = 0.1 I = lambda t: current t, v, _ = neuron(p, I, t_max, dt) if np.max(v) < 0: # no spikes return 0.0 # return float in any case else: spikes = find_spikes(v) if len(spikes) <= 1: return 0.0 else: return (len(spikes) - 1) / (dt * (spikes[-1] - spikes[0])) ###Output _____no_output_____ ###Markdown Integrator model ###Code # 1. integrator model p1 = {"a": 0.1, "b": 0.05, "c": -50, "d": 8} # determine threshold I_thresh = find_threshold(p1, 0.001) print( f"The minimum current needed to activate the neuron is about {np.round(I_thresh, 3)} mA." ) # setup current range and plot firing rates currents = np.arange(I_thresh - 0.1, I_thresh + 1.5, 0.01) firing_rates = np.vectorize(firing_rate)(currents, p1) plt.plot(currents, firing_rates, "+") plt.title("Firing rates as a function of the input current") plt.xlabel("Input current in mA") plt.ylabel("firing rate in Hz") plt.show() ###Output _____no_output_____ ###Markdown $\Longrightarrow$ The integrator model has typical firing rates for a type 1 neuron. ###Code # sinusodial input current def sinusoidal_current(w, I_thresh): return lambda t: I_thresh - 0.05 + 0.04 * np.sin(w * t) def sinusoidal_neuron(p, omegas, t_max, dt, I_thresh): """simulates a neuron with sinusoidal current p : paramters for the simulation omegas: array with values for w t_max, dt : length of simulation and time step I_thresh : current threshold to activate neuron returns time array and a list of voltage data""" simulations = [] for i in range(len(omegas)): w = omegas[i] I = sinusoidal_current(w, I_thresh) t, v, _ = neuron(p, I, t_max, dt) simulations.append(v) return np.arange(0, t_max, dt), simulations # simulation with sinusoidal current t_max = 200 dt = 0.1 omegas = np.arange(0.1, 1, 0.1) I_thresh = find_threshold(p1, 0.001) # plot fig = plt.figure(figsize=(15, 10)) plt.title(r"Sinusoidal current with respect to $\omega$") plt.xlabel("time in ms") plt.ylabel("current in mA") t, simulations = sinusoidal_neuron(p1, omegas, t_max, dt, I_thresh) for i in range(len(omegas)): plt.plot(t[1000:], simulations[i][1000:], label=f"w = {np.round(omegas[i], 3)}") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown The voltage can be approximate with $v(t) \approx v_0 + A( \omega ) \sin (\omega t - \varphi)$.Given the plot we may take an educated guess for the transfer function. The amplitudes are decreasing as $\omega$ increases. We may guess$$A( \omega ) = \frac{1}{c \cdot \omega}, \ where \ c \in \mathbb{R}.$$We'll show that this approximation is a good one. However, it should be noted that there are other functions that would approximate the transfer function just as good or even better. Our approximation is not good for very small values of $\omega$, as the amplitude will never exceed 0.5. ###Code def amplitude(V): """returns the amplitude of a given sinusoidal signal V""" return (np.max(V) - np.min(V)) / 2 def A(c): return lambda w: 1 / (c * w) def transfer(p, acc, t_max, w_max, dt, dw, I_thresh): """approximates c for the transfer function up to a given accuracy returns c (float) and the amplitudes(2d array)""" # simulate neuron for various values of omega omegas = np.arange(0 + dw, w_max, dw) t, simulations = sinusoidal_neuron(p, omegas, t_max, dt, I_thresh) amplitudes = np.zeros((2, len(omegas))) for i in range(len(omegas)): amplitudes[0][i] = omegas[i] amplitudes[1][i] = amplitude(simulations[i][1000:]) # setup binary search lower = 0 upper = 20 while upper - lower >= acc: mid = A((lower + upper) / 2) if np.sum(mid(amplitudes[0]) - amplitudes[1]) > 0: # no need for squares lower = (lower + upper) / 2 else: upper = (lower + upper) / 2 return lower, amplitudes # plot transfer function against the simulated amplitudes I_thresh = find_threshold(p1, 0.001) t_max = 1000 w_max = 1 dt = 0.1 dw = 0.05 omegas = np.arange(0 + dw, w_max, dw) c, amps = transfer(p1, 0 + dw, t_max, w_max, dt, dw, I_thresh) fig = plt.figure(figsize=(15, 5)) plt.plot(amps[0], amps[1], "+", label="simulated amplitude") plt.plot(omegas, A(c)(omegas), label="approximation") plt.xlabel("$\omega$") plt.title("Transfer function approximation") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Resonator model ###Code # 2. resonator model p2 = {"a": 0.1, "b": 0.26, "c": -65, "d": 2} # calculate and plot threshold # determine threshold I_thresh2 = find_threshold(p2, 0.01) print( "The minimum current needed to activate " f"the neuron is about {np.round(I_thresh2, 3)} mA." ) # setup current range and plot firing rates t_max = 400 dt = 0.01 currents = np.arange(0, I_thresh2 + 1, 0.01) firing_rates = np.vectorize(firing_rate)(currents, p2) plt.plot(currents, firing_rates, "+") plt.title("Firing rates as a function of the input current") plt.xlabel("Input current in mA") plt.ylabel("firing rate in Hz") plt.show() ###Output _____no_output_____ ###Markdown // It seems like the threshold should be around 0.16.$\Longrightarrow$ The resonator model shows type 2 firing rates. ###Code # set parameters I_thresh2 = find_threshold(p2, 0.001) t_max = 300 w_min = 0.0 w_max = 0.9 dt = 0.1 dw = 0.02 omegas = np.arange(w_min, w_max, dw) I = lambda t: I_thresh2 + 0.02 # simulate # we should not need to add anything to the threshold ! t, v, _ = neuron(p2, I, t_max, dt) c = sinusoidal_current(0.2, I_thresh2) curr = np.vectorize(c)(t) t, simulations = sinusoidal_neuron(p2, omegas, t_max, dt, I_thresh2 + 0.02) # plot current and simulations fig, ax = plt.subplots(3, 1, figsize=(15, 10)) ax[0].title.set_text( f"sinusoidal current with a threshold of {np.round(I_thresh2, 3)} mA" ) ax[0].plot(t, curr) ax[1].title.set_text( f"simulation with a constant current of {np.round(I_thresh2, 3)}mA" ) ax[1].plot(t, v) ax[2].title.set_text( "simulation with sinusoidal current, " + r"$\omega$" + f" between {w_min} and {w_max}, stepsize = {dw}" ) for i in range(len(omegas)): if simulations[i].max() > 0: ax[2].plot(t, simulations[i], label=f"w = {np.round(omegas[i], 3)}") else: ax[2].plot(t, simulations[i]) ax[2].legend() plt.show() ###Output _____no_output_____ ###Markdown Firing Rate AdaptationSome neurons will show a period of rapid firing before settling for a stable firing rate. This process is called adaptation and can be modeled with the Izhikevich neuron as well. ###Code p3 = {"a": 0.003, "b": 0, "c": -65, "d": 0.2} def step_function(levels, t_max, dt): """generates a clamped current function levels : dict entries are t: c, where t is the time when the current is set to c t=0 is preliminary, following entries should be sorted by time. t_max : int time in ms that the neuron should be simulated dt : float time step """ # iterate over levels and populate current array sortedLevels = sorted(list(levels.items())) c = sortedLevels[0][1] * np.ones((int(t_max / dt), 1)) for key, val in sortedLevels: if key != 0: c[(int(int(key) / dt)) :] = val return lambda t: c[int(t / dt)] # simulation with step current t_max = 500 dt = 0.01 currents3 = { 0: 16, 100: 18, } I_3 = step_function(currents3, t_max, dt) t, v, u = neuron(p3, I_3, t_max, dt) current = np.vectorize(I_3)(t) # plot # plot fig, ax = plt.subplots(2, 1, figsize=(15, 10)) ax[0].title.set_text("Neuron acitivity with current clamp") fig.text(0.5, 0.04, "time in ms", ha="center", va="center") ax[0].plot(t, v) ax[0].set_ylabel("membrane potential in mV") ax[1].plot(t, current) ax[1].set_ylabel("current in mA") plt.show() ###Output _____no_output_____ ###Markdown Chattering neuron model ###Code def chattering_neuron(p, d, I, t_max, dt): """ returns the membrane potential during a given time approximated with the euler method simulation with a decreasing parameter d p : dictionary, contains the parameters a, b, c d : function of the d values(float) in time I : function, I(t) is the current at time t in pA t_max : float, time length of the simulation in ms dt : float, time step in ms """ # create arrays for t, u, v and set initial values t = np.arange(0, t_max, dt) u = np.zeros((len(t), 1)) u[0] = 0 v = np.zeros((len(t), 1)) v[0] = -80 for i in range(len(t) - 1): if v[i] >= 30: chattering_reset(p, d, v, u, i, dt) u[i + 1] = u[i] + dt * p["a"] * (p["b"] * v[i] - u[i]) v[i + 1] = v[i] + dt * (0.04 * (v[i]) ** 2 + 5 * v[i] + 140 - u[i] + I(t[i])) return t, v, u def chattering_reset(p, d, v, u, i, dt): """resets the values for v and u at a given index, d is dynamically updated""" v[i] = p["c"] u[i] += d(i * dt) # simulate with decreasing reset parameter d p4 = { "a": 0.02, "b": 0.2, "c": -50, } d_dict = {0: 8, 150: 6, 300: 4, 450: 2} t_max = 600 dt = 0.01 d = step_function(d_dict, t_max, dt) I_4 = lambda t: 5 t, v, u = chattering_neuron(p4, d, I_4, t_max, dt) d_array = np.vectorize(d)(t) # plot fig, ax = plt.subplots(2, 1, figsize=(15, 10)) ax[0].title.set_text("Neuron activity with decreasing reset parameter") fig.text(0.5, 0.04, "time in ms", ha="center", va="center") ax[0].plot(t, v) ax[0].set_ylabel("membrane potential in mV") ax[1].plot(t, d_array) ax[1].set_ylabel("reset parameter d") plt.show() ###Output _____no_output_____ ###Markdown AnimationsTo have a better understanding of the neuron dynamics, we'll display the phase plane changing over time.You'll propbably need to run these twice after resetting the kernel. ###Code %matplotlib notebook %matplotlib notebook import matplotlib.pyplot as plt import matplotlib.animation as animation # phase plane showing firing rate adaptation # nullclines and equilibria uNull = lambda v, p: p["b"] * v vNull = lambda v, I: 0.04 * (v ** 2) + (5 * v) + 140 + I eqV = lambda p, I: np.roots([0.04, 5 - p["b"], 140 + I]) # simulation with step current t_max = 500 dt = 0.01 currents3 = { 0: 16, 100: 18, } I_3 = step_function(currents3, t_max, dt) t, v, u = neuron(p3, I_3, t_max, dt) # create figure fig = plt.figure(figsize=(10, 8), num="Phase Plane for stepwise increased stimulus") ax1 = fig.add_subplot(1, 1, 1) vspan = np.arange(-80, 40, 0.1) # create animation def animate(i): if i == 0: pass ax1.clear() ax1.set_ylabel("u", fontsize=10) ax1.set_xlabel("v in mV", fontsize=10) ax1.set_xlim(-80, 40) ax1.set_ylim(-0.05 * np.max(u), 1.3 * np.max(u)) ax1.plot(v[: (i - 1) * 200], u[: (i - 1) * 200], "k+") ax1.plot( v[(i - 1) * 200 : i * 200], u[(i - 1) * 200 : i * 200], color="magenta", marker="+", label=str(2 * i) + " ms", linewidth=5.0, ) ax1.plot( vspan, uNull(vspan, p3), color="r", ls="dotted", label="u-nullcline", linewidth=7.0, ) ax1.plot( vspan, vNull(vspan, current[i * 200]), color="g", ls="dotted", label="v-nullcline", linewidth=7.0, ) ax1.plot( 30 * np.ones(10), np.arange(0, 2, 0.2), color="black", ls="dotted", label="reset threshold", ) ax1.legend(loc="upper right") ani = animation.FuncAnimation(fig, animate, frames=250, repeat=True) # save animation Writer = animation.writers["imagemagick"] writer = Writer(fps=20, bitrate=900) # ani.save('.//phase_plane3.gif', writer=writer) # Phase portrait for chattering neuron # create figure fig = plt.figure( figsize=(10, 8), num="Phase Plane for stepwise decreasing chattering parameter d" ) ax1 = fig.add_subplot(1, 1, 1) ax1.set_xlim(np.min(v), 1.1 * np.max(v)) ax1.set_ylabel("u", fontsize=10) ax1.set_xlabel("v in mV", fontsize=10) plt.title("Phase plane", fontsize=20) vspan = np.linspace(np.min(v), 1.1 * np.max(v), 1000) # simulate chattering neuron t_max = 600 dt = 0.01 d = step_function(d_dict, t_max, dt) I_4 = lambda t: 5 t, v, u = chattering_neuron(p4, d, I_4, t_max, dt) # create animation def animate(i): if i == 0: pass ax1.clear() ax1.set_xlim(-90, 50) ax1.set_ylim(-12, 0) ax1.set_ylabel("u", fontsize=10) ax1.set_xlabel("v in mV", fontsize=10) ax1.plot(v[: (i - 1) * 200], u[: (i - 1) * 200], "k+") ax1.plot( v[(i - 1) * 200 : i * 200], u[(i - 1) * 200 : i * 200], color="magenta", ls="dotted", label=str(2 * i) + " ms", linewidth=5.0, ) ax1.plot( vspan, uNull(vspan, p4), color="r", ls="dotted", label="u-nullcline", linewidth=7.0, ) ax1.plot( 30 * np.ones(12), np.arange(-12, 0, 1), color="black", ls="dotted", label="reset threshold", ) ax1.plot( vspan, vNull(vspan, I_4(i * 200)), color="g", ls="dotted", label="v-nullcline", linewidth=7.0, ) ax1.legend(loc="upper right") ani = animation.FuncAnimation(fig, animate, frames=300, repeat=True) # save animation Writer = animation.writers["imagemagick"] writer = Writer(fps=20, bitrate=900) # ani.save('.//phase_plane4.gif', writer=writer) ###Output _____no_output_____
nbs/200_optuna.ipynb
###Markdown Optuna: A hyperparameter optimization framework> Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, define-by-run style user API. Thanks to our define-by-run API, the code written with Optuna enjoys high modularity, and the user of Optuna can dynamically construct the search spaces for the hyperparameters. ###Code #export from pathlib import Path from fastcore.script import * import joblib from tsai.imports import * from importlib import import_module import warnings warnings.filterwarnings("ignore") #exports def run_optuna_study(objective, resume=None, study_type=None, multivariate=True, search_space=None, evaluate=None, seed=None, sampler=None, pruner=None, study_name=None, direction='maximize', load_if_exists=False, n_trials=None, timeout=None, gc_after_trial=False, show_progress_bar=True, save_study=True, path='optuna', show_plots=True): r"""Creates and runs an optuna study. Args: objective: A callable that implements objective function. resume: Path to a previously saved study. study_type: Type of study selected (bayesian, gridsearch, randomsearch). Based on this a sampler will be build if sampler is None. If a sampler is passed, this has no effect. multivariate: If this is True, the multivariate TPE is used when suggesting parameters. The multivariate TPE is reported to outperform the independent TPE. search_space: Search space required when running a gridsearch (if you don't pass a sampler). evaluate: Allows you to pass a specific set of hyperparameters that will be evaluated. seed: Fixed seed used by samplers. sampler: A sampler object that implements background algorithm for value suggestion. If None is specified, TPESampler is used during single-objective optimization and NSGAIISampler during multi-objective optimization. See also samplers. pruner: A pruner object that decides early stopping of unpromising trials. If None is specified, MedianPruner is used as the default. See also pruners. study_name: Study’s name. If this argument is set to None, a unique name is generated automatically. direction: A sequence of directions during multi-objective optimization. n_trials: The number of trials. If this argument is set to None, there is no limitation on the number of trials. If timeout is also set to None, the study continues to create trials until it receives a termination signal such as Ctrl+C or SIGTERM. timeout: Stop study after the given number of second(s). If this argument is set to None, the study is executed without time limitation. If n_trials is also set to None, the study continues to create trials until it receives a termination signal such as Ctrl+C or SIGTERM. gc_after_trial: Flag to execute garbage collection at the end of each trial. By default, garbage collection is enabled, just in case. You can turn it off with this argument if memory is safely managed in your objective function. show_progress_bar: Flag to show progress bars or not. To disable progress bar, set this False. save_study: Save your study when finished/ interrupted. path: Folder where the study will be saved. show_plots: Flag to control whether plots are shown at the end of the study. """ try: import optuna except ImportError: raise ImportError('You need to install optuna!') # Sampler if sampler is None: if study_type is None or "bayes" in study_type.lower(): sampler = optuna.samplers.TPESampler(seed=seed, multivariate=multivariate) elif "grid" in study_type.lower(): assert search_space, f"you need to pass a search_space dict to run a gridsearch" sampler = optuna.samplers.GridSampler(search_space) elif "random" in study_type.lower(): sampler = optuna.samplers.RandomSampler(seed=seed) assert sampler, "you need to either select a study type (bayesian, gridsampler, randomsampler) or pass a sampler" # Study if resume: try: study = joblib.load(resume) except: print(f"joblib.load({resume}) couldn't recover any saved study. Check the path.") return print("Best trial until now:") print(" Value: ", study.best_trial.value) print(" Params: ") for key, value in study.best_trial.params.items(): print(f" {key}: {value}") else: study = optuna.create_study(sampler=sampler, pruner=pruner, study_name=study_name, direction=direction) if evaluate: study.enqueue_trial(evaluate) try: study.optimize(objective, n_trials=n_trials, timeout=timeout, gc_after_trial=gc_after_trial, show_progress_bar=show_progress_bar) except KeyboardInterrupt: pass # Save if save_study: full_path = Path(path)/f'{study.study_name}.pkl' full_path.parent.mkdir(parents=True, exist_ok=True) joblib.dump(study, full_path) print(f'\nOptuna study saved to {full_path}') print(f"To reload the study run: study = joblib.load('{full_path}')") # Plots if show_plots and len(study.trials) > 1: try: display(optuna.visualization.plot_optimization_history(study)) except: pass try: display(optuna.visualization.plot_param_importances(study)) except: pass try: display(optuna.visualization.plot_slice(study)) except: pass try: display(optuna.visualization.plot_parallel_coordinate(study)) except: pass # Study stats try: pruned_trials = [t for t in study.trials if t.state == optuna.trial.TrialState.PRUNED] complete_trials = [t for t in study.trials if t.state == optuna.trial.TrialState.COMPLETE] print(f"\nStudy statistics : ") print(f" Study name : {study.study_name}") print(f" # finished trials : {len(study.trials)}") print(f" # pruned trials : {len(pruned_trials)}") print(f" # complete trials : {len(complete_trials)}") print(f"\nBest trial :") trial = study.best_trial print(f" value : {trial.value}") print(f" best_params = {trial.params}\n") except: print('\nNo finished trials yet.') return study #hide from tsai.imports import create_scripts from tsai.export import get_nb_name nb_name = get_nb_name() create_scripts(nb_name); ###Output _____no_output_____ ###Markdown Optuna: A hyperparameter optimization framework> Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, define-by-run style user API. Thanks to our define-by-run API, the code written with Optuna enjoys high modularity, and the user of Optuna can dynamically construct the search spaces for the hyperparameters. ###Code #export from pathlib import Path from fastcore.script import * import joblib from importlib import import_module from tsai.imports import * import warnings warnings.filterwarnings("ignore") #exports def run_optuna_study(objective, resume=None, study_type=None, multivariate=True, search_space=None, evaluate=None, seed=None, sampler=None, pruner=None, study_name=None, direction='maximize', load_if_exists=False, n_trials=None, timeout=None, gc_after_trial=False, show_progress_bar=True, save_study=True, path='optuna', show_plots=True): r"""Creates and runs an optuna study. Args: objective: A callable that implements objective function. resume: Path to a previously saved study. study_type: Type of study selected (bayesian, gridsearch, randomsearch). Based on this a sampler will be build if sampler is None. If a sampler is passed, this has no effect. multivariate: If this is True, the multivariate TPE is used when suggesting parameters. The multivariate TPE is reported to outperform the independent TPE. search_space: Search space required when running a gridsearch (if you don't pass a sampler). evaluate: Allows you to pass a specific set of hyperparameters that will be evaluated. seed: Fixed seed used by samplers. sampler: A sampler object that implements background algorithm for value suggestion. If None is specified, TPESampler is used during single-objective optimization and NSGAIISampler during multi-objective optimization. See also samplers. pruner: A pruner object that decides early stopping of unpromising trials. If None is specified, MedianPruner is used as the default. See also pruners. study_name: Study’s name. If this argument is set to None, a unique name is generated automatically. direction: A sequence of directions during multi-objective optimization. n_trials: The number of trials. If this argument is set to None, there is no limitation on the number of trials. If timeout is also set to None, the study continues to create trials until it receives a termination signal such as Ctrl+C or SIGTERM. timeout: Stop study after the given number of second(s). If this argument is set to None, the study is executed without time limitation. If n_trials is also set to None, the study continues to create trials until it receives a termination signal such as Ctrl+C or SIGTERM. gc_after_trial: Flag to execute garbage collection at the end of each trial. By default, garbage collection is enabled, just in case. You can turn it off with this argument if memory is safely managed in your objective function. show_progress_bar: Flag to show progress bars or not. To disable progress bar, set this False. save_study: Save your study when finished/ interrupted. path: Folder where the study will be saved. show_plots: Flag to control whether plots are shown at the end of the study. """ try: import optuna except ImportError: raise ImportError('You need to install optuna to use run_optuna_study') # Sampler if sampler is None: if study_type is None or "bayes" in study_type.lower(): sampler = optuna.samplers.TPESampler(seed=seed, multivariate=multivariate) elif "grid" in study_type.lower(): assert search_space, f"you need to pass a search_space dict to run a gridsearch" sampler = optuna.samplers.GridSampler(search_space) elif "random" in study_type.lower(): sampler = optuna.samplers.RandomSampler(seed=seed) assert sampler, "you need to either select a study type (bayesian, gridsampler, randomsampler) or pass a sampler" # Study if resume: try: study = joblib.load(resume) except: print(f"joblib.load({resume}) couldn't recover any saved study. Check the path.") return print("Best trial until now:") print(" Value: ", study.best_trial.value) print(" Params: ") for key, value in study.best_trial.params.items(): print(f" {key}: {value}") else: study = optuna.create_study(sampler=sampler, pruner=pruner, study_name=study_name, direction=direction) if evaluate: study.enqueue_trial(evaluate) try: study.optimize(objective, n_trials=n_trials, timeout=timeout, gc_after_trial=gc_after_trial, show_progress_bar=show_progress_bar) except KeyboardInterrupt: pass # Save if save_study: full_path = Path(path)/f'{study.study_name}.pkl' full_path.parent.mkdir(parents=True, exist_ok=True) joblib.dump(study, full_path) print(f'\nOptuna study saved to {full_path}') print(f"To reload the study run: study = joblib.load('{full_path}')") # Plots if show_plots and len(study.trials) > 1: try: display(optuna.visualization.plot_optimization_history(study)) except: pass try: display(optuna.visualization.plot_param_importances(study)) except: pass try: display(optuna.visualization.plot_slice(study)) except: pass try: display(optuna.visualization.plot_parallel_coordinate(study)) except: pass # Study stats try: pruned_trials = [t for t in study.trials if t.state == optuna.trial.TrialState.PRUNED] complete_trials = [t for t in study.trials if t.state == optuna.trial.TrialState.COMPLETE] print(f"\nStudy statistics : ") print(f" Study name : {study.study_name}") print(f" # finished trials : {len(study.trials)}") print(f" # pruned trials : {len(pruned_trials)}") print(f" # complete trials : {len(complete_trials)}") print(f"\nBest trial :") trial = study.best_trial print(f" value : {trial.value}") print(f" best_params = {trial.params}\n") except: print('\nNo finished trials yet.') return study #hide from tsai.imports import * from tsai.export import * nb_name = get_nb_name() # nb_name = "200_optuna.ipynb" create_scripts(nb_name); ###Output _____no_output_____
section_4/4-6.ipynb
###Markdown Density estimationDensity estimation is the construction of an estimate, based on observed data, of an unobservable underlying probability density function. The unobservable density function is thought of as the density according to which a large population is distributed; the data are usually thought of as a random sample from that population.Density estimation walks the line between unsupervised learning, featureengineering, and data modeling. Some of the most popular and usefuldensity estimation techniques are mixture models such as GaussianMixtures (`sklearn.mixture.GaussianMixture`), and neighbor-based approaches such as the kernel densityestimate (`sklearn.neighbors.KernelDensity`).Density estimation is a very simple concept, and most people are alreadyfamiliar with one common density estimation technique: the histogram. HistogramsA histogram is a simple visualization of data where bins are defined,and the number of data points within each bin is tallied. An example ofa histogram can be seen in the upper-left panel of the following figure: ###Code import numpy as np import matplotlib import matplotlib.pyplot as plt from distutils.version import LooseVersion from scipy.stats import norm from sklearn.neighbors import KernelDensity # `normed` is being deprecated in favor of `density` in histograms if LooseVersion(matplotlib.__version__) >= '2.1': density_param = {'density': True} else: density_param = {'normed': True} # ---------------------------------------------------------------------- # Plot the progression of histograms to kernels np.random.seed(1) N = 20 X = np.concatenate((np.random.normal(0, 1, int(0.3 * N)), np.random.normal(5, 1, int(0.7 * N))))[:, np.newaxis] X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis] bins = np.linspace(-5, 10, 10) fig, ax = plt.subplots(2, 2, sharex=True, sharey=True, figsize=(13, 13)) fig.subplots_adjust(hspace=0.05, wspace=0.05) # histogram 1 ax[0, 0].hist(X[:, 0], bins=bins, fc='#AAAAFF', **density_param) ax[0, 0].text(-3.5, 0.31, "Histogram") # histogram 2 ax[0, 1].hist(X[:, 0], bins=bins + 0.75, fc='#AAAAFF', **density_param) ax[0, 1].text(-3.5, 0.31, "Histogram, bins shifted") # tophat KDE kde = KernelDensity(kernel='tophat', bandwidth=0.75).fit(X) log_dens = kde.score_samples(X_plot) ax[1, 0].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF') ax[1, 0].text(-3.5, 0.31, "Tophat Kernel Density") # Gaussian KDE kde = KernelDensity(kernel='gaussian', bandwidth=0.75).fit(X) log_dens = kde.score_samples(X_plot) ax[1, 1].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF') ax[1, 1].text(-3.5, 0.31, "Gaussian Kernel Density") for axi in ax.ravel(): axi.plot(X[:, 0], np.full(X.shape[0], -0.01), '+k') axi.set_xlim(-4, 9) axi.set_ylim(-0.02, 0.34) for axi in ax[:, 0]: axi.set_ylabel('Normalized Density') for axi in ax[1, :]: axi.set_xlabel('x') plt.show() ###Output _____no_output_____ ###Markdown A major problem with histograms, however, is that the choice of binningcan have a disproportionate effect on the resulting visualization.Consider the upper-right panel of the above figure. It shows a histogramover the same data, with the bins shifted right. The results of the twovisualizations look entirely different, and might lead to differentinterpretations of the data.Intuitively, one can also think of a histogram as a stack of blocks, oneblock per point. By stacking the blocks in the appropriate grid space,we recover the histogram. But what if, instead of stacking the blocks ona regular grid, we center each block on the point it represents, and sumthe total height at each location? This idea leads to the lower-leftvisualization. It is perhaps not as clean as a histogram, but the factthat the data drive the block locations mean that it is a much betterrepresentation of the underlying data.This visualization is an example of a *kernel density estimation*, inthis case with a top-hat kernel (i.e. a square block at each point). Wecan recover a smoother distribution by using a smoother kernel. Thebottom-right plot shows a Gaussian kernel density estimate, in whicheach point contributes a Gaussian curve to the total. The result is asmooth density estimate which is derived from the data, and functions asa powerful non-parametric model of the distribution of points. Kernel Density EstimationKernel density estimation is a fundamental data smoothing problem where inferences about the population are made, based on a finite data sample. In some fields such as signal processing and econometrics it is also termed the *Parzen–Rosenblatt window*.Kernel density estimation in scikit-learn is implemented in the`sklearn.neighbors.KernelDensity` estimator, which uses the Ball Tree or KD Tree for efficient queries. Though the above example uses a 1D data set for simplicity,kernel density estimation can be performed in any number of dimensions,though in practice the curse of dimensionality causes its performance todegrade in high dimensions.In the following figure, 100 points are drawn from a bimodaldistribution, and the kernel density estimates are shown for threechoices of kernels: ###Code from sklearn.neighbors import KernelDensity N = 100 np.random.seed(1) X = np.concatenate((np.random.normal(0, 1, int(0.3 * N)), np.random.normal(5, 1, int(0.7 * N))))[:, np.newaxis] X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis] true_dens = (0.3 * norm(0, 1).pdf(X_plot[:, 0]) + 0.7 * norm(5, 1).pdf(X_plot[:, 0])) fig, ax = plt.subplots(figsize=(13, 13)) ax.fill(X_plot[:, 0], true_dens, fc='black', alpha=0.2, label='input distribution') colors = ['navy', 'cornflowerblue', 'darkorange'] kernels = ['gaussian', 'tophat', 'epanechnikov'] lw = 2 for color, kernel in zip(colors, kernels): kde = KernelDensity(kernel=kernel, bandwidth=0.5).fit(X) log_dens = kde.score_samples(X_plot) ax.plot(X_plot[:, 0], np.exp(log_dens), color=color, lw=lw, linestyle='-', label="kernel = '{0}'".format(kernel)) ax.text(6, 0.38, "N={0} points".format(N)) ax.legend(loc='upper left') ax.plot(X[:, 0], -0.005 - 0.01 * np.random.random(X.shape[0]), '+k') ax.set_xlim(-4, 9) ax.set_ylim(-0.02, 0.4) plt.show() ###Output _____no_output_____ ###Markdown It's clear how the kernel shape affects the smoothness of the resultingdistribution. The scikit-learn kernel density estimator can be used asfollows: ###Code from sklearn.neighbors import KernelDensity import numpy as np X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) kde = KernelDensity(kernel='gaussian', bandwidth=0.2).fit(X) kde.score_samples(X) ###Output _____no_output_____ ###Markdown Here we have used `kernel='gaussian'`, as seen above. Mathematically, akernel is a positive function $K(x;h)$ which is controlled by thebandwidth parameter $h$. Given this kernel form, the density estimate ata point $y$ within a group of points $x_i; i=1\cdots N$ is given by:$$\rho_K(y) = \sum_{i=1}^{N} K(y - x_i; h)$$The bandwidth here acts as a smoothing parameter, controlling thetradeoff between bias and variance in the result. A large bandwidthleads to a very smooth (i.e. high-bias) density distribution. A smallbandwidth leads to an unsmooth (i.e. high-variance) densitydistribution.`sklearn.neighbors.KernelDensity` implements several common kernel forms, which are shown in the followingfigure: ###Code X_plot = np.linspace(-6, 6, 1000)[:, None] X_src = np.zeros((1, 1)) fig, ax = plt.subplots(2, 3, sharex=True, sharey=True, figsize=(13, 13)) fig.subplots_adjust(left=0.05, right=0.95, hspace=0.05, wspace=0.05) def format_func(x, loc): if x == 0: return '0' elif x == 1: return 'h' elif x == -1: return '-h' else: return '%ih' % x for i, kernel in enumerate(['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']): axi = ax.ravel()[i] log_dens = KernelDensity(kernel=kernel).fit(X_src).score_samples(X_plot) axi.fill(X_plot[:, 0], np.exp(log_dens), '-k', fc='#AAAAFF') axi.text(-2.6, 0.95, kernel) axi.xaxis.set_major_formatter(plt.FuncFormatter(format_func)) axi.xaxis.set_major_locator(plt.MultipleLocator(1)) axi.yaxis.set_major_locator(plt.NullLocator()) axi.set_ylim(0, 1.05) axi.set_xlim(-2.9, 2.9) ax[0, 1].set_title('Available Kernels') plt.show() ###Output _____no_output_____ ###Markdown The form of these kernels is as follows:- Gaussian kernel (`kernel = 'gaussian'`) $K(x; h) \propto \exp(- \frac{x^2}{2h^2} )$- Tophat kernel (`kernel = 'tophat'`) $K(x; h) \propto 1$ if $x < h$- Epanechnikov kernel (`kernel = 'epanechnikov'`) $K(x; h) \propto 1 - \frac{x^2}{h^2}$- Exponential kernel (`kernel = 'exponential'`) $K(x; h) \propto \exp(-x/h)$- Linear kernel (`kernel = 'linear'`) $K(x; h) \propto 1 - x/h$ if $x < h$- Cosine kernel (`kernel = 'cosine'`) $K(x; h) \propto \cos(\frac{\pi x}{2h})$ if $x < h$The kernel density estimator can be used with any of the valid distancemetrics (see `sklearn.neighbors.DistanceMetric` for a list of available metrics), though the results areproperly normalized only for the Euclidean metric. One particularlyuseful metric is the [Haversinedistance](https://en.wikipedia.org/wiki/Haversine_formula) whichmeasures the angular distance between points on a sphere. Here is anexample of using a kernel density estimate for a visualization ofgeospatial data, in this case the distribution of observations of twodifferent species on the South American continent: ###Code import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_species_distributions from sklearn.neighbors import KernelDensity # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False def construct_grids(batch): """Construct the map grid from the batch object Parameters ---------- batch : Batch object The object returned by :func:`fetch_species_distributions` Returns ------- (xgrid, ygrid) : 1-D arrays The grid corresponding to the values in batch.coverages """ # x,y coordinates for corner cells xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) # x coordinates of the grid cells xgrid = np.arange(xmin, xmax, batch.grid_size) # y coordinates of the grid cells ygrid = np.arange(ymin, ymax, batch.grid_size) return (xgrid, ygrid) # Get matrices/arrays of species IDs and locations data = fetch_species_distributions() species_names = ['Bradypus Variegatus', 'Microryzomys Minutus'] Xtrain = np.vstack([data['train']['dd lat'], data['train']['dd long']]).T ytrain = np.array([d.decode('ascii').startswith('micro') for d in data['train']['species']], dtype='int') Xtrain *= np.pi / 180. # Convert lat/long to radians # Set up the data grid for the contour plot xgrid, ygrid = construct_grids(data) X, Y = np.meshgrid(xgrid[::5], ygrid[::5][::-1]) land_reference = data.coverages[6][::5, ::5] land_mask = (land_reference > -9999).ravel() xy = np.vstack([Y.ravel(), X.ravel()]).T xy = xy[land_mask] xy *= np.pi / 180. # Plot map of South America with distributions of each species fig = plt.figure(figsize=(13, 13)) fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05) for i in range(2): plt.subplot(1, 2, i + 1) # construct a kernel density estimate of the distribution print(" - computing KDE in spherical coordinates") kde = KernelDensity(bandwidth=0.04, metric='haversine', kernel='gaussian', algorithm='ball_tree') kde.fit(Xtrain[ytrain == i]) # evaluate only on the land: -9999 indicates ocean Z = np.full(land_mask.shape[0], -9999, dtype='int') Z[land_mask] = np.exp(kde.score_samples(xy)) Z = Z.reshape(X.shape) # plot contours of the density levels = np.linspace(0, Z.max(), 25) plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) if basemap: print(" - plot coastlines using basemap") m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c') m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour(X, Y, land_reference, levels=[-9998], colors="k", linestyles="solid") plt.xticks([]) plt.yticks([]) plt.title(species_names[i]) plt.show() ###Output - computing KDE in spherical coordinates - plot coastlines from coverage - computing KDE in spherical coordinates - plot coastlines from coverage ###Markdown One other useful application of kernel density estimation is to learn a non-parametric generative model of a dataset in order to efficiently draw new samples from this generative model. Here is an example of using this process to create a new set of hand-written digits, using a Gaussian kernel learned on a PCA projection of the data: ###Code from sklearn.datasets import load_digits from sklearn.neighbors import KernelDensity from sklearn.decomposition import PCA from sklearn.model_selection import GridSearchCV # load the data digits = load_digits() # project the 64-dimensional data to a lower dimension pca = PCA(n_components=15, whiten=False) data = pca.fit_transform(digits.data) # use grid search cross-validation to optimize the bandwidth params = {'bandwidth': np.logspace(-1, 1, 20)} grid = GridSearchCV(KernelDensity(), params) grid.fit(data) print("best bandwidth: {0}".format(grid.best_estimator_.bandwidth)) # use the best estimator to compute the kernel density estimate kde = grid.best_estimator_ # sample 44 new points from the data new_data = kde.sample(44, random_state=0) new_data = pca.inverse_transform(new_data) # turn data into a 4x11 grid new_data = new_data.reshape((4, 11, -1)) real_data = digits.data[:44].reshape((4, 11, -1)) # plot real digits and resampled digits fig, ax = plt.subplots(9, 11, subplot_kw=dict(xticks=[], yticks=[]), figsize=(13, 13)) for j in range(11): ax[4, j].set_visible(False) for i in range(4): im = ax[i, j].imshow(real_data[i, j].reshape((8, 8)), cmap=plt.cm.binary, interpolation='nearest') im.set_clim(0, 16) im = ax[i + 5, j].imshow(new_data[i, j].reshape((8, 8)), cmap=plt.cm.binary, interpolation='nearest') im.set_clim(0, 16) ax[0, 5].set_title('Selection from the input data') ax[5, 5].set_title('"New" digits drawn from the kernel density model') plt.show() ###Output best bandwidth: 3.79269019073225
courses/modsim2018/tasks/Tasks_ForLecture03/.ipynb_checkpoints/Python_iniciation-checkpoint.ipynb
###Markdown Abrir arquivo ###Code #data = np.loadtxt('C:\\Users\\Raissa\\Documents\\UFABC\\2018\\MSMH\\Tasks2\\Pezzack.txt', skiprows=1) t, pos, posNoisy, accel = np.loadtxt('./../Task2/Pezzack.txt', skiprows=6,unpack =" ") ###Output _____no_output_____ ###Markdown Plotar Dados ###Code #t = data[:,0] #Position = data[:,1:2] #AccelerationMeasured = data[:,3] Position = pos AccelerationMeasured = accel i=10 print ("Position of t =", t[i], "s is ", Position[i]," m") print ("\nAcceleration of t =", t[i], "s is ", AccelerationMeasured[i]," m/s^2") # Time step dt = t[1]-t[0] # Calculate the derivate from the second derivate of Position vector # First Derivative -->v = x' VelocCalc = np.diff(Position, n=1, axis=0) / dt print ("Speed Calculated at t =", t[i],"s is: ", VelocCalc[i], "m/s") # Second Derivative --> a = x'' accelCalc = np.diff(VelocCalc, n=1, axis=0) / dt print ("\nAcceleration Calculated at t =", t[i],"s is: ", accelCalc[i], "m/s^2") len(t) print("Initial size = ",np.size(t)) print("\nSpeed vector size = ",np.size(VelocCalc)) # Make the vector of time to have the same size of the calculated acceleration new_t_size = np.size(accelCalc) print("\nAcceleration vector size = ",new_t_size) new_t = t[0:new_t_size] print("\nNew t vector size = ", np.size(new_t)) # Make the vector of measured acceleration to have the same size of the calculated acceleration AccelerationMeasured_newSize = AccelerationMeasured[:new_t_size] # plot data hfig, hax = plt.subplots(1, 1, sharex = True, squeeze=True, figsize=(9, 5)) hax.plot(new_t, accelCalc, label='Calculated', linewidth=2) hax.plot(new_t, AccelerationMeasured_newSize, label='Measured', linewidth=2) hax.legend(frameon=False) hax.set_ylabel('Amplitude [m/s$^2$]') hax.set_xlabel('Time [s]') plt.tight_layout() plt.show() ###Output _____no_output_____
cell-painting/2.train/0.cell-painting-vaeLEVEL4_vanilla_leaveOut.ipynb
###Markdown Train a VAE on Cell Painting LINCS Data ###Code import sys import pathlib import numpy as np import pandas as pd sys.path.insert(0, "../../scripts") from utils import load_data from pycytominer.cyto_utils import infer_cp_features import matplotlib.pyplot as plt from matplotlib.pyplot import figure from sklearn.decomposition import PCA from tensorflow import keras from vae import VAE from tensorflow.keras.models import Model, Sequential import seaborn import random as python_random import tensorflow as tf def remove_moa(df): pipes = ['opioid receptor agonist|opioid receptor antagonist' 'glucocorticoid receptor agonist|immunosuppressant', 'AKT inhibitor|mTOR inhibitor', 'histamine receptor agonist|histamine receptor antagonist', 'antiviral|RNA synthesis inhibito'] moas = [] for pipe in pipes: moas.append(pipe) moas.append(pipe.split('|')[0]) moas.append(pipe.split('|')[1]) return df[~df.moa.isin(moas)] data_splits = ["train", "test", "valid","complete"] data_dict = load_data(data_splits) # Prepare data for training meta_features = infer_cp_features(data_dict["train"], metadata=True) cp_features = infer_cp_features(data_dict["train"]) moa_df_train = pd.read_csv("../3.application/repurposing_info_external_moa_map_resolved.tsv",sep='\t').set_index('broad_sample').reindex(index=data_dict['train']['Metadata_broad_sample']).reset_index().drop('Metadata_broad_sample',axis = 1) data_dict['train'] = pd.concat([moa_df_train,data_dict['train']], axis=1) moa_df_valid = pd.read_csv("../3.application/repurposing_info_external_moa_map_resolved.tsv",sep='\t').set_index('broad_sample').reindex(index=data_dict['valid']['Metadata_broad_sample']).reset_index().drop('Metadata_broad_sample',axis = 1) data_dict['valid'] = pd.concat([moa_df_valid,data_dict['valid']], axis=1) data_dict['train'] = remove_moa(data_dict['train']) data_dict['valid'] = remove_moa(data_dict['valid']) train_features_df = data_dict["train"].reindex(cp_features, axis="columns") train_meta_df = data_dict["train"].reindex(meta_features, axis="columns") test_features_df = data_dict["test"].reindex(cp_features, axis="columns") test_meta_df = data_dict["test"].reindex(meta_features, axis="columns") valid_features_df = data_dict["valid"].reindex(cp_features, axis="columns") valid_meta_df = data_dict["valid"].reindex(meta_features, axis="columns") complete_features_df = data_dict["complete"].reindex(cp_features, axis="columns") complete_meta_df = data_dict["complete"].reindex(meta_features, axis="columns") print(train_features_df.shape) train_features_df.head(3) print(test_features_df.shape) test_features_df.head(3) print(complete_features_df.shape) complete_features_df.head(3) encoder_architecture = [250] decoder_architecture = [250] cp_vae = VAE( input_dim=train_features_df.shape[1], latent_dim=90, batch_size=32, encoder_batch_norm=True, epochs=58, learning_rate=0.0001, encoder_architecture=encoder_architecture, decoder_architecture=decoder_architecture, beta=1, verbose=True, ) cp_vae.compile_vae() cp_vae.train(x_train=train_features_df, x_test=valid_features_df) cp_vae.vae # Save training performance history_df = pd.DataFrame(cp_vae.vae.history.history) history_df history_df.to_csv('training_data/level4_training_vanilla_leaveOut.csv') plt.figure(figsize=(10, 5)) plt.plot(history_df["loss"], label="Training data") plt.plot(history_df["val_loss"], label="Validation data") plt.title("Loss for VAE training on Cell Painting Level 4 data") plt.ylabel("MSE + KL Divergence") plt.xlabel("No. Epoch") plt.legend() plt.show() cp_vae.vae.evaluate(test_features_df) reconstruction = pd.DataFrame(cp_vae.vae.predict(test_features_df), columns=cp_features) (sum(sum((np.array(test_features_df) - np.array(reconstruction)) ** 2))) ** 0.5 #latent space heatmap fig, ax = plt.subplots(figsize=(10, 10)) encoder = cp_vae.encoder_block["encoder"] latent = np.array(encoder.predict(test_features_df)[2]) seaborn.heatmap(latent, ax=ax) reconstruction = pd.DataFrame(cp_vae.vae.predict(test_features_df), columns=cp_features) pca = PCA(n_components=2).fit(test_features_df) pca_reconstructed_latent_df = pd.DataFrame(pca.transform(reconstruction)) pca_test_latent_df = pd.DataFrame(pca.transform(test_features_df)) figure(figsize=(10, 10), dpi=80) plt.scatter(pca_test_latent_df[0],pca_test_latent_df[1], marker = ".", alpha = 0.5) plt.scatter(pca_reconstructed_latent_df[0],pca_reconstructed_latent_df[1], marker = ".", alpha = 0.5) decoder = cp_vae.decoder_block["decoder"] pca_training = PCA(n_components=2).fit(train_features_df) simulated_df = pd.DataFrame(np.random.normal(size=(40242, 90)), columns=np.arange(0,90)) reconstruction_of_simulated = decoder.predict(simulated_df) pca_reconstruction_of_simulated = pd.DataFrame(pca_training.transform(reconstruction_of_simulated)) pca_train_latent_df = pd.DataFrame(pca_training.transform(train_features_df)) fig, (ax1,ax2) = plt.subplots(1, 2, figsize=(16,8), sharey = True, sharex = True) ax1.scatter(pca_train_latent_df[0],pca_train_latent_df[1], marker = ".", alpha = 0.5) ax2.scatter(pca_reconstruction_of_simulated[0],pca_reconstruction_of_simulated[1], marker = ".", alpha = 0.5) from scipy.spatial.distance import directed_hausdorff max(directed_hausdorff(reconstruction_of_simulated, train_features_df)[0],directed_hausdorff(train_features_df,reconstruction_of_simulated)[0]) #NOTE: IF YOU RUN THIS, YOU WILL NOT BE ABLE TO REPRODUCE THE EXACT RESULTS IN THE EXPERIMENT latent_complete = np.array(encoder.predict(complete_features_df)[2]) latent_df = pd.DataFrame(latent) latent_df.to_csv("../3.application/level4Latent_vanilla_leaveOut.csv") #NOTE: IF YOU RUN THIS, YOU WILL NOT BE ABLE TO REPRODUCE THE EXACT RESULTS IN THE EXPERIMENT decoder.save("models/level4Decoder_vanilla_leaveOut") encoder.save("models/level4Encoder_vanilla_leaveOut") ###Output INFO:tensorflow:Assets written to: level4Encoder_vanilla_leaveOut/assets
examples/text/question_answering_with_bert.ipynb
###Markdown Building an End-to-End Question-Answering System With BERTIn this notebook, we build a practical, end-to-end Question-Answering (QA) system with BERT in rougly 3 lines of code. We will treat a corpus of text documents as a knowledge base to which we can ask questions and retrieve exact answers using [BERT](https://arxiv.org/abs/1810.04805). This goes beyond simplistic keyword searches.For this example, we will use the [20 Newsgroup dataset](http://qwone.com/~jason/20Newsgroups/) as the text corpus. As a collection of newsgroup postings which contains an abundance of opinions and debates, the corpus is not ideal as a knowledgebase. It is better to use fact-based documents such as Wikipedia articles or even news articles. However, this dataset will suffice for this example.Let us begin by loading the dataset into an array using **scikit-learn** and importing *ktrain* modules. ###Code # load 20newsgroups datset into an array from sklearn.datasets import fetch_20newsgroups remove = ('headers', 'footers', 'quotes') newsgroups_train = fetch_20newsgroups(subset='train', remove=remove) newsgroups_test = fetch_20newsgroups(subset='test', remove=remove) docs = newsgroups_train.data + newsgroups_test.data import ktrain from ktrain import text ###Output _____no_output_____ ###Markdown STEP 1: Index the DocumentsWe will first index the documents into a search engine that will be used to quickly retrieve documents that are likely to contain answers to a question. To do so, we must choose an index location, which must be a folder that does not already exist. Since the newsgroup postings are small and fit in memory, we wil set `commit_every` to a large value to speed up the indexing process. This means results will not be written until the end. If you experience issues, you can lower this value. ###Code INDEXDIR = '/tmp/myindex' text.SimpleQA.initialize_index(INDEXDIR) text.SimpleQA.index_from_list(docs, INDEXDIR, commit_every=len(docs)) ###Output _____no_output_____ ###Markdown For documents sets that are too large to be loaded into a Python list, you can use `SimpleQA.index_from_folder`, which will crawl a folder and index all plain text documents.The above steps need to only be performed once. Once an index is already created, you can skip this step and proceed directly to **STEP 2** to begin using your system. STEP 2: Create a QA instanceNext, we create a QA instance. This step will automatically download the BERT SQUAD model if it does not already exist on your system. ###Code qa = text.SimpleQA(INDEXDIR) ###Output _____no_output_____ ###Markdown That's it! In roughly **3 lines of code**, we have built an end-to-end QA system that can now be used to generate answers to questions. Let's ask our system some questions. STEP 3: Ask QuestionsWe will invoke the `ask` method to issue questions to the text corpus we indexed and retrieve answers. We will also use the `qa.display` method to nicely display the top 5 results in this Jupyter notebook. The answers are inferred using a BERT model trained on the SQUAD dataset. Since the model is combing through paragraphs and sentences to find an answer, it may take a minute or two to return results.Note also that the 20 Newsgroup Dataset covers events in the early to mid 1990s, so references to recent events will not exist. Space Question ###Code answers = qa.ask('When did the Cassini probe launch?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown As you can see, the top candidate answer indicates that the Cassini space probe was launched in October of 1997, which appears to be correct. The correct answer will not always be the top answer, but it is in this case. Note that, since we used `index_from_list` to index documents, the last column shows the list index associated with the newsgroup posting containing the answer, which can be used to peruse the entire document containing the answer. If using `index_from_folder` to index documents, the last column will show the relative path and filename of the document. ###Code print(docs[59]) ###Output Archive-name: space/new_probes Last-modified: $Date: 93/04/01 14:39:17 $ UPCOMING PLANETARY PROBES - MISSIONS AND SCHEDULES Information on upcoming or currently active missions not mentioned below would be welcome. Sources: NASA fact sheets, Cassini Mission Design team, ISAS/NASDA launch schedules, press kits. ASUKA (ASTRO-D) - ISAS (Japan) X-ray astronomy satellite, launched into Earth orbit on 2/20/93. Equipped with large-area wide-wavelength (1-20 Angstrom) X-ray telescope, X-ray CCD cameras, and imaging gas scintillation proportional counters. CASSINI - Saturn orbiter and Titan atmosphere probe. Cassini is a joint NASA/ESA project designed to accomplish an exploration of the Saturnian system with its Cassini Saturn Orbiter and Huygens Titan Probe. Cassini is scheduled for launch aboard a Titan IV/Centaur in October of 1997. After gravity assists of Venus, Earth and Jupiter in a VVEJGA trajectory, the spacecraft will arrive at Saturn in June of 2004. Upon arrival, the Cassini spacecraft performs several maneuvers to achieve an orbit around Saturn. Near the end of this initial orbit, the Huygens Probe separates from the Orbiter and descends through the atmosphere of Titan. The Orbiter relays the Probe data to Earth for about 3 hours while the Probe enters and traverses the cloudy atmosphere to the surface. After the completion of the Probe mission, the Orbiter continues touring the Saturnian system for three and a half years. Titan synchronous orbit trajectories will allow about 35 flybys of Titan and targeted flybys of Iapetus, Dione and Enceladus. The objectives of the mission are threefold: conduct detailed studies of Saturn's atmosphere, rings and magnetosphere; conduct close-up studies of Saturn's satellites, and characterize Titan's atmosphere and surface. One of the most intriguing aspects of Titan is the possibility that its surface may be covered in part with lakes of liquid hydrocarbons that result from photochemical processes in its upper atmosphere. These hydrocarbons condense to form a global smog layer and eventually rain down onto the surface. The Cassini orbiter will use onboard radar to peer through Titan's clouds and determine if there is liquid on the surface. Experiments aboard both the orbiter and the entry probe will investigate the chemical processes that produce this unique atmosphere. The Cassini mission is named for Jean Dominique Cassini (1625-1712), the first director of the Paris Observatory, who discovered several of Saturn's satellites and the major division in its rings. The Titan atmospheric entry probe is named for the Dutch physicist Christiaan Huygens (1629-1695), who discovered Titan and first described the true nature of Saturn's rings. Key Scheduled Dates for the Cassini Mission (VVEJGA Trajectory) ------------------------------------------------------------- 10/06/97 - Titan IV/Centaur Launch 04/21/98 - Venus 1 Gravity Assist 06/20/99 - Venus 2 Gravity Assist 08/16/99 - Earth Gravity Assist 12/30/00 - Jupiter Gravity Assist 06/25/04 - Saturn Arrival 01/09/05 - Titan Probe Release 01/30/05 - Titan Probe Entry 06/25/08 - End of Primary Mission (Schedule last updated 7/22/92) GALILEO - Jupiter orbiter and atmosphere probe, in transit. Has returned the first resolved images of an asteroid, Gaspra, while in transit to Jupiter. Efforts to unfurl the stuck High-Gain Antenna (HGA) have essentially been abandoned. JPL has developed a backup plan using data compression (JPEG-like for images, lossless compression for data from the other instruments) which should allow the mission to achieve approximately 70% of its original objectives. Galileo Schedule ---------------- 10/18/89 - Launch from Space Shuttle 02/09/90 - Venus Flyby 10/**/90 - Venus Data Playback 12/08/90 - 1st Earth Flyby 05/01/91 - High Gain Antenna Unfurled 07/91 - 06/92 - 1st Asteroid Belt Passage 10/29/91 - Asteroid Gaspra Flyby 12/08/92 - 2nd Earth Flyby 05/93 - 11/93 - 2nd Asteroid Belt Passage 08/28/93 - Asteroid Ida Flyby 07/02/95 - Probe Separation 07/09/95 - Orbiter Deflection Maneuver 12/95 - 10/97 - Orbital Tour of Jovian Moons 12/07/95 - Jupiter/Io Encounter 07/18/96 - Ganymede 09/28/96 - Ganymede 12/12/96 - Callisto 01/23/97 - Europa 02/28/97 - Ganymede 04/22/97 - Europa 05/31/97 - Europa 10/05/97 - Jupiter Magnetotail Exploration HITEN - Japanese (ISAS) lunar probe launched 1/24/90. Has made multiple lunar flybys. Released Hagoromo, a smaller satellite, into lunar orbit. This mission made Japan the third nation to orbit a satellite around the Moon. MAGELLAN - Venus radar mapping mission. Has mapped almost the entire surface at high resolution. Currently (4/93) collecting a global gravity map. MARS OBSERVER - Mars orbiter including 1.5 m/pixel resolution camera. Launched 9/25/92 on a Titan III/TOS booster. MO is currently (4/93) in transit to Mars, arriving on 8/24/93. Operations will start 11/93 for one martian year (687 days). TOPEX/Poseidon - Joint US/French Earth observing satellite, launched 8/10/92 on an Ariane 4 booster. The primary objective of the TOPEX/POSEIDON project is to make precise and accurate global observations of the sea level for several years, substantially increasing understanding of global ocean dynamics. The satellite also will increase understanding of how heat is transported in the ocean. ULYSSES- European Space Agency probe to study the Sun from an orbit over its poles. Launched in late 1990, it carries particles-and-fields experiments (such as magnetometer, ion and electron collectors for various energy ranges, plasma wave radio receivers, etc.) but no camera. Since no human-built rocket is hefty enough to send Ulysses far out of the ecliptic plane, it went to Jupiter instead, and stole energy from that planet by sliding over Jupiter's north pole in a gravity-assist manuver in February 1992. This bent its path into a solar orbit tilted about 85 degrees to the ecliptic. It will pass over the Sun's south pole in the summer of 1993. Its aphelion is 5.2 AU, and, surprisingly, its perihelion is about 1.5 AU-- that's right, a solar-studies spacecraft that's always further from the Sun than the Earth is! While in Jupiter's neigborhood, Ulysses studied the magnetic and radiation environment. For a short summary of these results, see *Science*, V. 257, p. 1487-1489 (11 September 1992). For gory technical detail, see the many articles in the same issue. OTHER SPACE SCIENCE MISSIONS (note: this is based on a posting by Ron Baalke in 11/89, with ISAS/NASDA information contributed by Yoshiro Yamada ([email protected]). I'm attempting to track changes based on updated shuttle manifests; corrections and updates are welcome. 1993 Missions o ALEXIS [spring, Pegasus] ALEXIS (Array of Low-Energy X-ray Imaging Sensors) is to perform a wide-field sky survey in the "soft" (low-energy) X-ray spectrum. It will scan the entire sky every six months to search for variations in soft-X-ray emission from sources such as white dwarfs, cataclysmic variable stars and flare stars. It will also search nearby space for such exotic objects as isolated neutron stars and gamma-ray bursters. ALEXIS is a project of Los Alamos National Laboratory and is primarily a technology development mission that uses astrophysical sources to demonstrate the technology. Contact project investigator Jeffrey J Bloch ([email protected]) for more information. o Wind [Aug, Delta II rocket] Satellite to measure solar wind input to magnetosphere. o Space Radar Lab [Sep, STS-60 SRL-01] Gather radar images of Earth's surface. o Total Ozone Mapping Spectrometer [Dec, Pegasus rocket] Study of Stratospheric ozone. o SFU (Space Flyer Unit) [ISAS] Conducting space experiments and observations and this can be recovered after it conducts the various scientific and engineering experiments. SFU is to be launched by ISAS and retrieved by the U.S. Space Shuttle on STS-68 in 1994. 1994 o Polar Auroral Plasma Physics [May, Delta II rocket] June, measure solar wind and ions and gases surrounding the Earth. o IML-2 (STS) [NASDA, Jul 1994 IML-02] International Microgravity Laboratory. o ADEOS [NASDA] Advanced Earth Observing Satellite. o MUSES-B (Mu Space Engineering Satellite-B) [ISAS] Conducting research on the precise mechanism of space structure and in-space astronomical observations of electromagnetic waves. 1995 LUNAR-A [ISAS] Elucidating the crust structure and thermal construction of the moon's interior. Proposed Missions: o Advanced X-ray Astronomy Facility (AXAF) Possible launch from shuttle in 1995, AXAF is a space observatory with a high resolution telescope. It would orbit for 15 years and study the mysteries and fate of the universe. o Earth Observing System (EOS) Possible launch in 1997, 1 of 6 US orbiting space platforms to provide long-term data (15 years) of Earth systems science including planetary evolution. o Mercury Observer Possible 1997 launch. o Lunar Observer Possible 1997 launch, would be sent into a long-term lunar orbit. The Observer, from 60 miles above the moon's poles, would survey characteristics to provide a global context for the results from the Apollo program. o Space Infrared Telescope Facility Possible launch by shuttle in 1999, this is the 4th element of the Great Observatories program. A free-flying observatory with a lifetime of 5 to 10 years, it would observe new comets and other primitive bodies in the outer solar system, study cosmic birth formation of galaxies, stars and planets and distant infrared-emitting galaxies o Mars Rover Sample Return (MRSR) Robotics rover would return samples of Mars' atmosphere and surface to Earch for analysis. Possible launch dates: 1996 for imaging orbiter, 2001 for rover. o Fire and Ice Possible launch in 2001, will use a gravity assist flyby of Earth in 2003, and use a final gravity assist from Jupiter in 2005, where the probe will split into its Fire and Ice components: The Fire probe will journey into the Sun, taking measurements of our star's upper atmosphere until it is vaporized by the intense heat. The Ice probe will head out towards Pluto, reaching the tiny world for study by 2016. ###Markdown The 20 Newsgroup dataset contains lots of posts discussing and debating Christianity, as well. Let's ask a question on this subject. Religious Question ###Code answers = qa.ask('Who was Jesus Christ?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown Here, we see different views on who Jesus was as debated and discussed in this document set.Finally, the 20 Newsgroup dataset also contains many groups about computing hardward and software. Let's ask a technical support question. Technical Question ###Code answers = qa.ask('What causes computer images to be too dark?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown Building an End-to-End Question-Answering System With BERTIn this notebook, we build a practical, end-to-end Question-Answering (QA) system with BERT in rougly 3 lines of code. We will treat a corpus of text documents as a knowledge base to which we can ask questions and retrieve exact answers using [BERT](https://arxiv.org/abs/1810.04805). This goes beyond simplistic keyword searches.For this example, we will use the [20 Newsgroup dataset](http://qwone.com/~jason/20Newsgroups/) as the text corpus. As a collection of newsgroup postings which contains an abundance of opinions and debates, the corpus is not ideal as a knowledgebase. It is better to use fact-based documents such as Wikipedia articles or even news articles. However, this dataset will suffice for this example.Let us begin by loading the dataset into an array using **scikit-learn** and importing *ktrain* modules. ###Code # load 20newsgroups datset into an array from sklearn.datasets import fetch_20newsgroups remove = ('headers', 'footers', 'quotes') newsgroups_train = fetch_20newsgroups(subset='train', remove=remove) newsgroups_test = fetch_20newsgroups(subset='test', remove=remove) docs = newsgroups_train.data + newsgroups_test.data import ktrain from ktrain import text ###Output _____no_output_____ ###Markdown STEP 1: Index the DocumentsWe will first index the documents into a search engine that will be used to quickly retrieve documents that are likely to contain answers to a question. To do so, we must choose an index location, which must be a folder that does not already exist. Since the newsgroup postings are small and fit in memory, we wil set `commit_every` to a large value to speed up the indexing process. This means results will not be written until the end. If you experience issues, you can lower this value. ###Code INDEXDIR = '/tmp/myindex' text.SimpleQA.initialize_index(INDEXDIR) text.SimpleQA.index_from_list(docs, INDEXDIR, commit_every=len(docs), multisegment=True, procs=4, # these args speed up indexing breakup_docs=True # this slows indexing but speeds up answer retrieval ) ###Output _____no_output_____ ###Markdown For documents sets that are too large to be loaded into a Python list, you can use `SimpleQA.index_from_folder`, which will crawl a folder and index all plain text documents (e.g.,, `.txt` files). Speeding Up IndexingBy default, `index_from_list` and `index_from_folder` use a single processor (`procs=1`) with each processor using a maximum of 256MB of memory (`limitmb=256`) and merging results into a single segment (`multisegment=False`). These values can be changed to speedup indexing as arguments to `index_from_list` or `index_from_folder`. See the [whoosh documentation](https://whoosh.readthedocs.io/en/latest/batch.html) for more information on these parameters and how to use them to speedup indexing. In this case, we've used `multisegment=True` and `procs=4`. Speeding Up Answer RetrievalNote that larger documents will cause inferences in STEP 3 (see below) to be very slow. If your dataset consists of larger documents (e.g., long articles), we recommend breaking them up into pages (e.g., splitting the original PDF using something like `pdfseparate`) or splitting them into paragraphs (paragraphs are probably preferrable). The latter can be done with *ktrain* using:```pythonktrain.text.textutils.paragraph_tokenize(document, join_sentences=True)```If you supply `breakup_docs=True` in the cell above, this will be done automatically. Note that `breakup_docs=True` will slightly **slow indexing** (i.e., STEP 1), but **speed up answer retrieval** (i.e., STEP 3 below). A second way to speed up answer-retrieval is to increase `batch_size` in STEP 3 if using a GPU, which will be discussed later.The above steps need to only be performed once. Once an index is already created, you can skip this step and proceed directly to **STEP 2** to begin using your system. STEP 2: Create a QA instanceNext, we create a QA instance. This step will automatically download the BERT SQuAD model if it does not already exist on your system. ###Code qa = text.SimpleQA(INDEXDIR) ###Output _____no_output_____ ###Markdown That's it! In roughly **3 lines of code**, we have built an end-to-end QA system that can now be used to generate answers to questions. Let's ask our system some questions. STEP 3: Ask QuestionsWe will invoke the `ask` method to issue questions to the text corpus we indexed and retrieve answers. We will also use the `qa.display` method to nicely display the top 5 results in this Jupyter notebook. The answers are inferred using a BERT model fine-tuned on the SQuAD dataset. The model will comb through paragraphs and sentences to find candidate answers. By default, `ask` currently uses a `batch_size` of 8, but, if necessary, you can experiment with lowering it by setting the `batch_size` parameter. On a CPU, for instance, you may want to try `batch_size=1`.Note also that the 20 Newsgroup Dataset covers events in the early to mid 1990s, so references to recent events will not exist. Space Question ###Code answers = qa.ask('When did the Cassini probe launch?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown As you can see, the top candidate answer indicates that the Cassini space probe was launched in October of 1997, which appears to be correct. The correct answer will not always be the top answer, but it is in this case. Note that, since we used `index_from_list` to index documents, the last column (i.e., **Document Reference**) shows the list index associated with the newsgroup posting containing the answer, which can be used to peruse the entire document containing the answer. If using `index_from_folder` to index documents, the last column will show the relative path and filename of the document. The **Document Reference** values can be customized by supplying a `references` parameter to `index_from_list`.To see the text of the document that contains the top answer, uncomment and execute the following line (it's a comparatively long post). ###Code #print(docs[59]) ###Output _____no_output_____ ###Markdown The 20 Newsgroup dataset contains lots of posts discussing and debating religions like Christianity and Islam, as well. Let's ask a question on this subject. Religious Question ###Code answers = qa.ask('Who was Muhammad?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown Here, we see different views on who Muhammad, the founder of Islam, as debated and discussed in this document set. Finally, the 20 Newsgroup dataset also contains many groups about computing hardware and software. Let's ask a technical support question. Technical Question ###Code answers = qa.ask('What causes computer images to be too dark?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown Building an End-to-End Question-Answering System With BERTIn this notebook, we build a practical, end-to-end Question-Answering (QA) system with BERT in rougly 3 lines of code. We will treat a corpus of text documents as a knowledge base to which we can ask questions and retrieve exact answers using [BERT](https://arxiv.org/abs/1810.04805). This goes beyond simplistic keyword searches.For this example, we will use the [20 Newsgroup dataset](http://qwone.com/~jason/20Newsgroups/) as the text corpus. As a collection of newsgroup postings which contains an abundance of opinions and debates, the corpus is not ideal as a knowledgebase. It is better to use fact-based documents such as Wikipedia articles or even news articles. However, this dataset will suffice for this example.Let us begin by loading the dataset into an array using **scikit-learn** and importing *ktrain* modules. ###Code # load 20newsgroups datset into an array from sklearn.datasets import fetch_20newsgroups remove = ('headers', 'footers', 'quotes') newsgroups_train = fetch_20newsgroups(subset='train', remove=remove) newsgroups_test = fetch_20newsgroups(subset='test', remove=remove) docs = newsgroups_train.data + newsgroups_test.data import ktrain from ktrain.text.qa import SimpleQA ###Output _____no_output_____ ###Markdown STEP 1: Index the DocumentsWe will first index the documents into a search engine that will be used to quickly retrieve documents that are likely to contain answers to a question. To do so, we must choose an index location, which must be a folder that does not already exist. Since the newsgroup postings are small and fit in memory, we wil set `commit_every` to a large value to speed up the indexing process. This means results will not be written until the end. If you experience issues, you can lower this value. ###Code INDEXDIR = '/tmp/myindex' SimpleQA.initialize_index(INDEXDIR) SimpleQA.index_from_list(docs, INDEXDIR, commit_every=len(docs), multisegment=True, procs=4, # these args speed up indexing breakup_docs=True # this slows indexing but speeds up answer retrieval ) ###Output _____no_output_____ ###Markdown For documents sets that are too large to be loaded into a Python list, you can use `SimpleQA.index_from_folder`, which will crawl a folder and index all plain text documents (e.g.,, `.txt` files) by default. If your documents are in formats like `.pdf`, `.docx`, or `.pptx`, you can supply the `use_text_extraction=True` argument to `index_from_folder`, which will use the [textract](https://textract.readthedocs.io/en/stable/) package to extract text from different file types and index this text into the search engine for answer rerieval. You can also manually convert them to `.txt` files with the `ktrain.text.textutils.extract_copy` or tools like [Apache Tika](https://tika.apache.org/) or [textract](https://textract.readthedocs.io/en/stable/). Speeding Up IndexingBy default, `index_from_list` and `index_from_folder` use a single processor (`procs=1`) with each processor using a maximum of 256MB of memory (`limitmb=256`) and merging results into a single segment (`multisegment=False`). These values can be changed to speedup indexing as arguments to `index_from_list` or `index_from_folder`. See the [whoosh documentation](https://whoosh.readthedocs.io/en/latest/batch.html) for more information on these parameters and how to use them to speedup indexing. In this case, we've used `multisegment=True` and `procs=4`. Speeding Up Answer RetrievalNote that larger documents will cause inferences in STEP 3 (see below) to be very slow. If your dataset consists of larger documents (e.g., long articles), we recommend breaking them up into pages (e.g., splitting the original PDF using something like `pdfseparate`) or splitting them into paragraphs (paragraphs are probably preferrable). The latter can be done with *ktrain* using:```pythonktrain.text.textutils.paragraph_tokenize(document, join_sentences=True)```If you supply `breakup_docs=True` in the cell above, this will be done automatically. Note that `breakup_docs=True` will slightly **slow indexing** (i.e., STEP 1), but **speed up answer retrieval** (i.e., STEP 3 below). A second way to speed up answer-retrieval is to increase `batch_size` in STEP 3 if using a GPU, which will be discussed later.The above steps need to only be performed once. Once an index is already created, you can skip this step and proceed directly to **STEP 2** to begin using your system. STEP 2: Create a QA instanceNext, we create a QA instance. (Note that, by default, `SimpleQA` uses TensorFlow. To use PyTorch, supply `framework='pt'` as a parameter.) This step will automatically download the BERT SQuAD model if it does not already exist on your system. ###Code qa = SimpleQA(INDEXDIR) ###Output _____no_output_____ ###Markdown That's it! In roughly **3 lines of code**, we have built an end-to-end QA system that can now be used to generate answers to questions. Next, let's ask our system some questions. STEP 3: Ask QuestionsWe will invoke the `ask` method to issue questions to the text corpus we indexed and retrieve answers. We will also use the `qa.display` method to nicely display the top 5 results in this Jupyter notebook. The answers are inferred using a BERT model fine-tuned on the SQuAD dataset. The model will comb through paragraphs and sentences to find candidate answers. By default, `ask` currently uses a `batch_size` of 8, but, if necessary, you can experiment with lowering it by setting the `batch_size` parameter. On a CPU, for instance, you may want to try `batch_size=1`.Note also that the 20 Newsgroup Dataset covers events in the early to mid 1990s, so references to recent events will not exist. Space Question ###Code answers = qa.ask('When did the Cassini probe launch?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown As you can see, the top candidate answer indicates that the Cassini space probe was launched in October of 1997, which appears to be correct. The correct answer will not always be the top answer, but it is in this case. Note that, since we used `index_from_list` to index documents, the last column (i.e., **Document Reference**) shows the list index associated with the newsgroup posting containing the answer, which can be used to peruse the entire document containing the answer. If using `index_from_folder` to index documents, the last column will show the relative path and filename of the document. The **Document Reference** values can be customized by supplying a `references` parameter to `index_from_list`.To see the text of the document that contains the top answer, uncomment and execute the following line (it's a comparatively long post). ###Code #print(docs[59]) ###Output _____no_output_____ ###Markdown The 20 Newsgroup dataset contains lots of posts discussing and debating religions like Christianity and Islam, as well. Let's ask a question on this subject. Religious Question ###Code answers = qa.ask('Who was Muhammad?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown Here, we see different views on who Muhammad, the founder of Islam, as debated and discussed in this document set. Finally, the 20 Newsgroup dataset also contains many groups about computing hardware and software. Let's ask a technical support question. Technical Question ###Code answers = qa.ask('What causes computer images to be too dark?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown Building an End-to-End Question-Answering System With BERTIn this notebook, we build a practical, end-to-end Question-Answering (QA) system with BERT in rougly 3 lines of code. We will treat a corpus of text documents as a knowledge base to which we can ask questions and retrieve exact answers using [BERT](https://arxiv.org/abs/1810.04805). This goes beyond simplistic keyword searches.For this example, we will use the [20 Newsgroup dataset](http://qwone.com/~jason/20Newsgroups/) as the text corpus. As a collection of newsgroup postings which contains an abundance of opinions and debates, the corpus is not ideal as a knowledgebase. It is better to use fact-based documents such as Wikipedia articles or even news articles. However, this dataset will suffice for this example.Let us begin by loading the dataset into an array using **scikit-learn** and importing *ktrain* modules. ###Code # load 20newsgroups datset into an array from sklearn.datasets import fetch_20newsgroups remove = ('headers', 'footers', 'quotes') newsgroups_train = fetch_20newsgroups(subset='train', remove=remove) newsgroups_test = fetch_20newsgroups(subset='test', remove=remove) docs = newsgroups_train.data + newsgroups_test.data import ktrain from ktrain.text.qa import SimpleQA ###Output _____no_output_____ ###Markdown STEP 1: Index the DocumentsWe will first index the documents into a search engine that will be used to quickly retrieve documents that are likely to contain answers to a question. To do so, we must choose an index location, which must be a folder that does not already exist. Since the newsgroup postings are small and fit in memory, we wil set `commit_every` to a large value to speed up the indexing process. This means results will not be written until the end. If you experience issues, you can lower this value. ###Code INDEXDIR = '/tmp/myindex' SimpleQA.initialize_index(INDEXDIR) SimpleQA.index_from_list(docs, INDEXDIR, commit_every=len(docs), multisegment=True, procs=4, # these args speed up indexing breakup_docs=True # this slows indexing but speeds up answer retrieval ) ###Output _____no_output_____ ###Markdown For documents sets that are too large to be loaded into a Python list, you can use `SimpleQA.index_from_folder`, which will crawl a folder and index all plain text documents (e.g.,, `.txt` files) by default. If your documents are in formats like `.pdf`, `.docx`, or `.pptx`, you can supply the `use_text_extraction=True` argument to `index_from_folder`, which will use the [textract](https://textract.readthedocs.io/en/stable/) package to extract text from different file types and index this text into the search engine for answer rerieval. You can also manually convert them to `.txt` files with the `ktrain.text.textutils.extract_copy` or tools like [Apache Tika](https://tika.apache.org/) or [textract](https://textract.readthedocs.io/en/stable/). Speeding Up IndexingBy default, `index_from_list` and `index_from_folder` use a single processor (`procs=1`) with each processor using a maximum of 256MB of memory (`limitmb=256`) and merging results into a single segment (`multisegment=False`). These values can be changed to speedup indexing as arguments to `index_from_list` or `index_from_folder`. See the [whoosh documentation](https://whoosh.readthedocs.io/en/latest/batch.html) for more information on these parameters and how to use them to speedup indexing. In this case, we've used `multisegment=True` and `procs=4`. Speeding Up Answer RetrievalNote that larger documents will cause inferences in STEP 3 (see below) to be very slow. If your dataset consists of larger documents (e.g., long articles), we recommend breaking them up into pages (e.g., splitting the original PDF using something like `pdfseparate`) or splitting them into paragraphs (paragraphs are probably preferrable). The latter can be done with *ktrain* using:```pythonktrain.text.textutils.paragraph_tokenize(document, join_sentences=True)```If you supply `breakup_docs=True` in the cell above, this will be done automatically. Note that `breakup_docs=True` will slightly **slow indexing** (i.e., STEP 1), but **speed up answer retrieval** (i.e., STEP 3 below). A second way to speed up answer-retrieval is to increase `batch_size` in STEP 3 if using a GPU, which will be discussed later.The above steps need to only be performed once. Once an index is already created, you can skip this step and proceed directly to **STEP 2** to begin using your system. STEP 2: Create a QA instanceNext, we create a QA instance. This step will automatically download the BERT SQuAD model if it does not already exist on your system. ###Code qa = SimpleQA(INDEXDIR) ###Output _____no_output_____ ###Markdown That's it! In roughly **3 lines of code**, we have built an end-to-end QA system that can now be used to generate answers to questions. Let's ask our system some questions. STEP 3: Ask QuestionsWe will invoke the `ask` method to issue questions to the text corpus we indexed and retrieve answers. We will also use the `qa.display` method to nicely display the top 5 results in this Jupyter notebook. The answers are inferred using a BERT model fine-tuned on the SQuAD dataset. The model will comb through paragraphs and sentences to find candidate answers. By default, `ask` currently uses a `batch_size` of 8, but, if necessary, you can experiment with lowering it by setting the `batch_size` parameter. On a CPU, for instance, you may want to try `batch_size=1`.Note also that the 20 Newsgroup Dataset covers events in the early to mid 1990s, so references to recent events will not exist. Space Question ###Code answers = qa.ask('When did the Cassini probe launch?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown As you can see, the top candidate answer indicates that the Cassini space probe was launched in October of 1997, which appears to be correct. The correct answer will not always be the top answer, but it is in this case. Note that, since we used `index_from_list` to index documents, the last column (i.e., **Document Reference**) shows the list index associated with the newsgroup posting containing the answer, which can be used to peruse the entire document containing the answer. If using `index_from_folder` to index documents, the last column will show the relative path and filename of the document. The **Document Reference** values can be customized by supplying a `references` parameter to `index_from_list`.To see the text of the document that contains the top answer, uncomment and execute the following line (it's a comparatively long post). ###Code #print(docs[59]) ###Output _____no_output_____ ###Markdown The 20 Newsgroup dataset contains lots of posts discussing and debating religions like Christianity and Islam, as well. Let's ask a question on this subject. Religious Question ###Code answers = qa.ask('Who was Muhammad?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown Here, we see different views on who Muhammad, the founder of Islam, as debated and discussed in this document set. Finally, the 20 Newsgroup dataset also contains many groups about computing hardware and software. Let's ask a technical support question. Technical Question ###Code answers = qa.ask('What causes computer images to be too dark?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown Building an End-to-End Question-Answering System With BERTIn this notebook, we build a practical, end-to-end Question-Answering (QA) system with BERT in rougly 3 lines of code. We will treat a corpus of text documents as a knowledge base to which we can ask questions and retrieve exact answers using [BERT](https://arxiv.org/abs/1810.04805). This goes beyond simplistic keyword searches.For this example, we will use the [20 Newsgroup dataset](http://qwone.com/~jason/20Newsgroups/) as the text corpus. As a collection of newsgroup postings which contains an abundance of opinions and debates, the corpus is not ideal as a knowledgebase. It is better to use fact-based documents such as Wikipedia articles or even news articles. However, this dataset will suffice for this example.Let us begin by loading the dataset into an array using **scikit-learn** and importing *ktrain* modules. ###Code # load 20newsgroups datset into an array from sklearn.datasets import fetch_20newsgroups remove = ('headers', 'footers', 'quotes') newsgroups_train = fetch_20newsgroups(subset='train', remove=remove) newsgroups_test = fetch_20newsgroups(subset='test', remove=remove) docs = newsgroups_train.data + newsgroups_test.data import ktrain from ktrain import text ###Output _____no_output_____ ###Markdown STEP 1: Index the DocumentsWe will first index the documents into a search engine that will be used to quickly retrieve documents that are likely to contain answers to a question. To do so, we must choose an index location, which must be a folder that does not already exist. Since the newsgroup postings are small and fit in memory, we wil set `commit_every` to a large value to speed up the indexing process. This means results will not be written until the end. If you experience issues, you can lower this value. ###Code INDEXDIR = '/tmp/myindex' text.SimpleQA.initialize_index(INDEXDIR) text.SimpleQA.index_from_list(docs, INDEXDIR, commit_every=len(docs), multisegment=True, procs=4, # these args speed up indexing breakup_docs=True # this slows indexing but speeds up answer retrieval ) ###Output _____no_output_____ ###Markdown For documents sets that are too large to be loaded into a Python list, you can use `SimpleQA.index_from_folder`, which will crawl a folder and index all plain text documents (e.g.,, `.txt` files) by default. If your documents are in formats like `.pdf`, `.docx`, or `.pptx`, you can supply the `use_text_extraction=True` argument to `index_from_folder`, which will use the [textract](https://textract.readthedocs.io/en/stable/) package to extract text from different file types and index this text into the search engine for answer rerieval. You can also manually convert them to `.txt` files with the `ktrain.text.textutils.extract_copy` or tools like [Apache Tika](https://tika.apache.org/) or [textract](https://textract.readthedocs.io/en/stable/). Speeding Up IndexingBy default, `index_from_list` and `index_from_folder` use a single processor (`procs=1`) with each processor using a maximum of 256MB of memory (`limitmb=256`) and merging results into a single segment (`multisegment=False`). These values can be changed to speedup indexing as arguments to `index_from_list` or `index_from_folder`. See the [whoosh documentation](https://whoosh.readthedocs.io/en/latest/batch.html) for more information on these parameters and how to use them to speedup indexing. In this case, we've used `multisegment=True` and `procs=4`. Speeding Up Answer RetrievalNote that larger documents will cause inferences in STEP 3 (see below) to be very slow. If your dataset consists of larger documents (e.g., long articles), we recommend breaking them up into pages (e.g., splitting the original PDF using something like `pdfseparate`) or splitting them into paragraphs (paragraphs are probably preferrable). The latter can be done with *ktrain* using:```pythonktrain.text.textutils.paragraph_tokenize(document, join_sentences=True)```If you supply `breakup_docs=True` in the cell above, this will be done automatically. Note that `breakup_docs=True` will slightly **slow indexing** (i.e., STEP 1), but **speed up answer retrieval** (i.e., STEP 3 below). A second way to speed up answer-retrieval is to increase `batch_size` in STEP 3 if using a GPU, which will be discussed later.The above steps need to only be performed once. Once an index is already created, you can skip this step and proceed directly to **STEP 2** to begin using your system. STEP 2: Create a QA instanceNext, we create a QA instance. This step will automatically download the BERT SQuAD model if it does not already exist on your system. ###Code qa = text.SimpleQA(INDEXDIR) ###Output _____no_output_____ ###Markdown That's it! In roughly **3 lines of code**, we have built an end-to-end QA system that can now be used to generate answers to questions. Let's ask our system some questions. STEP 3: Ask QuestionsWe will invoke the `ask` method to issue questions to the text corpus we indexed and retrieve answers. We will also use the `qa.display` method to nicely display the top 5 results in this Jupyter notebook. The answers are inferred using a BERT model fine-tuned on the SQuAD dataset. The model will comb through paragraphs and sentences to find candidate answers. By default, `ask` currently uses a `batch_size` of 8, but, if necessary, you can experiment with lowering it by setting the `batch_size` parameter. On a CPU, for instance, you may want to try `batch_size=1`.Note also that the 20 Newsgroup Dataset covers events in the early to mid 1990s, so references to recent events will not exist. Space Question ###Code answers = qa.ask('When did the Cassini probe launch?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown As you can see, the top candidate answer indicates that the Cassini space probe was launched in October of 1997, which appears to be correct. The correct answer will not always be the top answer, but it is in this case. Note that, since we used `index_from_list` to index documents, the last column (i.e., **Document Reference**) shows the list index associated with the newsgroup posting containing the answer, which can be used to peruse the entire document containing the answer. If using `index_from_folder` to index documents, the last column will show the relative path and filename of the document. The **Document Reference** values can be customized by supplying a `references` parameter to `index_from_list`.To see the text of the document that contains the top answer, uncomment and execute the following line (it's a comparatively long post). ###Code #print(docs[59]) ###Output _____no_output_____ ###Markdown The 20 Newsgroup dataset contains lots of posts discussing and debating religions like Christianity and Islam, as well. Let's ask a question on this subject. Religious Question ###Code answers = qa.ask('Who was Muhammad?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown Here, we see different views on who Muhammad, the founder of Islam, as debated and discussed in this document set. Finally, the 20 Newsgroup dataset also contains many groups about computing hardware and software. Let's ask a technical support question. Technical Question ###Code answers = qa.ask('What causes computer images to be too dark?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown Building an End-to-End Question-Answering System With BERTIn this notebook, we build a practical, end-to-end Question-Answering (QA) system with BERT in rougly 3 lines of code. We will treat a corpus of text documents as a knowledge base to which we can ask questions and retrieve exact answers using [BERT](https://arxiv.org/abs/1810.04805). This goes beyond simplistic keyword searches.For this example, we will use the [20 Newsgroup dataset](http://qwone.com/~jason/20Newsgroups/) as the text corpus. As a collection of newsgroup postings which contains an abundance of opinions and debates, the corpus is not ideal as a knowledgebase. It is better to use fact-based documents such as Wikipedia articles or even news articles. However, this dataset will suffice for this example.Let us begin by loading the dataset into an array using **scikit-learn** and importing *ktrain* modules. ###Code # load 20newsgroups datset into an array from sklearn.datasets import fetch_20newsgroups remove = ('headers', 'footers', 'quotes') newsgroups_train = fetch_20newsgroups(subset='train', remove=remove) newsgroups_test = fetch_20newsgroups(subset='test', remove=remove) docs = newsgroups_train.data + newsgroups_test.data import ktrain from ktrain import text ###Output _____no_output_____ ###Markdown STEP 1: Index the DocumentsWe will first index the documents into a search engine that will be used to quickly retrieve documents that are likely to contain answers to a question. To do so, we must choose an index location, which must be a folder that does not already exist. Since the newsgroup postings are small and fit in memory, we wil set `commit_every` to a large value to speed up the indexing process. This means results will not be written until the end. If you experience issues, you can lower this value. ###Code INDEXDIR = '/tmp/myindex' text.SimpleQA.initialize_index(INDEXDIR) text.SimpleQA.index_from_list(docs, INDEXDIR, commit_every=len(docs)) ###Output _____no_output_____ ###Markdown For documents sets that are too large to be loaded into a Python list, you can use `SimpleQA.index_from_folder`, which will crawl a folder and index all plain text documents (e.g.,, `.txt` files).By default, `index_from_list` and `index_from_folder` use a single processor (`procs=1`) with each processor using a maximum of 256MB of memory (`limitmb=256`) and merging results into a single segment (`multisegment=False`). These values can be changed to speedup indexing as arguments to `index_from_list` or `index_from_folder`. See the [whoosh documentation](https://whoosh.readthedocs.io/en/latest/batch.html) for more information on these parameters and how to use them to speedup indexing.Note that a small number of large documents will cause inferences in STEP 3 to be very slow. If your dataset consists of large documents (e.g., books or long papers), we recommend breaking them up into pages (e.g., splitting the original PDF using something like `pdfseparate`) or splitting them into paragraphs. The latter can be done with *ktrain* using:```pythonktrain.text.textutils.paragraph_tokenize(document, join_sentences=True)```The above steps need to only be performed once. Once an index is already created, you can skip this step and proceed directly to **STEP 2** to begin using your system. STEP 2: Create a QA instanceNext, we create a QA instance. This step will automatically download the BERT SQUAD model if it does not already exist on your system. ###Code qa = text.SimpleQA(INDEXDIR) ###Output _____no_output_____ ###Markdown That's it! In roughly **3 lines of code**, we have built an end-to-end QA system that can now be used to generate answers to questions. Let's ask our system some questions. STEP 3: Ask QuestionsWe will invoke the `ask` method to issue questions to the text corpus we indexed and retrieve answers. We will also use the `qa.display` method to nicely display the top 5 results in this Jupyter notebook. The answers are inferred using a BERT model trained on the SQUAD dataset. Since the model is combing through paragraphs and sentences to find an answer, it may take a minute or two to return results.Note also that the 20 Newsgroup Dataset covers events in the early to mid 1990s, so references to recent events will not exist. Space Question ###Code answers = qa.ask('When did the Cassini probe launch?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown As you can see, the top candidate answer indicates that the Cassini space probe was launched in October of 1997, which appears to be correct. The correct answer will not always be the top answer, but it is in this case. Note that, since we used `index_from_list` to index documents, the last column shows the list index associated with the newsgroup posting containing the answer, which can be used to peruse the entire document containing the answer. If using `index_from_folder` to index documents, the last column will show the relative path and filename of the document. ###Code print(docs[59]) ###Output Archive-name: space/new_probes Last-modified: $Date: 93/04/01 14:39:17 $ UPCOMING PLANETARY PROBES - MISSIONS AND SCHEDULES Information on upcoming or currently active missions not mentioned below would be welcome. Sources: NASA fact sheets, Cassini Mission Design team, ISAS/NASDA launch schedules, press kits. ASUKA (ASTRO-D) - ISAS (Japan) X-ray astronomy satellite, launched into Earth orbit on 2/20/93. Equipped with large-area wide-wavelength (1-20 Angstrom) X-ray telescope, X-ray CCD cameras, and imaging gas scintillation proportional counters. CASSINI - Saturn orbiter and Titan atmosphere probe. Cassini is a joint NASA/ESA project designed to accomplish an exploration of the Saturnian system with its Cassini Saturn Orbiter and Huygens Titan Probe. Cassini is scheduled for launch aboard a Titan IV/Centaur in October of 1997. After gravity assists of Venus, Earth and Jupiter in a VVEJGA trajectory, the spacecraft will arrive at Saturn in June of 2004. Upon arrival, the Cassini spacecraft performs several maneuvers to achieve an orbit around Saturn. Near the end of this initial orbit, the Huygens Probe separates from the Orbiter and descends through the atmosphere of Titan. The Orbiter relays the Probe data to Earth for about 3 hours while the Probe enters and traverses the cloudy atmosphere to the surface. After the completion of the Probe mission, the Orbiter continues touring the Saturnian system for three and a half years. Titan synchronous orbit trajectories will allow about 35 flybys of Titan and targeted flybys of Iapetus, Dione and Enceladus. The objectives of the mission are threefold: conduct detailed studies of Saturn's atmosphere, rings and magnetosphere; conduct close-up studies of Saturn's satellites, and characterize Titan's atmosphere and surface. One of the most intriguing aspects of Titan is the possibility that its surface may be covered in part with lakes of liquid hydrocarbons that result from photochemical processes in its upper atmosphere. These hydrocarbons condense to form a global smog layer and eventually rain down onto the surface. The Cassini orbiter will use onboard radar to peer through Titan's clouds and determine if there is liquid on the surface. Experiments aboard both the orbiter and the entry probe will investigate the chemical processes that produce this unique atmosphere. The Cassini mission is named for Jean Dominique Cassini (1625-1712), the first director of the Paris Observatory, who discovered several of Saturn's satellites and the major division in its rings. The Titan atmospheric entry probe is named for the Dutch physicist Christiaan Huygens (1629-1695), who discovered Titan and first described the true nature of Saturn's rings. Key Scheduled Dates for the Cassini Mission (VVEJGA Trajectory) ------------------------------------------------------------- 10/06/97 - Titan IV/Centaur Launch 04/21/98 - Venus 1 Gravity Assist 06/20/99 - Venus 2 Gravity Assist 08/16/99 - Earth Gravity Assist 12/30/00 - Jupiter Gravity Assist 06/25/04 - Saturn Arrival 01/09/05 - Titan Probe Release 01/30/05 - Titan Probe Entry 06/25/08 - End of Primary Mission (Schedule last updated 7/22/92) GALILEO - Jupiter orbiter and atmosphere probe, in transit. Has returned the first resolved images of an asteroid, Gaspra, while in transit to Jupiter. Efforts to unfurl the stuck High-Gain Antenna (HGA) have essentially been abandoned. JPL has developed a backup plan using data compression (JPEG-like for images, lossless compression for data from the other instruments) which should allow the mission to achieve approximately 70% of its original objectives. Galileo Schedule ---------------- 10/18/89 - Launch from Space Shuttle 02/09/90 - Venus Flyby 10/**/90 - Venus Data Playback 12/08/90 - 1st Earth Flyby 05/01/91 - High Gain Antenna Unfurled 07/91 - 06/92 - 1st Asteroid Belt Passage 10/29/91 - Asteroid Gaspra Flyby 12/08/92 - 2nd Earth Flyby 05/93 - 11/93 - 2nd Asteroid Belt Passage 08/28/93 - Asteroid Ida Flyby 07/02/95 - Probe Separation 07/09/95 - Orbiter Deflection Maneuver 12/95 - 10/97 - Orbital Tour of Jovian Moons 12/07/95 - Jupiter/Io Encounter 07/18/96 - Ganymede 09/28/96 - Ganymede 12/12/96 - Callisto 01/23/97 - Europa 02/28/97 - Ganymede 04/22/97 - Europa 05/31/97 - Europa 10/05/97 - Jupiter Magnetotail Exploration HITEN - Japanese (ISAS) lunar probe launched 1/24/90. Has made multiple lunar flybys. Released Hagoromo, a smaller satellite, into lunar orbit. This mission made Japan the third nation to orbit a satellite around the Moon. MAGELLAN - Venus radar mapping mission. Has mapped almost the entire surface at high resolution. Currently (4/93) collecting a global gravity map. MARS OBSERVER - Mars orbiter including 1.5 m/pixel resolution camera. Launched 9/25/92 on a Titan III/TOS booster. MO is currently (4/93) in transit to Mars, arriving on 8/24/93. Operations will start 11/93 for one martian year (687 days). TOPEX/Poseidon - Joint US/French Earth observing satellite, launched 8/10/92 on an Ariane 4 booster. The primary objective of the TOPEX/POSEIDON project is to make precise and accurate global observations of the sea level for several years, substantially increasing understanding of global ocean dynamics. The satellite also will increase understanding of how heat is transported in the ocean. ULYSSES- European Space Agency probe to study the Sun from an orbit over its poles. Launched in late 1990, it carries particles-and-fields experiments (such as magnetometer, ion and electron collectors for various energy ranges, plasma wave radio receivers, etc.) but no camera. Since no human-built rocket is hefty enough to send Ulysses far out of the ecliptic plane, it went to Jupiter instead, and stole energy from that planet by sliding over Jupiter's north pole in a gravity-assist manuver in February 1992. This bent its path into a solar orbit tilted about 85 degrees to the ecliptic. It will pass over the Sun's south pole in the summer of 1993. Its aphelion is 5.2 AU, and, surprisingly, its perihelion is about 1.5 AU-- that's right, a solar-studies spacecraft that's always further from the Sun than the Earth is! While in Jupiter's neigborhood, Ulysses studied the magnetic and radiation environment. For a short summary of these results, see *Science*, V. 257, p. 1487-1489 (11 September 1992). For gory technical detail, see the many articles in the same issue. OTHER SPACE SCIENCE MISSIONS (note: this is based on a posting by Ron Baalke in 11/89, with ISAS/NASDA information contributed by Yoshiro Yamada ([email protected]). I'm attempting to track changes based on updated shuttle manifests; corrections and updates are welcome. 1993 Missions o ALEXIS [spring, Pegasus] ALEXIS (Array of Low-Energy X-ray Imaging Sensors) is to perform a wide-field sky survey in the "soft" (low-energy) X-ray spectrum. It will scan the entire sky every six months to search for variations in soft-X-ray emission from sources such as white dwarfs, cataclysmic variable stars and flare stars. It will also search nearby space for such exotic objects as isolated neutron stars and gamma-ray bursters. ALEXIS is a project of Los Alamos National Laboratory and is primarily a technology development mission that uses astrophysical sources to demonstrate the technology. Contact project investigator Jeffrey J Bloch ([email protected]) for more information. o Wind [Aug, Delta II rocket] Satellite to measure solar wind input to magnetosphere. o Space Radar Lab [Sep, STS-60 SRL-01] Gather radar images of Earth's surface. o Total Ozone Mapping Spectrometer [Dec, Pegasus rocket] Study of Stratospheric ozone. o SFU (Space Flyer Unit) [ISAS] Conducting space experiments and observations and this can be recovered after it conducts the various scientific and engineering experiments. SFU is to be launched by ISAS and retrieved by the U.S. Space Shuttle on STS-68 in 1994. 1994 o Polar Auroral Plasma Physics [May, Delta II rocket] June, measure solar wind and ions and gases surrounding the Earth. o IML-2 (STS) [NASDA, Jul 1994 IML-02] International Microgravity Laboratory. o ADEOS [NASDA] Advanced Earth Observing Satellite. o MUSES-B (Mu Space Engineering Satellite-B) [ISAS] Conducting research on the precise mechanism of space structure and in-space astronomical observations of electromagnetic waves. 1995 LUNAR-A [ISAS] Elucidating the crust structure and thermal construction of the moon's interior. Proposed Missions: o Advanced X-ray Astronomy Facility (AXAF) Possible launch from shuttle in 1995, AXAF is a space observatory with a high resolution telescope. It would orbit for 15 years and study the mysteries and fate of the universe. o Earth Observing System (EOS) Possible launch in 1997, 1 of 6 US orbiting space platforms to provide long-term data (15 years) of Earth systems science including planetary evolution. o Mercury Observer Possible 1997 launch. o Lunar Observer Possible 1997 launch, would be sent into a long-term lunar orbit. The Observer, from 60 miles above the moon's poles, would survey characteristics to provide a global context for the results from the Apollo program. o Space Infrared Telescope Facility Possible launch by shuttle in 1999, this is the 4th element of the Great Observatories program. A free-flying observatory with a lifetime of 5 to 10 years, it would observe new comets and other primitive bodies in the outer solar system, study cosmic birth formation of galaxies, stars and planets and distant infrared-emitting galaxies o Mars Rover Sample Return (MRSR) Robotics rover would return samples of Mars' atmosphere and surface to Earch for analysis. Possible launch dates: 1996 for imaging orbiter, 2001 for rover. o Fire and Ice Possible launch in 2001, will use a gravity assist flyby of Earth in 2003, and use a final gravity assist from Jupiter in 2005, where the probe will split into its Fire and Ice components: The Fire probe will journey into the Sun, taking measurements of our star's upper atmosphere until it is vaporized by the intense heat. The Ice probe will head out towards Pluto, reaching the tiny world for study by 2016. ###Markdown The 20 Newsgroup dataset contains lots of posts discussing and debating Christianity, as well. Let's ask a question on this subject. Religious Question ###Code answers = qa.ask('Who was Jesus?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown Here, we see different views on who Jesus was as debated and discussed in this document set.Finally, the 20 Newsgroup dataset also contains many groups about computing hardware and software. Let's ask a technical support question. Technical Question ###Code answers = qa.ask('What causes computer images to be too dark?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown Building an End-to-End Question-Answering System With BERTIn this notebook, we build a practical, end-to-end Question-Answering (QA) system with BERT in rougly 3 lines of code. We will treat a corpus of text documents as a knowledge base to which we can ask questions and retrieve exact answers using [BERT](https://arxiv.org/abs/1810.04805). This goes beyond simplistic keyword searches.For this example, we will use the [20 Newsgroup dataset](http://qwone.com/~jason/20Newsgroups/) as the text corpus. As a collection of newsgroup postings which contains an abundance of opinions and debates, the corpus is not ideal as a knowledgebase. It is better to use fact-based documents such as Wikipedia articles or even news articles. However, this dataset will suffice for this example.Let us begin by loading the dataset into an array using **scikit-learn** and importing *ktrain* modules. ###Code # load 20newsgroups datset into an array from sklearn.datasets import fetch_20newsgroups remove = ('headers', 'footers', 'quotes') newsgroups_train = fetch_20newsgroups(subset='train', remove=remove) newsgroups_test = fetch_20newsgroups(subset='test', remove=remove) docs = newsgroups_train.data + newsgroups_test.data import ktrain from ktrain import text ###Output _____no_output_____ ###Markdown STEP 1: Index the DocumentsWe will first index the documents into a search engine that will be used to quickly retrieve documents that are likely to contain answers to a question. To do so, we must choose an index location, which must be a folder that does not already exist. Since the newsgroup postings are small and fit in memory, we wil set `commit_every` to a large value to speed up the indexing process. This means results will not be written until the end. If you experience issues, you can lower this value. ###Code INDEXDIR = '/tmp/myindex' text.SimpleQA.initialize_index(INDEXDIR) text.SimpleQA.index_from_list(docs, INDEXDIR, commit_every=len(docs)) ###Output _____no_output_____ ###Markdown For documents sets that are too large to be loaded into a Python list, you can use `SimpleQA.index_from_folder`, which will crawl a folder and index all plain text documents.By default, `index_from_list` and `index_from_folder` use a single processor (`procs=1`) with each processor using a maximum of 256MB of memory (`limitmb=256`) and merging results into a single segment (`multisegment=False`). These values can be changed to speedup indexing as arguments to `index_from_list` or `index_from_folder`. See the [whoosh documentation](https://whoosh.readthedocs.io/en/latest/batch.html) for more information on these parameters and how to use them to speedup indexing.Note that a small number of large documents will cause inferences in STEP 3 to be very slow. If your dataset consists of large documents (e.g., books or long papers), we recommend breaking them up into pages (e.g., splitting the original PDF using something like `pdfseparate`) or splitting them into paragraphs. The latter can be done with *ktrain* using:```pythonktrain.text.textutils.paragraph_tokenize(document, join_sentences=True)```The above steps need to only be performed once. Once an index is already created, you can skip this step and proceed directly to **STEP 2** to begin using your system. STEP 2: Create a QA instanceNext, we create a QA instance. This step will automatically download the BERT SQUAD model if it does not already exist on your system. ###Code qa = text.SimpleQA(INDEXDIR) ###Output _____no_output_____ ###Markdown That's it! In roughly **3 lines of code**, we have built an end-to-end QA system that can now be used to generate answers to questions. Let's ask our system some questions. STEP 3: Ask QuestionsWe will invoke the `ask` method to issue questions to the text corpus we indexed and retrieve answers. We will also use the `qa.display` method to nicely display the top 5 results in this Jupyter notebook. The answers are inferred using a BERT model trained on the SQUAD dataset. Since the model is combing through paragraphs and sentences to find an answer, it may take a minute or two to return results.Note also that the 20 Newsgroup Dataset covers events in the early to mid 1990s, so references to recent events will not exist. Space Question ###Code answers = qa.ask('When did the Cassini probe launch?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown As you can see, the top candidate answer indicates that the Cassini space probe was launched in October of 1997, which appears to be correct. The correct answer will not always be the top answer, but it is in this case. Note that, since we used `index_from_list` to index documents, the last column shows the list index associated with the newsgroup posting containing the answer, which can be used to peruse the entire document containing the answer. If using `index_from_folder` to index documents, the last column will show the relative path and filename of the document. ###Code print(docs[59]) ###Output Archive-name: space/new_probes Last-modified: $Date: 93/04/01 14:39:17 $ UPCOMING PLANETARY PROBES - MISSIONS AND SCHEDULES Information on upcoming or currently active missions not mentioned below would be welcome. Sources: NASA fact sheets, Cassini Mission Design team, ISAS/NASDA launch schedules, press kits. ASUKA (ASTRO-D) - ISAS (Japan) X-ray astronomy satellite, launched into Earth orbit on 2/20/93. Equipped with large-area wide-wavelength (1-20 Angstrom) X-ray telescope, X-ray CCD cameras, and imaging gas scintillation proportional counters. CASSINI - Saturn orbiter and Titan atmosphere probe. Cassini is a joint NASA/ESA project designed to accomplish an exploration of the Saturnian system with its Cassini Saturn Orbiter and Huygens Titan Probe. Cassini is scheduled for launch aboard a Titan IV/Centaur in October of 1997. After gravity assists of Venus, Earth and Jupiter in a VVEJGA trajectory, the spacecraft will arrive at Saturn in June of 2004. Upon arrival, the Cassini spacecraft performs several maneuvers to achieve an orbit around Saturn. Near the end of this initial orbit, the Huygens Probe separates from the Orbiter and descends through the atmosphere of Titan. The Orbiter relays the Probe data to Earth for about 3 hours while the Probe enters and traverses the cloudy atmosphere to the surface. After the completion of the Probe mission, the Orbiter continues touring the Saturnian system for three and a half years. Titan synchronous orbit trajectories will allow about 35 flybys of Titan and targeted flybys of Iapetus, Dione and Enceladus. The objectives of the mission are threefold: conduct detailed studies of Saturn's atmosphere, rings and magnetosphere; conduct close-up studies of Saturn's satellites, and characterize Titan's atmosphere and surface. One of the most intriguing aspects of Titan is the possibility that its surface may be covered in part with lakes of liquid hydrocarbons that result from photochemical processes in its upper atmosphere. These hydrocarbons condense to form a global smog layer and eventually rain down onto the surface. The Cassini orbiter will use onboard radar to peer through Titan's clouds and determine if there is liquid on the surface. Experiments aboard both the orbiter and the entry probe will investigate the chemical processes that produce this unique atmosphere. The Cassini mission is named for Jean Dominique Cassini (1625-1712), the first director of the Paris Observatory, who discovered several of Saturn's satellites and the major division in its rings. The Titan atmospheric entry probe is named for the Dutch physicist Christiaan Huygens (1629-1695), who discovered Titan and first described the true nature of Saturn's rings. Key Scheduled Dates for the Cassini Mission (VVEJGA Trajectory) ------------------------------------------------------------- 10/06/97 - Titan IV/Centaur Launch 04/21/98 - Venus 1 Gravity Assist 06/20/99 - Venus 2 Gravity Assist 08/16/99 - Earth Gravity Assist 12/30/00 - Jupiter Gravity Assist 06/25/04 - Saturn Arrival 01/09/05 - Titan Probe Release 01/30/05 - Titan Probe Entry 06/25/08 - End of Primary Mission (Schedule last updated 7/22/92) GALILEO - Jupiter orbiter and atmosphere probe, in transit. Has returned the first resolved images of an asteroid, Gaspra, while in transit to Jupiter. Efforts to unfurl the stuck High-Gain Antenna (HGA) have essentially been abandoned. JPL has developed a backup plan using data compression (JPEG-like for images, lossless compression for data from the other instruments) which should allow the mission to achieve approximately 70% of its original objectives. Galileo Schedule ---------------- 10/18/89 - Launch from Space Shuttle 02/09/90 - Venus Flyby 10/**/90 - Venus Data Playback 12/08/90 - 1st Earth Flyby 05/01/91 - High Gain Antenna Unfurled 07/91 - 06/92 - 1st Asteroid Belt Passage 10/29/91 - Asteroid Gaspra Flyby 12/08/92 - 2nd Earth Flyby 05/93 - 11/93 - 2nd Asteroid Belt Passage 08/28/93 - Asteroid Ida Flyby 07/02/95 - Probe Separation 07/09/95 - Orbiter Deflection Maneuver 12/95 - 10/97 - Orbital Tour of Jovian Moons 12/07/95 - Jupiter/Io Encounter 07/18/96 - Ganymede 09/28/96 - Ganymede 12/12/96 - Callisto 01/23/97 - Europa 02/28/97 - Ganymede 04/22/97 - Europa 05/31/97 - Europa 10/05/97 - Jupiter Magnetotail Exploration HITEN - Japanese (ISAS) lunar probe launched 1/24/90. Has made multiple lunar flybys. Released Hagoromo, a smaller satellite, into lunar orbit. This mission made Japan the third nation to orbit a satellite around the Moon. MAGELLAN - Venus radar mapping mission. Has mapped almost the entire surface at high resolution. Currently (4/93) collecting a global gravity map. MARS OBSERVER - Mars orbiter including 1.5 m/pixel resolution camera. Launched 9/25/92 on a Titan III/TOS booster. MO is currently (4/93) in transit to Mars, arriving on 8/24/93. Operations will start 11/93 for one martian year (687 days). TOPEX/Poseidon - Joint US/French Earth observing satellite, launched 8/10/92 on an Ariane 4 booster. The primary objective of the TOPEX/POSEIDON project is to make precise and accurate global observations of the sea level for several years, substantially increasing understanding of global ocean dynamics. The satellite also will increase understanding of how heat is transported in the ocean. ULYSSES- European Space Agency probe to study the Sun from an orbit over its poles. Launched in late 1990, it carries particles-and-fields experiments (such as magnetometer, ion and electron collectors for various energy ranges, plasma wave radio receivers, etc.) but no camera. Since no human-built rocket is hefty enough to send Ulysses far out of the ecliptic plane, it went to Jupiter instead, and stole energy from that planet by sliding over Jupiter's north pole in a gravity-assist manuver in February 1992. This bent its path into a solar orbit tilted about 85 degrees to the ecliptic. It will pass over the Sun's south pole in the summer of 1993. Its aphelion is 5.2 AU, and, surprisingly, its perihelion is about 1.5 AU-- that's right, a solar-studies spacecraft that's always further from the Sun than the Earth is! While in Jupiter's neigborhood, Ulysses studied the magnetic and radiation environment. For a short summary of these results, see *Science*, V. 257, p. 1487-1489 (11 September 1992). For gory technical detail, see the many articles in the same issue. OTHER SPACE SCIENCE MISSIONS (note: this is based on a posting by Ron Baalke in 11/89, with ISAS/NASDA information contributed by Yoshiro Yamada ([email protected]). I'm attempting to track changes based on updated shuttle manifests; corrections and updates are welcome. 1993 Missions o ALEXIS [spring, Pegasus] ALEXIS (Array of Low-Energy X-ray Imaging Sensors) is to perform a wide-field sky survey in the "soft" (low-energy) X-ray spectrum. It will scan the entire sky every six months to search for variations in soft-X-ray emission from sources such as white dwarfs, cataclysmic variable stars and flare stars. It will also search nearby space for such exotic objects as isolated neutron stars and gamma-ray bursters. ALEXIS is a project of Los Alamos National Laboratory and is primarily a technology development mission that uses astrophysical sources to demonstrate the technology. Contact project investigator Jeffrey J Bloch ([email protected]) for more information. o Wind [Aug, Delta II rocket] Satellite to measure solar wind input to magnetosphere. o Space Radar Lab [Sep, STS-60 SRL-01] Gather radar images of Earth's surface. o Total Ozone Mapping Spectrometer [Dec, Pegasus rocket] Study of Stratospheric ozone. o SFU (Space Flyer Unit) [ISAS] Conducting space experiments and observations and this can be recovered after it conducts the various scientific and engineering experiments. SFU is to be launched by ISAS and retrieved by the U.S. Space Shuttle on STS-68 in 1994. 1994 o Polar Auroral Plasma Physics [May, Delta II rocket] June, measure solar wind and ions and gases surrounding the Earth. o IML-2 (STS) [NASDA, Jul 1994 IML-02] International Microgravity Laboratory. o ADEOS [NASDA] Advanced Earth Observing Satellite. o MUSES-B (Mu Space Engineering Satellite-B) [ISAS] Conducting research on the precise mechanism of space structure and in-space astronomical observations of electromagnetic waves. 1995 LUNAR-A [ISAS] Elucidating the crust structure and thermal construction of the moon's interior. Proposed Missions: o Advanced X-ray Astronomy Facility (AXAF) Possible launch from shuttle in 1995, AXAF is a space observatory with a high resolution telescope. It would orbit for 15 years and study the mysteries and fate of the universe. o Earth Observing System (EOS) Possible launch in 1997, 1 of 6 US orbiting space platforms to provide long-term data (15 years) of Earth systems science including planetary evolution. o Mercury Observer Possible 1997 launch. o Lunar Observer Possible 1997 launch, would be sent into a long-term lunar orbit. The Observer, from 60 miles above the moon's poles, would survey characteristics to provide a global context for the results from the Apollo program. o Space Infrared Telescope Facility Possible launch by shuttle in 1999, this is the 4th element of the Great Observatories program. A free-flying observatory with a lifetime of 5 to 10 years, it would observe new comets and other primitive bodies in the outer solar system, study cosmic birth formation of galaxies, stars and planets and distant infrared-emitting galaxies o Mars Rover Sample Return (MRSR) Robotics rover would return samples of Mars' atmosphere and surface to Earch for analysis. Possible launch dates: 1996 for imaging orbiter, 2001 for rover. o Fire and Ice Possible launch in 2001, will use a gravity assist flyby of Earth in 2003, and use a final gravity assist from Jupiter in 2005, where the probe will split into its Fire and Ice components: The Fire probe will journey into the Sun, taking measurements of our star's upper atmosphere until it is vaporized by the intense heat. The Ice probe will head out towards Pluto, reaching the tiny world for study by 2016. ###Markdown The 20 Newsgroup dataset contains lots of posts discussing and debating Christianity, as well. Let's ask a question on this subject. Religious Question ###Code answers = qa.ask('Who was Jesus Christ?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown Here, we see different views on who Jesus was as debated and discussed in this document set.Finally, the 20 Newsgroup dataset also contains many groups about computing hardware and software. Let's ask a technical support question. Technical Question ###Code answers = qa.ask('What causes computer images to be too dark?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown Building an End-to-End Question-Answering System With BERTIn this notebook, we build a practical, end-to-end Question-Answering (QA) system with BERT in rougly 3 lines of code. We will treat a corpus of text documents as a knowledge base to which we can ask questions and retrieve exact answers using [BERT](https://arxiv.org/abs/1810.04805). This goes beyond simplistic keyword searches.For this example, we will use the [20 Newsgroup dataset](http://qwone.com/~jason/20Newsgroups/) as the text corpus. As a collection of newsgroup postings which contains an abundance of opinions and debates, the corpus is not ideal as a knowledgebase. It is better to use fact-based documents such as Wikipedia articles or even news articles. However, this dataset will suffice for this example.Let us begin by loading the dataset into an array using **scikit-learn** and importing *ktrain* modules. ###Code # load 20newsgroups datset into an array from sklearn.datasets import fetch_20newsgroups remove = ('headers', 'footers', 'quotes') newsgroups_train = fetch_20newsgroups(subset='train', remove=remove) newsgroups_test = fetch_20newsgroups(subset='test', remove=remove) docs = newsgroups_train.data + newsgroups_test.data import ktrain from ktrain import text ###Output _____no_output_____ ###Markdown STEP 1: Index the DocumentsWe will first index the documents into a search engine that will be used to quickly retrieve documents that are likely to contain answers to a question. To do so, we must choose an index location, which must be a folder that does not already exist. Since the newsgroup postings are small and fit in memory, we wil set `commit_every` to a large value to speed up the indexing process. This means results will not be written until the end. If you experience issues, you can lower this value. ###Code INDEXDIR = '/tmp/myindex' text.SimpleQA.initialize_index(INDEXDIR) text.SimpleQA.index_from_list(docs, INDEXDIR, commit_every=len(docs)) ###Output _____no_output_____ ###Markdown For documents sets that are too large to be loaded into a Python list, you can use `SimpleQA.index_from_folder`, which will crawl a folder and index all plain text documents (e.g.,, `.txt` files).By default, `index_from_list` and `index_from_folder` use a single processor (`procs=1`) with each processor using a maximum of 256MB of memory (`limitmb=256`) and merging results into a single segment (`multisegment=False`). These values can be changed to speedup indexing as arguments to `index_from_list` or `index_from_folder`. See the [whoosh documentation](https://whoosh.readthedocs.io/en/latest/batch.html) for more information on these parameters and how to use them to speedup indexing.Note that a small number of large documents will cause inferences in STEP 3 to be very slow. If your dataset consists of large documents (e.g., books or long papers), we recommend breaking them up into pages (e.g., splitting the original PDF using something like `pdfseparate`) or splitting them into paragraphs. The latter can be done with *ktrain* using:```pythonktrain.text.textutils.paragraph_tokenize(document, join_sentences=True)```The above steps need to only be performed once. Once an index is already created, you can skip this step and proceed directly to **STEP 2** to begin using your system. STEP 2: Create a QA instanceNext, we create a QA instance. This step will automatically download the BERT SQUAD model if it does not already exist on your system. ###Code qa = text.SimpleQA(INDEXDIR) ###Output _____no_output_____ ###Markdown That's it! In roughly **3 lines of code**, we have built an end-to-end QA system that can now be used to generate answers to questions. Let's ask our system some questions. STEP 3: Ask QuestionsWe will invoke the `ask` method to issue questions to the text corpus we indexed and retrieve answers. We will also use the `qa.display` method to nicely display the top 5 results in this Jupyter notebook. The answers are inferred using a BERT model trained on the SQUAD dataset. Since the model is combing through paragraphs and sentences to find an answer, it may take a minute or two to return results.Note also that the 20 Newsgroup Dataset covers events in the early to mid 1990s, so references to recent events will not exist. Space Question ###Code answers = qa.ask('When did the Cassini probe launch?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown As you can see, the top candidate answer indicates that the Cassini space probe was launched in October of 1997, which appears to be correct. The correct answer will not always be the top answer, but it is in this case. Note that, since we used `index_from_list` to index documents, the last column shows the list index associated with the newsgroup posting containing the answer, which can be used to peruse the entire document containing the answer. If using `index_from_folder` to index documents, the last column will show the relative path and filename of the document. ###Code print(docs[59]) ###Output Archive-name: space/new_probes Last-modified: $Date: 93/04/01 14:39:17 $ UPCOMING PLANETARY PROBES - MISSIONS AND SCHEDULES Information on upcoming or currently active missions not mentioned below would be welcome. Sources: NASA fact sheets, Cassini Mission Design team, ISAS/NASDA launch schedules, press kits. ASUKA (ASTRO-D) - ISAS (Japan) X-ray astronomy satellite, launched into Earth orbit on 2/20/93. Equipped with large-area wide-wavelength (1-20 Angstrom) X-ray telescope, X-ray CCD cameras, and imaging gas scintillation proportional counters. CASSINI - Saturn orbiter and Titan atmosphere probe. Cassini is a joint NASA/ESA project designed to accomplish an exploration of the Saturnian system with its Cassini Saturn Orbiter and Huygens Titan Probe. Cassini is scheduled for launch aboard a Titan IV/Centaur in October of 1997. After gravity assists of Venus, Earth and Jupiter in a VVEJGA trajectory, the spacecraft will arrive at Saturn in June of 2004. Upon arrival, the Cassini spacecraft performs several maneuvers to achieve an orbit around Saturn. Near the end of this initial orbit, the Huygens Probe separates from the Orbiter and descends through the atmosphere of Titan. The Orbiter relays the Probe data to Earth for about 3 hours while the Probe enters and traverses the cloudy atmosphere to the surface. After the completion of the Probe mission, the Orbiter continues touring the Saturnian system for three and a half years. Titan synchronous orbit trajectories will allow about 35 flybys of Titan and targeted flybys of Iapetus, Dione and Enceladus. The objectives of the mission are threefold: conduct detailed studies of Saturn's atmosphere, rings and magnetosphere; conduct close-up studies of Saturn's satellites, and characterize Titan's atmosphere and surface. One of the most intriguing aspects of Titan is the possibility that its surface may be covered in part with lakes of liquid hydrocarbons that result from photochemical processes in its upper atmosphere. These hydrocarbons condense to form a global smog layer and eventually rain down onto the surface. The Cassini orbiter will use onboard radar to peer through Titan's clouds and determine if there is liquid on the surface. Experiments aboard both the orbiter and the entry probe will investigate the chemical processes that produce this unique atmosphere. The Cassini mission is named for Jean Dominique Cassini (1625-1712), the first director of the Paris Observatory, who discovered several of Saturn's satellites and the major division in its rings. The Titan atmospheric entry probe is named for the Dutch physicist Christiaan Huygens (1629-1695), who discovered Titan and first described the true nature of Saturn's rings. Key Scheduled Dates for the Cassini Mission (VVEJGA Trajectory) ------------------------------------------------------------- 10/06/97 - Titan IV/Centaur Launch 04/21/98 - Venus 1 Gravity Assist 06/20/99 - Venus 2 Gravity Assist 08/16/99 - Earth Gravity Assist 12/30/00 - Jupiter Gravity Assist 06/25/04 - Saturn Arrival 01/09/05 - Titan Probe Release 01/30/05 - Titan Probe Entry 06/25/08 - End of Primary Mission (Schedule last updated 7/22/92) GALILEO - Jupiter orbiter and atmosphere probe, in transit. Has returned the first resolved images of an asteroid, Gaspra, while in transit to Jupiter. Efforts to unfurl the stuck High-Gain Antenna (HGA) have essentially been abandoned. JPL has developed a backup plan using data compression (JPEG-like for images, lossless compression for data from the other instruments) which should allow the mission to achieve approximately 70% of its original objectives. Galileo Schedule ---------------- 10/18/89 - Launch from Space Shuttle 02/09/90 - Venus Flyby 10/**/90 - Venus Data Playback 12/08/90 - 1st Earth Flyby 05/01/91 - High Gain Antenna Unfurled 07/91 - 06/92 - 1st Asteroid Belt Passage 10/29/91 - Asteroid Gaspra Flyby 12/08/92 - 2nd Earth Flyby 05/93 - 11/93 - 2nd Asteroid Belt Passage 08/28/93 - Asteroid Ida Flyby 07/02/95 - Probe Separation 07/09/95 - Orbiter Deflection Maneuver 12/95 - 10/97 - Orbital Tour of Jovian Moons 12/07/95 - Jupiter/Io Encounter 07/18/96 - Ganymede 09/28/96 - Ganymede 12/12/96 - Callisto 01/23/97 - Europa 02/28/97 - Ganymede 04/22/97 - Europa 05/31/97 - Europa 10/05/97 - Jupiter Magnetotail Exploration HITEN - Japanese (ISAS) lunar probe launched 1/24/90. Has made multiple lunar flybys. Released Hagoromo, a smaller satellite, into lunar orbit. This mission made Japan the third nation to orbit a satellite around the Moon. MAGELLAN - Venus radar mapping mission. Has mapped almost the entire surface at high resolution. Currently (4/93) collecting a global gravity map. MARS OBSERVER - Mars orbiter including 1.5 m/pixel resolution camera. Launched 9/25/92 on a Titan III/TOS booster. MO is currently (4/93) in transit to Mars, arriving on 8/24/93. Operations will start 11/93 for one martian year (687 days). TOPEX/Poseidon - Joint US/French Earth observing satellite, launched 8/10/92 on an Ariane 4 booster. The primary objective of the TOPEX/POSEIDON project is to make precise and accurate global observations of the sea level for several years, substantially increasing understanding of global ocean dynamics. The satellite also will increase understanding of how heat is transported in the ocean. ULYSSES- European Space Agency probe to study the Sun from an orbit over its poles. Launched in late 1990, it carries particles-and-fields experiments (such as magnetometer, ion and electron collectors for various energy ranges, plasma wave radio receivers, etc.) but no camera. Since no human-built rocket is hefty enough to send Ulysses far out of the ecliptic plane, it went to Jupiter instead, and stole energy from that planet by sliding over Jupiter's north pole in a gravity-assist manuver in February 1992. This bent its path into a solar orbit tilted about 85 degrees to the ecliptic. It will pass over the Sun's south pole in the summer of 1993. Its aphelion is 5.2 AU, and, surprisingly, its perihelion is about 1.5 AU-- that's right, a solar-studies spacecraft that's always further from the Sun than the Earth is! While in Jupiter's neigborhood, Ulysses studied the magnetic and radiation environment. For a short summary of these results, see *Science*, V. 257, p. 1487-1489 (11 September 1992). For gory technical detail, see the many articles in the same issue. OTHER SPACE SCIENCE MISSIONS (note: this is based on a posting by Ron Baalke in 11/89, with ISAS/NASDA information contributed by Yoshiro Yamada ([email protected]). I'm attempting to track changes based on updated shuttle manifests; corrections and updates are welcome. 1993 Missions o ALEXIS [spring, Pegasus] ALEXIS (Array of Low-Energy X-ray Imaging Sensors) is to perform a wide-field sky survey in the "soft" (low-energy) X-ray spectrum. It will scan the entire sky every six months to search for variations in soft-X-ray emission from sources such as white dwarfs, cataclysmic variable stars and flare stars. It will also search nearby space for such exotic objects as isolated neutron stars and gamma-ray bursters. ALEXIS is a project of Los Alamos National Laboratory and is primarily a technology development mission that uses astrophysical sources to demonstrate the technology. Contact project investigator Jeffrey J Bloch ([email protected]) for more information. o Wind [Aug, Delta II rocket] Satellite to measure solar wind input to magnetosphere. o Space Radar Lab [Sep, STS-60 SRL-01] Gather radar images of Earth's surface. o Total Ozone Mapping Spectrometer [Dec, Pegasus rocket] Study of Stratospheric ozone. o SFU (Space Flyer Unit) [ISAS] Conducting space experiments and observations and this can be recovered after it conducts the various scientific and engineering experiments. SFU is to be launched by ISAS and retrieved by the U.S. Space Shuttle on STS-68 in 1994. 1994 o Polar Auroral Plasma Physics [May, Delta II rocket] June, measure solar wind and ions and gases surrounding the Earth. o IML-2 (STS) [NASDA, Jul 1994 IML-02] International Microgravity Laboratory. o ADEOS [NASDA] Advanced Earth Observing Satellite. o MUSES-B (Mu Space Engineering Satellite-B) [ISAS] Conducting research on the precise mechanism of space structure and in-space astronomical observations of electromagnetic waves. 1995 LUNAR-A [ISAS] Elucidating the crust structure and thermal construction of the moon's interior. Proposed Missions: o Advanced X-ray Astronomy Facility (AXAF) Possible launch from shuttle in 1995, AXAF is a space observatory with a high resolution telescope. It would orbit for 15 years and study the mysteries and fate of the universe. o Earth Observing System (EOS) Possible launch in 1997, 1 of 6 US orbiting space platforms to provide long-term data (15 years) of Earth systems science including planetary evolution. o Mercury Observer Possible 1997 launch. o Lunar Observer Possible 1997 launch, would be sent into a long-term lunar orbit. The Observer, from 60 miles above the moon's poles, would survey characteristics to provide a global context for the results from the Apollo program. o Space Infrared Telescope Facility Possible launch by shuttle in 1999, this is the 4th element of the Great Observatories program. A free-flying observatory with a lifetime of 5 to 10 years, it would observe new comets and other primitive bodies in the outer solar system, study cosmic birth formation of galaxies, stars and planets and distant infrared-emitting galaxies o Mars Rover Sample Return (MRSR) Robotics rover would return samples of Mars' atmosphere and surface to Earch for analysis. Possible launch dates: 1996 for imaging orbiter, 2001 for rover. o Fire and Ice Possible launch in 2001, will use a gravity assist flyby of Earth in 2003, and use a final gravity assist from Jupiter in 2005, where the probe will split into its Fire and Ice components: The Fire probe will journey into the Sun, taking measurements of our star's upper atmosphere until it is vaporized by the intense heat. The Ice probe will head out towards Pluto, reaching the tiny world for study by 2016. ###Markdown The 20 Newsgroup dataset contains lots of posts discussing and debating Christianity, as well. Let's ask a question on this subject. Religious Question ###Code answers = qa.ask('Who was Jesus?') qa.display_answers(answers[:5]) ###Output _____no_output_____ ###Markdown Here, we see different views on who Jesus was as debated and discussed in this document set.Finally, the 20 Newsgroup dataset also contains many groups about computing hardware and software. Let's ask a technical support question. Technical Question ###Code answers = qa.ask('What causes computer images to be too dark?') qa.display_answers(answers[:5]) ###Output _____no_output_____
jupyter/2018-02-13(BCPNN perfect - theory I, learning properties).ipynb
###Markdown BCPNN perfect II - Learning Properties ###Code import pprint import subprocess import sys sys.path.append('../') import numpy as np import matplotlib.pyplot as plt import matplotlib import matplotlib.gridspec as gridspec from mpl_toolkits.axes_grid1 import make_axes_locatable import seaborn as sns %matplotlib inline plt.rcParams['figure.figsize'] = (16, 12) np.set_printoptions(suppress=True, precision=2) sns.set(font_scale=3.5) from network import Protocol, BCPNNModular, NetworkManager, BCPNNPerfect from plotting_functions import plot_weight_matrix, plot_state_variables_vs_time, plot_winning_pattern from plotting_functions import plot_network_activity, plot_network_activity_angle from analysis_functions import calculate_recall_time_quantities, calculate_angle_from_history from connectivity_functions import artificial_connectivity_matrix def simple_bcpnn_theo_recall_time(tau_a, g_a, g_w, w_next, w_self): delta_w = w_self - w_next return tau_a * np.log(g_a / (g_a - g_w * delta_w)) ###Output _____no_output_____ ###Markdown An example General parameters ###Code g_w_ampa = 2.0 g_w = 0.0 g_a = 10.0 tau_a = 0.250 G = 1.0 sigma = 0.0 # Patterns parameters hypercolumns = 1 minicolumns = 10 n_patterns = 10 # Manager properties dt = 0.001 values_to_save = ['o', 's', 'z_pre', 'z_post', 'a', 'i_ampa', 'i_nmda'] # Protocol training_time = 0.100 inter_sequence_interval = 1.0 inter_pulse_interval = 0.0 epochs = 3 # Build the network nn = BCPNNPerfect(hypercolumns, minicolumns, g_w_ampa=g_w_ampa, g_w=g_w, g_a=g_a, tau_a=tau_a, sigma=sigma, G=G, z_transfer=False, diagonal_zero=False, strict_maximum=True, perfect=True) # Build the manager manager = NetworkManager(nn=nn, dt=dt, values_to_save=values_to_save) # Build the protocol for training protocol = Protocol() patterns_indexes = [i for i in range(n_patterns)] protocol.simple_protocol(patterns_indexes, training_time=training_time, inter_pulse_interval=inter_pulse_interval, inter_sequence_interval=inter_sequence_interval, epochs=epochs) # Train epoch_history = manager.run_network_protocol(protocol=protocol, verbose=True) plot_weight_matrix(manager.nn, ampa=True) T_recall = 2.0 T_cue = 0.100 sequences = [patterns_indexes] I_cue = 0.0 n = 1 aux = calculate_recall_time_quantities(manager, T_recall, T_cue, n, sequences) total_sequence_time, mean, std, success, timings = aux plot_network_activity_angle(manager) print('success', success) ###Output success 100.0 ###Markdown An simple example of the weight evolution ###Code tau_z_pre = 0.050 # Patterns parameters hypercolumns = 1 minicolumns = 10 n_patterns = 10 # Manager properties dt = 0.001 values_to_save = ['o', 's', 'z_pre', 'z_post', 'a', 'i_ampa', 'i_nmda'] # Protocol training_time = 0.100 inter_sequence_interval = 0 inter_pulse_interval = 0.0 epochs = 1 # Build the network nn = BCPNNPerfect(hypercolumns, minicolumns, g_w_ampa=g_w_ampa, g_w=g_w, g_a=g_a, tau_a=tau_a, sigma=sigma, G=G, tau_z_pre=tau_z_pre, z_transfer=False, diagonal_zero=False, strict_maximum=True, perfect=True) # Build the manager manager = NetworkManager(nn=nn, dt=dt, values_to_save=values_to_save) nn.z_pre = np.zeros(nn.n_units) # Build the protocol for training protocol = Protocol() patterns_indexes = [i for i in range(n_patterns)] protocol.simple_protocol(patterns_indexes, training_time=training_time, inter_pulse_interval=inter_pulse_interval, inter_sequence_interval=inter_sequence_interval, epochs=epochs) # Train epoch_history = manager.run_network_protocol(protocol=protocol, verbose=True) o = manager.history['o'] z = manager.history['z_pre'] patterns = [3, 4] linewidth = 10 time = np.arange(0, manager.T_total, dt) fig = plt.figure(figsize=(16, 12)) ax1 = fig.add_subplot(211) ax2 = fig.add_subplot(212) ax1.plot(time, o[:, 3], linewidth=linewidth, ls='--', color='black', label='o_1') ax1.plot(time, o[:, 4], linewidth=linewidth, ls='-', color='black', label='o_2') y1 = z[:, 3] y2 = z[:, 4] ax2.plot(time, y1, linewidth=linewidth, ls='--', color='black', label=r'$z_{1}$') ax2.plot(time, y2, linewidth=linewidth, ls='-', color='black', label=r'$z_{2}$') z = y1 * y2 if True: ax2.fill_between(time, z, 0, color='red', label='co-activation') else: ax2.fill_between(time, y1, 0, where=y1 <= y2, color='red', label='co-activation') ax2.fill_between(time, y2, 0, where=y2 < y1, color='red'); ax2.legend() if True: ax1.axis('off') ax2.axis('off'); ###Output _____no_output_____ ###Markdown Learning Here we need to show how the learning looks across time, important parameters are the trainign time and epochs. But first let's etxract the data of the pattern above* Training time* Epochs* Number of patterns* Number of minicolumns ###Code from_pattern = 2 to_pattern = 3 def get_weights(manager, from_pattern, to_pattern): w_self = manager.nn.w_ampa[from_pattern, from_pattern] w_next = manager.nn.w_ampa[to_pattern, from_pattern] w_rest = np.mean(nn.w_ampa[(to_pattern + 1):, from_pattern]) return w_self, w_next, w_rest w_self, w_next, w_rest = get_weights(manager, from_pattern, to_pattern) print('w self', w_self) print('w_next', w_next) print('w_rest', w_rest) ###Output w self 0.587890794147 w_next -0.0735762330699 w_rest -0.0989181819004 ###Markdown General parameters ###Code g_w_ampa = 2.0 g_w = 0.0 g_a = 10.0 tau_a = 0.250 G = 1.0 sigma = 0.0 # Patterns parameters hypercolumns = 1 minicolumns = 10 n_patterns = 10 # Manager properties dt = 0.001 values_to_save = ['o', 's'] # Protocol training_time = 0.100 inter_sequence_interval = 1.0 inter_pulse_interval = 0.0 epochs = 3 markersize = 32 linewidth = 10 ###Output _____no_output_____ ###Markdown Training times ###Code training_times_vector = np.arange(0.050, 2.050, 0.050) w_self_vector_tt = np.zeros_like(training_times_vector) w_next_vector_tt = np.zeros_like(training_times_vector) w_rest_vector_tt = np.zeros_like(training_times_vector) for index, training_time_ in enumerate(training_times_vector): # Build the network nn = BCPNNPerfect(hypercolumns, minicolumns, g_w_ampa=g_w_ampa, g_w=g_w, g_a=g_a, tau_a=tau_a, sigma=sigma, G=G, z_transfer=False, diagonal_zero=False, strict_maximum=True, perfect=True) # Build the manager manager = NetworkManager(nn=nn, dt=dt, values_to_save=values_to_save) # Build the protocol for training protocol = Protocol() patterns_indexes = [i for i in range(n_patterns)] protocol.simple_protocol(patterns_indexes, training_time=training_time_, inter_pulse_interval=inter_pulse_interval, inter_sequence_interval=inter_sequence_interval, epochs=epochs) # Train epoch_history = manager.run_network_protocol(protocol=protocol, verbose=False) w_self, w_next, w_rest = get_weights(manager, from_pattern, to_pattern) w_self_vector_tt[index] = w_self w_next_vector_tt[index] = w_next w_rest_vector_tt[index] = w_rest fig1 = plt.figure(figsize=(16, 12)) ax1 = fig1.add_subplot(111) ax1.plot(training_times_vector, w_self_vector_tt, '*-', lw=linewidth, markersize=markersize, label=r'$w_{self}$') ax1.plot(training_times_vector, w_next_vector_tt, '*-', lw=linewidth, markersize=markersize, label=r'$w_{next}$') ax1.plot(training_times_vector, w_rest_vector_tt, '*-', lw=linewidth, markersize=markersize, label=r'$w_{rest}$') ax1.set_xlabel('Trainign times (ms)') ax1.set_ylabel('Weight') ax1.axhline(0, ls='--', color='black') ax1.axvline(0, ls='--', color='black') ax1.legend(); ###Output _____no_output_____ ###Markdown Epochs ###Code epochs_vector = np.arange(1, 50, 1, dtype='int') w_self_vector_epochs = np.zeros_like(epochs_vector, dtype='float') w_next_vector_epochs = np.zeros_like(epochs_vector, dtype='float') w_rest_vector_epochs = np.zeros_like(epochs_vector, dtype='float') for index, epochs_ in enumerate(epochs_vector): # Build the network nn = BCPNNPerfect(hypercolumns, minicolumns, g_w_ampa=g_w_ampa, g_w=g_w, g_a=g_a, tau_a=tau_a, sigma=sigma, G=G, z_transfer=False, diagonal_zero=False, strict_maximum=True, perfect=True) # Build the manager manager = NetworkManager(nn=nn, dt=dt, values_to_save=values_to_save) # Build the protocol for training protocol = Protocol() patterns_indexes = [i for i in range(n_patterns)] protocol.simple_protocol(patterns_indexes, training_time=training_time, inter_pulse_interval=inter_pulse_interval, inter_sequence_interval=inter_sequence_interval, epochs=epochs_) # Train epoch_history = manager.run_network_protocol(protocol=protocol, verbose=False) w_self, w_next, w_rest = get_weights(manager, from_pattern, to_pattern) w_self_vector_epochs[index] = w_self w_next_vector_epochs[index] = w_next w_rest_vector_epochs[index] = w_rest fig2 = plt.figure(figsize=(16, 12)) ax2 = fig2.add_subplot(111) ax2.plot(epochs_vector, w_self_vector_epochs, '*-', lw=linewidth, markersize=markersize, label=r'$w_{self}$') ax2.plot(epochs_vector, w_next_vector_epochs, '*-', lw=linewidth, markersize=markersize, label=r'$w_{next}$') ax2.plot(epochs_vector, w_rest_vector_epochs, '*-', lw=linewidth, markersize=markersize, label=r'$w_{rest}$') ax2.set_xlabel('Epochs') ax2.set_ylabel('Weight') ax2.axhline(0, ls='--', color='black') ax2.axvline(0, ls='--', color='black') ax2.legend(); ###Output _____no_output_____ ###Markdown Number of minicolumns ###Code minicolumns_vector = np.arange(10, 55, 5, dtype='int') w_self_vector_minicolumns = np.zeros_like(minicolumns_vector, dtype='float') w_next_vector_minicolumns = np.zeros_like(minicolumns_vector, dtype='float') w_rest_vector_minicolumns = np.zeros_like(minicolumns_vector, dtype='float') for index, minicolumns_ in enumerate(minicolumns_vector): # Build the network nn = BCPNNPerfect(hypercolumns, minicolumns_, g_w_ampa=g_w_ampa, g_w=g_w, g_a=g_a, tau_a=tau_a, sigma=sigma, G=G, z_transfer=False, diagonal_zero=False, strict_maximum=True, perfect=True) # Build the manager manager = NetworkManager(nn=nn, dt=dt, values_to_save=values_to_save) # Build the protocol for training protocol = Protocol() patterns_indexes = [i for i in range(minicolumns_)] protocol.simple_protocol(patterns_indexes, training_time=training_time, inter_pulse_interval=inter_pulse_interval, inter_sequence_interval=inter_sequence_interval, epochs=epochs) # Train epoch_history = manager.run_network_protocol(protocol=protocol, verbose=False) w_self, w_next, w_rest = get_weights(manager, from_pattern, to_pattern) w_self_vector_minicolumns[index] = w_self w_next_vector_minicolumns[index] = w_next w_rest_vector_minicolumns[index] = w_rest fig3 = plt.figure(figsize=(16, 12)) ax3 = fig3.add_subplot(111) ax3.plot(minicolumns_vector, w_self_vector_minicolumns, '*-', lw=linewidth, markersize=markersize, label=r'$w_{self}$') ax3.plot(minicolumns_vector, w_next_vector_minicolumns, '*-', lw=linewidth, markersize=markersize, label=r'$w_{next}$') ax3.plot(minicolumns_vector, w_rest_vector_minicolumns, '*-', lw=linewidth, markersize=markersize, label=r'$w_{rest}$') ax3.set_xlabel('Minicolumns') ax3.set_ylabel('Weight') ax3.axhline(0, ls='--', color='black') ax3.axvline(0, ls='--', color='black') ax3.legend(); ###Output _____no_output_____ ###Markdown Number of patterns ###Code n_patterns_vector = np.arange(10, 55, 5, dtype='int') w_self_vector_patterns = np.zeros_like(n_patterns_vector, dtype='float') w_next_vector_patterns = np.zeros_like(n_patterns_vector, dtype='float') w_rest_vector_patterns = np.zeros_like(n_patterns_vector, dtype='float') for index, n_patterns_ in enumerate(n_patterns_vector): # Build the network nn = BCPNNPerfect(hypercolumns, n_patterns_vector[-1], g_w_ampa=g_w_ampa, g_w=g_w, g_a=g_a, tau_a=tau_a, sigma=sigma, G=G, z_transfer=False, diagonal_zero=False, strict_maximum=True, perfect=True) # Build the manager manager = NetworkManager(nn=nn, dt=dt, values_to_save=values_to_save) # Build the protocol for training protocol = Protocol() patterns_indexes = [i for i in range(n_patterns_)] protocol.simple_protocol(patterns_indexes, training_time=training_time, inter_pulse_interval=inter_pulse_interval, inter_sequence_interval=inter_sequence_interval, epochs=epochs) # Train epoch_history = manager.run_network_protocol(protocol=protocol, verbose=False) w_self, w_next, w_rest = get_weights(manager, from_pattern, to_pattern) w_self_vector_patterns[index] = w_self w_next_vector_patterns[index] = w_next w_rest_vector_patterns[index] = w_rest fig4 = plt.figure(figsize=(16, 12)) ax4 = fig4.add_subplot(111) ax4.plot(n_patterns_vector, w_self_vector_patterns, '*-', lw=linewidth, markersize=markersize, label=r'$w_{self}$') ax4.plot(n_patterns_vector, w_next_vector_patterns, '*-', lw=linewidth, markersize=markersize, label=r'$w_{next}$') ax4.plot(n_patterns_vector, w_rest_vector_patterns, '*-', lw=linewidth, markersize=markersize, label=r'$w_{rest}$') ax4.set_xlabel('Minicolumns') ax4.set_ylabel('Weight') ax4.axhline(0, ls='--', color='black') ax4.axvline(0, ls='--', color='black') ax4.legend(); ###Output _____no_output_____
analysis/milestone1.ipynb
###Markdown MyAnimeList Recommendations Database analysis Step 1 : Loading the DataLet's import all the modules we need for the anaysis and start loading the files we need into `pandas` dataframes from their respective `.csv` files.First up is the **Anime metadata**, located in `../data/raw/anime.csv`: ###Code import pandas as pd import numpy as np anime_df = pd.read_csv('../data/raw/anime.csv') anime_df.head() ###Output _____no_output_____ ###Markdown Looking good!Now let's do the same for the **User Ratings Data**, located in `../data/raw/rating.csv`: ###Code ratings_df = pd.read_csv('../data/raw/rating.csv') ratings_df.head() ###Output _____no_output_____ ###Markdown Milestone 1 ###Code # Importing modules and frameworks import pandas as pd import os # Getting data directory = "/home/yohen/Documents/Github/course-project-solo_331/data/raw/" os.chdir(directory) files = os.listdir() # Loading data into pandas.df print(directory+files[0]) covid_19_india = pd.read_csv(directory+files[0]) statewise_tests = pd.read_csv(directory+files[1]) ###Output /home/yohen/Documents/Github/course-project-solo_331/data/raw/StatewiseTestingDetails.csv ###Markdown Milestone 1Load games.csv from data/raw into a Pandas dataframe. ###Code import pandas as pd df = pd.read_csv("../data/raw/games.csv") print(df.head()) ###Output id rated created_at last_move_at turns victory_status winner \ 0 TZJHLljE False 1.504210e+12 1.504210e+12 13 outoftime white 1 l1NXvwaE True 1.504130e+12 1.504130e+12 16 resign black 2 mIICvQHh True 1.504130e+12 1.504130e+12 61 mate white 3 kWKvrqYL True 1.504110e+12 1.504110e+12 61 mate white 4 9tXo1AUZ True 1.504030e+12 1.504030e+12 95 mate white increment_code white_id white_rating black_id black_rating \ 0 15+2 bourgris 1500 a-00 1191 1 5+10 a-00 1322 skinnerua 1261 2 5+10 ischia 1496 a-00 1500 3 20+0 daniamurashov 1439 adivanov2009 1454 4 30+3 nik221107 1523 adivanov2009 1469 moves opening_eco \ 0 d4 d5 c4 c6 cxd5 e6 dxe6 fxe6 Nf3 Bb4+ Nc3 Ba5... D10 1 d4 Nc6 e4 e5 f4 f6 dxe5 fxe5 fxe5 Nxe5 Qd4 Nc6... B00 2 e4 e5 d3 d6 Be3 c6 Be2 b5 Nd2 a5 a4 c5 axb5 Nc... C20 3 d4 d5 Nf3 Bf5 Nc3 Nf6 Bf4 Ng4 e3 Nc6 Be2 Qd7 O... D02 4 e4 e5 Nf3 d6 d4 Nc6 d5 Nb4 a3 Na6 Nc3 Be7 b4 N... C41 opening_name opening_ply 0 Slav Defense: Exchange Variation 5 1 Nimzowitsch Defense: Kennedy Variation 4 2 King's Pawn Game: Leonardis Variation 3 3 Queen's Pawn Game: Zukertort Variation 3 4 Philidor Defense 5
sorthingAlgo.ipynb
###Markdown Using Bubble sort Algorithm ###Code length = len(array) for i in range(0,length-1): for j in range(length-i-1): if array[j] <array[j+1]: array[j+1],array[j] = array[j],array[j+1] ## TO Print All the replacements done print("Inside If =",array) print(array) ###Output Inside If = [2, 1, 1, 25, 51, 5] Inside If = [2, 1, 25, 1, 51, 5] Inside If = [2, 1, 25, 51, 1, 5] Inside If = [2, 1, 25, 51, 5, 1] Inside If = [2, 25, 1, 51, 5, 1] Inside If = [2, 25, 51, 1, 5, 1] Inside If = [2, 25, 51, 5, 1, 1] Inside If = [25, 2, 51, 5, 1, 1] Inside If = [25, 51, 2, 5, 1, 1] Inside If = [25, 51, 5, 2, 1, 1] Inside If = [51, 25, 5, 2, 1, 1] [51, 25, 5, 2, 1, 1]
.ipynb_checkpoints/Bimodel Test-checkpoint.ipynb
###Markdown |species|spec_as_int||---|---||acerifolia_x|1||aestivalis_x|2||cinerea_x|3||labrusca_x|4||palmata_x|5||riparia_x|6||rupestris_x|7||vulpina_x|8||acerifolia_y|9||aestivalis_y|10||cinerea_y|11||labrusca_y|12||palmata_y|13||riparia_y|14||rupestris_y|15||vulpina_y|16|acerifolia_z|17||aestivalis_z|18||cinerea_z|19||labrusca_z|20||palmata_z|21||riparia_z|22||rupestris_z|23||vulpina_z|24| ###Code table <- table(Predicted=predictions$class, Species=test.data$spec_as_int) print(confusionMatrix(table)) ###Output _____no_output_____
AlDa/blatt6/Exercise06.ipynb
###Markdown Before you turn this problem in, make sure everything runs as expected. First, **restart the kernel** (in the menubar, select Kernel$\rightarrow$Restart) and then **run all cells** (in the menubar, select Cell$\rightarrow$Run All).Make sure you fill in any place that says `YOUR CODE HERE` or "YOUR ANSWER HERE", as well as your name and collaborators below: ###Code NAME = "Maryna Charniuk" COLLABORATORS = "Dung Nguyen, Lyubomira Dimitrova" ###Output _____no_output_____ ###Markdown --- HASHING Schreiben Sie eine einfache Hash-Funktion `my_hash(string, s)` mit der Tabellengröße $s$ mittels Modulo Operation (auch bekannt als *Lineares Sondieren* oder *division remainder hashing*. (4 Punkte) ###Code def my_hash(string, s): sum_chars = 0 for char in string: sum_chars += ord(char) return sum_chars % s ###Output _____no_output_____ ###Markdown Berechnen Sie mittels der von Ihnen geschriebene Funhtion die Hashwerte der Zeichenketten **done** und **node** mit einer Tabellengröße von $s = 3$. (3 Punkte) ###Code print(my_hash('done', 3)) print(my_hash('node', 3)) assert my_hash('done', 3) == my_hash('node', 3) ###Output 2 2 ###Markdown Ist der Hash beider Zeichenketten der Gleiche? Nennen Sie den Grund. (3. Punkte) Ja, weil wir die ASCII Werten aller Zeichen im String addieren, also spielt die Reihenfolge der Zeichen keine Rolle. Um das zu vermeiden, könnte man jedem Zeichen ein Gewicht geben, z.B. die Position im String. Eine weit verbreitete Methode zur Kollisionsvermeidung ist die *Lineare Suche (linear probing)*. Erzeugen Sie eine Hash-Tabelle der Größe $s = 11$ in der Form eines Assoziativen Datenfelds (Dictionary) für die Liste `lisf = [10,45,43,76,57,12,77,13]` Die Hash-Tabelle sollte wie folgt aussehen: `table = {0: 76, 1: 12, 2: 45, 3: 10, 4: 43, 5: 77, 6: 13, 7: None, 8: None, 9: None, 10: 57}`. (10 Punkte) ###Code # first we need to modify the hash function to handle integers def my_hash(item, s): if isinstance(item, int): return item % s if isinstance(item, str): sum_chars = 0 for char in item: sum_chars += ord(char) return sum_chars % s def linearProbingHash(item_list, hash_table_size): table = {i: None for i in range(hash_table_size)} for value in item_list: key = my_hash(value, hash_table_size) if None in table.values(): # check if there are any free spaces in the hash table while table[key]: if key == hash_table_size - 1: # make table circular (if you reach the end, go to 0) key = -1 key += 1 else: raise RuntimeError("Hash-Table too small.") table[key] = value return table lisf = [10,45,43,76,57,12,77,13] print(linearProbingHash(lisf, 11)) ###Output {0: 43, 1: 45, 2: 76, 3: 57, 4: 12, 5: 77, 6: 13, 7: None, 8: None, 9: None, 10: 10} ###Markdown Erzeugen Sie eine Hash-Tabelle der Größe $s = 11$ in Form eines Assoziativen Datenfelds für die Liste `list = ["his", "her", "this", "that", "what", "when", "how", "why", "i dont know"].`Die Hash-Tabelle sollte aussehen wie folgt: `table = {0: 'her', 1: 'this', ... , 10: None}`. (10 Punkte) ###Code def linearProbingHashStrings(item_list, hash_table_size): table = {i: None for i in range(hash_table_size)} for value in item_list: key = my_hash(value, hash_table_size) if None in table.values(): # check if there are any free spaces in the hash table while table[key]: if key == hash_table_size - 1: # make table circular (if you reach the end, go to 0) key = -1 key += 1 else: raise RuntimeError("Hash-Table too small.") table[key] = value return table stringList = ["his", "her", "this", "that", "what", "when", "how", "why", "i dont know"] print(linearProbingHashStrings(stringList, 11)) #print(linearProbingHashStrings(stringList, 7)) # raises a RuntimeError because 7 < len(list) ###Output {0: 'her', 1: 'this', 2: None, 3: 'why', 4: 'that', 5: 'his', 6: 'when', 7: 'what', 8: 'how', 9: 'i dont know', 10: None} ###Markdown Schreiben Sie eine Funktien `all_cocktails(filename)`, die die Datei `cocktails.json` in ein Assozietives Datenfeld `recipes` liest und schreiben Sie eine Funktion `all_ingredients(recipes)`, die eine komplette Liste aller Zutaten ausgibt. (10 Punkte) ###Code import json def all_cocktails(filename): with open(filename) as f: j = json.load(f) return {i: cocktail for i, cocktail in enumerate(j['cocktails'])} def all_ingredients(recipes): ingredients = set() for r in recipes.values(): for listing in r['ingredients']: try: ingredients.add(listing['ingredient']) except KeyError: # not all children of 'ingredients' contain 'ingredient' pass return ingredients recipes = all_cocktails('cocktails.json') numberOfIngredients = len(all_ingredients(recipes)) print (all_ingredients(recipes)) print (numberOfIngredients) recipes = all_cocktails('cocktails.json') assert (numberOfIngredients) == (37) assert ('Apricot brandy' in all_ingredients(recipes)) assert ('Pineapple juice' in all_ingredients(recipes)) assert ('Campari' in all_ingredients(recipes)) assert ('Kirsch' in all_ingredients(recipes)) assert ('Pisco' in all_ingredients(recipes)) ###Output _____no_output_____
examples/reference/templates/GoldenLayout.ipynb
###Markdown For a large variety of use cases we do not need complete control over the exact layout of each individual component on the page, as could be achieved with a [custom template](../../user_guide/Templates.ipynb), we just want to achieve a more polished look and feel. For these cases Panel ships with a number of default templates, which are defined by declaring four main content areas on the page, which can be populated as desired:* **`header`**: The header area of the HTML page* **`sidebar`**: A collapsible sidebar* **`main`**: The main area of the application* **`modal`**: A modal area which can be opened and closed from PythonThese four areas behave very similarly to other Panel layout components and have list-like semantics. This means we can easily append new components into these areas. Unlike other layout components however, the contents of the areas is fixed once rendered. If you need a dynamic layout you should therefore insert a regular Panel layout component (e.g. a `Column` or `Row`) and modify it in place once added to one of the content areas. Templates can allow for us to quickly and easily create web apps for displaying our data. Panel comes with a default Template, and includes multiple Templates that extend the default which add some customization for a better display. Parameters:In addition to the four different areas we can populate the default templates also provide a few additional parameters:* **`busy_indicator`** (BooleanIndicator): Visual indicator of application busy state.* **`header_background`** (str): Optional header background color override.* **`header_color`** (str): Optional header text color override.* **`logo`** (str): URI of logo to add to the header (if local file, logo is base64 encoded as URI).* **`site`** (str): Name of the site. Will be shown in the header. Default is '', i.e. not shown.* **`site_url`** (str): Url of the site and logo. Default is "/".* **`title`** (str): A title to show in the header.* **`theme`** (Theme): A Theme class (available in `panel.template.theme`)* **`sidebar_width`** (int): The width of the sidebar in percent. Default is 20.________ In this case we are using the `GoldenTemplate`, built using the [Golden Layout CSS](https://golden-layout.com/), which allows for the creation of tabs that can be moved around. Due to the movable tabs this Template is a little different than the others. The sidebar works similarly to the other templates, but to have your displays render in different tabs, we have to make separate calls to `.main.append()`. Here is an example of how you can set up a display using this template: ###Code golden = pn.template.GoldenTemplate(title='Golden Template') xs = np.linspace(0, np.pi) freq = pn.widgets.FloatSlider(name="Frequency", start=0, end=10, value=2) phase = pn.widgets.FloatSlider(name="Phase", start=0, end=np.pi) @pn.depends(freq=freq, phase=phase) def sine(freq, phase): return hv.Curve((xs, np.sin(xs*freq+phase))).opts( responsive=True, min_height=400) @pn.depends(freq=freq, phase=phase) def cosine(freq, phase): return hv.Curve((xs, np.cos(xs*freq+phase))).opts( responsive=True, min_height=400) golden.sidebar.append(freq) golden.sidebar.append(phase) golden.main.append( pn.Row( pn.Card(hv.DynamicMap(sine), title='Sine'), pn.Card(hv.DynamicMap(cosine), title='Cosine') ) ) golden.main.append( pn.Row( pn.Card(hv.DynamicMap(sine), title='Sine'), pn.Card(hv.DynamicMap(cosine), title='Cosine') ) ) golden.servable(); ###Output _____no_output_____ ###Markdown For a large variety of use cases we do not need complete control over the exact layout of each individual component on the page, as could be achieved with a [custom template](../../user_guide/Templates.ipynb), we just want to achieve a more polished look and feel. For these cases Panel ships with a number of default templates, which are defined by declaring three main content areas on the page, which can be populated as desired:* **`header`**: The header area of the HTML page* **`sidebar`**: A collapsible sidebar* **`main`**: The main area of the application* **`modal`**: A modal area which can be opened and closed from PythonThese three areas behave very similarly to other Panel layout components and have list-like semantics. This means we can easily append new components into these areas. Unlike other layout components however, the contents of the areas is fixed once rendered. If you need a dynamic layout you should therefore insert a regular Panel layout component (e.g. a `Column` or `Row`) and modify it in place once added to one of the content areas. Templates can allow for us to quickly and easily create web apps for displaying our data. Panel comes with a default Template, and includes multiple Templates that extend the default which add some customization for a better display. Parameters:In addition to the four different areas we can populate the default templates also provide a few additional parameters:* **`busy_indicator`** (BooleanIndicator): Visual indicator of application busy state.* **`header_background`** (str): Optional header background color override.* **`header_color`** (str): Optional header text color override.* **`logo`** (str): URI of logo to add to the header (if local file, logo is base64 encoded as URI).* **`theme`** (Theme): A Theme class (available in `panel.template.theme`)* **`title`** (str): A title to show in the header.________ In this case we are using the `GoldenTemplate`, built using the Golden Layout CSS, which allows for the creation of tabs that can be moved around. Due to the movable tabs this Template is a little different than the others. The sidebar works similarly to the other templates, but to have your displays render in different tabs, we have to make separate calls to `.main.append()`. Here is an example of how you can set up a display using this template: ###Code golden = pn.template.GoldenTemplate(title='Golden Template') pn.config.sizing_mode = 'stretch_width' xs = np.linspace(0, np.pi) freq = pn.widgets.FloatSlider(name="Frequency", start=0, end=10, value=2) phase = pn.widgets.FloatSlider(name="Phase", start=0, end=np.pi) @pn.depends(freq=freq, phase=phase) def sine(freq, phase): return hv.Curve((xs, np.sin(xs*freq+phase))).opts( responsive=True, min_height=400) @pn.depends(freq=freq, phase=phase) def cosine(freq, phase): return hv.Curve((xs, np.cos(xs*freq+phase))).opts( responsive=True, min_height=400) golden.sidebar.append(freq) golden.sidebar.append(phase) golden.main.append( pn.Row( pn.Card(hv.DynamicMap(sine), title='Sine'), pn.Card(hv.DynamicMap(cosine), title='Cosine') ) ) golden.main.append( pn.Row( pn.Card(hv.DynamicMap(sine), title='Sine'), pn.Card(hv.DynamicMap(cosine), title='Cosine') ) ) golden.servable(); ###Output _____no_output_____ ###Markdown For a large variety of use cases we do not need complete control over the exact layout of each individual component on the page, as could be achieved with a [custom template](../../user_guide/Templates.ipynb), we just want to achieve a more polished look and feel. For these cases Panel ships with a number of default templates, which are defined by declaring four main content areas on the page, which can be populated as desired:* **`header`**: The header area of the HTML page* **`sidebar`**: A collapsible sidebar* **`main`**: The main area of the application* **`modal`**: A modal area which can be opened and closed from PythonThese four areas behave very similarly to other Panel layout components and have list-like semantics. This means we can easily append new components into these areas. Unlike other layout components however, the contents of the areas is fixed once rendered. If you need a dynamic layout you should therefore insert a regular Panel layout component (e.g. a `Column` or `Row`) and modify it in place once added to one of the content areas. Templates can allow for us to quickly and easily create web apps for displaying our data. Panel comes with a default Template, and includes multiple Templates that extend the default which add some customization for a better display. Parameters:In addition to the four different areas we can populate the default templates also provide a few additional parameters:* **`busy_indicator`** (BooleanIndicator): Visual indicator of application busy state.* **`header_background`** (str): Optional header background color override.* **`header_color`** (str): Optional header text color override.* **`logo`** (str): URI of logo to add to the header (if local file, logo is base64 encoded as URI).* **`site`** (str): Name of the site. Will be shown in the header. Default is '', i.e. not shown.* **`site_url`** (str): Url of the site and logo. Default is "/".* **`title`** (str): A title to show in the header.* **`theme`** (Theme): A Theme class (available in `panel.template.theme`)* **`sidebar_width`** (int): The width of the sidebar in percent. Default is 20.________ In this case we are using the `GoldenTemplate`, built using the [Golden Layout CSS](https://golden-layout.com/), which allows for the creation of tabs that can be moved around. Due to the movable tabs this Template is a little different than the others. The sidebar works similarly to the other templates, but to have your displays render in different tabs, we have to make separate calls to `.main.append()`. Here is an example of how you can set up a display using this template: ###Code golden = pn.template.GoldenTemplate(title='Golden Template') xs = np.linspace(0, np.pi) freq = pn.widgets.FloatSlider(name="Frequency", start=0, end=10, value=2) phase = pn.widgets.FloatSlider(name="Phase", start=0, end=np.pi) @pn.depends(freq=freq, phase=phase) def sine(freq, phase): return hv.Curve((xs, np.sin(xs*freq+phase))).opts( responsive=True, min_height=400) @pn.depends(freq=freq, phase=phase) def cosine(freq, phase): return hv.Curve((xs, np.cos(xs*freq+phase))).opts( responsive=True, min_height=400) golden.sidebar.append(freq) golden.sidebar.append(phase) golden.main.append( pn.Row( pn.Card(hv.DynamicMap(sine), title='Sine'), pn.Card(hv.DynamicMap(cosine), title='Cosine') ) ) golden.main.append( pn.Row( pn.Card(hv.DynamicMap(sine), title='Sine'), pn.Card(hv.DynamicMap(cosine), title='Cosine') ) ) golden.servable(); ###Output _____no_output_____ ###Markdown For a large variety of use cases we do not need complete control over the exact layout of each individual component on the page, as could be achieved with a [custom template](../../user_guide/Templates.ipynb), we just want to achieve a more polished look and feel. For these cases Panel ships with a number of default templates, which are defined by declaring three main content areas on the page, which can be populated as desired:* **`header`**: The header area of the HTML page* **`sidebar`**: A collapsible sidebar* **`main`**: The main area of the application* **`modal`**: A modal area which can be opened and closed from PythonThese three areas behave very similarly to other Panel layout components and have list-like semantics. This means we can easily append new components into these areas. Unlike other layout components however, the contents of the areas is fixed once rendered. If you need a dynamic layout you should therefore insert a regular Panel layout component (e.g. a `Column` or `Row`) and modify it in place once added to one of the content areas. Templates can allow for us to quickly and easily create web apps for displaying our data. Panel comes with a default Template, and includes multiple Templates that extend the default which add some customization for a better display. Parameters:In addition to the four different areas we can populate the default templates also provide a few additional parameters:* **`busy_indicator`** (BooleanIndicator): Visual indicator of application busy state.* **`header_background`** (str): Optional header background color override.* **`header_color`** (str): Optional header text color override.* **`logo`** (str): URI of logo to add to the header (if local file, logo is base64 encoded as URI).* **`site`** (str): Name of the site. Will be shown in the header. Default is '', i.e. not shown.* **`site_url`** (str): Url of the site and logo. Default is "/".* **`title`** (str): A title to show in the header.* **`theme`** (Theme): A Theme class (available in `panel.template.theme`)________ In this case we are using the `GoldenTemplate`, built using the Golden Layout CSS, which allows for the creation of tabs that can be moved around. Due to the movable tabs this Template is a little different than the others. The sidebar works similarly to the other templates, but to have your displays render in different tabs, we have to make separate calls to `.main.append()`. Here is an example of how you can set up a display using this template: ###Code golden = pn.template.GoldenTemplate(title='Golden Template') pn.config.sizing_mode = 'stretch_width' xs = np.linspace(0, np.pi) freq = pn.widgets.FloatSlider(name="Frequency", start=0, end=10, value=2) phase = pn.widgets.FloatSlider(name="Phase", start=0, end=np.pi) @pn.depends(freq=freq, phase=phase) def sine(freq, phase): return hv.Curve((xs, np.sin(xs*freq+phase))).opts( responsive=True, min_height=400) @pn.depends(freq=freq, phase=phase) def cosine(freq, phase): return hv.Curve((xs, np.cos(xs*freq+phase))).opts( responsive=True, min_height=400) golden.sidebar.append(freq) golden.sidebar.append(phase) golden.main.append( pn.Row( pn.Card(hv.DynamicMap(sine), title='Sine'), pn.Card(hv.DynamicMap(cosine), title='Cosine') ) ) golden.main.append( pn.Row( pn.Card(hv.DynamicMap(sine), title='Sine'), pn.Card(hv.DynamicMap(cosine), title='Cosine') ) ) golden.servable(); ###Output _____no_output_____ ###Markdown For a large variety of use cases we do not need complete control over the exact layout of each individual component on the page, as could be achieved with a [custom template](../../user_guide/Templates.ipynb), we just want to achieve a more polished look and feel. For these cases Panel ships with a number of default templates, which are defined by declaring three main content areas on the page, which can be populated as desired:* **`header`**: The header area of the HTML page* **`sidebar`**: A collapsible sidebar* **`main`**: The main area of the application* **`modal`**: A modal area which can be opened and closed from PythonThese three areas behave very similarly to other Panel layout components and have list-like semantics. This means we can easily append new components into these areas. Unlike other layout components however, the contents of the areas is fixed once rendered. If you need a dynamic layout you should therefore insert a regular Panel layout component (e.g. a `Column` or `Row`) and modify it in place once added to one of the content areas. Templates can allow for us to quickly and easily create web apps for displaying our data. Panel comes with a default Template, and includes multiple Templates that extend the default which add some customization for a better display. Parameters:In addition to the four different areas we can populate the default templates also provide a few additional parameters:* **`busy_indicator`** (BooleanIndicator): Visual indicator of application busy state.* **`header_background`** (str): Optional header background color override.* **`header_color`** (str): Optional header text color override.* **`logo`** (str): URI of logo to add to the header (if local file, logo is base64 encoded as URI).* **`site`** (str): Name of the site. Will be shown in the header. Default is '', i.e. not shown.* **`site_url`** (str): Url of the site and logo. Default is "/".* **`title`** (str): A title to show in the header.* **`theme`** (Theme): A Theme class (available in `panel.template.theme`)* **`sidebar_width`** (int): The width of the sidebar in percent. Default is 20.________ In this case we are using the `GoldenTemplate`, built using the Golden Layout CSS, which allows for the creation of tabs that can be moved around. Due to the movable tabs this Template is a little different than the others. The sidebar works similarly to the other templates, but to have your displays render in different tabs, we have to make separate calls to `.main.append()`. Here is an example of how you can set up a display using this template: ###Code golden = pn.template.GoldenTemplate(title='Golden Template') xs = np.linspace(0, np.pi) freq = pn.widgets.FloatSlider(name="Frequency", start=0, end=10, value=2) phase = pn.widgets.FloatSlider(name="Phase", start=0, end=np.pi) @pn.depends(freq=freq, phase=phase) def sine(freq, phase): return hv.Curve((xs, np.sin(xs*freq+phase))).opts( responsive=True, min_height=400) @pn.depends(freq=freq, phase=phase) def cosine(freq, phase): return hv.Curve((xs, np.cos(xs*freq+phase))).opts( responsive=True, min_height=400) golden.sidebar.append(freq) golden.sidebar.append(phase) golden.main.append( pn.Row( pn.Card(hv.DynamicMap(sine), title='Sine'), pn.Card(hv.DynamicMap(cosine), title='Cosine') ) ) golden.main.append( pn.Row( pn.Card(hv.DynamicMap(sine), title='Sine'), pn.Card(hv.DynamicMap(cosine), title='Cosine') ) ) golden.servable(); ###Output _____no_output_____
datapreprocess_fillna.ipynb
###Markdown ###Code import pandas as pd !pwd !ls -l ./auto-mpg_1.csv df = pd.read_csv('./auto-mpg_1.csv',header=None) df.info() # DataFrame 정보 확인 ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 398 entries, 0 to 397 Data columns (total 9 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 0 398 non-null float64 1 1 398 non-null int64 2 2 398 non-null float64 3 3 398 non-null object 4 4 398 non-null float64 5 5 398 non-null float64 6 6 398 non-null int64 7 7 398 non-null int64 8 8 398 non-null object dtypes: float64(4), int64(3), object(2) memory usage: 28.1+ KB ###Markdown ![image.png]() ###Code df.describe() # DataFrame 통계 정보 df[3].describe() # 3 컬럼에 대한 DataFrame 통계 정보 ###Output _____no_output_____ ###Markdown ![image.png]() ###Code df[8].describe() # 3 컬럼에 대한 DataFrame 통계 정보 ###Output _____no_output_____ ###Markdown ###Code df[0].mean() # 0 컬럼 평균 데이터 df[0].std() # 0 컬럼의 std 값 df[0].count() # 0 컬럼의 수량 df[0].min() # 0 컬럼의 최소값 df[0].max() # 0 컬럼의 최대값 df.columns = ['mpg','cylinders','displacement','horsepower','weight', 'acceleration','model year','origin','name'] df df.plot(x='weight',y='mpg',kind='scatter') df.describe() , df.info() df[['mpg','weight']].plot(kind='box') ###Output _____no_output_____ ###Markdown ###Code import pandas as pd import seaborn as sns df = sns.load_dataset('titanic') # df.info() df.describe(include='all') ###Output _____no_output_____ ###Markdown missing value: age, embarked, deck, embark_town ###Code df['age'].fillna(29) #fillna는 NaN값을 채워넣어준다. df.info() df['deck'].value_counts() df_na = df.dropna(axis=1) df_na.info() df_desk = df.dropna(subset=['deck'], how='any', axis='index') df_desk.info() df_age = df['age'].fillna(29) type(df_age), df_age.shape df['age'] = df.age df.info() df['deck'].value_counts() df['deck'].fillna('B') df['deck'] = df.deck df.info() df['embarked'].value_counts() df['embarked'] =df['embarked'].fillna('C') df.info() df['embark_town'].value_counts() df['embark_town'] = df['embark_town'].fillna('Cherbourg') df.info() ###Output _____no_output_____ ###Markdown ###Code import pandas as pd pd.read_excel('./시도별전출입인구수.xlsx') df = pd.read_excel('./시도별전출입인구수.xlsx') # df.info() # df.head(5) # df.describe() # df.fillna(method="ffill") ###Output _____no_output_____ ###Markdown ###Code import pandas as pd import seaborn as sns df = sns.load_dataset('titanic') # df.info() # df.describe(include='all') df.head(5) ###Output _____no_output_____ ###Markdown missing value : age, embarked, deck, embark_town ###Code df['age'].fillna(29) df.info() df_deck = df.dropna(subset=['deck'], how='any', axis='index') df_deck.info() df_age = df['age'].fillna(29) type(df_age), df_age.shape df['age'] = df_age df.info() df['deck'].value_counts() df['deck'] = df['deck'].fillna('B') df.info() df['embarked'].value_counts() df['embarked'] = df['embarked'].fillna('C') df.info() df['embark_town'].value_counts() df['embark_town'] = df['embark_town'].fillna('Cherbourg') df.info() ###Output _____no_output_____ ###Markdown missing value : age, embarked, deck, embarked_town ###Code df['age'].fillna(29) df['deck'].value_counts() df_na = df.dropna() df_na.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 11 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 survived 891 non-null int64 1 pclass 891 non-null int64 2 sex 891 non-null object 3 sibsp 891 non-null int64 4 parch 891 non-null int64 5 fare 891 non-null float64 6 class 891 non-null category 7 who 891 non-null object 8 adult_male 891 non-null bool 9 alive 891 non-null object 10 alone 891 non-null bool dtypes: bool(2), category(1), float64(1), int64(4), object(3) memory usage: 58.5+ KB ###Markdown null이 있는 행을 삭제 ###Code df_deck = df.dropna(subset=['deck'], how = 'any', axis='index') df_deck.info() df_age = df['age'].fillna(29) type(df_age), df_age.shape ###Output _____no_output_____ ###Markdown age column을 변경 타입이 object형으로 ###Code df['age'] = df_age df.info() df['deck'].value_count() ###Output _____no_output_____ ###Markdown df의 deck에 NaN을 B로 채운 값으로 대체 ###Code df['deck'] = df['deck'].fillna('B') df.info() df['embarked'].value_counts() df['embarked'] = df['embarked'].fillna('C') df.info() df['embark_town'].value_counts() df['embark_town'] = df['embark_town'].fillna('Cherbourg ') df.info() ###Output _____no_output_____ ###Markdown ###Code import pandas as pd import seaborn as sns df = sns.load_dataset('titanic') # df.info() df.describe(include='all') ###Output _____no_output_____ ###Markdown missing value : age, embarked, deck, embarked_town ###Code df['age'].fillna(29) df.info() df['deck'].value_counts() df_deck = df.dropna(subset=['deck'], how='any', axis=0) df_deck.info() df_age = df['age'].fillna(29) type(df_age), df_age.shape df['age'] = df_age df.info() df['deck'].value_counts() df['deck'] = df['deck'].fillna('B') df.info() df['embarked'].value_counts() df['embarked'] = df['embarked'].fillna('C') df.info() df['embark_town'].value_counts() df['embark_town'] = df['embark_town'].fillna('Cherbourg') df.info() ###Output _____no_output_____ ###Markdown ###Code import pandas as pd import seaborn as sns df = sns.load_dataset('titanic') #df.info() df.describe(include='all') ###Output _____no_output_____ ###Markdown missing value : age, embarked, deck, embark_town ###Code df_na = df.dropna() df_na df_na.info() df_deck = df.dropna(subset=['deck'], how='any', axis='index') df_deck.info() df_age = df['age'].fillna(29) type(df_age) df['deck'].value_counts() df['deck'].fillna('B') df['embarked'].value_counts() df['embarked'] = df['embarked'].fillna('C') df.info() df['embark_town'].value_counts() df['embark_town'] = df['embark_town'].fillna('Cherbourg') df.info() ###Output _____no_output_____ ###Markdown ###Code import pandas as pd import seaborn as sns df = sns.load_dataset('titanic') df.info() df.describe(include='all') df['age'].fillna(29) ###Output _____no_output_____ ###Markdown missing value(결측치) : age, embarked, deck, embark_townage는 평균값을 넣어줄 예정 ###Code df_deck = df.dropna(subset=['deck'], how='any', axis='index') df_deck.info() df_age = df['age'].fillna(29) type(df_age), df_age.shape df['age'] = df_age df.info() df['deck'].value_counts() df['deck']= df['deck'].fillna('B') df.info() df['embarked'].value_counts() df['embarked'] = df['embarked'].fillna('C') df.info() df['embark_town'].value_counts() df['embark_town'] = df['embark_town'].fillna('Cherbourg') df.info() ###Output _____no_output_____
deeplearning1/nbs-custom-mine/lesson3_03_imagenet_batchnorm.ipynb
###Markdown This notebook explains how to add batch normalization to VGG. The code shown here is implemented in [vgg_bn.py](https://github.com/fastai/courses/blob/master/deeplearning1/nbs/vgg16bn.py), and there is a version of ``vgg_ft`` (our fine tuning function) with batch norm called ``vgg_ft_bn`` in [utils.py](https://github.com/fastai/courses/blob/master/deeplearning1/nbs/utils.py). ###Code from theano.sandbox import cuda %matplotlib inline import utils; reload(utils) from utils import * from __future__ import print_function, division ###Output Using Theano backend. ###Markdown The problem, and the solution The problem The problem that we faced in the lesson 3 is that when we wanted to add batch normalization, we initialized *all* the dense layers of the model to random weights, and then tried to train them with our cats v dogs dataset. But that's a lot of weights to initialize to random - out of 134m params, around 119m are in the dense layers! Take a moment to think about why this is, and convince yourself that dense layers are where most of the weights will be. Also, think about whether this implies that most of the *time* will be spent training these weights. What do you think?Trying to train 120m params using just 23k images is clearly an unreasonable expectation. The reason we haven't had this problem before is that the dense layers were not random, but were trained to recognize imagenet categories (other than the very last layer, which only has 8194 params). The solution The solution, obviously enough, is to add batch normalization to the VGG model! To do so, we have to be careful - we can't just insert batchnorm layers, since their parameters (*gamma* - which is used to multiply by each activation, and *beta* - which is used to add to each activation) will not be set correctly. Without setting these correctly, the new batchnorm layers will normalize the previous layer's activations, meaning that the next layer will receive totally different activations to what it would have without new batchnorm layer. And that means that all the pre-trained weights are no longer of any use!So instead, we need to figure out what beta and gamma to choose when we insert the layers. The answer to this turns out to be pretty simple - we need to calculate what the mean and standard deviation of that activations for that layer are when calculated on all of imagenet, and then set beta and gamma to these values. That means that the new batchnorm layer will normalize the data with the mean and standard deviation, and then immediately un-normalize the data using the beta and gamma parameters we provide. So the output of the batchnorm layer will be identical to it's input - which means that all the pre-trained weights will continue to work just as well as before.The benefit of this is that when we wish to fine-tune our own networks, we will have all the benefits of batch normalization (higher learning rates, more resiliant training, and less need for dropout) plus all the benefits of a pre-trained network. To calculate the mean and standard deviation of the activations on imagenet, we need to download imagenet. You can download imagenet from http://www.image-net.org/download-images . The file you want is the one titled **Download links to ILSVRC2013 image data**. You'll need to request access from the imagenet admins for this, although it seems to be an automated system - I've always found that access is provided instantly. Once you're logged in and have gone to that page, look for the **CLS-LOC dataset** section. Both training and validation images are available, and you should download both. There's not much reason to download the test images, however.Note that this will not be the entire imagenet archive, but just the 1000 categories that are used in the annual competition. Since that's what VGG16 was originally trained on, that seems like a good choice - especially since the full dataset is 1.1 terabytes, whereas the 1000 category dataset is 138 gigabytes. Adding batchnorm to Imagenet Setup Sample As per usual, we create a sample so we can experiment more rapidly. ###Code %pushd data/imagenet %cd train %mkdir ../sample %mkdir ../sample/train %mkdir ../sample/valid from shutil import copyfile g = glob('*') for d in g: os.mkdir('../sample/train/'+d) os.mkdir('../sample/valid/'+d) g = glob('*/*.JPEG') shuf = np.random.permutation(g) for i in range(25000): copyfile(shuf[i], '../sample/train/' + shuf[i]) %cd ../valid g = glob('*/*.JPEG') shuf = np.random.permutation(g) for i in range(5000): copyfile(shuf[i], '../sample/valid/' + shuf[i]) %cd .. %mkdir sample/results %popd ###Output _____no_output_____ ###Markdown Data setup We set up our paths, data, and labels in the usual way. Note that we don't try to read all of Imagenet into memory! We only load the sample into memory. ###Code sample_path = 'data/jhoward/imagenet/sample/' # This is the path to my fast SSD - I put datasets there when I can to get the speed benefit fast_path = '/home/jhoward/ILSVRC2012_img_proc/' #path = '/data/jhoward/imagenet/sample/' path = 'data/jhoward/imagenet/' batch_size=64 samp_trn = get_data(path+'train') samp_val = get_data(path+'valid') save_array(samp_path+'results/trn.dat', samp_trn) save_array(samp_path+'results/val.dat', samp_val) samp_trn = load_array(sample_path+'results/trn.dat') samp_val = load_array(sample_path+'results/val.dat') (val_classes, trn_classes, val_labels, trn_labels, val_filenames, filenames, test_filenames) = get_classes(path) (samp_val_classes, samp_trn_classes, samp_val_labels, samp_trn_labels, samp_val_filenames, samp_filenames, samp_test_filenames) = get_classes(sample_path) ###Output Found 25000 images belonging to 1000 classes. Found 5000 images belonging to 1000 classes. Found 0 images belonging to 0 classes. ###Markdown Model setup Since we're just working with the dense layers, we should pre-compute the output of the convolutional layers. ###Code vgg = Vgg16() model = vgg.model layers = model.layers last_conv_idx = [index for index,layer in enumerate(layers) if type(layer) is Convolution2D][-1] conv_layers = layers[:last_conv_idx+1] dense_layers = layers[last_conv_idx+1:] conv_model = Sequential(conv_layers) samp_conv_val_feat = conv_model.predict(samp_val, batch_size=batch_size*2) samp_conv_feat = conv_model.predict(samp_trn, batch_size=batch_size*2) save_array(sample_path+'results/conv_val_feat.dat', samp_conv_val_feat) save_array(sample_path+'results/conv_feat.dat', samp_conv_feat) samp_conv_feat = load_array(sample_path+'results/conv_feat.dat') samp_conv_val_feat = load_array(sample_path+'results/conv_val_feat.dat') samp_conv_val_feat.shape ###Output _____no_output_____ ###Markdown This is our usual Vgg network just covering the dense layers: ###Code def get_dense_layers(): return [ MaxPooling2D(input_shape=conv_layers[-1].output_shape[1:]), Flatten(), Dense(4096, activation='relu'), Dropout(0.5), Dense(4096, activation='relu'), Dropout(0.5), Dense(1000, activation='softmax') ] dense_model = Sequential(get_dense_layers()) for l1, l2 in zip(dense_layers, dense_model.layers): l2.set_weights(l1.get_weights()) ###Output _____no_output_____ ###Markdown Check model It's a good idea to check that your models are giving reasonable answers, before using them. ###Code dense_model.compile(Adam(), 'categorical_crossentropy', ['accuracy']) dense_model.evaluate(samp_conv_val_feat, samp_val_labels) model.compile(Adam(), 'categorical_crossentropy', ['accuracy']) # should be identical to above model.evaluate(val, val_labels) # should be a little better than above, since VGG authors overfit dense_model.evaluate(conv_feat, trn_labels) ###Output 24992/25000 [============================>.] - ETA: 0s ###Markdown Adding our new layers Calculating batchnorm params To calculate the output of a layer in a Keras sequential model, we have to create a function that defines the input layer and the output layer, like this: ###Code k_layer_out = K.function([dense_model.layers[0].input, K.learning_phase()], [dense_model.layers[2].output]) ###Output _____no_output_____ ###Markdown Then we can call the function to get our layer activations: ###Code d0_out = k_layer_out([samp_conv_val_feat, 0])[0] k_layer_out = K.function([dense_model.layers[0].input, K.learning_phase()], [dense_model.layers[4].output]) d2_out = k_layer_out([samp_conv_val_feat, 0])[0] ###Output _____no_output_____ ###Markdown Now that we've got our activations, we can calculate the mean and standard deviation for each (note that due to a bug in keras, it's actually the variance that we'll need). ###Code mu0,var0 = d0_out.mean(axis=0), d0_out.var(axis=0) mu2,var2 = d2_out.mean(axis=0), d2_out.var(axis=0) ###Output _____no_output_____ ###Markdown Creating batchnorm model Now we're ready to create and insert our layers just after each dense layer. ###Code nl1 = BatchNormalization() nl2 = BatchNormalization() bn_model = insert_layer(dense_model, nl2, 5) bn_model = insert_layer(bn_model, nl1, 3) bnl1 = bn_model.layers[3] bnl4 = bn_model.layers[6] ###Output _____no_output_____ ###Markdown After inserting the layers, we can set their weights to the variance and mean we just calculated. ###Code bnl1.set_weights([var0, mu0, mu0, var0]) bnl4.set_weights([var2, mu2, mu2, var2]) bn_model.compile(Adam(1e-5), 'categorical_crossentropy', ['accuracy']) ###Output _____no_output_____ ###Markdown We should find that the new model gives identical results to those provided by the original VGG model. ###Code bn_model.evaluate(samp_conv_val_feat, samp_val_labels) bn_model.evaluate(samp_conv_feat, samp_trn_labels) ###Output 24992/25000 [============================>.] - ETA: 0s ###Markdown Optional - additional fine-tuning Now that we have a VGG model with batchnorm, we might expect that the optimal weights would be a little different to what they were when originally created without batchnorm. So we fine tune the weights for one epoch. ###Code feat_bc = bcolz.open(fast_path+'trn_features.dat') labels = load_array(fast_path+'trn_labels.dat') val_feat_bc = bcolz.open(fast_path+'val_features.dat') val_labels = load_array(fast_path+'val_labels.dat') bn_model.fit(feat_bc, labels, nb_epoch=1, batch_size=batch_size, validation_data=(val_feat_bc, val_labels)) ###Output Train on 2522348 samples, validate on 98200 samples Epoch 1/1 2522348/2522348 [==============================] - 2521s - loss: 1.0574 - acc: 0.7191 - val_loss: 1.3572 - val_acc: 0.6720 ###Markdown The results look quite encouraging! Note that these VGG weights are now specific to how keras handles image scaling - that is, it squashes and stretches images, rather than adding black borders. So this model is best used on images created in that way. ###Code bn_model.save_weights(path+'models/bn_model2.h5') bn_model.load_weights(path+'models/bn_model2.h5') ###Output _____no_output_____ ###Markdown Create combined model Our last step is simply to copy our new dense layers on to the end of the convolutional part of the network, and save the new complete set of weights, so we can use them in the future when using VGG. (Of course, we'll also need to update our VGG architecture to add the batchnorm layers). ###Code new_layers = copy_layers(bn_model.layers) for layer in new_layers: conv_model.add(layer) copy_weights(bn_model.layers, new_layers) conv_model.compile(Adam(1e-5), 'categorical_crossentropy', ['accuracy']) conv_model.evaluate(samp_val, samp_val_labels) conv_model.save_weights(path+'models/inet_224squash_bn.h5') ###Output _____no_output_____
experiments/2020_06_22 designing filters.ipynb
###Markdown Resolving people ###Code df_people = df[df['GENDER'].isin(['M', 'F'])].copy() df_people_small = df_people.head(600) f = Filter(df_people, "res_WIKIDATA_IDs") f.add_property_filter("P31", 'Q5') # human f.add_label_filter("PREFERRED_NAME", threshold=90, include_aliases=True) f.view_filters() f.process_dataframe() df_new = f.get_dataframe() ###Output _____no_output_____
dmu1/dmu1_ml_Herschel-Stripe-82/1.8.1_DECaLS.ipynb
###Markdown We use magnitudes between 16.0 and 17.5. ###Code # Aperture correction mag_corr['z'] = np.nan mag_corr['z'], num, std = aperture_correction( magnitudes['z'][4], magnitudes['z'][4], stellarities['z'], mag_min=15.0, mag_max=17.0) print("Aperture correction for z band:") print("Correction: {}".format(mag_corr['z'])) print("Number of source used: {}".format(num)) print("RMS: {}".format(std)) ###Output Aperture correction for z band: Correction: 0.0 Number of source used: 176285 RMS: 0.0 ###Markdown I.f - Y band ###Code nb_plot_mag_ap_evol(magnitudes['y'], stellarities['y'], labels=apertures) nb_plot_mag_vs_apcor(magnitudes['y'][4], magnitudes['y'][4], stellarities['y']) # Aperture correction mag_corr['y'] = np.nan #mag_corr['y'], num, std = aperture_correction( # magnitudes['y'][4], magnitudes['y'][5], # stellarities['y'], # mag_min=16.0, mag_max=17.5) #print("Aperture correction for y band:") #print("Correction: {}".format(mag_corr['y'])) #print("Number of source used: {}".format(num)) #print("RMS: {}".format(std)) ###Output _____no_output_____ ###Markdown II - StellarityLegacy Survey does not provide a 0 to 1 stellarity so we replace items flagged as PSF accpording to the following table:\begin{equation*}P(star) = \frac{ \prod_{i} P(star)_i }{ \prod_{i} P(star)_i + \prod_{i} P(galaxy)_i }\end{equation*}where $i$ is the band, and with using the same probabilities as UKDISS:| HSC flag | UKIDSS flag | Meaning | P(star) | P(galaxy) | P(noise) | P(saturated) ||:--------:|:-----------:|:----------------|--------:|----------:|---------:|-------------:|| | -9 | Saturated | 0.0 | 0.0 | 5.0 | 95.0 || | -3 | Probable galaxy | 25.0 | 70.0 | 5.0 | 0.0 || | -2 | Probable star | 70.0 | 25.0 | 5.0 | 0.0 || 0 | -1 | Star | 90.0 | 5.0 | 5.0 | 0.0 || | 0 | Noise | 5.0 | 5.0 | 90.0 | 0.0 || 1 | +1 | Galaxy | 5.0 | 90.0 | 5.0 | 0.0 | ###Code stellarities['g'][np.isclose(stellarities['g'], 1.)] = 0.9 stellarities['g'][np.isclose(stellarities['g'], 0.)] = 0.05 ###Output _____no_output_____ ###Markdown II - Column selection ###Code imported_columns = OrderedDict({ "objid": "decals_id", "brickid": "brickid", "ra": "decals_ra", "dec": "decals_dec", "decam_flux": "decam_flux_TEMP", "decam_flux_ivar": "decam_flux_ivar_TEMP", "decam_apflux": "decam_apflux_TEMP", "decam_apflux_ivar": "decam_apflux_ivar_TEMP", }) catalogue = Table.read("../../dmu0/dmu0_DECaLS/data/DECaLS_Herschel-Stripe-82.fits")[list(imported_columns)] for column in imported_columns: catalogue[column].name = imported_columns[column] catalogue["decals_id"] = 100000*catalogue["brickid"].astype(np.int64) + catalogue["decals_id"].astype(np.int64) catalogue.remove_columns("brickid") epoch = 2017 #catalogue.add_column(Column(catalogue["decam_flux_TEMP"][:,0], name="f_decam_u")) catalogue.add_column(Column(catalogue["decam_flux_TEMP"][:,1], name="f_decam_g")) catalogue.add_column(Column(catalogue["decam_flux_TEMP"][:,2], name="f_decam_r")) #catalogue.add_column(Column(catalogue["decam_flux_TEMP"][:,3], name="f_decam_i")) catalogue.add_column(Column(catalogue["decam_flux_TEMP"][:,4], name="f_decam_z")) #catalogue.add_column(Column(catalogue["decam_flux_TEMP"][:,5], name="f_decam_y")) #catalogue.add_column(Column(catalogue["decam_flux_ivar_TEMP"][:,0], name="ferr_decam_u")) catalogue.add_column(Column(catalogue["decam_flux_ivar_TEMP"][:,1], name="ferr_decam_g")) catalogue.add_column(Column(catalogue["decam_flux_ivar_TEMP"][:,2], name="ferr_decam_r")) #catalogue.add_column(Column(catalogue["decam_flux_ivar_TEMP"][:,3], name="ferr_decam_i")) catalogue.add_column(Column(catalogue["decam_flux_ivar_TEMP"][:,4], name="ferr_decam_z")) #catalogue.add_column(Column(catalogue["decam_flux_ivar_TEMP"][:,5], name="ferr_decam_y")) #For the aperture fluxes, there are 8 (0-7), we take 4 (2.0") #DECam aperture fluxes on the co-added images in apertures of radius [0.5,0.75,1.0,1.5,2.0,3.5,5.0,7.0] arcsec in ugrizY #catalogue.add_column(Column(catalogue["decam_apflux_TEMP"][:,0], name="f_ap_decam_u")[:,4]) catalogue.add_column(Column(catalogue["decam_apflux_TEMP"][:,1], name="f_ap_decam_g")[:,4]) catalogue.add_column(Column(catalogue["decam_apflux_TEMP"][:,2], name="f_ap_decam_r")[:,4]) #catalogue.add_column(Column(catalogue["decam_apflux_TEMP"][:,3], name="f_ap_decam_i")[:,4]) catalogue.add_column(Column(catalogue["decam_apflux_TEMP"][:,4], name="f_ap_decam_z")[:,4]) #catalogue.add_column(Column(catalogue["decam_apflux_TEMP"][:,5], name="f_ap_decam_y")[:,4]) #catalogue.add_column(Column(catalogue["decam_apflux_ivar_TEMP"][:,0], name="ferr_ap_decam_u")[:,4]) catalogue.add_column(Column(catalogue["decam_apflux_ivar_TEMP"][:,1], name="ferr_ap_decam_g")[:,4]) catalogue.add_column(Column(catalogue["decam_apflux_ivar_TEMP"][:,2], name="ferr_ap_decam_r")[:,4]) #catalogue.add_column(Column(catalogue["decam_apflux_ivar_TEMP"][:,3], name="ferr_ap_decam_i")[:,4]) catalogue.add_column(Column(catalogue["decam_apflux_ivar_TEMP"][:,4], name="ferr_ap_decam_z")[:,4]) #catalogue.add_column(Column(catalogue["decam_apflux_ivar_TEMP"][:,5], name="ferr_ap_decam_y")[:,4]) catalogue.remove_columns(["decam_flux_TEMP", "decam_flux_ivar_TEMP", "decam_apflux_TEMP", "decam_apflux_ivar_TEMP"]) # Clean table metadata catalogue.meta = None flux_to_mag_vect = np.vectorize(flux_to_mag) # Adding flux and band-flag columns for col in catalogue.colnames: catalogue[col].unit = None if col.startswith('f_'): #Replace 0 flux with NaN and catalogue[col][catalogue[col] == 0.0] = np.nan #Replace 1/sigma^2 with sigma errcol = "ferr{}".format(col[1:]) catalogue[errcol][catalogue[errcol] == 0.0] = np.nan catalogue[errcol] = np.sqrt(1/np.array(catalogue[errcol])) #catalogue[errcol][catalogue[errcol] == None] = np.nan #Replace nanomaggies with uJy #a nanomaggy is approximately 3.631×10-6 Jy - http://www.sdss3.org/dr8/algorithms/magnitudes.php#nmgy catalogue[col] = catalogue[col] * 3.631 catalogue[errcol] = catalogue[errcol] * 3.631 #Compute magnitudes and errors in magnitudes. This function expects Jy so must multiply uJy by 1.e-6 mag, error = flux_to_mag(np.array(catalogue[col])* 1.e-6, np.array(catalogue[errcol])* 1.e-6) if 'ap' in col: mag += mag_corr[col[-1]] catalogue[col],catalogue[errcol] = mag_to_flux(mag,error) catalogue.add_column(Column(mag, name="m{}".format(col[1:]))) catalogue.add_column(Column(error, name="m{}".format(errcol[1:]))) # Band-flag column if 'ap' not in col: catalogue.add_column(Column(np.zeros(len(catalogue), dtype=bool), name="flag{}".format(col[1:]))) #remove units from table for col in catalogue.colnames: catalogue[col].unit = None catalogue.add_column(Column(data=stellarities['g'], name="decals_stellarity")) #Stellarites computed earlier catalogue[:10].show_in_notebook() ###Output _____no_output_____ ###Markdown III - Removal of duplicated sources We remove duplicated objects from the input catalogues. ###Code SORT_COLS = [#'merr_ap_decam_u', 'merr_ap_decam_g', 'merr_ap_decam_r', #'merr_ap_decam_i', 'merr_ap_decam_z', #'merr_ap_decam_y' ] FLAG_NAME = 'decals_flag_cleaned' nb_orig_sources = len(catalogue) catalogue = remove_duplicates( catalogue, RA_COL, DEC_COL, sort_col= SORT_COLS, flag_name=FLAG_NAME) nb_sources = len(catalogue) print("The initial catalogue had {} sources.".format(nb_orig_sources)) print("The cleaned catalogue has {} sources ({} removed).".format(nb_sources, nb_orig_sources - nb_sources)) print("The cleaned catalogue has {} sources flagged as having been cleaned".format(np.sum(catalogue[FLAG_NAME]))) ###Output /opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/astropy/table/column.py:1096: MaskedArrayFutureWarning: setting an item on a masked array which has a shared mask will not copy the mask and also change the original mask array in the future. Check the NumPy 1.11 release notes for more information. ma.MaskedArray.__setitem__(self, index, value) ###Markdown III - Astrometry correctionWe match the astrometry to the Gaia one. We limit the Gaia catalogue to sources with a g band flux between the 30th and the 70th percentile. Some quick tests show that this give the lower dispersion in the results. ###Code gaia = Table.read("../../dmu0/dmu0_GAIA/data/GAIA_Herschel-Stripe-82.fits") gaia_coords = SkyCoord(gaia['ra'], gaia['dec']) nb_astcor_diag_plot(catalogue[RA_COL], catalogue[DEC_COL], gaia_coords.ra, gaia_coords.dec, near_ra0=True) delta_ra, delta_dec = astrometric_correction( SkyCoord(catalogue[RA_COL], catalogue[DEC_COL]), gaia_coords ) print("RA correction: {}".format(delta_ra)) print("Dec correction: {}".format(delta_dec)) catalogue[RA_COL] = catalogue[RA_COL] + delta_ra.to(u.deg) catalogue[DEC_COL] = catalogue[DEC_COL] + delta_dec.to(u.deg) catalogue[RA_COL].unit = u.deg catalogue[DEC_COL].unit = u.deg nb_astcor_diag_plot(catalogue[RA_COL], catalogue[DEC_COL], gaia_coords.ra, gaia_coords.dec, near_ra0=True) ###Output _____no_output_____ ###Markdown IV - Flagging Gaia objects ###Code catalogue.add_column( gaia_flag_column(SkyCoord(catalogue[RA_COL], catalogue[DEC_COL]), epoch, gaia) ) GAIA_FLAG_NAME = "decals_flag_gaia" catalogue['flag_gaia'].name = GAIA_FLAG_NAME print("{} sources flagged.".format(np.sum(catalogue[GAIA_FLAG_NAME] > 0))) ###Output 717665 sources flagged. ###Markdown V - Saving to disk ###Code catalogue.write("{}/DECaLS.fits".format(OUT_DIR), overwrite=True) ###Output _____no_output_____ ###Markdown Herschel Stripe 82 master catalogue Preparation of DECam Legacy Survey dataThis catalogue comes from `dmu0_DECaLS`.In the catalogue, we keep:- The `object_id` as unique object identifier;- The position;- The u, g, r, i, z, Y aperture magnitude (2”);- The u, g, r, i, z, Y kron fluxes and magnitudes.We check for all ugrizY then only take bands for which there are measurements ###Code from herschelhelp_internal import git_version print("This notebook was run with herschelhelp_internal version: \n{}".format(git_version())) %matplotlib inline #%config InlineBackend.figure_format = 'svg' import matplotlib.pyplot as plt plt.rc('figure', figsize=(10, 6)) plt.style.use('ggplot') from collections import OrderedDict import os from astropy import units as u from astropy import visualization as vis from astropy.coordinates import SkyCoord from astropy.table import Column, Table import numpy as np from herschelhelp_internal.flagging import gaia_flag_column from herschelhelp_internal.masterlist import nb_astcor_diag_plot, nb_plot_mag_ap_evol, \ nb_plot_mag_vs_apcor, remove_duplicates from herschelhelp_internal.utils import astrometric_correction, mag_to_flux, aperture_correction, flux_to_mag OUT_DIR = os.environ.get('TMP_DIR', "./data_tmp") try: os.makedirs(OUT_DIR) except FileExistsError: pass RA_COL = "decals_ra" DEC_COL = "decals_dec" # Pritine LS catalogue orig_decals = Table.read("../../dmu0/dmu0_DECaLS/data/DECaLS_Herschel-Stripe-82.fits") ###Output WARNING: UnitsWarning: '1/deg^2' did not parse as fits unit: Numeric factor not supported by FITS [astropy.units.core] WARNING: UnitsWarning: 'nanomaggy' did not parse as fits unit: At col 0, Unit 'nanomaggy' not supported by the FITS standard. [astropy.units.core] WARNING: UnitsWarning: '1/nanomaggy^2' did not parse as fits unit: Numeric factor not supported by FITS [astropy.units.core] WARNING: UnitsWarning: '1/arcsec^2' did not parse as fits unit: Numeric factor not supported by FITS [astropy.units.core] ###Markdown I - Aperture correctionTo compute aperture correction we need to dertermine two parametres: the target aperture and the range of magnitudes for the stars that will be used to compute the correction.**Target aperture**: To determine the target aperture, we simulate a curve of growth using the provided apertures and draw two figures:- The evolution of the magnitudes of the objects by plotting on the same plot aperture number vs the mean magnitude.- The mean gain (loss when negative) of magnitude is each aperture compared to the previous (except for the first of course).As target aperture, we should use the smallest (i.e. less noisy) aperture for which most of the flux is captures.**Magnitude range**: To know what limits in aperture to use when doing the aperture correction, we plot for each magnitude bin the correction that is computed and its RMS. We should then use the wide limits (to use more stars) where the correction is stable and with few dispersion. ###Code bands = ["u", "g", "r", "i", "z", "y"] band_index = {"u":0,"g":1, "r":2, "i":3, "z":4, "y":5} apertures = [0, 1, 2, 3, 4, 5, 6, 7] aperture_sizes = [0.5, 0.75, 1.0, 1.5, 2.0, 3.5, 5.0, 7.0] #arcsec aperture sizes flux = {} flux_errors ={} magnitudes = {} flux_errors ={} magnitude_errors = {} stellarities = {} flux_to_mag_vect = np.vectorize(flux_to_mag) for band in bands: flux[band] = np.transpose(np.array(orig_decals["decam_apflux"][:,band_index[band]])) #np.transpose(np.array( orig_decals["decam_apflux"], dtype=np.float )) flux_errors[band] = np.transpose(np.array(orig_decals["decam_apflux_ivar"][:,band_index[band]])) #np.transpose(np.array( orig_legacy["apflux_ivar_{}".format(band)], dtype=np.float )) magnitudes[band], magnitude_errors[band] = flux_to_mag_vect(flux[band] * 3.631e-6 ,flux_errors[band] * 3.631e-6) stellarities[band] = np.full(len(orig_decals),0., dtype='float32') stellarities[band][np.array( orig_decals["type"]) == "PSF " ] = 1. stellarities[band][np.array( orig_decals["type"]) == "PSF" ] = 1. # Some sources have an infinite magnitude mask = np.isinf(magnitudes[band]) magnitudes[band][mask] = np.nan magnitude_errors[band][mask] = np.nan mag_corr = {} ###Output /opt/herschelhelp_internal/herschelhelp_internal/utils.py:76: RuntimeWarning: divide by zero encountered in log10 magnitudes = 2.5 * (23 - np.log10(fluxes)) - 48.6 /opt/herschelhelp_internal/herschelhelp_internal/utils.py:80: RuntimeWarning: invalid value encountered in double_scalars errors = 2.5 / np.log(10) * errors_on_fluxes / fluxes /opt/herschelhelp_internal/herschelhelp_internal/utils.py:76: RuntimeWarning: invalid value encountered in log10 magnitudes = 2.5 * (23 - np.log10(fluxes)) - 48.6 ###Markdown 1.a u band ###Code nb_plot_mag_ap_evol(magnitudes['u'], stellarities['u'], labels=apertures) ###Output /opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/numpy/lib/nanfunctions.py:703: RuntimeWarning: Mean of empty slice warnings.warn("Mean of empty slice", RuntimeWarning) /opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/numpy/lib/nanfunctions.py:703: RuntimeWarning: Mean of empty slice warnings.warn("Mean of empty slice", RuntimeWarning) ###Markdown u band is all nan ###Code nb_plot_mag_vs_apcor(magnitudes['u'][4], magnitudes['u'][5], stellarities['u']) # Aperture correction mag_corr['u'] = np.nan #mag_corr['u'], num, std = aperture_correction( # magnitudes['u'][4], magnitudes['u'][5], # stellarities['u'], # mag_min=16.0, mag_max=19.0) #print("Aperture correction for g band:") #print("Correction: {}".format(mag_corr['g'])) #print("Number of source used: {}".format(num)) #print("RMS: {}".format(std)) ###Output _____no_output_____ ###Markdown I.a - g band ###Code nb_plot_mag_ap_evol(magnitudes['g'], stellarities['g'], labels=apertures) ###Output _____no_output_____ ###Markdown We will use aperture 5 as target. ###Code nb_plot_mag_vs_apcor(magnitudes['g'][4], magnitudes['g'][5], stellarities['g']) ###Output _____no_output_____ ###Markdown We will use magnitudes between 16.0 and 19.0 ###Code # Aperture correction mag_corr['g'], num, std = aperture_correction( magnitudes['g'][4], magnitudes['g'][5], stellarities['g'], mag_min=16.0, mag_max=19.0) print("Aperture correction for g band:") print("Correction: {}".format(mag_corr['g'])) print("Number of source used: {}".format(num)) print("RMS: {}".format(std)) ###Output Aperture correction for g band: Correction: -0.0911514235846056 Number of source used: 151015 RMS: 0.02364389650630337 ###Markdown I.b - r band ###Code nb_plot_mag_ap_evol(magnitudes['r'], stellarities['r'], labels=apertures) ###Output _____no_output_____ ###Markdown We will use aperture 5 as target. ###Code nb_plot_mag_vs_apcor(magnitudes['r'][4], magnitudes['r'][5], stellarities['r']) ###Output _____no_output_____ ###Markdown We use magnitudes between 16.0 and 18.0. ###Code # Aperture correction mag_corr['r'], num, std = aperture_correction( magnitudes['r'][4], magnitudes['r'][5], stellarities['r'], mag_min=16.0, mag_max=18.0) print("Aperture correction for r band:") print("Correction: {}".format(mag_corr['r'])) print("Number of source used: {}".format(num)) print("RMS: {}".format(std)) ###Output Aperture correction for r band: Correction: -0.0465021447682048 Number of source used: 149159 RMS: 0.013977600173198289 ###Markdown I.d - i band ###Code nb_plot_mag_ap_evol(magnitudes['i'], stellarities['i'], labels=apertures) nb_plot_mag_vs_apcor(magnitudes['i'][4], magnitudes['i'][4], stellarities['i']) # Aperture correction mag_corr['i'] = np.nan #mag_corr['i'], num, std = aperture_correction( # magnitudes['i'][4], magnitudes['i'][5], # stellarities['i'], # mag_min=16.0, mag_max=17.5) #print("Aperture correction for i band:") #print("Correction: {}".format(mag_corr['i'])) #print("Number of source used: {}".format(num)) #print("RMS: {}".format(std)) ###Output _____no_output_____ ###Markdown I.e - z band ###Code nb_plot_mag_ap_evol(magnitudes['z'], stellarities['z'], labels=apertures) ###Output _____no_output_____ ###Markdown We will use aperture 4 as target. ###Code nb_plot_mag_vs_apcor(magnitudes['z'][4], magnitudes['z'][4], stellarities['z']) ###Output _____no_output_____
Collective Sampling and Search.ipynb
###Markdown Experiment: Collective Sampling and SearchAn underwater robot collective is deployed to search and rescue a star in distress. ###Code %load_ext autoreload %autoreload 2 %matplotlib inline import matplotlib matplotlib.rcParams['figure.figsize'] = [12, 8] import math import numpy as np from interaction import Interaction from environment import Environment from fish import Fish from channel import Channel from observer import Observer from utils import generate_distortion, generate_fish, run_simulation ###Output The autoreload extension is already loaded. To reload it, use: %reload_ext autoreload ###Markdown Hear the signal of the star and run back to the deployment station to report itRobots disperse until the first one hears the signal of the star. That robot broadcasts the info that it has detected the star. Thereupon, all robots switch to aggregation and return to the deployment station. ###Code """Hear star, gather at origin """ from events import InfoExternal run_time = 30 # in seconds num_fish = 15 arena_size = 30 arena_center = arena_size / 2.0 initial_spread = 1 fish_pos = initial_spread * np.random.rand(num_fish, 2) + arena_center - initial_spread / 2.0 clock_freqs = 1 verbose = False distortion = generate_distortion(type='none', n=arena_size) environment = Environment( node_pos=fish_pos, distortion=distortion, prob_type='binary', noise_magnitude=0.1, conn_thres=6, verbose=verbose ) interaction = Interaction(environment, verbose=verbose) channel = Channel(environment) fish = generate_fish( n=num_fish, channel=channel, interaction=interaction, lim_neighbors=[2,3], neighbor_weights=1.0, fish_max_speeds=1, clock_freqs=clock_freqs, verbose=verbose ) channel.set_nodes(fish) observer = Observer(fish=fish, environment=environment, channel=channel) missing_aircraft = InfoExternal('signal_aircraft') for i in range(1, run_time): observer.instruct(event=missing_aircraft, rel_clock=i, pos=np.array([arena_center-5, arena_center+5])) run_simulation(fish=fish, observer=observer, run_time=run_time, dark=True, white_axis=False, no_legend=True) ###Output Please wait patiently 30 seconds. Thanks. It's time to say bye bye! ###Markdown Hear the signal of the star and use vision to swim towards itRobots disperse until the first one hears the signal from the star. That robot broadcasts the info that it has detected the star. Thereupon, all robots switch to aggregation except robots that can hear the star swim towards it by using their perception. This pulls the center of the collective and therefore all robots to the star. ###Code """Hear star, see star, gather at star """ from events import Homing run_time = 80 # in seconds num_fish = 20 arena_size = 30 arena_center = arena_size / 2.0 initial_spread = 1 fish_pos = initial_spread * np.random.rand(num_fish, 2) + arena_center - initial_spread / 2.0 clock_freqs = 1 verbose = False distortion = generate_distortion(type='none', n=arena_size) environment = Environment( node_pos=fish_pos, distortion=distortion, prob_type='binary', noise_magnitude=0.1, conn_thres=8, verbose=verbose ) interaction = Interaction(environment, verbose=verbose) channel = Channel(environment) fish = generate_fish( n=num_fish, channel=channel, interaction=interaction, lim_neighbors=[2,3], neighbor_weights=1.0, fish_max_speeds=1, clock_freqs=clock_freqs, verbose=verbose ) channel.set_nodes(fish) observer = Observer(fish=fish, environment=environment, channel=channel) missing_aircraft = Homing() for i in range(1, run_time): observer.instruct(event=missing_aircraft, rel_clock=i, pos=np.array([arena_center-6, arena_center+6])) run_simulation(fish=fish, observer=observer, run_time=run_time, dark=True) ###Output Please wait patiently 80 seconds. Thanks. It's time to say bye bye!
Data/Processes/Suma/.ipynb_checkpoints/Clusters-checkpoint.ipynb
###Markdown Se visualiza los datos y se elimina las columnas que no son necesarias ###Code df = pd.read_csv('Suma_todasLasSesiones.csv') df = df.drop(['Sesion','Id'], axis=1) #df = df[df['Fsm']!=0] ###Output _____no_output_____ ###Markdown Filtrado de datos Histograma de las notas ###Code plt.rcParams['figure.figsize'] = (16, 9) plt.style.use('ggplot') datos = df.drop(['Nota'],1).hist() plt.grid(True) plt.show() ###Output _____no_output_____ ###Markdown Se crean los datos para el clusters y las categorias ###Code clusters = df[['Nota']] X = df.drop(['Nota'],1) ## Se reliza la normalización de los datos para que esten en un rango de (0,1) scaler = MinMaxScaler(feature_range=(0, 1)) x = scaler.fit_transform(X) ###Output _____no_output_____ ###Markdown Se definen los metodos a emplear en el cluster ###Code def clusterDBscan(x): db = cluster.DBSCAN(eps=0.175, min_samples=5) db.fit(x) return db.labels_ def clusterKMeans(x, n_clusters): return cluster.k_means(x, n_clusters=n_clusters)[1] ###Output _____no_output_____ ###Markdown Se crea funciones en caso de ser necesarias para poder reducir las dimensiones ###Code def reducir_dim(x, ndim): pca = PCA(n_components=ndim) return pca.fit_transform(x) def reducir_dim_tsne(x, ndim): pca = TSNE(n_components=ndim) return pca.fit_transform(x) ###Output _____no_output_____ ###Markdown Se grafica los valores de los posibles cluster en base a silohuette score ###Code def calculaSilhoutter(x, clusters): res=[] fig, ax = plt.subplots(1,figsize=(20, 5)) for numCluster in range(2, 7): res.append(silhouette_score(x, clusterKMeans(x,numCluster ))) ax.plot(range(2, 7), res) ax.set_xlabel("n clusters") ax.set_ylabel("silouhette score") ax.set_title("K-Means") calculaSilhoutter(x, clusters) ###Output _____no_output_____ ###Markdown Se grafica los valores de los posibles cluster en base a Elbow Method ###Code model = KMeans() visualizer = KElbowVisualizer(model, k=(2,7), metric='calinski_harabasz', timings=False) visualizer.fit(x) # Fit the data to the visualizer visualizer.show() clus_km = clusterKMeans(x, 3) clus_db = clusterDBscan(x) def reducir_dataset(x, how): if how == "pca": res = reducir_dim(x, ndim=2) elif how == "tsne": res = reducir_dim_tsne(x, ndim=2) else: return x[:, :2] return res results = pd.DataFrame(np.column_stack([reducir_dataset(x, how="tsne"), clusters, clus_km, clus_db]), columns=["x", "y", "clusters", "clus_km", "clus_db"]) def mostrar_resultados(res): """Muestra los resultados de los algoritmos """ fig, ax = plt.subplots(1, 3, figsize=(20, 5)) sns.scatterplot(data=res, x="x", y="y", hue="clusters", ax=ax[0], legend="full") ax[0].set_title('Ground Truth') sns.scatterplot(data=res, x="x", y="y", hue="clus_km", ax=ax[1], legend="full") ax[1].set_title('K-Means') sns.scatterplot(data=res, x="x", y="y", hue="clus_db", ax=ax[2], legend="full") ax[2].set_title('DBSCAN') mostrar_resultados(results) kmeans = KMeans(n_clusters=3,init = "k-means++") kmeans.fit(x) labels = kmeans.predict(x) X['Cluster_Km']=labels X.groupby('Cluster_Km').mean() ###Output _____no_output_____ ###Markdown DBSCAN ###Code neigh = NearestNeighbors(n_neighbors=2) nbrs = neigh.fit(x) distances, indices = nbrs.kneighbors(x) distances = np.sort(distances, axis=0) distances = distances[:,1] plt.plot(distances) dbscan = cluster.DBSCAN(eps=0.175, min_samples=5) dbscan.fit(x) clusterDbscan = dbscan.labels_ X['Cluster_DB']=clusterDbscan X.groupby('Cluster_DB').mean() X ###Output _____no_output_____
nbs/03a_parallel.ipynb
###Markdown Parallel> Threading and multiprocessing functions ###Code #export def threaded(f): "Run `f` in a thread, and returns the thread" @wraps(f) def _f(*args, **kwargs): res = Thread(target=f, args=args, kwargs=kwargs) res.start() return res return _f @threaded def _1(): time.sleep(0.05) print("second") @threaded def _2(): time.sleep(0.01) print("first") _1() _2() time.sleep(0.1) #export def startthread(f): "Like `threaded`, but start thread immediately" threaded(f)() @startthread def _(): time.sleep(0.05) print("second") @startthread def _(): time.sleep(0.01) print("first") time.sleep(0.1) #export def set_num_threads(nt): "Get numpy (and others) to use `nt` threads" try: import mkl; mkl.set_num_threads(nt) except: pass try: import torch; torch.set_num_threads(nt) except: pass os.environ['IPC_ENABLE']='1' for o in ['OPENBLAS_NUM_THREADS','NUMEXPR_NUM_THREADS','OMP_NUM_THREADS','MKL_NUM_THREADS']: os.environ[o] = str(nt) ###Output _____no_output_____ ###Markdown This sets the number of threads consistently for many tools, by:1. Set the following environment variables equal to `nt`: `OPENBLAS_NUM_THREADS`,`NUMEXPR_NUM_THREADS`,`OMP_NUM_THREADS`,`MKL_NUM_THREADS`2. Sets `nt` threads for numpy and pytorch. ###Code #export def _call(lock, pause, n, g, item): l = False if pause: try: l = lock.acquire(timeout=pause*(n+2)) time.sleep(pause) finally: if l: lock.release() return g(item) #export class ThreadPoolExecutor(concurrent.futures.ThreadPoolExecutor): "Same as Python's ThreadPoolExecutor, except can pass `max_workers==0` for serial execution" def __init__(self, max_workers=defaults.cpus, on_exc=print, pause=0, **kwargs): if max_workers is None: max_workers=defaults.cpus store_attr() self.not_parallel = max_workers==0 if self.not_parallel: max_workers=1 super().__init__(max_workers, **kwargs) def map(self, f, items, *args, timeout=None, chunksize=1, **kwargs): if self.not_parallel == False: self.lock = Manager().Lock() g = partial(f, *args, **kwargs) if self.not_parallel: return map(g, items) _g = partial(_call, self.lock, self.pause, self.max_workers, g) try: return super().map(_g, items, timeout=timeout, chunksize=chunksize) except Exception as e: self.on_exc(e) show_doc(ThreadPoolExecutor, title_level=4) #export class ProcessPoolExecutor(concurrent.futures.ProcessPoolExecutor): "Same as Python's ProcessPoolExecutor, except can pass `max_workers==0` for serial execution" def __init__(self, max_workers=defaults.cpus, on_exc=print, pause=0, **kwargs): if max_workers is None: max_workers=defaults.cpus store_attr() self.not_parallel = max_workers==0 if self.not_parallel: max_workers=1 super().__init__(max_workers, **kwargs) def map(self, f, items, *args, timeout=None, chunksize=1, **kwargs): if self.not_parallel == False: self.lock = Manager().Lock() g = partial(f, *args, **kwargs) if self.not_parallel: return map(g, items) _g = partial(_call, self.lock, self.pause, self.max_workers, g) try: return super().map(_g, items, timeout=timeout, chunksize=chunksize) except Exception as e: self.on_exc(e) show_doc(ProcessPoolExecutor, title_level=4) #export try: from fastprogress import progress_bar except: progress_bar = None #export def parallel(f, items, *args, n_workers=defaults.cpus, total=None, progress=None, pause=0, threadpool=False, timeout=None, chunksize=1, **kwargs): "Applies `func` in parallel to `items`, using `n_workers`" pool = ThreadPoolExecutor if threadpool else ProcessPoolExecutor with pool(n_workers, pause=pause) as ex: r = ex.map(f,items, *args, timeout=timeout, chunksize=chunksize, **kwargs) if progress and progress_bar: if total is None: total = len(items) r = progress_bar(r, total=total, leave=False) return L(r) def add_one(x, a=1): time.sleep(random.random()/80) return x+a inp,exp = range(50),range(1,51) if sys.platform != "win32": test_eq(parallel(add_one, inp, n_workers=2, progress=False), exp) test_eq(parallel(add_one, inp, threadpool=True, n_workers=2, progress=False), exp) test_eq(parallel(add_one, inp, n_workers=1, a=2), range(2,52)) test_eq(parallel(add_one, inp, n_workers=0), exp) test_eq(parallel(add_one, inp, n_workers=0, a=2), range(2,52)) ###Output _____no_output_____ ###Markdown Use the `pause` parameter to ensure a pause of `pause` seconds between processes starting. This is in case there are race conditions in starting some process, or to stagger the time each process starts, for example when making many requests to a webserver. Set `threadpool=True` to use `ThreadPoolExecutor` instead of `ProcessPoolExecutor`. ###Code from datetime import datetime def print_time(i): time.sleep(random.random()/1000) print(i, datetime.now()) test_n_workers = 0 if sys.platform == "win32" else 2 parallel(print_time, range(5), n_workers=test_n_workers, pause=0.25); ###Output 0 2021-01-22 21:17:38.942321 1 2021-01-22 21:17:39.192929 2 2021-01-22 21:17:39.444098 3 2021-01-22 21:17:39.695087 4 2021-01-22 21:17:39.946463 ###Markdown Note that `f` should accept a collection of items. ###Code #export def run_procs(f, f_done, args): "Call `f` for each item in `args` in parallel, yielding `f_done`" processes = L(args).map(Process, args=arg0, target=f) for o in processes: o.start() yield from f_done() processes.map(Self.join()) #export def _f_pg(obj, queue, batch, start_idx): for i,b in enumerate(obj(batch)): queue.put((start_idx+i,b)) def _done_pg(queue, items): return (queue.get() for _ in items) #export def parallel_gen(cls, items, n_workers=defaults.cpus, **kwargs): "Instantiate `cls` in `n_workers` procs & call each on a subset of `items` in parallel." if n_workers==0: yield from enumerate(list(cls(**kwargs)(items))) return batches = L(chunked(items, n_chunks=n_workers)) idx = L(itertools.accumulate(0 + batches.map(len))) queue = Queue() if progress_bar: items = progress_bar(items, leave=False) f=partial(_f_pg, cls(**kwargs), queue) done=partial(_done_pg, queue, items) yield from run_procs(f, done, L(batches,idx).zip()) class _C: def __call__(self, o): return ((i+1) for i in o) items = range(5) res = L(parallel_gen(_C, items, n_workers=0)) idxs,dat1 = zip(*res.sorted(itemgetter(0))) test_eq(dat1, range(1,6)) if sys.platform != "win32": res = L(parallel_gen(_C, items, n_workers=3)) idxs,dat2 = zip(*res.sorted(itemgetter(0))) test_eq(dat2, dat1) ###Output _____no_output_____ ###Markdown `cls` is any class with `__call__`. It will be passed `args` and `kwargs` when initialized. Note that `n_workers` instances of `cls` are created, one in each process. `items` are then split in `n_workers` batches and one is sent to each `cls`. The function then returns a generator of tuples of item indices and results. ###Code class TestSleepyBatchFunc: "For testing parallel processes that run at different speeds" def __init__(self): self.a=1 def __call__(self, batch): for k in batch: time.sleep(random.random()/4) yield k+self.a x = np.linspace(0,0.99,20) test_n_workers = 0 if sys.platform == "win32" else 2 res = L(parallel_gen(TestSleepyBatchFunc, x, n_workers=test_n_workers)) test_eq(res.sorted().itemgot(1), x+1) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_test.ipynb. Converted 01_basics.ipynb. Converted 02_foundation.ipynb. Converted 03_xtras.ipynb. Converted 03a_parallel.ipynb. Converted 03b_net.ipynb. Converted 04_dispatch.ipynb. Converted 05_transform.ipynb. Converted 07_meta.ipynb. Converted 08_script.ipynb. Converted index.ipynb. ###Markdown Parallel> Threading and multiprocessing functions ###Code #export def threaded(f): "Run `f` in a thread, and returns the thread" @wraps(f) def _f(*args, **kwargs): res = Thread(target=f, args=args, kwargs=kwargs) res.start() return res return _f @threaded def _1(): time.sleep(0.05) print("second") @threaded def _2(): time.sleep(0.01) print("first") _1() _2() time.sleep(0.1) #export def startthread(f): "Like `threaded`, but start thread immediately" threaded(f)() @startthread def _(): time.sleep(0.05) print("second") @startthread def _(): time.sleep(0.01) print("first") time.sleep(0.1) #export def set_num_threads(nt): "Get numpy (and others) to use `nt` threads" try: import mkl; mkl.set_num_threads(nt) except: pass try: import torch; torch.set_num_threads(nt) except: pass os.environ['IPC_ENABLE']='1' for o in ['OPENBLAS_NUM_THREADS','NUMEXPR_NUM_THREADS','OMP_NUM_THREADS','MKL_NUM_THREADS']: os.environ[o] = str(nt) ###Output _____no_output_____ ###Markdown This sets the number of threads consistently for many tools, by:1. Set the following environment variables equal to `nt`: `OPENBLAS_NUM_THREADS`,`NUMEXPR_NUM_THREADS`,`OMP_NUM_THREADS`,`MKL_NUM_THREADS`2. Sets `nt` threads for numpy and pytorch. ###Code #export def _call(lock, pause, n, g, item): l = False if pause: try: l = lock.acquire(timeout=pause*(n+2)) time.sleep(pause) finally: if l: lock.release() return g(item) #export def parallelable(param_name, num_workers, f=None): f_in_main = f == None or sys.modules[f.__module__].__name__ == "__main__" if sys.platform == "win32" and IN_NOTEBOOK and num_workers > 0 and f_in_main: print("Due to IPython and Windows limitation, python multiprocessing isn't available now.") print(f"So `{param_name}` has to be changed to 0 to avoid getting stuck") return False return True #export class ThreadPoolExecutor(concurrent.futures.ThreadPoolExecutor): "Same as Python's ThreadPoolExecutor, except can pass `max_workers==0` for serial execution" def __init__(self, max_workers=defaults.cpus, on_exc=print, pause=0, **kwargs): if max_workers is None: max_workers=defaults.cpus store_attr() self.not_parallel = max_workers==0 if self.not_parallel: max_workers=1 super().__init__(max_workers, **kwargs) def map(self, f, items, *args, timeout=None, chunksize=1, **kwargs): if self.not_parallel == False: self.lock = Manager().Lock() g = partial(f, *args, **kwargs) if self.not_parallel: return map(g, items) _g = partial(_call, self.lock, self.pause, self.max_workers, g) try: return super().map(_g, items, timeout=timeout, chunksize=chunksize) except Exception as e: self.on_exc(e) show_doc(ThreadPoolExecutor, title_level=4) #export class ProcessPoolExecutor(concurrent.futures.ProcessPoolExecutor): "Same as Python's ProcessPoolExecutor, except can pass `max_workers==0` for serial execution" def __init__(self, max_workers=defaults.cpus, on_exc=print, pause=0, **kwargs): if max_workers is None: max_workers=defaults.cpus store_attr() self.not_parallel = max_workers==0 if self.not_parallel: max_workers=1 super().__init__(max_workers, **kwargs) def map(self, f, items, *args, timeout=None, chunksize=1, **kwargs): if not parallelable('max_workers', self.max_workers, f): self.max_workers = 0 self.not_parallel = self.max_workers==0 if self.not_parallel: self.max_workers=1 if self.not_parallel == False: self.lock = Manager().Lock() g = partial(f, *args, **kwargs) if self.not_parallel: return map(g, items) _g = partial(_call, self.lock, self.pause, self.max_workers, g) try: return super().map(_g, items, timeout=timeout, chunksize=chunksize) except Exception as e: self.on_exc(e) show_doc(ProcessPoolExecutor, title_level=4) #export try: from fastprogress import progress_bar except: progress_bar = None #export def parallel(f, items, *args, n_workers=defaults.cpus, total=None, progress=None, pause=0, threadpool=False, timeout=None, chunksize=1, **kwargs): "Applies `func` in parallel to `items`, using `n_workers`" pool = ThreadPoolExecutor if threadpool else ProcessPoolExecutor with pool(n_workers, pause=pause) as ex: r = ex.map(f,items, *args, timeout=timeout, chunksize=chunksize, **kwargs) if progress and progress_bar: if total is None: total = len(items) r = progress_bar(r, total=total, leave=False) return L(r) #export def add_one(x, a=1): # this import is necessary for multiprocessing in notebook on windows import random time.sleep(random.random()/80) return x+a inp,exp = range(50),range(1,51) test_eq(parallel(add_one, inp, n_workers=2, progress=False), exp) test_eq(parallel(add_one, inp, threadpool=True, n_workers=2, progress=False), exp) test_eq(parallel(add_one, inp, n_workers=1, a=2), range(2,52)) test_eq(parallel(add_one, inp, n_workers=0), exp) test_eq(parallel(add_one, inp, n_workers=0, a=2), range(2,52)) ###Output _____no_output_____ ###Markdown Use the `pause` parameter to ensure a pause of `pause` seconds between processes starting. This is in case there are race conditions in starting some process, or to stagger the time each process starts, for example when making many requests to a webserver. Set `threadpool=True` to use `ThreadPoolExecutor` instead of `ProcessPoolExecutor`. ###Code from datetime import datetime def print_time(i): time.sleep(random.random()/1000) print(i, datetime.now()) parallel(print_time, range(5), n_workers=2, pause=0.25); ###Output 0 2021-10-30 06:33:53.045670 1 2021-10-30 06:33:53.296746 2 2021-10-30 06:33:53.549248 3 2021-10-30 06:33:53.801336 4 2021-10-30 06:33:54.052961 ###Markdown Note that `f` should accept a collection of items. ###Code #export def run_procs(f, f_done, args): "Call `f` for each item in `args` in parallel, yielding `f_done`" processes = L(args).map(Process, args=arg0, target=f) for o in processes: o.start() yield from f_done() processes.map(Self.join()) #export def _f_pg(obj, queue, batch, start_idx): for i,b in enumerate(obj(batch)): queue.put((start_idx+i,b)) def _done_pg(queue, items): return (queue.get() for _ in items) #export def parallel_gen(cls, items, n_workers=defaults.cpus, **kwargs): "Instantiate `cls` in `n_workers` procs & call each on a subset of `items` in parallel." if not parallelable('n_workers', n_workers): n_workers = 0 if n_workers==0: yield from enumerate(list(cls(**kwargs)(items))) return batches = L(chunked(items, n_chunks=n_workers)) idx = L(itertools.accumulate(0 + batches.map(len))) queue = Queue() if progress_bar: items = progress_bar(items, leave=False) f=partial(_f_pg, cls(**kwargs), queue) done=partial(_done_pg, queue, items) yield from run_procs(f, done, L(batches,idx).zip()) class _C: def __call__(self, o): return ((i+1) for i in o) items = range(5) res = L(parallel_gen(_C, items, n_workers=0)) idxs,dat1 = zip(*res.sorted(itemgetter(0))) test_eq(dat1, range(1,6)) res = L(parallel_gen(_C, items, n_workers=3)) idxs,dat2 = zip(*res.sorted(itemgetter(0))) test_eq(dat2, dat1) ###Output _____no_output_____ ###Markdown `cls` is any class with `__call__`. It will be passed `args` and `kwargs` when initialized. Note that `n_workers` instances of `cls` are created, one in each process. `items` are then split in `n_workers` batches and one is sent to each `cls`. The function then returns a generator of tuples of item indices and results. ###Code class TestSleepyBatchFunc: "For testing parallel processes that run at different speeds" def __init__(self): self.a=1 def __call__(self, batch): for k in batch: time.sleep(random.random()/4) yield k+self.a x = np.linspace(0,0.99,20) res = L(parallel_gen(TestSleepyBatchFunc, x, n_workers=2)) test_eq(res.sorted().itemgot(1), x+1) #hide from subprocess import Popen, PIPE # test num_workers > 0 in scripts works when python process start method is spawn process = Popen(["python", "parallel_test.py"], stdout=PIPE) _, err = process.communicate(timeout=5) exit_code = process.wait() test_eq(exit_code, 0) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_test.ipynb. Converted 01_basics.ipynb. Converted 02_foundation.ipynb. Converted 03_xtras.ipynb. Converted 03a_parallel.ipynb. Converted 03b_net.ipynb. Converted 04_dispatch.ipynb. Converted 05_transform.ipynb. Converted 06_docments.ipynb. Converted 07_meta.ipynb. Converted 08_script.ipynb. Converted index.ipynb. Converted parallel_win.ipynb. ###Markdown Parallel> Threading and multiprocessing functions ###Code #export def threaded(f): "Run `f` in a thread, and returns the thread" @wraps(f) def _f(*args, **kwargs): res = Thread(target=f, args=args, kwargs=kwargs) res.start() return res return _f @threaded def _1(): time.sleep(0.05) print("second") @threaded def _2(): time.sleep(0.01) print("first") _1() _2() time.sleep(0.1) #export def startthread(f): "Like `threaded`, but start thread immediately" threaded(f)() @startthread def _(): time.sleep(0.05) print("second") @startthread def _(): time.sleep(0.01) print("first") time.sleep(0.1) #export def set_num_threads(nt): "Get numpy (and others) to use `nt` threads" try: import mkl; mkl.set_num_threads(nt) except: pass try: import torch; torch.set_num_threads(nt) except: pass os.environ['IPC_ENABLE']='1' for o in ['OPENBLAS_NUM_THREADS','NUMEXPR_NUM_THREADS','OMP_NUM_THREADS','MKL_NUM_THREADS']: os.environ[o] = str(nt) ###Output _____no_output_____ ###Markdown This sets the number of threads consistently for many tools, by:1. Set the following environment variables equal to `nt`: `OPENBLAS_NUM_THREADS`,`NUMEXPR_NUM_THREADS`,`OMP_NUM_THREADS`,`MKL_NUM_THREADS`2. Sets `nt` threads for numpy and pytorch. ###Code #export def _call(lock, pause, n, g, item): l = False if pause: try: l = lock.acquire(timeout=pause*(n+2)) time.sleep(pause) finally: if l: lock.release() return g(item) #export class ThreadPoolExecutor(concurrent.futures.ThreadPoolExecutor): "Same as Python's ThreadPoolExecutor, except can pass `max_workers==0` for serial execution" def __init__(self, max_workers=defaults.cpus, on_exc=print, pause=0, **kwargs): if max_workers is None: max_workers=defaults.cpus store_attr() self.not_parallel = max_workers==0 if self.not_parallel: max_workers=1 super().__init__(max_workers, **kwargs) def map(self, f, items, *args, timeout=None, chunksize=1, **kwargs): self.lock = Manager().Lock() g = partial(f, *args, **kwargs) if self.not_parallel: return map(g, items) _g = partial(_call, self.lock, self.pause, self.max_workers, g) try: return super().map(_g, items, timeout=timeout, chunksize=chunksize) except Exception as e: self.on_exc(e) show_doc(ThreadPoolExecutor, title_level=4) #export class ProcessPoolExecutor(concurrent.futures.ProcessPoolExecutor): "Same as Python's ProcessPoolExecutor, except can pass `max_workers==0` for serial execution" def __init__(self, max_workers=defaults.cpus, on_exc=print, pause=0, **kwargs): if max_workers is None: max_workers=defaults.cpus store_attr() self.not_parallel = max_workers==0 if self.not_parallel: max_workers=1 super().__init__(max_workers, **kwargs) def map(self, f, items, *args, timeout=None, chunksize=1, **kwargs): self.lock = Manager().Lock() g = partial(f, *args, **kwargs) if self.not_parallel: return map(g, items) _g = partial(_call, self.lock, self.pause, self.max_workers, g) try: return super().map(_g, items, timeout=timeout, chunksize=chunksize) except Exception as e: self.on_exc(e) show_doc(ProcessPoolExecutor, title_level=4) #export try: from fastprogress import progress_bar except: progress_bar = None #export def parallel(f, items, *args, n_workers=defaults.cpus, total=None, progress=None, pause=0, threadpool=False, timeout=None, chunksize=1, **kwargs): "Applies `func` in parallel to `items`, using `n_workers`" if progress is None: progress = progress_bar is not None pool = ThreadPoolExecutor if threadpool else ProcessPoolExecutor with pool(n_workers, pause=pause) as ex: r = ex.map(f,items, *args, timeout=timeout, chunksize=chunksize, **kwargs) if progress: if total is None: total = len(items) r = progress_bar(r, total=total, leave=False) return L(r) def add_one(x, a=1): time.sleep(random.random()/80) return x+a inp,exp = range(50),range(1,51) test_eq(parallel(add_one, inp, n_workers=2, progress=False), exp) test_eq(parallel(add_one, inp, threadpool=True, n_workers=2, progress=False), exp) test_eq(parallel(add_one, inp, n_workers=0), exp) test_eq(parallel(add_one, inp, n_workers=1, a=2), range(2,52)) test_eq(parallel(add_one, inp, n_workers=0, a=2), range(2,52)) ###Output _____no_output_____ ###Markdown Use the `pause` parameter to ensure a pause of `pause` seconds between processes starting. This is in case there are race conditions in starting some process, or to stagger the time each process starts, for example when making many requests to a webserver. Set `threadpool=True` to use `ThreadPoolExecutor` instead of `ProcessPoolExecutor`. ###Code from datetime import datetime def print_time(i): time.sleep(random.random()/1000) print(i, datetime.now()) parallel(print_time, range(5), n_workers=2, pause=0.25); ###Output _____no_output_____ ###Markdown Note that `f` should accept a collection of items. ###Code #export def run_procs(f, f_done, args): "Call `f` for each item in `args` in parallel, yielding `f_done`" processes = L(args).map(Process, args=arg0, target=f) for o in processes: o.start() yield from f_done() processes.map(Self.join()) #export def _f_pg(obj, queue, batch, start_idx): for i,b in enumerate(obj(batch)): queue.put((start_idx+i,b)) def _done_pg(queue, items): return (queue.get() for _ in items) #export def parallel_gen(cls, items, n_workers=defaults.cpus, **kwargs): "Instantiate `cls` in `n_workers` procs & call each on a subset of `items` in parallel." if n_workers==0: yield from enumerate(list(cls(**kwargs)(items))) return batches = L(chunked(items, n_chunks=n_workers)) idx = L(itertools.accumulate(0 + batches.map(len))) queue = Queue() if progress_bar: items = progress_bar(items, leave=False) f=partial(_f_pg, cls(**kwargs), queue) done=partial(_done_pg, queue, items) yield from run_procs(f, done, L(batches,idx).zip()) class _C: def __call__(self, o): return ((i+1) for i in o) items = range(5) res = L(parallel_gen(_C, items, n_workers=3)) idxs,dat1 = zip(*res.sorted(itemgetter(0))) test_eq(dat1, range(1,6)) res = L(parallel_gen(_C, items, n_workers=0)) idxs,dat2 = zip(*res.sorted(itemgetter(0))) test_eq(dat2, dat1) ###Output _____no_output_____ ###Markdown `cls` is any class with `__call__`. It will be passed `args` and `kwargs` when initialized. Note that `n_workers` instances of `cls` are created, one in each process. `items` are then split in `n_workers` batches and one is sent to each `cls`. The function then returns a generator of tuples of item indices and results. ###Code class TestSleepyBatchFunc: "For testing parallel processes that run at different speeds" def __init__(self): self.a=1 def __call__(self, batch): for k in batch: time.sleep(random.random()/4) yield k+self.a x = np.linspace(0,0.99,20) res = L(parallel_gen(TestSleepyBatchFunc, x, n_workers=2)) test_eq(res.sorted().itemgot(1), x+1) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_test.ipynb. Converted 01_basics.ipynb. Converted 02_foundation.ipynb. Converted 03_xtras.ipynb. Converted 03a_parallel.ipynb. Converted 03b_net.ipynb. Converted 04_dispatch.ipynb. Converted 05_transform.ipynb. Converted 07_meta.ipynb. Converted 08_script.ipynb. Converted index.ipynb. ###Markdown Parallel> Threading and multiprocessing functions ###Code #export def threaded(f): "Run `f` in a thread, and returns the thread" @wraps(f) def _f(*args, **kwargs): res = Thread(target=f, args=args, kwargs=kwargs) res.start() return res return _f @threaded def _1(): time.sleep(0.05) print("second") @threaded def _2(): time.sleep(0.01) print("first") _1() _2() time.sleep(0.1) #export def startthread(f): "Like `threaded`, but start thread immediately" threaded(f)() @startthread def _(): time.sleep(0.05) print("second") @startthread def _(): time.sleep(0.01) print("first") time.sleep(0.1) #export def set_num_threads(nt): "Get numpy (and others) to use `nt` threads" try: import mkl; mkl.set_num_threads(nt) except: pass try: import torch; torch.set_num_threads(nt) except: pass os.environ['IPC_ENABLE']='1' for o in ['OPENBLAS_NUM_THREADS','NUMEXPR_NUM_THREADS','OMP_NUM_THREADS','MKL_NUM_THREADS']: os.environ[o] = str(nt) ###Output _____no_output_____ ###Markdown This sets the number of threads consistently for many tools, by:1. Set the following environment variables equal to `nt`: `OPENBLAS_NUM_THREADS`,`NUMEXPR_NUM_THREADS`,`OMP_NUM_THREADS`,`MKL_NUM_THREADS`2. Sets `nt` threads for numpy and pytorch. ###Code #export def _call(lock, pause, n, g, item): l = False if pause: try: l = lock.acquire(timeout=pause*(n+2)) time.sleep(pause) finally: if l: lock.release() return g(item) #export def parallelable(param_name, num_workers, f=None): f_in_main = f == None or sys.modules[f.__module__].__name__ == "__main__" if sys.platform == "win32" and IN_NOTEBOOK and num_workers > 0 and f_in_main: print("Due to IPython and Windows limitation, python multiprocessing isn't available now.") print(f"So `{param_name}` has to be changed to 0 to avoid getting stuck") return False return True #export class ThreadPoolExecutor(concurrent.futures.ThreadPoolExecutor): "Same as Python's ThreadPoolExecutor, except can pass `max_workers==0` for serial execution" def __init__(self, max_workers=defaults.cpus, on_exc=print, pause=0, **kwargs): if max_workers is None: max_workers=defaults.cpus store_attr() self.not_parallel = max_workers==0 if self.not_parallel: max_workers=1 super().__init__(max_workers, **kwargs) def map(self, f, items, *args, timeout=None, chunksize=1, **kwargs): if self.not_parallel == False: self.lock = Manager().Lock() g = partial(f, *args, **kwargs) if self.not_parallel: return map(g, items) _g = partial(_call, self.lock, self.pause, self.max_workers, g) try: return super().map(_g, items, timeout=timeout, chunksize=chunksize) except Exception as e: self.on_exc(e) show_doc(ThreadPoolExecutor, title_level=4) #export class ProcessPoolExecutor(concurrent.futures.ProcessPoolExecutor): "Same as Python's ProcessPoolExecutor, except can pass `max_workers==0` for serial execution" def __init__(self, max_workers=defaults.cpus, on_exc=print, pause=0, **kwargs): if max_workers is None: max_workers=defaults.cpus store_attr() self.not_parallel = max_workers==0 if self.not_parallel: max_workers=1 super().__init__(max_workers, **kwargs) def map(self, f, items, *args, timeout=None, chunksize=1, **kwargs): if not parallelable('max_workers', self.max_workers, f): self.max_workers = 0 self.not_parallel = self.max_workers==0 if self.not_parallel: self.max_workers=1 if self.not_parallel == False: self.lock = Manager().Lock() g = partial(f, *args, **kwargs) if self.not_parallel: return map(g, items) _g = partial(_call, self.lock, self.pause, self.max_workers, g) try: return super().map(_g, items, timeout=timeout, chunksize=chunksize) except Exception as e: self.on_exc(e) show_doc(ProcessPoolExecutor, title_level=4) #export try: from fastprogress import progress_bar except: progress_bar = None #export def parallel(f, items, *args, n_workers=defaults.cpus, total=None, progress=None, pause=0, threadpool=False, timeout=None, chunksize=1, **kwargs): "Applies `func` in parallel to `items`, using `n_workers`" pool = ThreadPoolExecutor if threadpool else ProcessPoolExecutor with pool(n_workers, pause=pause) as ex: r = ex.map(f,items, *args, timeout=timeout, chunksize=chunksize, **kwargs) if progress and progress_bar: if total is None: total = len(items) r = progress_bar(r, total=total, leave=False) return L(r) #export def add_one(x, a=1): # this import is necessary for multiprocessing in notebook on windows import random time.sleep(random.random()/80) return x+a inp,exp = range(50),range(1,51) test_eq(parallel(add_one, inp, n_workers=2, progress=False), exp) test_eq(parallel(add_one, inp, threadpool=True, n_workers=2, progress=False), exp) test_eq(parallel(add_one, inp, n_workers=1, a=2), range(2,52)) test_eq(parallel(add_one, inp, n_workers=0), exp) test_eq(parallel(add_one, inp, n_workers=0, a=2), range(2,52)) ###Output _____no_output_____ ###Markdown Use the `pause` parameter to ensure a pause of `pause` seconds between processes starting. This is in case there are race conditions in starting some process, or to stagger the time each process starts, for example when making many requests to a webserver. Set `threadpool=True` to use `ThreadPoolExecutor` instead of `ProcessPoolExecutor`. ###Code from datetime import datetime def print_time(i): time.sleep(random.random()/1000) print(i, datetime.now()) parallel(print_time, range(5), n_workers=2, pause=0.25); ###Output 0 2021-10-30 06:33:53.045670 1 2021-10-30 06:33:53.296746 2 2021-10-30 06:33:53.549248 3 2021-10-30 06:33:53.801336 4 2021-10-30 06:33:54.052961 ###Markdown Note that `f` should accept a collection of items. ###Code #export def run_procs(f, f_done, args): "Call `f` for each item in `args` in parallel, yielding `f_done`" processes = L(args).map(Process, args=arg0, target=f) for o in processes: o.start() yield from f_done() processes.map(Self.join()) #export def _f_pg(obj, queue, batch, start_idx): for i,b in enumerate(obj(batch)): queue.put((start_idx+i,b)) def _done_pg(queue, items): return (queue.get() for _ in items) #export def parallel_gen(cls, items, n_workers=defaults.cpus, **kwargs): "Instantiate `cls` in `n_workers` procs & call each on a subset of `items` in parallel." if not parallelable('n_workers', n_workers): n_workers = 0 if n_workers==0: yield from enumerate(list(cls(**kwargs)(items))) return batches = L(chunked(items, n_chunks=n_workers)) idx = L(itertools.accumulate(0 + batches.map(len))) queue = Queue() if progress_bar: items = progress_bar(items, leave=False) f=partial(_f_pg, cls(**kwargs), queue) done=partial(_done_pg, queue, items) yield from run_procs(f, done, L(batches,idx).zip()) class _C: def __call__(self, o): return ((i+1) for i in o) items = range(5) res = L(parallel_gen(_C, items, n_workers=0)) idxs,dat1 = zip(*res.sorted(itemgetter(0))) test_eq(dat1, range(1,6)) res = L(parallel_gen(_C, items, n_workers=3)) idxs,dat2 = zip(*res.sorted(itemgetter(0))) test_eq(dat2, dat1) ###Output _____no_output_____ ###Markdown `cls` is any class with `__call__`. It will be passed `args` and `kwargs` when initialized. Note that `n_workers` instances of `cls` are created, one in each process. `items` are then split in `n_workers` batches and one is sent to each `cls`. The function then returns a generator of tuples of item indices and results. ###Code class TestSleepyBatchFunc: "For testing parallel processes that run at different speeds" def __init__(self): self.a=1 def __call__(self, batch): for k in batch: time.sleep(random.random()/4) yield k+self.a x = np.linspace(0,0.99,20) res = L(parallel_gen(TestSleepyBatchFunc, x, n_workers=2)) test_eq(res.sorted().itemgot(1), x+1) #hide from subprocess import Popen, PIPE # test num_workers > 0 in scripts works when python process start method is spawn process = Popen(["python", "parallel_test.py"], stdout=PIPE) _, err = process.communicate(timeout=5) exit_code = process.wait() test_eq(exit_code, 0) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_test.ipynb. Converted 01_basics.ipynb. Converted 02_foundation.ipynb. Converted 03_xtras.ipynb. Converted 03a_parallel.ipynb. Converted 03b_net.ipynb. Converted 04_dispatch.ipynb. Converted 05_transform.ipynb. Converted 06_docments.ipynb. Converted 07_meta.ipynb. Converted 08_script.ipynb. Converted index.ipynb. Converted parallel_win.ipynb. ###Markdown Parallel> Threading and multiprocessing functions ###Code #export def threaded(f): "Run `f` in a thread, and returns the thread" @wraps(f) def _f(*args, **kwargs): res = Thread(target=f, args=args, kwargs=kwargs) res.start() return res return _f @threaded def _1(): time.sleep(0.05) print("second") @threaded def _2(): time.sleep(0.01) print("first") _1() _2() time.sleep(0.1) #export def startthread(f): "Like `threaded`, but start thread immediately" threaded(f)() @startthread def _(): time.sleep(0.05) print("second") @startthread def _(): time.sleep(0.01) print("first") time.sleep(0.1) #export def set_num_threads(nt): "Get numpy (and others) to use `nt` threads" try: import mkl; mkl.set_num_threads(nt) except: pass try: import torch; torch.set_num_threads(nt) except: pass os.environ['IPC_ENABLE']='1' for o in ['OPENBLAS_NUM_THREADS','NUMEXPR_NUM_THREADS','OMP_NUM_THREADS','MKL_NUM_THREADS']: os.environ[o] = str(nt) ###Output _____no_output_____ ###Markdown This sets the number of threads consistently for many tools, by:1. Set the following environment variables equal to `nt`: `OPENBLAS_NUM_THREADS`,`NUMEXPR_NUM_THREADS`,`OMP_NUM_THREADS`,`MKL_NUM_THREADS`2. Sets `nt` threads for numpy and pytorch. ###Code #export def _call(lock, pause, n, g, item): l = False if pause: try: l = lock.acquire(timeout=pause*(n+2)) time.sleep(pause) finally: if l: lock.release() return g(item) #export class ThreadPoolExecutor(concurrent.futures.ThreadPoolExecutor): "Same as Python's ThreadPoolExecutor, except can pass `max_workers==0` for serial execution" def __init__(self, max_workers=defaults.cpus, on_exc=print, pause=0, **kwargs): if max_workers is None: max_workers=defaults.cpus store_attr() self.not_parallel = max_workers==0 if self.not_parallel: max_workers=1 super().__init__(max_workers, **kwargs) def map(self, f, items, *args, timeout=None, chunksize=1, **kwargs): self.lock = Manager().Lock() g = partial(f, *args, **kwargs) if self.not_parallel: return map(g, items) _g = partial(_call, self.lock, self.pause, self.max_workers, g) try: return super().map(_g, items, timeout=timeout, chunksize=chunksize) except Exception as e: self.on_exc(e) show_doc(ThreadPoolExecutor, title_level=4) #export class ProcessPoolExecutor(concurrent.futures.ProcessPoolExecutor): "Same as Python's ProcessPoolExecutor, except can pass `max_workers==0` for serial execution" def __init__(self, max_workers=defaults.cpus, on_exc=print, pause=0, **kwargs): if max_workers is None: max_workers=defaults.cpus store_attr() self.not_parallel = max_workers==0 if self.not_parallel: max_workers=1 super().__init__(max_workers, **kwargs) def map(self, f, items, *args, timeout=None, chunksize=1, **kwargs): self.lock = Manager().Lock() g = partial(f, *args, **kwargs) if self.not_parallel: return map(g, items) _g = partial(_call, self.lock, self.pause, self.max_workers, g) try: return super().map(_g, items, timeout=timeout, chunksize=chunksize) except Exception as e: self.on_exc(e) show_doc(ProcessPoolExecutor, title_level=4) #export try: from fastprogress import progress_bar except: progress_bar = None #export def parallel(f, items, *args, n_workers=defaults.cpus, total=None, progress=None, pause=0, threadpool=False, timeout=None, chunksize=1, **kwargs): "Applies `func` in parallel to `items`, using `n_workers`" pool = ThreadPoolExecutor if threadpool else ProcessPoolExecutor with pool(n_workers, pause=pause) as ex: r = ex.map(f,items, *args, timeout=timeout, chunksize=chunksize, **kwargs) if progress and progress_bar: if total is None: total = len(items) r = progress_bar(r, total=total, leave=False) return L(r) def add_one(x, a=1): time.sleep(random.random()/80) return x+a inp,exp = range(50),range(1,51) test_eq(parallel(add_one, inp, n_workers=2, progress=False), exp) test_eq(parallel(add_one, inp, threadpool=True, n_workers=2, progress=False), exp) test_eq(parallel(add_one, inp, n_workers=0), exp) test_eq(parallel(add_one, inp, n_workers=1, a=2), range(2,52)) test_eq(parallel(add_one, inp, n_workers=0, a=2), range(2,52)) ###Output _____no_output_____ ###Markdown Use the `pause` parameter to ensure a pause of `pause` seconds between processes starting. This is in case there are race conditions in starting some process, or to stagger the time each process starts, for example when making many requests to a webserver. Set `threadpool=True` to use `ThreadPoolExecutor` instead of `ProcessPoolExecutor`. ###Code from datetime import datetime def print_time(i): time.sleep(random.random()/1000) print(i, datetime.now()) parallel(print_time, range(5), n_workers=2, pause=0.25); ###Output _____no_output_____ ###Markdown Note that `f` should accept a collection of items. ###Code #export def run_procs(f, f_done, args): "Call `f` for each item in `args` in parallel, yielding `f_done`" processes = L(args).map(Process, args=arg0, target=f) for o in processes: o.start() yield from f_done() processes.map(Self.join()) #export def _f_pg(obj, queue, batch, start_idx): for i,b in enumerate(obj(batch)): queue.put((start_idx+i,b)) def _done_pg(queue, items): return (queue.get() for _ in items) #export def parallel_gen(cls, items, n_workers=defaults.cpus, **kwargs): "Instantiate `cls` in `n_workers` procs & call each on a subset of `items` in parallel." if n_workers==0: yield from enumerate(list(cls(**kwargs)(items))) return batches = L(chunked(items, n_chunks=n_workers)) idx = L(itertools.accumulate(0 + batches.map(len))) queue = Queue() if progress_bar: items = progress_bar(items, leave=False) f=partial(_f_pg, cls(**kwargs), queue) done=partial(_done_pg, queue, items) yield from run_procs(f, done, L(batches,idx).zip()) class _C: def __call__(self, o): return ((i+1) for i in o) items = range(5) res = L(parallel_gen(_C, items, n_workers=3)) idxs,dat1 = zip(*res.sorted(itemgetter(0))) test_eq(dat1, range(1,6)) res = L(parallel_gen(_C, items, n_workers=0)) idxs,dat2 = zip(*res.sorted(itemgetter(0))) test_eq(dat2, dat1) ###Output _____no_output_____ ###Markdown `cls` is any class with `__call__`. It will be passed `args` and `kwargs` when initialized. Note that `n_workers` instances of `cls` are created, one in each process. `items` are then split in `n_workers` batches and one is sent to each `cls`. The function then returns a generator of tuples of item indices and results. ###Code class TestSleepyBatchFunc: "For testing parallel processes that run at different speeds" def __init__(self): self.a=1 def __call__(self, batch): for k in batch: time.sleep(random.random()/4) yield k+self.a x = np.linspace(0,0.99,20) res = L(parallel_gen(TestSleepyBatchFunc, x, n_workers=2)) test_eq(res.sorted().itemgot(1), x+1) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_test.ipynb. Converted 01_basics.ipynb. Converted 02_foundation.ipynb. Converted 03_xtras.ipynb. Converted 03a_parallel.ipynb. Converted 03b_net.ipynb. Converted 04_dispatch.ipynb. Converted 05_transform.ipynb. Converted 07_meta.ipynb. Converted 08_script.ipynb. Converted index.ipynb. ###Markdown Parallel> Threading and multiprocessing functions ###Code #export def threaded(f): "Run `f` in a thread, and returns the thread" @wraps(f) def _f(*args, **kwargs): res = Thread(target=f, args=args, kwargs=kwargs) res.start() return res return _f @threaded def _1(): time.sleep(0.05) print("second") @threaded def _2(): time.sleep(0.01) print("first") _1() _2() time.sleep(0.1) #export def startthread(f): "Like `threaded`, but start thread immediately" threaded(f)() @startthread def _(): time.sleep(0.05) print("second") @startthread def _(): time.sleep(0.01) print("first") time.sleep(0.1) #export def set_num_threads(nt): "Get numpy (and others) to use `nt` threads" try: import mkl; mkl.set_num_threads(nt) except: pass try: import torch; torch.set_num_threads(nt) except: pass os.environ['IPC_ENABLE']='1' for o in ['OPENBLAS_NUM_THREADS','NUMEXPR_NUM_THREADS','OMP_NUM_THREADS','MKL_NUM_THREADS']: os.environ[o] = str(nt) ###Output _____no_output_____ ###Markdown This sets the number of threads consistently for many tools, by:1. Set the following environment variables equal to `nt`: `OPENBLAS_NUM_THREADS`,`NUMEXPR_NUM_THREADS`,`OMP_NUM_THREADS`,`MKL_NUM_THREADS`2. Sets `nt` threads for numpy and pytorch. ###Code #export def _call(lock, pause, n, g, item): l = False if pause: try: l = lock.acquire(timeout=pause*(n+2)) time.sleep(pause) finally: if l: lock.release() return g(item) #export def parallelable(param_name, num_workers, f=None): f_in_main = f == None or sys.modules[f.__module__].__name__ == "__main__" if sys.platform == "win32" and IN_NOTEBOOK and num_workers > 0 and f_in_main: print("Due to IPython and Windows limitation, python multiprocessing isn't available now.") print(f"So `{param_name}` has to be changed to 0 to avoid getting stuck") return False return True #export class ThreadPoolExecutor(concurrent.futures.ThreadPoolExecutor): "Same as Python's ThreadPoolExecutor, except can pass `max_workers==0` for serial execution" def __init__(self, max_workers=defaults.cpus, on_exc=print, pause=0, **kwargs): if max_workers is None: max_workers=defaults.cpus store_attr() self.not_parallel = max_workers==0 if self.not_parallel: max_workers=1 super().__init__(max_workers, **kwargs) def map(self, f, items, *args, timeout=None, chunksize=1, **kwargs): if self.not_parallel == False: self.lock = Manager().Lock() g = partial(f, *args, **kwargs) if self.not_parallel: return map(g, items) _g = partial(_call, self.lock, self.pause, self.max_workers, g) try: return super().map(_g, items, timeout=timeout, chunksize=chunksize) except Exception as e: self.on_exc(e) show_doc(ThreadPoolExecutor, title_level=4) #export class ProcessPoolExecutor(concurrent.futures.ProcessPoolExecutor): "Same as Python's ProcessPoolExecutor, except can pass `max_workers==0` for serial execution" def __init__(self, max_workers=defaults.cpus, on_exc=print, pause=0, **kwargs): if max_workers is None: max_workers=defaults.cpus store_attr() self.not_parallel = max_workers==0 if self.not_parallel: max_workers=1 super().__init__(max_workers, **kwargs) def map(self, f, items, *args, timeout=None, chunksize=1, **kwargs): if not parallelable('max_workers', self.max_workers, f): self.max_workers = 0 self.not_parallel = self.max_workers==0 if self.not_parallel: self.max_workers=1 if self.not_parallel == False: self.lock = Manager().Lock() g = partial(f, *args, **kwargs) if self.not_parallel: return map(g, items) _g = partial(_call, self.lock, self.pause, self.max_workers, g) try: return super().map(_g, items, timeout=timeout, chunksize=chunksize) except Exception as e: self.on_exc(e) show_doc(ProcessPoolExecutor, title_level=4) #export try: from fastprogress import progress_bar except: progress_bar = None #export def parallel(f, items, *args, n_workers=defaults.cpus, total=None, progress=None, pause=0, threadpool=False, timeout=None, chunksize=1, **kwargs): "Applies `func` in parallel to `items`, using `n_workers`" pool = ThreadPoolExecutor if threadpool else ProcessPoolExecutor with pool(n_workers, pause=pause) as ex: r = ex.map(f,items, *args, timeout=timeout, chunksize=chunksize, **kwargs) if progress and progress_bar: if total is None: total = len(items) r = progress_bar(r, total=total, leave=False) return L(r) #export def add_one(x, a=1): # this import is necessary for multiprocessing in notebook on windows import random time.sleep(random.random()/80) return x+a inp,exp = range(50),range(1,51) test_eq(parallel(add_one, inp, n_workers=2, progress=False), exp) test_eq(parallel(add_one, inp, threadpool=True, n_workers=2, progress=False), exp) test_eq(parallel(add_one, inp, n_workers=1, a=2), range(2,52)) test_eq(parallel(add_one, inp, n_workers=0), exp) test_eq(parallel(add_one, inp, n_workers=0, a=2), range(2,52)) ###Output _____no_output_____ ###Markdown Use the `pause` parameter to ensure a pause of `pause` seconds between processes starting. This is in case there are race conditions in starting some process, or to stagger the time each process starts, for example when making many requests to a webserver. Set `threadpool=True` to use `ThreadPoolExecutor` instead of `ProcessPoolExecutor`. ###Code from datetime import datetime def print_time(i): time.sleep(random.random()/1000) print(i, datetime.now()) parallel(print_time, range(5), n_workers=2, pause=0.25); ###Output 0 2021-02-23 06:38:58.778425 1 2021-02-23 06:38:59.028804 2 2021-02-23 06:38:59.280227 3 2021-02-23 06:38:59.530889 4 2021-02-23 06:38:59.781011 ###Markdown Note that `f` should accept a collection of items. ###Code #export def run_procs(f, f_done, args): "Call `f` for each item in `args` in parallel, yielding `f_done`" processes = L(args).map(Process, args=arg0, target=f) for o in processes: o.start() yield from f_done() processes.map(Self.join()) #export def _f_pg(obj, queue, batch, start_idx): for i,b in enumerate(obj(batch)): queue.put((start_idx+i,b)) def _done_pg(queue, items): return (queue.get() for _ in items) #export def parallel_gen(cls, items, n_workers=defaults.cpus, **kwargs): "Instantiate `cls` in `n_workers` procs & call each on a subset of `items` in parallel." if not parallelable('n_workers', n_workers): n_workers = 0 if n_workers==0: yield from enumerate(list(cls(**kwargs)(items))) return batches = L(chunked(items, n_chunks=n_workers)) idx = L(itertools.accumulate(0 + batches.map(len))) queue = Queue() if progress_bar: items = progress_bar(items, leave=False) f=partial(_f_pg, cls(**kwargs), queue) done=partial(_done_pg, queue, items) yield from run_procs(f, done, L(batches,idx).zip()) class _C: def __call__(self, o): return ((i+1) for i in o) items = range(5) res = L(parallel_gen(_C, items, n_workers=0)) idxs,dat1 = zip(*res.sorted(itemgetter(0))) test_eq(dat1, range(1,6)) res = L(parallel_gen(_C, items, n_workers=3)) idxs,dat2 = zip(*res.sorted(itemgetter(0))) test_eq(dat2, dat1) ###Output _____no_output_____ ###Markdown `cls` is any class with `__call__`. It will be passed `args` and `kwargs` when initialized. Note that `n_workers` instances of `cls` are created, one in each process. `items` are then split in `n_workers` batches and one is sent to each `cls`. The function then returns a generator of tuples of item indices and results. ###Code class TestSleepyBatchFunc: "For testing parallel processes that run at different speeds" def __init__(self): self.a=1 def __call__(self, batch): for k in batch: time.sleep(random.random()/4) yield k+self.a x = np.linspace(0,0.99,20) res = L(parallel_gen(TestSleepyBatchFunc, x, n_workers=2)) test_eq(res.sorted().itemgot(1), x+1) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() from subprocess import Popen, PIPE # test num_workers > 0 in scripts works when python process start method is spawn process = Popen(["python", "parallel_test.py"], stdout=PIPE) _, err = process.communicate(timeout=5) exit_code = process.wait() test_eq(exit_code, 0) ###Output _____no_output_____ ###Markdown Parallel> Threading and multiprocessing functions ###Code #export def threaded(f): "Run `f` in a thread, and returns the thread" @wraps(f) def _f(*args, **kwargs): res = Thread(target=f, args=args, kwargs=kwargs) res.start() return res return _f @threaded def _1(): time.sleep(0.05) print("second") @threaded def _2(): time.sleep(0.01) print("first") _1() _2() time.sleep(0.1) #export def startthread(f): "Like `threaded`, but start thread immediately" threaded(f)() @startthread def _(): time.sleep(0.05) print("second") @startthread def _(): time.sleep(0.01) print("first") time.sleep(0.1) #export def set_num_threads(nt): "Get numpy (and others) to use `nt` threads" try: import mkl; mkl.set_num_threads(nt) except: pass try: import torch; torch.set_num_threads(nt) except: pass os.environ['IPC_ENABLE']='1' for o in ['OPENBLAS_NUM_THREADS','NUMEXPR_NUM_THREADS','OMP_NUM_THREADS','MKL_NUM_THREADS']: os.environ[o] = str(nt) ###Output _____no_output_____ ###Markdown This sets the number of threads consistently for many tools, by:1. Set the following environment variables equal to `nt`: `OPENBLAS_NUM_THREADS`,`NUMEXPR_NUM_THREADS`,`OMP_NUM_THREADS`,`MKL_NUM_THREADS`2. Sets `nt` threads for numpy and pytorch. ###Code #export def _call(lock, pause, n, g, item): l = False if pause: try: l = lock.acquire(timeout=pause*(n+2)) time.sleep(pause) finally: if l: lock.release() return g(item) #export def parallelable(param_name, num_workers, f=None): f_in_main = f == None or sys.modules[f.__module__].__name__ == "__main__" if sys.platform == "win32" and IN_NOTEBOOK and num_workers > 0 and f_in_main: print("Due to IPython and Windows limitation, python multiprocessing isn't available now.") print(f"So `{param_name}` has to be changed to 0 to avoid getting stuck") return False return True #export class ThreadPoolExecutor(concurrent.futures.ThreadPoolExecutor): "Same as Python's ThreadPoolExecutor, except can pass `max_workers==0` for serial execution" def __init__(self, max_workers=defaults.cpus, on_exc=print, pause=0, **kwargs): if max_workers is None: max_workers=defaults.cpus store_attr() self.not_parallel = max_workers==0 if self.not_parallel: max_workers=1 super().__init__(max_workers, **kwargs) def map(self, f, items, *args, timeout=None, chunksize=1, **kwargs): if self.not_parallel == False: self.lock = Manager().Lock() g = partial(f, *args, **kwargs) if self.not_parallel: return map(g, items) _g = partial(_call, self.lock, self.pause, self.max_workers, g) try: return super().map(_g, items, timeout=timeout, chunksize=chunksize) except Exception as e: self.on_exc(e) show_doc(ThreadPoolExecutor, title_level=4) #export class ProcessPoolExecutor(concurrent.futures.ProcessPoolExecutor): "Same as Python's ProcessPoolExecutor, except can pass `max_workers==0` for serial execution" def __init__(self, max_workers=defaults.cpus, on_exc=print, pause=0, **kwargs): if max_workers is None: max_workers=defaults.cpus store_attr() self.not_parallel = max_workers==0 if self.not_parallel: max_workers=1 super().__init__(max_workers, **kwargs) def map(self, f, items, *args, timeout=None, chunksize=1, **kwargs): if not parallelable('max_workers', self.max_workers, f): self.max_workers = 0 self.not_parallel = self.max_workers==0 if self.not_parallel: self.max_workers=1 if self.not_parallel == False: self.lock = Manager().Lock() g = partial(f, *args, **kwargs) if self.not_parallel: return map(g, items) _g = partial(_call, self.lock, self.pause, self.max_workers, g) try: return super().map(_g, items, timeout=timeout, chunksize=chunksize) except Exception as e: self.on_exc(e) show_doc(ProcessPoolExecutor, title_level=4) #export try: from fastprogress import progress_bar except: progress_bar = None #export def parallel(f, items, *args, n_workers=defaults.cpus, total=None, progress=None, pause=0, threadpool=False, timeout=None, chunksize=1, **kwargs): "Applies `func` in parallel to `items`, using `n_workers`" pool = ThreadPoolExecutor if threadpool else ProcessPoolExecutor with pool(n_workers, pause=pause) as ex: r = ex.map(f,items, *args, timeout=timeout, chunksize=chunksize, **kwargs) if progress and progress_bar: if total is None: total = len(items) r = progress_bar(r, total=total, leave=False) return L(r) #export def add_one(x, a=1): # this import is necessary for multiprocessing in notebook on windows import random time.sleep(random.random()/80) return x+a inp,exp = range(50),range(1,51) test_eq(parallel(add_one, inp, n_workers=2, progress=False), exp) test_eq(parallel(add_one, inp, threadpool=True, n_workers=2, progress=False), exp) test_eq(parallel(add_one, inp, n_workers=1, a=2), range(2,52)) test_eq(parallel(add_one, inp, n_workers=0), exp) test_eq(parallel(add_one, inp, n_workers=0, a=2), range(2,52)) ###Output _____no_output_____ ###Markdown Use the `pause` parameter to ensure a pause of `pause` seconds between processes starting. This is in case there are race conditions in starting some process, or to stagger the time each process starts, for example when making many requests to a webserver. Set `threadpool=True` to use `ThreadPoolExecutor` instead of `ProcessPoolExecutor`. ###Code from datetime import datetime def print_time(i): time.sleep(random.random()/1000) print(i, datetime.now()) parallel(print_time, range(5), n_workers=2, pause=0.25); def die_sometimes(x): # if 3<x<6: raise Exception(f"exc: {x}") return x*2 parallel(die_sometimes, range(8)) #export def run_procs(f, f_done, args): "Call `f` for each item in `args` in parallel, yielding `f_done`" processes = L(args).map(Process, args=arg0, target=f) for o in processes: o.start() yield from f_done() processes.map(Self.join()) #export def _f_pg(obj, queue, batch, start_idx): for i,b in enumerate(obj(batch)): queue.put((start_idx+i,b)) def _done_pg(queue, items): return (queue.get() for _ in items) #export def parallel_gen(cls, items, n_workers=defaults.cpus, **kwargs): "Instantiate `cls` in `n_workers` procs & call each on a subset of `items` in parallel." if not parallelable('n_workers', n_workers): n_workers = 0 if n_workers==0: yield from enumerate(list(cls(**kwargs)(items))) return batches = L(chunked(items, n_chunks=n_workers)) idx = L(itertools.accumulate(0 + batches.map(len))) queue = Queue() if progress_bar: items = progress_bar(items, leave=False) f=partial(_f_pg, cls(**kwargs), queue) done=partial(_done_pg, queue, items) yield from run_procs(f, done, L(batches,idx).zip()) class _C: def __call__(self, o): return ((i+1) for i in o) items = range(5) res = L(parallel_gen(_C, items, n_workers=0)) idxs,dat1 = zip(*res.sorted(itemgetter(0))) test_eq(dat1, range(1,6)) res = L(parallel_gen(_C, items, n_workers=3)) idxs,dat2 = zip(*res.sorted(itemgetter(0))) test_eq(dat2, dat1) ###Output _____no_output_____ ###Markdown `cls` is any class with `__call__`. It will be passed `args` and `kwargs` when initialized. Note that `n_workers` instances of `cls` are created, one in each process. `items` are then split in `n_workers` batches and one is sent to each `cls`. The function then returns a generator of tuples of item indices and results. ###Code class TestSleepyBatchFunc: "For testing parallel processes that run at different speeds" def __init__(self): self.a=1 def __call__(self, batch): for k in batch: time.sleep(random.random()/4) yield k+self.a x = np.linspace(0,0.99,20) res = L(parallel_gen(TestSleepyBatchFunc, x, n_workers=2)) test_eq(res.sorted().itemgot(1), x+1) #hide from subprocess import Popen, PIPE # test num_workers > 0 in scripts works when python process start method is spawn process = Popen(["python", "parallel_test.py"], stdout=PIPE) _, err = process.communicate(timeout=5) exit_code = process.wait() test_eq(exit_code, 0) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_test.ipynb. Converted 01_basics.ipynb. Converted 02_foundation.ipynb. Converted 03_xtras.ipynb. Converted 03a_parallel.ipynb. Converted 03b_net.ipynb. Converted 04_dispatch.ipynb. Converted 05_transform.ipynb. Converted 06_docments.ipynb. Converted 07_meta.ipynb. Converted 08_script.ipynb. Converted index.ipynb. Converted parallel_win.ipynb. ###Markdown Parallel> Threading and multiprocessing functions ###Code #export def threaded(f): "Run `f` in a thread, and returns the thread" @wraps(f) def _f(*args, **kwargs): res = Thread(target=f, args=args, kwargs=kwargs) res.start() return res return _f @threaded def _1(): time.sleep(0.05) print("second") @threaded def _2(): time.sleep(0.01) print("first") _1() _2() time.sleep(0.1) #export def startthread(f): "Like `threaded`, but start thread immediately" threaded(f)() @startthread def _(): time.sleep(0.05) print("second") @startthread def _(): time.sleep(0.01) print("first") time.sleep(0.1) #export def set_num_threads(nt): "Get numpy (and others) to use `nt` threads" try: import mkl; mkl.set_num_threads(nt) except: pass try: import torch; torch.set_num_threads(nt) except: pass os.environ['IPC_ENABLE']='1' for o in ['OPENBLAS_NUM_THREADS','NUMEXPR_NUM_THREADS','OMP_NUM_THREADS','MKL_NUM_THREADS']: os.environ[o] = str(nt) ###Output _____no_output_____ ###Markdown This sets the number of threads consistently for many tools, by:1. Set the following environment variables equal to `nt`: `OPENBLAS_NUM_THREADS`,`NUMEXPR_NUM_THREADS`,`OMP_NUM_THREADS`,`MKL_NUM_THREADS`2. Sets `nt` threads for numpy and pytorch. ###Code #export def _call(lock, pause, n, g, item): l = False if pause: try: l = lock.acquire(timeout=pause*(n+2)) time.sleep(pause) finally: if l: lock.release() return g(item) #export def check_parallel_num(param_name, num_workers): if sys.platform == "win32" and IN_NOTEBOOK and num_workers > 0: print("Due to IPython and Windows limitation, python multiprocessing isn't available now.") print(f"So `{param_name}` is changed to 0 to avoid getting stuck") num_workers = 0 return num_workers #export class ThreadPoolExecutor(concurrent.futures.ThreadPoolExecutor): "Same as Python's ThreadPoolExecutor, except can pass `max_workers==0` for serial execution" def __init__(self, max_workers=defaults.cpus, on_exc=print, pause=0, **kwargs): if max_workers is None: max_workers=defaults.cpus store_attr() self.not_parallel = max_workers==0 if self.not_parallel: max_workers=1 super().__init__(max_workers, **kwargs) def map(self, f, items, *args, timeout=None, chunksize=1, **kwargs): if self.not_parallel == False: self.lock = Manager().Lock() g = partial(f, *args, **kwargs) if self.not_parallel: return map(g, items) _g = partial(_call, self.lock, self.pause, self.max_workers, g) try: return super().map(_g, items, timeout=timeout, chunksize=chunksize) except Exception as e: self.on_exc(e) show_doc(ThreadPoolExecutor, title_level=4) #export class ProcessPoolExecutor(concurrent.futures.ProcessPoolExecutor): "Same as Python's ProcessPoolExecutor, except can pass `max_workers==0` for serial execution" def __init__(self, max_workers=defaults.cpus, on_exc=print, pause=0, **kwargs): if max_workers is None: max_workers=defaults.cpus max_workers = check_parallel_num('max_workers', max_workers) store_attr() self.not_parallel = max_workers==0 if self.not_parallel: max_workers=1 super().__init__(max_workers, **kwargs) def map(self, f, items, *args, timeout=None, chunksize=1, **kwargs): if self.not_parallel == False: self.lock = Manager().Lock() g = partial(f, *args, **kwargs) if self.not_parallel: return map(g, items) _g = partial(_call, self.lock, self.pause, self.max_workers, g) try: return super().map(_g, items, timeout=timeout, chunksize=chunksize) except Exception as e: self.on_exc(e) show_doc(ProcessPoolExecutor, title_level=4) #export try: from fastprogress import progress_bar except: progress_bar = None #export def parallel(f, items, *args, n_workers=defaults.cpus, total=None, progress=None, pause=0, threadpool=False, timeout=None, chunksize=1, **kwargs): "Applies `func` in parallel to `items`, using `n_workers`" pool = ThreadPoolExecutor if threadpool else ProcessPoolExecutor with pool(n_workers, pause=pause) as ex: r = ex.map(f,items, *args, timeout=timeout, chunksize=chunksize, **kwargs) if progress and progress_bar: if total is None: total = len(items) r = progress_bar(r, total=total, leave=False) return L(r) def add_one(x, a=1): time.sleep(random.random()/80) return x+a inp,exp = range(50),range(1,51) test_eq(parallel(add_one, inp, n_workers=2, progress=False), exp) test_eq(parallel(add_one, inp, threadpool=True, n_workers=2, progress=False), exp) test_eq(parallel(add_one, inp, n_workers=1, a=2), range(2,52)) test_eq(parallel(add_one, inp, n_workers=0), exp) test_eq(parallel(add_one, inp, n_workers=0, a=2), range(2,52)) ###Output _____no_output_____ ###Markdown Use the `pause` parameter to ensure a pause of `pause` seconds between processes starting. This is in case there are race conditions in starting some process, or to stagger the time each process starts, for example when making many requests to a webserver. Set `threadpool=True` to use `ThreadPoolExecutor` instead of `ProcessPoolExecutor`. ###Code from datetime import datetime def print_time(i): time.sleep(random.random()/1000) print(i, datetime.now()) parallel(print_time, range(5), n_workers=2, pause=0.25); ###Output 0 2021-02-03 09:51:30.561681 1 2021-02-03 09:51:30.812066 2 2021-02-03 09:51:31.063662 3 2021-02-03 09:51:31.313478 4 2021-02-03 09:51:31.564776 ###Markdown Note that `f` should accept a collection of items. ###Code #export def run_procs(f, f_done, args): "Call `f` for each item in `args` in parallel, yielding `f_done`" processes = L(args).map(Process, args=arg0, target=f) for o in processes: o.start() yield from f_done() processes.map(Self.join()) #export def _f_pg(obj, queue, batch, start_idx): for i,b in enumerate(obj(batch)): queue.put((start_idx+i,b)) def _done_pg(queue, items): return (queue.get() for _ in items) #export def parallel_gen(cls, items, n_workers=defaults.cpus, **kwargs): "Instantiate `cls` in `n_workers` procs & call each on a subset of `items` in parallel." n_workers = check_parallel_num('n_workers', n_workers) if n_workers==0: yield from enumerate(list(cls(**kwargs)(items))) return batches = L(chunked(items, n_chunks=n_workers)) idx = L(itertools.accumulate(0 + batches.map(len))) queue = Queue() if progress_bar: items = progress_bar(items, leave=False) f=partial(_f_pg, cls(**kwargs), queue) done=partial(_done_pg, queue, items) yield from run_procs(f, done, L(batches,idx).zip()) class _C: def __call__(self, o): return ((i+1) for i in o) items = range(5) res = L(parallel_gen(_C, items, n_workers=0)) idxs,dat1 = zip(*res.sorted(itemgetter(0))) test_eq(dat1, range(1,6)) res = L(parallel_gen(_C, items, n_workers=3)) idxs,dat2 = zip(*res.sorted(itemgetter(0))) test_eq(dat2, dat1) ###Output _____no_output_____ ###Markdown `cls` is any class with `__call__`. It will be passed `args` and `kwargs` when initialized. Note that `n_workers` instances of `cls` are created, one in each process. `items` are then split in `n_workers` batches and one is sent to each `cls`. The function then returns a generator of tuples of item indices and results. ###Code class TestSleepyBatchFunc: "For testing parallel processes that run at different speeds" def __init__(self): self.a=1 def __call__(self, batch): for k in batch: time.sleep(random.random()/4) yield k+self.a x = np.linspace(0,0.99,20) res = L(parallel_gen(TestSleepyBatchFunc, x, n_workers=2)) test_eq(res.sorted().itemgot(1), x+1) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() from subprocess import Popen, PIPE # test num_workers > 0 in scripts works when python process start method is spawn process = Popen(["python", "parallel_test.py"], stdout=PIPE) _, err = process.communicate(timeout=5) exit_code = process.wait() test_eq(exit_code, 0) ###Output _____no_output_____
Content/code/3. Grav_Mag_modeling/3.4. Prism_modeling/.ipynb_checkpoints/2. 3D_modelagem_mag_prisma-checkpoint.ipynb
###Markdown Modelagem magnética 3D de um prisma retangular **[Referências]*** Nagy, D., G. Papp, and J. Benedek (2000), The gravitational potential and its derivatives for the prism: Journal of Geodesy, 74, 552–560, doi: 10.1007/s001900000116. Importando as bibliotecas ###Code import numpy as np import matplotlib.pyplot as plt import prism_mag ###Output _____no_output_____ ###Markdown Gerando os parâmetros do sistema de coordenadas ###Code Nx = 100 Ny = 50 area = [-1000.,1000.,-1000.,1000.] shape = (Nx,Ny) x = np.linspace(area[0],area[1],num=Nx) y = np.linspace(area[2],area[3],num=Ny) yc,xc = np.meshgrid(y,x) voo = -200. zc = voo*np.ones_like(xc) coordenadas = np.array([yc.ravel(),xc.ravel(),zc.ravel()]) ###Output _____no_output_____ ###Markdown Gerando os parâmetros do prisma ###Code intensidades = np.array([50.]) direcoes = np.array([[-50.,-20.]]) modelo = np.array([[-50,50,-450,450,50,250]]) ###Output _____no_output_____ ###Markdown Cálculo das componentes do campo de gravidade e do potencial ###Code bz = prism_mag.magnetic(coordenadas,modelo,intensidades,direcoes,field="b_z") bx = prism_mag.magnetic(coordenadas,modelo,intensidades,direcoes,field="b_x") by = prism_mag.magnetic(coordenadas,modelo,intensidades,direcoes,field="b_y") ###Output _____no_output_____ ###Markdown Anomalia de campo total aproximada ###Code I0,D0 = -20.,-20. j0x = np.cos(np.deg2rad(I0))*np.cos(np.deg2rad(D0)) j0y = np.cos(np.deg2rad(I0))*np.sin(np.deg2rad(D0)) j0z = np.sin(np.deg2rad(I0)) tfa = j0x*bx + j0y*by + j0z*bz ###Output _____no_output_____ ###Markdown Visualização dos dados calculados ###Code title_font = 18 bottom_font = 15 plt.close('all') plt.figure(figsize=(10,10), tight_layout=True) plt.subplot(2,2,1) plt.xlabel('y (m)', fontsize = title_font) plt.ylabel('x (m)', fontsize = title_font) plt.title('Bx (nT)', fontsize=title_font) plt.pcolor(yc,xc,bx.reshape(shape),shading='auto',cmap='jet') plt.tick_params(axis='both', which='major', labelsize=bottom_font) cb = plt.colorbar(pad=0.01, aspect=40, shrink=1.0) cb.ax.tick_params(labelsize=bottom_font) plt.subplot(2,2,2) plt.xlabel('y (m)', fontsize = title_font) plt.ylabel('x (m)', fontsize = title_font) plt.title('By (nT)', fontsize=title_font) plt.pcolor(yc,xc,by.reshape(shape),shading='auto',cmap='jet') plt.tick_params(axis='both', which='major', labelsize=bottom_font) cb = plt.colorbar(pad=0.01, aspect=40, shrink=1.0) cb.ax.tick_params(labelsize=bottom_font) plt.subplot(2,2,3) plt.xlabel('y (m)', fontsize = title_font) plt.ylabel('x (m)', fontsize = title_font) plt.title('Bz (nT)', fontsize=title_font) plt.pcolor(yc,xc,bz.reshape(shape),shading='auto',cmap='jet') plt.tick_params(axis='both', which='major', labelsize=bottom_font) cb = plt.colorbar(pad=0.01, aspect=40, shrink=1.0) cb.ax.tick_params(labelsize=bottom_font) plt.subplot(2,2,4) plt.xlabel('y (m)', fontsize = title_font) plt.ylabel('x (m)', fontsize = title_font) plt.title('TFA (nT)', fontsize=title_font) plt.pcolor(yc,xc,tfa.reshape(shape),shading='auto',cmap='jet') plt.tick_params(axis='both', which='major', labelsize=bottom_font) cb = plt.colorbar(pad=0.01, aspect=40, shrink=1.0) cb.ax.tick_params(labelsize=bottom_font) file_name = 'images/forward_modeling_prism_mag_tot_HS' plt.savefig(file_name+'.png',dpi=300) plt.show() ###Output _____no_output_____
boston-house-pricing-linear-regression.ipynb
###Markdown Compare Custom SGD with Sklearn SGD ###Code # Sklearn SGD # The mean squared error print("Mean squared error: %.2f" % mean_squared_error(Y_test, Y_pred)) # Explained variance score: 1 is perfect prediction print("Variance score: %.2f" % r2_score(Y_test, Y_pred)) # The mean absolute error print("Mean Absolute Error: %.2f" % mean_absolute_error(Y_test, Y_pred)) # Implemented SGD # The mean squared error error = cost_function(optimal_b, optimal_w, np.asmatrix(x_test), np.asmatrix(y_test)) print("Mean squared error: %.2f" % (error)) # Explained variance score : 1 is perfect prediction r_squared = r_sq_score(optimal_b, optimal_w, np.asmatrix(x_test), np.asmatrix(y_test)) print("Variance score: %.2f" % r_squared) absolute_error = absolute_cost_function(optimal_b, optimal_w, np.asmatrix(x_test), np.asmatrix(y_test)) print("Mean Absolute Error: %.2f" % absolute_error) # Scatter plot of test vs predicted # sklearn SGD plt.figure(1) plt.subplot(211) plt.scatter(Y_test, Y_pred) plt.xlabel("Prices: $Y_i$") plt.ylabel("Predicted prices: $\hat{Y}_i$") plt.title("Prices vs Predicted prices: Sklearn SGD") plt.show() # Implemented SGD plt.subplot(212) plt.scatter([y_test], [(np.dot(np.asmatrix(x_test), optimal_w) + optimal_b)]) plt.xlabel("Prices: $Y_i$") plt.ylabel("Predicted prices: $\hat{Y}_i$") plt.title("Prices vs Predicted prices: Implemented SGD") plt.show() # Distribution of error delta_y_im = np.asmatrix(y_test) - (np.dot(np.asmatrix(x_test), optimal_w) + optimal_b) delta_y_sk = Y_test - Y_pred import seaborn as sns; import numpy as np; sns.set_style('whitegrid') sns.kdeplot(np.asarray(delta_y_im)[0], label = "Implemented SGD", bw = 0.5) sns.kdeplot(np.array(delta_y_sk), label = "Sklearn SGD", bw = 0.5) plt.title("Distribution of error: $y_i$ - $\hat{y}_i$") plt.xlabel("Error") plt.ylabel("Density") plt.legend() plt.show() # Distribution of predicted value sns.set_style('whitegrid') sns.kdeplot(np.array(np.dot(np.asmatrix(x_test), optimal_w) + optimal_b).T[0], label = "Implemented SGD") sns.kdeplot(Y_pred, label = "Sklearn SGD") plt.title("Distribution of prediction $\hat{y}_i$") plt.xlabel("predicted values") plt.ylabel("Density") plt.show() from prettytable import PrettyTable # MSE = mean squared error # MAE =mean absolute error x=PrettyTable()#np.asmatrix(x_test), x.field_names=['Model','Weight Vector','MSE','MAE', 'Variance Score'] x.add_row(['sklearn',sklearn_w,mean_squared_error(Y_test, clf_.predict(X_test)),mean_absolute_error(Y_test, clf_.predict(X_test)),r2_score(Y_test, Y_pred)]) x.add_row(['custom',optimal_w,error,absolute_error,r_squared]) print(x) sklearn_pred=clf_.predict(x_test) implemented_pred=(np.dot(np.asmatrix(x_test), optimal_w) + optimal_b) x=PrettyTable() x.field_names=['SKLearn SGD predicted value','Implemented SGD predicted value'] for itr in range(15): x.add_row([sklearn_pred[itr],implemented_pred[itr]]) print(x) ###Output +-----------------------------+---------------------------------+ | SKLearn SGD predicted value | Implemented SGD predicted value | +-----------------------------+---------------------------------+ | 11.010976872064473 | [[9.34267897]] | | 28.13265575430431 | [[21.81915391]] | | 32.610429206840855 | [[27.97043084]] | | 19.47265691695546 | [[22.43740506]] | | 26.99547481859689 | [[20.51530473]] | | 18.17885314254281 | [[15.23322088]] | | 6.450183867637406 | [[10.74021524]] | | 25.429866825378358 | [[23.82642385]] | | 21.60484164577307 | [[19.48934147]] | | 24.084364627932437 | [[21.50028139]] | | 6.151923708168887 | [[7.03308681]] | | 27.77673286644099 | [[21.02386188]] | | 10.057460526020344 | [[7.98370263]] | | 15.644363660603457 | [[16.73402384]] | | 23.502153086425825 | [[21.90299932]] | +-----------------------------+---------------------------------+
NARX_weather.ipynb
###Markdown ###Code # https://sysidentpy.org/ !pip install sysidentpy !pip install matplotlib==3.1.3 import numpy as np import pandas as pd import matplotlib.pyplot as plt from sysidentpy.metrics import mean_squared_error from sysidentpy.utils.generate_data import get_siso_data # Generate a dataset of a simulated dynamical system x_train, x_valid, y_train, y_valid = get_siso_data( n=1000, colored_noise=False, sigma=0.001, train_percentage=80 ) print(np.shape(x_train)) # Polynomial NARX from sysidentpy.model_structure_selection import FROLS from sysidentpy.basis_function._basis_function import Polynomial from sysidentpy.utils.display_results import results from sysidentpy.utils.plotting import plot_residues_correlation, plot_results from sysidentpy.residues.residues_correlation import compute_residues_autocorrelation, compute_cross_correlation from sysidentpy.metrics._regression import root_relative_squared_error basis_function = Polynomial(degree=3) model = FROLS( order_selection=True, n_info_values=10, extended_least_squares=False, ylag=2, xlag=2, info_criteria='aic', estimator='least_squares', basis_function=basis_function ) model.fit(X=x_train, y=y_train) yhat = model.predict(X=x_valid, y=y_valid) rrse = root_relative_squared_error(y_valid, yhat) print(rrse) r = pd.DataFrame( results( model.final_model, model.theta, model.err, model.n_terms, err_precision=8, dtype='sci' ), columns=['Regressors', 'Parameters', 'ERR']) print(r) #!python -m pip uninstall matplotlib #!pip install matplotlib==3.1.3 plot_results(y=y_valid, yhat=yhat, n=1000) ee = compute_residues_autocorrelation(y_valid, yhat) plot_residues_correlation(data=ee, title="Residues", ylabel="$e^2$") #x1e = compute_cross_correlation(y_valid, yhat, x2_val) #plot_residues_correlation(data=x1e, title="Residues", ylabel="$x_1e$") from torch import nn from sysidentpy.neural_network import NARXNN class NARX(nn.Module): def __init__(self): super().__init__() self.lin = nn.Linear(4, 10) self.lin2 = nn.Linear(10, 10) self.lin3 = nn.Linear(10, 1) self.tanh = nn.Tanh() def forward(self, xb): z = self.lin(xb) z = self.tanh(z) z = self.lin2(z) z = self.tanh(z) z = self.lin3(z) return z narx_net = NARXNN( net=NARX(), ylag=2, xlag=2, loss_func='mse_loss', optimizer='Adam', epochs=200, verbose=False, optim_params={'betas': (0.9, 0.999), 'eps': 1e-05} # optional parameters of the optimizer ) train_dl = narx_net.data_transform(x_train, y_train) valid_dl = narx_net.data_transform(x_valid, y_valid) narx_net.fit(train_dl, valid_dl) yhat = narx_net.predict(x_valid, y_valid) ee, ex, extras, lam = narx_net.residuals(x_valid, y_valid, yhat) narx_net.plot_result(y_valid, yhat, ee, ex) ###Output /usr/local/lib/python3.7/dist-packages/sysidentpy/utils/deprecation.py:37: FutureWarning: Function __init__ has been deprecated since v0.1.7. Use NARXNN(ylag=2, xlag=2, basis_function='Some basis function') instead.This module was deprecated in favor of NARXNN(ylag=2, xlag=2, basis_function='Some basis function') module into which all the refactored classes and functions are moved. This feature will be removed in version v0.2.0. warnings.warn(message, FutureWarning) /usr/local/lib/python3.7/dist-packages/sysidentpy/utils/deprecation.py:37: FutureWarning: Function residuals has been deprecated since v0.1.7. Use from sysidentpy.residues_correlation import compute_cross_correlation, compute_residues_autocorrelation instead.This module was deprecated in favor of from sysidentpy.residues_correlation import compute_cross_correlation, compute_residues_autocorrelation module into which all the refactored classes and functions are moved. This feature will be removed in version v0.2.0. warnings.warn(message, FutureWarning)
1_3_Types_of_Features_Image_Segmentation/3. K-means.ipynb
###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) ###Output _____no_output_____ ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) ## TODO: Select a value for k # then perform k-means clustering k = 3 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) cv2.kmeans? ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==1, cmap='gray') # mask an image segment by cluster cluster = 0 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [0, 255, 0] f, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,10)) ax1.imshow(image) ax2.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) ###Output _____no_output_____ ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) ## TODO: Select a value for k # then perform k-means clustering k = 3 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==0, cmap='gray') # mask an image segment by cluster cluster = 0 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [0, 255, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) print(image.shape) ###Output (2000, 3008, 3) ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) print(pixel_vals) # Convert to float type pixel_vals = np.float32(pixel_vals) ###Output [[33 66 23] [33 66 23] [33 66 23] ... [23 44 11] [24 43 11] [24 43 11]] ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) #EPS = epsilon =0.2 if mean taken moves the center by less than this value indicate stop of kmeans ## TODO: Select a value for k # then perform k-means clustering k = 3 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) #None = no labels #10 = no.of iteration #we assign cluster centre randomly print(labels) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) print(segmented_data) print(centers) print(labels_reshape) ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==2, cmap='gray') #3 cluster 0,1,2 # mask an image segment by cluster cluster = 2 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [0, 255, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) image_copy = np.copy(image) print(image_copy.shape) pixel_vals = image_copy.reshape((-1,3)) print(pixel_vals.shape) # Convert to float type pixel_vals = np.float32(pixel_vals) ###Output (2000, 3008, 3) (6016000, 3) ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) ## TODO: Select a value for k # then perform k-means clustering k = 3 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) segmented_data labels.flatten() ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==0, cmap='gray') # mask an image segment by cluster cluster = 0 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [0, 255, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) ###Output _____no_output_____ ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 40, 1.0) ## TODO: Select a value for k # then perform k-means clustering k = 3 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==2, cmap='gray') # mask an image segment by cluster cluster = 2 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [0, 0, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/pancakes.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) image.shape ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) pixel_vals.shape ###Output _____no_output_____ ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) ## TODO: Select a value for k # then perform k-means clustering k = 3 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==0, cmap='gray') # mask an image segment by cluster cluster = 0 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [0, 255, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) pixel_vals? ###Output _____no_output_____ ###Markdown Implement k-means clustering kmeans referencehttps://docs.opencv.org/3.0-beta/doc/py_tutorials/py_ml/py_kmeans/py_kmeans_opencv/py_kmeans_opencv.html ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) ## TODO: Select a value for k # then perform k-means clustering k = 3 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) image.shape[0] * image.shape[1] labels? centers ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==0, cmap='gray') # mask an image segment by cluster cluster = 0 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [0, 255, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) ###Output _____no_output_____ ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) ## TODO: Select a value for k # then perform k-means clustering k = 5 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==1, cmap='gray') # mask an image segment by cluster cluster = 0 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [0, 255, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) ###Output _____no_output_____ ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) ## TODO: Select a value for k # then perform k-means clustering k = 3 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==0, cmap='gray') # mask an image segment by cluster cluster = 0 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [0, 255, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) ###Output _____no_output_____ ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) ## TODO: Select a value for k # then perform k-means clustering k = 9 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==8, cmap='gray') # mask an image segment by cluster cluster = 3 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [255, 0, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/pancakes.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) ###Output _____no_output_____ ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 0.2) ## TODO: Select a value for k # then perform k-means clustering k = 3 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==2, cmap='gray') plt.imshow(labels_reshape==1, cmap='gray') # mask an image segment by cluster cluster = 0 # the first cluster masked_image = np.copy(image) # turn the mask red! masked_image[labels_reshape == cluster] = [255, 0, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) ###Output _____no_output_____ ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) ## TODO: Select a value for k # then perform k-means clustering k = 3 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==0, cmap='gray') # mask an image segment by cluster cluster = 0 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [0, 255, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) ###Output _____no_output_____ ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) ## TODO: Select a value for k # then perform k-means clustering k = 3 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==0, cmap='gray') # mask an image segment by cluster cluster = 0 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [0, 255, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) ###Output _____no_output_____ ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) ## TODO: Select a value for k # then perform k-means clustering k = 3 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==0, cmap='gray') # mask an image segment by cluster cluster = 0 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [255, 0, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) # input (# of pixels, # of color channels) pixel_vals = image.reshape((-1,3)) # Convert to float type - for kmeans pixel_vals = np.float32(pixel_vals) ###Output _____no_output_____ ###Markdown Implement k-means clustering ###Code # define stopping criteria # Input (100 is max # iterations, 0.2 is amount the center must move to iterate again) criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) # Select a value for k then perform k-means clustering # Input (converted pixel values, k, labels, stop criteria, # of attempts, how we coose initial center points) k = 3 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data back into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data back into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) ## TODO: Visualize one segment, try to find which is the leaves, background, etc! # Shows the labels equal to 1 plt.imshow(labels_reshape==1, cmap='gray') # mask an image segment by cluster cluster = 0 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [0, 255, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) ###Output _____no_output_____ ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) ## TODO: Select a value for k # then perform k-means clustering k = 3 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==2, cmap='gray') # mask an image segment by cluster cluster = 0 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [0, 255, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/orange2.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) ###Output _____no_output_____ ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) ## TODO: Select a value for k # then perform k-means clustering k = 3 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==0, cmap='gray') # mask an image segment by cluster cluster = 1 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [0, 255, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) ###Output _____no_output_____ ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 0.2) ## TODO: Select a value for k # then perform k-means clustering k = 3 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==0, cmap='gray') # mask an image segment by cluster cluster = 0 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [0, 255, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) ###Output _____no_output_____ ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) ## TODO: Select a value for k # then perform k-means clustering k = 3 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==0, cmap='gray') # mask an image segment by cluster cluster = 0 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [0, 255, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) print(image.shape) ###Output (2000, 3008, 3) ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) print(pixel_vals.shape) ###Output (6016000, 3) ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.01) ## TODO: Select a value for k # then perform k-means clustering k = 6 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==5, cmap='gray') # mask an image segment by cluster cluster = 0 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == 3] = [0, 0, 0] masked_image[labels_reshape == 5] = [0, 0, 0] #masked_image[labels_reshape == 2] = [0, 255, 0] #masked_image[labels_reshape == 4] = [0, 255, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) ###Output _____no_output_____ ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) ## TODO: Select a value for k # then perform k-means clustering k = 3 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==0, cmap='gray') # mask an image segment by cluster cluster = 0 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [0, 255, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) image.shape ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) pixel_vals.shape ###Output _____no_output_____ ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) ## TODO: Select a value for k # then perform k-means clustering k = 3 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==2, cmap='gray') # mask an image segment by cluster cluster = 0 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [0, 255, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) ###Output _____no_output_____ ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) ## TODO: Select a value for k # then perform k-means clustering k = 3 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==2, cmap='gray') # mask an image segment by cluster cluster = 2 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [0, 255, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) ###Output _____no_output_____ ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) ## TODO: Select a value for k # then perform k-means clustering k = 4 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==0) plt.imshow(labels_reshape==1) plt.imshow(labels_reshape==2) plt.imshow(labels_reshape==3) # mask an image segment by cluster cluster = 0 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [0, 255, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) ###Output _____no_output_____ ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 50, 1) ## TODO: Select a value for k # then perform k-means clustering k = 8 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) print(segmented_image.shape) # dsize dsize = (400, 300) # resize image output = cv2.resize(segmented_image, dsize) plt.imshow(output) print(output.shape) output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) cv2.imwrite( "kmeans.jpg", output ); ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==2, cmap='gray') # mask an image segment by cluster cluster = 0 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [0, 255, 0] plt.imshow(masked_image) ###Output _____no_output_____ ###Markdown K-means Clustering Import resources and display image ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the image ## TODO: Check out the images directory to see other images you can work with # And select one! image = cv2.imread('images/monarch.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) ###Output _____no_output_____ ###Markdown Prepare data for k-means ###Code # Reshape image into a 2D array of pixels and 3 color values (RGB) pixel_vals = image.reshape((-1,3)) # Convert to float type pixel_vals = np.float32(pixel_vals) ###Output _____no_output_____ ###Markdown Implement k-means clustering ###Code # define stopping criteria # you can change the number of max iterations for faster convergence! criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) ## TODO: Select a value for k # then perform k-means clustering k = 3 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) segmented_data = centers[labels.flatten()] # reshape data into the original image dimensions segmented_image = segmented_data.reshape((image.shape)) labels_reshape = labels.reshape(image.shape[0], image.shape[1]) plt.imshow(segmented_image) ## TODO: Visualize one segment, try to find which is the leaves, background, etc! plt.imshow(labels_reshape==0, cmap='gray') # mask an image segment by cluster cluster = 0 # the first cluster masked_image = np.copy(image) # turn the mask green! masked_image[labels_reshape == cluster] = [0, 255, 0] plt.imshow(masked_image) ###Output _____no_output_____
XGBoost/xgBoost_shap.ipynb
###Markdown **XGBoost_shap** **1.Abstract**The notebook aims to explore using shap for the model interpretability **1.1.Shapley values**Shapley values calculate the importance of a feature by comparing what a model predicts with and without the feature. However, since the order in which a model sees features can affect its predictions, this is done in every possible order, so that the features are fairly compared. **2.xgboost shap** ###Code import xgboost import shap import numpy as np from matplotlib import pyplot import pandas as pd from sklearn.preprocessing import OneHotEncoder # load JS visualization code to notebook shap.initjs() ###Output _____no_output_____ ###Markdown **3. Loading Data in csv** ###Code data = pd.read_csv('C:/Users/abhig/Desktop/Linera Regression/insurance.csv') data.head() ###Output _____no_output_____ ###Markdown **4.Data Preprocessing** **4.1.Encoding** ###Code data['sex'] = data.sex.map({'male':0, 'female':1}) data['smoker'] = data.smoker.map({'no':0, 'yes':1}) data.head(20) ###Output _____no_output_____ ###Markdown **4.2.One hot Enocding** ###Code # creating instance of one-hot-encoder enc = OneHotEncoder() # passing bridge-types-cat column (label encoded values of bridge_types) enc_df = pd.DataFrame(enc.fit_transform(data[['region']]).toarray()) enc_df enc_df.columns = ['northeast','northwest','southeast','southwest'] enc_df.apply(np.int64) data =data.join(enc_df) data=data.drop(['region'],axis=1) data ###Output _____no_output_____ ###Markdown **4.3.Spliting the data traina and test** ###Code from sklearn.model_selection import train_test_split X = data[ ['age', 'bmi', 'children', 'smoker','northeast','northwest', 'southeast', 'southwest']] y = data['charges'] X_t, X_test, y_t, y_test = train_test_split(X, y, test_size=0.05, random_state=1) X_train, X_val, y_train, y_val = train_test_split(X_t, y_t, test_size=0.15, random_state=1) ###Output _____no_output_____ ###Markdown **5.Shap** **5.1.Shap Force plot** ###Code # train XGBoost model model = xgboost.train({"learning_rate": 0.01}, xgboost.DMatrix(X, label=y), 100) explainer = shap.TreeExplainer(model) shap_values = explainer.shap_values(X) # visualize the first prediction's explanation (use matplotlib=True to avoid Javascript) shap.force_plot(explainer.expected_value, shap_values[1,:], X.iloc[1,:]) shap.force_plot(explainer.expected_value, shap_values[25,:], X.iloc[25,:]) ###Output _____no_output_____
tasks/extract_keywords/notebooks/pdf_keyword_extraction.ipynb
###Markdown Reading the data ###Code # Reading data INPUT_PATH = os.path.join(PROJECT_ROOT, "tasks", "extract_text", "output") with open(os.path.join(INPUT_PATH, "pdf_files.json")) as json_file: data = json.load(json_file) df = pd.DataFrame( { "filename": data.keys(), "country": [i["Country"] for i in data.values()], "text": [i["Text"] for i in data.values()] } ) # Creating word count field df['word_count'] = df['text'].apply(lambda x: len(str(x).split(" "))) df.count() # Removing document without text rmv = df.index[df['word_count'] == 1].tolist() print(df.loc[rmv, 'filename']) df = df.drop(rmv).reset_index(drop=True) df.count() # Removing badly read documents bad_docs = ["CreditoGanadero_Mexico", "Ley Especial Cafe_ElSalvador", "Sembrando Vida Report"] df = df.drop(df.index[df['filename'].isin(bad_docs)].tolist()).reset_index(drop=True) df.count() df.head() df.count() ###Output _____no_output_____ ###Markdown Preprocessing the data Experiment: Using a stanza pipeline -> turns out that lemmatization is not as necessary for now ###Code # import stanza # nlp = stanza.Pipeline(lang='es', processors='tokenize,mwt,pos,lemma') # lemmatize_pipeline = stanza.Pipeline(lang='es', processors='tokenize, lemma') # def lemmatize_text(text): # lemmatized_text = lemmatize_pipeline(text) # return " ".join([word.lemma for sentence in lemmatized_text.sentences for word in sentence.words]) # df["pre_pretext"] = df["pre_pretext"].apply(lambda x: lemmatize_text(x)) ###Output _____no_output_____ ###Markdown Mix common stopwords with words that we know are frequent, such as dates ###Code spa_stopwords = set(stopwords.words('spanish')) extra_stopwords = {"ley", "artículo", "ser", "así", "según", "nº", "diario", "enero", "febrero", "marzo", "abril", "mayo", "junio", "julio", "agosto", "setiembre", "octubre", "noviembre", "diciembre", "lunes", "martes", "miercoles", "jueves", "viernes", "sabado", "domingo"} spa_stopwords = spa_stopwords.union(extra_stopwords) prep = CorpusPreprocess( language='spanish', stop_words=spa_stopwords, lowercase=True, strip_accents=True, strip_numbers=True, punctuation_list=punctuation, strip_urls=True, # stemmer=SnowballStemmer('spanish'), max_df=0.9, min_df=2 ) df['prep_text'] = prep.fit_transform(df['text'], tokenize=False) df.head() ###Output _____no_output_____ ###Markdown Word count for each document ###Code # Fetch word count for each document df['word_count'].plot(kind='box') plt.show() # Describe word count df['word_count'].describe() ###Output _____no_output_____ ###Markdown Should we weight each document? Otherwise we could find keywords that do not represent each document in the same way. Bag-of-Words ###Code # Count Vectorizer cv = CountVectorizer(max_features=20000, ngram_range=(1,7)) bow_X = cv.fit_transform(df['prep_text']) # Get top uni-grams top_unigrams = get_top_n_ngrams(bow_X, cv.vocabulary_, 1, 20) plt.bar(top_unigrams.keys(), top_unigrams.values()) plt.xticks(rotation=90) plt.ylabel('freq') plt.title('Top 20 unigrams') plt.show() # Get top bi-grams top_bigrams = get_top_n_ngrams(bow_X, cv.vocabulary_, 2, 20) plt.bar(top_bigrams.keys(), top_bigrams.values()) plt.xticks(rotation=90) plt.ylabel('freq') plt.title('Top 20 bigrams') plt.show() # Get top tri-grams top_trigrams = get_top_n_ngrams(bow_X, cv.vocabulary_, 3, 20) plt.bar(top_trigrams.keys(), top_trigrams.values()) plt.xticks(rotation=90) plt.ylabel('freq') plt.title('Top 20 trigrams') plt.show() top_trigrams ###Output _____no_output_____ ###Markdown What if we want to normalize by word counts? ###Code bow_X_norm = bow_X / bow_X.sum(axis=1) # Get top uni-grams top_unigrams = get_top_n_ngrams(bow_X_norm, cv.vocabulary_, 1, 20) plt.bar(top_unigrams.keys(), top_unigrams.values()) plt.xticks(rotation=90) plt.ylabel('freq') plt.title('Top 20 unigrams') plt.show() # Get top bi-grams top_bigrams = get_top_n_ngrams(bow_X_norm, cv.vocabulary_, 2, 20) plt.bar(top_bigrams.keys(), top_bigrams.values()) plt.xticks(rotation=90) plt.ylabel('freq') plt.title('Top 20 bigrams') plt.show() # Get top tri-grams top_trigrams = get_top_n_ngrams(bow_X_norm, cv.vocabulary_, 3, 20) plt.bar(top_trigrams.keys(), top_trigrams.values()) plt.xticks(rotation=90) plt.ylabel('freq') plt.title('Top 20 trigrams') plt.show() top_trigrams ###Output _____no_output_____ ###Markdown TF-IDF ###Code # Count Vectorizer tv = TfidfVectorizer(max_features=20000, ngram_range=(1,3)) tfidf_X = tv.fit_transform(df['prep_text']) # Get top uni-grams top_unigrams = get_top_n_ngrams(tfidf_X, tv.vocabulary_, 1, 20) plt.bar(top_unigrams.keys(), top_unigrams.values()) plt.xticks(rotation=90) plt.ylabel('freq') plt.title('Top 20 unigrams') plt.show() # Get top bi-grams top_bigrams = get_top_n_ngrams(tfidf_X, cv.vocabulary_, 2, 20) plt.bar(top_bigrams.keys(), top_bigrams.values()) plt.xticks(rotation=90) plt.ylabel('freq') plt.title('Top 20 bigrams') plt.show() # Get top tri-grams top_trigrams = get_top_n_ngrams(tfidf_X, cv.vocabulary_, 3, 20) plt.bar(top_trigrams.keys(), top_trigrams.values()) plt.xticks(rotation=90) plt.ylabel('freq') plt.title('Top 20 trigrams') plt.show() ###Output _____no_output_____ ###Markdown Can we see keywords for single document? ###Code print(df.loc[40, "text"][:1000],"...") print('\nGet top uni-grams bow:') for k, v in get_top_n_ngrams(bow_X[40], cv.vocabulary_, 1, 10).items(): print(f"\"{k}\" count: {round(v,3)}") print('\nGet top uni-grams tfidf:') for k, v in get_top_n_ngrams(tfidf_X[40], tv.vocabulary_, 1, 10).items(): print(f"\"{k}\" count: {round(v,3)}") ###Output _____no_output_____ ###Markdown Word cloud BOW ###Code sorted_vocab = {k: v for k, v in sorted(cv.vocabulary_.items(), key=lambda item: item[1])} frequencies = np.asarray(bow_X.sum(axis=0)).flatten() word_freq = {k:v for k, v in zip(sorted_vocab.keys(), frequencies)} wordcloud = WordCloud( background_color='white', max_words=100, max_font_size=50, random_state=42 ).generate_from_frequencies(word_freq) fig = plt.figure(figsize=(13, 13)) plt.imshow(wordcloud) plt.axis('off') plt.show() # fig.savefig("word1.png", dpi=900) ###Output _____no_output_____ ###Markdown BOW normalized ###Code sorted_vocab = {k: v for k, v in sorted(cv.vocabulary_.items(), key=lambda item: item[1])} frequencies = np.asarray(bow_X_norm.sum(axis=0)).flatten() word_freq = {k:v for k, v in zip(sorted_vocab.keys(), frequencies)} wordcloud = WordCloud( background_color='white', max_words=100, max_font_size=50, random_state=42 ).generate_from_frequencies(word_freq) fig = plt.figure(figsize=(13, 13)) plt.imshow(wordcloud) plt.axis('off') plt.show() # fig.savefig("word1.png", dpi=900) ###Output _____no_output_____ ###Markdown TF-IDF ###Code sorted_vocab = {k: v for k, v in sorted(tv.vocabulary_.items(), key=lambda item: item[1])} frequencies = np.asarray(tfidf_X.sum(axis=0)).flatten() word_freq = {k:v for k, v in zip(sorted_vocab.keys(), frequencies)} wordcloud = WordCloud( background_color='white', max_words=100, max_font_size=50, random_state=42 ).generate_from_frequencies(word_freq) fig = plt.figure(figsize=(13, 13)) plt.imshow(wordcloud) plt.axis('off') plt.show() # fig.savefig("word1.png", dpi=900) ###Output _____no_output_____ ###Markdown Keyword extraction algorithms Preprocessing (keep sentence structure) ###Code sentences = df['text'].apply(lambda x: sent_tokenize(x, language='spanish')).explode() sentences # Word count per sentence sentences.str.split().apply(lambda x: len(x)).describe() prep = CorpusPreprocess( language='spanish', stop_words=spa_stopwords, lowercase=True, strip_accents=True, strip_numbers=True, strip_punctuation=punctuation, # stemmer=SnowballStemmer('spanish'), max_df=0.9, min_df=2 ) sentences_prep = pd.Series(prep.fit_transform(sentences, tokenize=False), index=sentences.index) sentences_prep ###Output _____no_output_____ ###Markdown Rake and TextRank ###Code for ix in sentences_prep.index.unique(): # RAKE rake = Rake(language="spanish") rake.extract_keywords_from_sentences(sentences_prep[ix]) rake_out = rake.get_ranked_phrases() print("\nRAKE OUTPUT:\n> ", "\n> ".join(rake_out[:10])) # TextRankV1 textrankv1_out = keywords(" ".join(sentences_prep[ix]), split=True) print("\nTEXTRANKV1 OUTPUT:\n> ", "\n> ".join(textrankv1_out[:10])) # TextRankV2 textrankv2_out = summarize(". ".join(sentences_prep[ix]), split=True) print("\nTEXTRANKV2 OUTPUT:\n> ", "\n> ".join(textrankv2_out[:10])) break ###Output _____no_output_____
tariff_map.ipynb
###Markdown Step 1: Get ShapefilesThe next couple of cells download the requisite shapefiles from the US census. They are unzipped in a folder called shapefiles and then county. So they are assuming some structure behind your folder setup. ###Code print("") print("**********************************************************************************") print("Downloading Shape files") print("") cwd = os.getcwd() county_url = "https://www2.census.gov/geo/tiger/TIGER2017/COUNTY/tl_2017_us_county.zip" r = requests.get(county_url ) county_shapefile = zf.ZipFile(io.BytesIO(r.content)) county_shapefile.extractall(path = cwd + "\\shapefiles\\county") del r, county_shapefile ###Output ********************************************************************************** Downloading Shape files ###Markdown Then do the same thing for states (so we can draw state lines as well). What's cool about these shapefiles is then you can layer on other stuff, roads, rivers, lakes. ###Code state_url = "https://www2.census.gov/geo/tiger/TIGER2017/STATE/tl_2017_us_state.zip" r = requests.get(state_url) state_shapefile = zf.ZipFile(io.BytesIO(r.content)) state_shapefile.extractall(path = cwd + "\\shapefiles\\state") del r, state_shapefile ###Output _____no_output_____ ###Markdown Step 2: Some basic cleaningWe will grab the tariff data, compute the tariff change. Then we will merge it with the geopandas dataframe ###Code # Grab the tradedata... file_path = os.getcwd() fig_path = file_path +"\\figures" trade_data = pq.read_table(file_path + "\\data\\trade_employment_blssingle19.parquet").to_pandas() trade_data["time"] = pd.to_datetime(trade_data.time) trade_data.set_index(["area_fips", "time"],inplace = True) trade_data["tariff_change"] = trade_data.groupby(["area_fips"]).tariff.diff(12) trade_data.sort_values(["area_fips", "time"], inplace = True) trade_data.head() ###Output _____no_output_____ ###Markdown Now we will grab the county-level shapefile ###Code cwd = os.getcwd() county_shape = cwd + "\\shapefiles\\county\\tl_2017_us_county.shx" us_map = gpd.read_file(county_shape) us_map = us_map.to_crs({'init': 'epsg:3395'}) us_map["geometry"] = us_map["geometry"].simplify(200) # This was important. The geometry in the tigerline file si # too fine, orginal map was 350mb. simply basicly simplifies the geometry, # making the map take up less memory and load faster. Still not sure # what the number exactly means. us_map.head() ###Output _____no_output_____ ###Markdown A little bit more cleaning so a merge can be done. ###Code us_map["area_fips"] = (us_map.STATEFP.astype(str) + us_map.COUNTYFP.astype(str)).astype(int) tariff_df = trade_data.xs('2018-12-1', level=1).copy() tariff_df["fips_code"] = tariff_df.index tariff_df["fips_code"] = tariff_df["fips_code"].astype(int) tariff_df.shape lost_jobs = pd.read_csv(cwd + "\\data\\lost_jobs.csv") lost_jobs.head() tariff_df = tariff_df.merge(lost_jobs, left_on = "fips_code", right_on = "GEOFIPS", how = "inner", indicator = True) ###Output _____no_output_____ ###Markdown Then merge the geopandas dataframe with the regular dataframe ###Code us_map = us_map.merge(tariff_df[["tariff_change","2017_population","fips_code", "lost_jobs"]], left_on='area_fips', right_on = "fips_code", how = "inner", indicator = True) us_map.head() ###Output _____no_output_____ ###Markdown Now we will drop Alaska and there stuff, bring in the state files too. Then plot. ###Code us_map.set_index("STATEFP", inplace = True) drop_list = ["02","15","72"] us_map.drop(drop_list, inplace = True) state_shape = cwd + "\\shapefiles\\state\\tl_2017_us_state.shx" state_map = gpd.read_file(state_shape) state_map = state_map.to_crs({'init': 'epsg:3395'}) state_map["geometry"] = state_map["geometry"].simplify(200) state_fp_dict = dict(zip(state_map.STATEFP, state_map.STUSPS)) state_map.set_index("STATEFP", inplace = True) drop_list = ["02","15","72","78","69","66","60",] state_map.drop(drop_list, inplace = True) us_map.reset_index(inplace = True) us_map["STSPS"] = us_map["STATEFP"].map(state_fp_dict) us_map["NAME"] = us_map["NAME"] + ", " + us_map["STSPS"] us_map.set_index("STATEFP", inplace = True) us_map["2017_population"] = us_map["2017_population"].map('{:,.0f}'.format) us_map["lost_jobs"] = us_map["lost_jobs"] .round(0).astype(int) us_map["lost_jobs"] = us_map["lost_jobs"].map('{:,.0f}'.format) us_map["lost_cars"] = (-1.04)*us_map["tariff_change"] us_map["lost_cars"] = us_map["lost_cars"].map('{:,.2f}'.format) ###Output _____no_output_____ ###Markdown Step 3: Plot it. That's what we do below ###Code us_map["q_tariff"] = pd.qcut(us_map["tariff_change"], 10,labels = False, duplicates='drop') us_map.q_tariff.replace(np.nan,0,inplace = True) from mpl_toolkits.axes_grid1 import make_axes_locatable fig, ax = plt.subplots(1,1,figsize = (12,8)) plt.tight_layout() plt.rcParams.update(plt.rcParamsDefault) # This will reset defaluts... ################################################################################# # This is for the colorbar... divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="3%", pad=0.1) ################################################################################# ## This creates a discrete colorbar scheme... # https://gist.github.com/jakevdp/91077b0cae40f8f8244a N = 10 base = plt.cm.get_cmap("RdBu_r") color_list = base(np.linspace(0, 1, N)) cmap_name = base.name + str(N) dcmap = base.from_list(cmap_name, color_list, N) ################################################################################# # This is the normal mapping... us_map.plot(column='q_tariff', ax = ax, # THIS IS NEW, it says color it based on this column cmap=dcmap, alpha = 0.75, vmin=0, vmax=us_map.q_tariff.max()) ################################################################################# # This then alows me to generate and edit the colorbar.... # https://stackoverflow.com/questions/53158096/editing-colorbar-legend-in-geopandas sm = plt.cm.ScalarMappable(cmap=dcmap) sm._A = [] cbr = fig.colorbar(sm, cax=cax) cbr.set_label('Percentile in Tariff Distribution') cbr.set_alpha(0.15) cbr.set_ticks([0.10, 0.25,0.50,0.75, 0.90]) cbr.set_ticklabels(["10","25","50","75","90"], update_ticks=True) ################################################################################# state_map.geometry.boundary.plot(color=None, edgecolor='k', alpha = 0.35, ax = ax) ################################################################################# # Then some final stuff to clean things up.... ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.spines["left"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax.set_title("US County Tariff Exposure to China (as of Dec 2018)", fontsize = 16, loc= "left" ) #ax.text(-127,23, "Source: US Census, BLS", fontsize = 8) #fig_path = "C:\\github\\expenditure_tradeshocks\\figures" if not os.path.exists(fig_path): os.makedirs(fig_path) plt.savefig(fig_path +"\\us_china_exports_map.png", bbox_inches = "tight", dip = 1200) plt.show() import json from bokeh.io import show from bokeh.models import (CDSView, ColorBar, ColumnDataSource, CustomJS, CustomJSFilter, GeoJSONDataSource, HoverTool, LinearColorMapper, Slider) from bokeh.layouts import column, row, widgetbox from bokeh.palettes import brewer from bokeh.plotting import figure from bokeh.models import Title from bokeh.plotting import figure, save from bokeh.resources import CDN from bokeh.embed import file_html # Input GeoJSON source that contains features for plotting #geosource = GeoJSONDataSource(geojson = us_map.to_json()) state_geosource = GeoJSONDataSource(geojson = state_map.to_json()) geosource = GeoJSONDataSource(geojson = us_map.to_json()) palette = brewer['RdBu'][10] #https://docs.bokeh.org/en/latest/docs/reference/palettes.html color_mapper = LinearColorMapper(palette = palette, low = 0, high = 10) tick_labels = {0:"",2:"20",4:"40",6:"60",8:"80",10:""} color_bar = ColorBar(color_mapper = color_mapper, label_standoff = 8, width = 20, height = 420, border_line_color = None, orientation = "vertical", location=(0,0),major_label_overrides = tick_labels, major_tick_line_alpha = 0) label = "County-Level Tariff Exposure to China \n Colorbar reports percentile in tariff distribution" # Create figure object. p = figure( plot_height = 530 , plot_width = 850, toolbar_location = 'below', tools = "box_zoom, reset") descip = "Colorbar reports percentile in tariff distribution; Hover tool reports county name, tariff increase" descip = descip + ", population, estimates of % change in autos and jobs lost" p.add_layout(Title(text=descip, text_font_style="italic", text_font_size="9pt"), 'above') p.add_layout(Title(text="County-Level Tariff Exposure to Chinese Retaliation", text_font_size="11pt"), 'above') p.xgrid.grid_line_color = None p.ygrid.grid_line_color = None # Add patch renderer to figure. states = p.patches('xs','ys', source = geosource, fill_color = {"field" :'q_tariff', "transform" : color_mapper}, line_color = "gray", line_width = 0.25, fill_alpha = 1) state_line = p.multi_line('xs','ys', source = state_geosource, line_color = "black", line_width = 0.5) # Create hover tool p.add_tools(HoverTool(renderers = [states], tooltips = [('County','@NAME'), ('Tariff Increase','@tariff_change'), ('Population','@2017_population'), ('Est. % Change in Auto Sales','@lost_cars'), ('Est. Lost Jobs','@lost_jobs'),])) #### Some features to make it a bit nicer. p.axis.visible = False p.background_fill_color = "grey" p.background_fill_alpha = 0.25 p.toolbar.autohide = True p.add_layout(color_bar, "right") ## Send to doc file, create a webpage from doc file on github # then had weebly webiste point to that .html file. That's how # I got this to work. file_path = os.getcwd() doc_path = file_path +"\\docs" outfp = doc_path + "\\us_china_exports_map.html" # Save the map save(p, outfp) # Not sure if this is important, but seemed to start working once # I ran it html = file_html(p, CDN, outfp) p.add_layout? 1.4e7 print("this\nhi") ###Output this hi ###Markdown Step 1: Get ShapefilesThe next couple of cells download the requisite shapefiles from the US census. They are unzipped in a folder called shapefiles and then county. So they are assuming some structure behind your folder setup. ###Code cwd = os.getcwd() county_url = "https://www2.census.gov/geo/tiger/TIGER2017/COUNTY/tl_2017_us_county.zip" r = requests.get(county_url ) county_shapefile = zf.ZipFile(io.BytesIO(r.content)) county_shapefile.extractall(path = cwd + "\\shapefiles\\county") del r, county_shapefile ###Output _____no_output_____ ###Markdown Then do the same thing for states (so we can draw state lines as well). What's cool about these shapefiles is then you can layer on other stuff, roads, rivers, lakes. ###Code state_url = "https://www2.census.gov/geo/tiger/TIGER2017/STATE/tl_2017_us_state.zip" r = requests.get(state_url) state_shapefile = zf.ZipFile(io.BytesIO(r.content)) state_shapefile.extractall(path = cwd + "\\shapefiles\\state") del r, state_shapefile ###Output _____no_output_____ ###Markdown Step 2: Some basic cleaningWe will grab the tariff data, compute the tariff change. Then we will merge it with the geopandas dataframe ###Code # Grab the tradedata... file_path = os.getcwd() trade_data = pq.read_table(file_path + "\\data\\total_trade_data.parquet").to_pandas() trade_data["time"] = pd.to_datetime(trade_data.time) trade_data.set_index(["area_fips", "time"],inplace = True) trade_data["tariff_change"] = trade_data.groupby(["area_fips"]).tariff.diff(12) trade_data.sort_values(["area_fips", "time"], inplace = True) trade_data.head() ###Output _____no_output_____ ###Markdown Now we will grab the county-level shapefile ###Code cwd = os.getcwd() county_shape = cwd + "\\shapefiles\\county\\tl_2017_us_county.shx" us_map = gpd.read_file(county_shape) us_map = us_map.to_crs({'init': 'epsg:3395'}) us_map.head() ###Output _____no_output_____ ###Markdown A little bit more cleaning so a merge can be done. ###Code us_map["area_fips"] = (us_map.STATEFP.astype(str) + us_map.COUNTYFP.astype(str)).astype(int) tariff_df = trade_data.xs('2018-12-1', level=1).copy() tariff_df["fips_code"] = tariff_df.index tariff_df["fips_code"] = tariff_df["fips_code"].astype(int) tariff_df.head() ###Output _____no_output_____ ###Markdown Then merge the geopandas dataframe with the regular dataframe ###Code us_map = us_map.merge(tariff_df[["tariff_change","fips_code"]], left_on='area_fips', right_on = "fips_code", how = "inner", indicator = True) us_map.head() ###Output _____no_output_____ ###Markdown Now we will drop Alaska and there stuff, bring in the state files too. Then plot. ###Code us_map.set_index("STATEFP", inplace = True) drop_list = ["02","15","72"] us_map.drop(drop_list, inplace = True) state_shape = cwd + "\\shapefiles\\state\\tl_2017_us_state.shx" state_map = gpd.read_file(state_shape) state_map = state_map.to_crs({'init': 'epsg:3395'}) state_map.set_index("STATEFP", inplace = True) drop_list = ["02","15","72","78","69","66","60",] state_map.drop(drop_list, inplace = True) ###Output _____no_output_____ ###Markdown Step 3: Plot it. That's what we do below ###Code us_map["q_tariff"] = pd.qcut(us_map["tariff_change"], 10,labels = False, duplicates='drop') us_map.q_tariff.replace(np.nan,0,inplace = True) from mpl_toolkits.axes_grid1 import make_axes_locatable fig, ax = plt.subplots(1,1,figsize = (12,8)) plt.tight_layout() plt.rcParams.update(plt.rcParamsDefault) # This will reset defaluts... ################################################################################# # This is for the colorbar... divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="3%", pad=0.1) ################################################################################# ## This creates a discrete colorbar scheme... # https://gist.github.com/jakevdp/91077b0cae40f8f8244a N = 10 base = plt.cm.get_cmap("RdBu_r") color_list = base(np.linspace(0, 1, N)) cmap_name = base.name + str(N) dcmap = base.from_list(cmap_name, color_list, N) ################################################################################# # This is the normal mapping... us_map.plot(column='q_tariff', ax = ax, # THIS IS NEW, it says color it based on this column cmap=dcmap, alpha = 0.75, vmin=0, vmax=us_map.q_tariff.max()) ################################################################################# # This then alows me to generate and edit the colorbar.... # https://stackoverflow.com/questions/53158096/editing-colorbar-legend-in-geopandas sm = plt.cm.ScalarMappable(cmap=dcmap) sm._A = [] cbr = fig.colorbar(sm, cax=cax) cbr.set_label('Percentile in Tariff Distribution') cbr.set_alpha(0.15) cbr.set_ticks([0.10, 0.25,0.50,0.75, 0.90]) cbr.set_ticklabels(["10","25","50","75","90"], update_ticks=True) ################################################################################# state_map.geometry.boundary.plot(color=None, edgecolor='k', alpha = 0.35, ax = ax) ################################################################################# # Then some final stuff to clean things up.... ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.spines["left"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax.set_title("US County Tariff Exposure to China (as of Dec 2018)", fontsize = 16, loc= "left" ) #ax.text(-127,23, "Source: US Census, BLS", fontsize = 8) fig_path = "C:\\github\\expenditure_tradeshocks\\figures" plt.savefig(fig_path +"\\us_china_exports_map.png", bbox_inches = "tight", dip = 1200) plt.show() ###Output _____no_output_____
fig2_cross_domain_comparison.ipynb
###Markdown Comparison of the molecular domain between cell lines and tumors for breast cancerThis notebook supports the second figure. It takes data from cell lines, PDXs and tumors, compute the domain-specific factors and compare them using the cosine similarity matrix.Finally, tumor data is projected on each of these domain-specific factors and variance explained is computed to see how tumor variance is supported.This figure also supports Fig Supp 1. ###Code # Tissue to consider tumor_type = 'Breast' cell_line_type = 'BRCA' pdx_type = 'BRCA' # Normalization parameters normalization = 'TMM' transformation = 'log' mean_center = True std_unit = False protein_coding_only = True import os, sys import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import matplotlib from sklearn.decomposition import PCA, FastICA, SparsePCA from sklearn.externals.joblib import Parallel, delayed import matplotlib.cm as cm plt.style.use('ggplot') #Import src implementations os.environ['OMP_NUM_THREADS'] = '1' os.environ['KMP_DUPLICATE_LIB_OK']='True' from data_reader.read_data import read_data from normalization_methods.feature_engineering import feature_engineering ###Output _____no_output_____ ###Markdown Import data ###Code # Import tumor + cell line data (count data) x_target, x_source, g, _, _ = read_data('cell_line', 'tumor', 'count', cell_line_type, tumor_type, remove_mytochondria=False) cl_vs_t = {'source':x_source, 'target':x_target} cl_vs_t_genes = g del g, x_target, x_source print('Cell lines vs Tumors data imported') # Import tumor + pdx data (FPKM) x_target, x_source, g, _, _ = read_data('pdx', 'tumor', 'fpkm', pdx_type, tumor_type, remove_mytochondria=False) pdx_vs_t = {'source':x_source, 'target':x_target} pdx_vs_t_genes = g del g, x_target, x_source print('PDX vs tumors data imported') # Import PDX + cell-line data (FPKM) x_target, x_source, g, _, _ = read_data('cell_line', 'pdx', 'fpkm', cell_line_type, pdx_type, remove_mytochondria=False) cl_vs_pdx = {'source':x_source, 'target':x_target} cl_vs_pdx_genes = g del g, x_target, x_source print('Cell lines vs PDX data imported') # Normalization & Transformation for RNA-Seq data for e in [cl_vs_t, pdx_vs_t, cl_vs_pdx]: e['source'] = feature_engineering(e['source'], normalization, transformation, mean_center, std_unit) e['target'] = feature_engineering(e['target'], normalization, transformation, mean_center, std_unit) ###Output _____no_output_____ ###Markdown Cosines similarity computationComputes and plot the cosines similarity and plot it. Also breaks down the results per PC to show the overlap. ###Code number_components = 20 def compute_components_PCA(x): pca_instance = PCA(number_components) pca_instance.fit(x) return pca_instance.components_ def compute_components_Sparse_PCA(x): pca_instance = SparsePCA(number_components, verbose=10) pca_instance.fit(x) print('computed') return pca_instance.components_ def compute_components_ICA(x): ica_instance = Fast(number_components, n_jobs=3) ica_instance.fit(x) print('COMPUTED') return orth(ica_instance.mixing_).transpose() def compute_cosine_similarity(data, dim_red_method): source_components = dim_red_method(data['source']) target_components = dim_red_method(data['target']) components = { 'source':source_components, 'target':target_components } return source_components.dot(target_components.transpose()), components compute_components = compute_components_PCA cl_vs_t_cosine_similarity, cl_vs_t_components = compute_cosine_similarity(cl_vs_t, compute_components) pdx_vs_t_cosine_similarity, pdx_vs_t_components = compute_cosine_similarity(pdx_vs_t, compute_components) cl_vs_pdx_cosine_similarity, cl_vs_pdx_components = compute_cosine_similarity(cl_vs_pdx, compute_components) # Plot cosines similarity between cell lines and tumors sns.heatmap(np.abs(cl_vs_t_cosine_similarity), cmap='seismic_r',\ center=0, vmax=1., vmin=0) plt.ylabel('Cell lines', fontsize=25, color='black') plt.xlabel('Tumors', fontsize=25, color='black') plt.xticks(np.arange(.5,number_components,2), range(1,number_components+1,2), fontsize=15, color='black') plt.yticks(np.arange(.5,number_components,2), range(1,number_components+1,2), fontsize=15, color='black') plt.tight_layout() if tumor_type == 'Breast': plt.savefig('./figures/fig2_cosines_similarity_cell_lines_tumors_RNAseq_%s_%s.png'%(tumor_type, cell_line_type.replace('/','')),\ dpi=300) else: plt.savefig('./figures/supp_fig2_cosines_similarity_cell_lines_tumors_RNAseq_%s_%s.png'%(tumor_type, cell_line_type.replace('/','')),\ dpi=300) plt.show() # Plot cosines similarity between pdx and tumors sns.heatmap(np.abs(pdx_vs_t_cosine_similarity), cmap='seismic_r',\ center=0, vmax=1., vmin=0) plt.ylabel('PDX', fontsize=25, color='black') plt.xlabel('Tumors', fontsize=25, color='black') plt.xticks(np.arange(.5,number_components,2), range(1,number_components+1,2), fontsize=15, color='black') plt.yticks(np.arange(.5,number_components,2), range(1,number_components+1,2), fontsize=15, color='black') plt.tight_layout() if tumor_type == 'Breast': plt.savefig('./figures/fig2_cosines_similarity_pdx_tumors_RNAseq_%s_%s.png'%(tumor_type, pdx_type.replace('/','')),\ dpi=300) else: plt.savefig('./figures/supp_fig2_cosines_similarity_pdx_tumors_RNAseq_%s_%s.png'%(tumor_type, pdx_type.replace('/','')),\ dpi=300) plt.show() # Plot cosines similarity between cell lines and pdx sns.heatmap(np.abs(cl_vs_pdx_cosine_similarity), cmap='seismic_r',\ center=0, vmax=1., vmin=0) plt.ylabel('Cell lines', fontsize=25, color='black') plt.xlabel('PDX', fontsize=25, color='black') plt.xticks(np.arange(.5,number_components,2), range(1,number_components+1,2), fontsize=15, color='black') plt.yticks(np.arange(.5,number_components,2), range(1,number_components+1,2), fontsize=15, color='black') plt.tight_layout() if tumor_type == 'Breast': plt.savefig('./figures/fig2_cosines_similarity_cell_lines_pdx_RNAseq_%s_%s.png'%(tumor_type, pdx_type.replace('/','')),\ dpi=300) else: plt.savefig('./figures/supp_fig2_cosines_similarity_cell_lines_pdx_RNAseq_%s_%s.png'%(tumor_type, pdx_type.replace('/','')),\ dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Variance explained ###Code # Tumor variance explained by cell lines def target_variance_projected(data, components): target_projected_variance = np.var(data['target'].dot(components['target'].transpose()),0) source_projected_variance = np.var(data['target'].dot(components['source'].transpose()),0) target_total_variance = np.sum(np.var(data['target'], 0)) return { 'source': source_projected_variance / target_total_variance, 'target': target_projected_variance / target_total_variance } # Compute target projected variance cl_vs_t_variance = target_variance_projected(cl_vs_t, cl_vs_t_components) cl_vs_pdx_variance = target_variance_projected(cl_vs_pdx, cl_vs_pdx_components) pdx_vs_t_variance = target_variance_projected(pdx_vs_t, pdx_vs_t_components) ##### # Cell lines vs Tumors ##### plt.figure(figsize=(8,5)) plt.plot(np.arange(1, number_components+1), cl_vs_t_variance['target'],\ label='Tumor Principal Component', linewidth=3) plt.plot(np.arange(1, number_components+1), cl_vs_t_variance['source'],\ label='Cell line Principal Component', linewidth=3) plt.xticks(np.arange(1, number_components+1, 2), fontsize=15, color='black') max_var = cl_vs_t_variance['target'][0] plt.ylim(0,1.1*max_var) plt.yticks(np.arange(0, 1.1*max_var,0.02), (np.arange(0, 1.1*max_var,0.02)*100).astype(int), fontsize=15, color='black') del max_var plt.xlabel('Factor number', fontsize=20, color='black') plt.ylabel('Proportion of tumor variance', fontsize=20, color='black') plt.legend(fontsize=17) plt.tight_layout() if tumor_type == 'Breast': plt.savefig('./figures/fig2_variance_explained_cl_vs_t_%s_%s.png'%(tumor_type, cell_line_type.replace('/','')),\ dpi=300) else: plt.savefig('./figures/supp_fig2_variance_explained_cl_vs_t_%s_%s.png'%(tumor_type, cell_line_type.replace('/','')),\ dpi=300) plt.show() ##### # PDX vs Tumors ##### plt.figure(figsize=(8,5)) plt.plot(np.arange(1, number_components+1), pdx_vs_t_variance['target'],\ label='Tumor Principal Component', linewidth=3) plt.plot(np.arange(1, number_components+1), pdx_vs_t_variance['source'],\ label='PDX Principal Component', linewidth=3) plt.xticks(np.arange(1, number_components+1, 2), fontsize=15, color='black') max_var = pdx_vs_t_variance['target'][0] plt.ylim(0,1.1*max_var) plt.yticks(np.arange(0, 1.1*max_var,0.02), (np.arange(0, 1.1*max_var,0.02)*100).astype(int), fontsize=15, color='black') del max_var plt.xlabel('Factor number', fontsize=20, color='black') plt.ylabel('Proportion of tumor variance', fontsize=20, color='black') plt.legend(fontsize=17) plt.tight_layout() if tumor_type == 'Breast': plt.savefig('./figures/fig2_variance_explained_pdx_vs_t_%s_%s.png'%(tumor_type, pdx_type), dpi=300) else: plt.savefig('./figures/supp_fig2_variance_explained_pdx_vs_t_%s_%s.png'%(tumor_type, pdx_type), dpi=300) plt.show() ##### # Cell lines vs PDX ##### plt.figure(figsize=(8,5)) plt.plot(np.arange(1, number_components+1), cl_vs_pdx_variance['target'],\ label='PDX Principal Component', linewidth=3) plt.plot(np.arange(1, number_components+1), cl_vs_pdx_variance['source'],\ label='Cell line Principal Component', linewidth=3) plt.xticks(np.arange(1, number_components+1, 2), fontsize=15) max_var = cl_vs_pdx_variance['target'][0] plt.ylim(0,1.1*max_var) plt.yticks(np.arange(0, 1.1*max_var,0.02), (np.arange(0, 1.1*max_var,0.02)*100).astype(int), fontsize=12) plt.xlabel('Factor number', fontsize=20) plt.ylabel('Proportion of PDX variance', fontsize=20) plt.legend(fontsize=17) plt.tight_layout() if tumor_type == 'Breast': plt.savefig('./figures/fig2_variance_explained_cl_vs_t_%s_%s.png'%(tumor_type, pdx_type), dpi=300) else: plt.savefig('./figures/supp_fig2_variance_explained_cl_vs_t_%s_%s.png'%(tumor_type, pdx_type), dpi=300) plt.show() ## Bootstrap analysis for variance n_jobs = 5 def bootstrap_projected_variance(data_var, components, n=1): np.random.seed() bootstrapped_variance = [] for _ in range(n): e = np.random.choice(range(data_var.shape[0]), size=data_var.shape[0], replace=True) bootstrapped_variance.append(np.var(data_var[e].dot(components.transpose()),0)) return bootstrapped_variance ##### # CL vs Tumor ##### target = cl_vs_t['target'] source = cl_vs_t['source'] # Compute components target_components = compute_components(target) source_components = compute_components(source) # Bootstrap target data and project it onto the different components. n_bootstrap = 100 size_batch = 10 bootstrapped_target_variance = Parallel(n_jobs=n_jobs, verbose=10)\ (delayed(bootstrap_projected_variance)(target, target_components, size_batch) for _ in range(int(n_bootstrap/size_batch))) bootstrapped_target_variance = np.concatenate(bootstrapped_target_variance) bootstrapped_source_variance = Parallel(n_jobs=n_jobs, verbose=10)\ (delayed(bootstrap_projected_variance)(target, source_components, size_batch) for _ in range(int(n_bootstrap/size_batch))) bootstrapped_source_variance = np.concatenate(bootstrapped_source_variance) # Compute variance projected target_proj_variance = np.var(target.dot(target_components.transpose()), 0) source_proj_variance = np.var(target.dot(source_components.transpose()), 0) target_var = np.sum(np.var(target,0)) source_proj_variance /= target_var target_proj_variance /= target_var bootstrapped_target_variance /= target_var bootstrapped_source_variance /= target_var # Plot figure plt.figure(figsize=(8,5)) plt.plot(range(1, target_proj_variance.shape[0]+1), target_proj_variance, label='Tumor Principal Component') plt.fill_between(range(1,target_proj_variance.shape[0]+1), np.percentile(bootstrapped_target_variance, 1, axis=0), np.percentile(bootstrapped_target_variance, 99, axis=0), alpha=0.3) plt.plot(range(1, source_proj_variance.shape[0]+1),source_proj_variance, label='Cell line Principal Component') plt.fill_between(range(1, source_proj_variance.shape[0]+1), np.percentile(bootstrapped_source_variance, 1, axis=0), np.percentile(bootstrapped_source_variance, 99, axis=0), alpha=0.3) plt.xticks(np.arange(1, number_components+1, 2), fontsize=15, color='black') max_var = np.percentile(bootstrapped_target_variance, 99, axis=0)[0] plt.yticks(np.arange(0, 1.1*max_var,0.02), (np.arange(0, 1.1*max_var,0.02)*100).astype(int), fontsize=15, color='black') del max_var plt.xlabel('Factor number', fontsize=20, color='black') plt.ylabel('Proportion of tumor variance', fontsize=20, color='black') plt.legend(fontsize=17) plt.tight_layout() if tumor_type == 'Breast': plt.savefig('./figures/fig2_variance_explained_bootstrapped_cl_vs_t_%s_%s_boot_%s.png'%(tumor_type, cell_line_type.replace('/',''), n_bootstrap),\ dpi=300) plt.show() ##### # PDX vs Tumors ##### target = pdx_vs_t['target'] source = pdx_vs_t['source'] target_components = compute_components(target) source_components = compute_components(source) n_bootstrap = 100 size_batch = 10 bootstrapped_target_variance = Parallel(n_jobs=n_jobs, verbose=10)\ (delayed(bootstrap_projected_variance)(target, target_components, size_batch) for _ in range(int(n_bootstrap/size_batch))) bootstrapped_target_variance = np.concatenate(bootstrapped_target_variance) bootstrapped_source_variance = Parallel(n_jobs=n_jobs, verbose=10)\ (delayed(bootstrap_projected_variance)(target, source_components, size_batch) for _ in range(int(n_bootstrap/size_batch))) bootstrapped_source_variance = np.concatenate(bootstrapped_source_variance) target_proj_variance = np.var(target.dot(target_components.transpose()), 0) source_proj_variance = np.var(target.dot(source_components.transpose()), 0) target_var = np.sum(np.var(target,0)) source_proj_variance /= target_var target_proj_variance /= target_var bootstrapped_target_variance /= target_var bootstrapped_source_variance /= target_var plt.figure(figsize=(8,5)) plt.plot(range(1, target_proj_variance.shape[0]+1), target_proj_variance, label='Tumor Principal Component') plt.fill_between(range(1,target_proj_variance.shape[0]+1), np.percentile(bootstrapped_target_variance, 1, axis=0), np.percentile(bootstrapped_target_variance, 99, axis=0), alpha=0.3) plt.plot(range(1, source_proj_variance.shape[0]+1),source_proj_variance, label='PDX Principal Component') plt.fill_between(range(1, source_proj_variance.shape[0]+1), np.percentile(bootstrapped_source_variance, 1, axis=0), np.percentile(bootstrapped_source_variance, 99, axis=0), alpha=0.3) plt.xticks(np.arange(1, number_components+1, 2), fontsize=15, color='black') max_var = np.percentile(bootstrapped_target_variance, 99, axis=0)[0] plt.ylim(0,max_var) plt.yticks(np.arange(0, 1.1*max_var,0.02), (np.arange(0, 1.1*max_var,0.02)*100).astype(int), fontsize=15, color='black') del max_var plt.xlabel('Factor number', fontsize=20, color='black') plt.ylabel('Proportion of tumor variance', fontsize=20, color='black') plt.legend(fontsize=17) plt.tight_layout() if tumor_type == 'Breast': plt.savefig('./figures/fig2_variance_explained_bootstrapped_pdx_vs_t_%s_%s_boot_%s.png'%(tumor_type, pdx_type, n_bootstrap),\ dpi=300) plt.show() ###Output [Parallel(n_jobs=5)]: Using backend LokyBackend with 5 concurrent workers. [Parallel(n_jobs=5)]: Done 3 out of 10 | elapsed: 9.1s remaining: 21.2s [Parallel(n_jobs=5)]: Done 5 out of 10 | elapsed: 9.1s remaining: 9.1s [Parallel(n_jobs=5)]: Done 7 out of 10 | elapsed: 14.0s remaining: 6.0s [Parallel(n_jobs=5)]: Done 10 out of 10 | elapsed: 14.1s finished [Parallel(n_jobs=5)]: Using backend LokyBackend with 5 concurrent workers. [Parallel(n_jobs=5)]: Done 3 out of 10 | elapsed: 5.4s remaining: 12.6s [Parallel(n_jobs=5)]: Done 5 out of 10 | elapsed: 5.4s remaining: 5.4s [Parallel(n_jobs=5)]: Done 7 out of 10 | elapsed: 10.5s remaining: 4.5s [Parallel(n_jobs=5)]: Done 10 out of 10 | elapsed: 10.6s finished
EHR_Only/GBT/.ipynb_checkpoints/Comp_SMOTE-checkpoint.ipynb
###Markdown General Population ###Code from imblearn.over_sampling import SMOTE sm = SMOTE(random_state = 42) co_train_gpop_sm,out_train_hemorrhage_gpop_sm = sm.fit_resample(co_train_gpop,out_train_hemorrhage_gpop) best_clf = xgBoost(co_train_gpop_sm, out_train_hemorrhage_gpop_sm) scores(co_train_gpop_sm, out_train_hemorrhage_gpop_sm) print() scores(co_train_gpop, out_train_hemorrhage_gpop) print() scores(co_validation_gpop, out_validation_hemorrhage_gpop) ###Output Fitting 5 folds for each of 4 candidates, totalling 20 fits ###Markdown High Continuity ###Code from imblearn.over_sampling import SMOTE sm = SMOTE(random_state = 42) co_train_high_sm,out_train_hemorrhage_high_sm = sm.fit_resample(co_train_high,out_train_hemorrhage_high) best_clf = xgBoost(co_train_high_sm, out_train_hemorrhage_high_sm) scores(co_train_high_sm, out_train_hemorrhage_high_sm) print() scores(co_train_high, out_train_hemorrhage_high) print() scores(co_validation_high, out_validation_hemorrhage_high) ###Output Fitting 5 folds for each of 4 candidates, totalling 20 fits ###Markdown Low Continuity ###Code from imblearn.over_sampling import SMOTE sm = SMOTE(random_state = 42) co_train_low_sm,out_train_hemorrhage_low_sm = sm.fit_resample(co_train_low,out_train_hemorrhage_low) best_clf = xgBoost(co_train_low_sm, out_train_hemorrhage_low_sm) scores(co_train_low_sm, out_train_hemorrhage_low_sm) print() scores(co_train_low, out_train_hemorrhage_low) print() scores(co_validation_low, out_validation_hemorrhage_low) ###Output Fitting 5 folds for each of 4 candidates, totalling 20 fits
notebooks/experiments/lark_test.ipynb
###Markdown Import Lark logicInstead of doing the entire parsing manually (after running through the first chapter), it's advised to use a prebuilt parser instead. It'll save more time.1. Collect samples of the language.2. Try fitting the example (by copying the existing lark rules.) ###Code grammy() json_parser = Lark(grammy(), parser="lalr") # print(json_parser.parse("true;").pretty()) # print(json_parser.parse("false;").pretty()) # print(json_parser.parse("1234;").pretty()) print(json_parser.parse( """ var hello = 30; var poop = hello + 10; """).pretty()) # print(json_parser.parse(text).pretty()) # subtract - me; # multiply * me; # divide / me; # for file in get_ddub(): # print(file.read_text()) # print(json_parser.parse(file.read_text()).pretty()) true; // Not false. false; // Not *not* false. ###Output _____no_output_____
tensorflow_label_interactive.ipynb
###Markdown Loop through models ###Code preds = [] for name, shape in tqdm(models, total=len(models)): preds.append(infer(name, shape, 'images')) df = pd.DataFrame(preds) keywords = Path('keywords.txt').read_text().splitlines() images_and_classes = [[col, k] for k in keywords for col in df.columns if k in df[col].to_numpy()] print('found classes:', {x[1] for x in images_and_classes}) df.T.rename({i: name for i, name in enumerate(models)}, axis=1) times = pd.DataFrame(TIMES, columns=['model', 't']).sort_values('t').reset_index(drop=True) times ###Output _____no_output_____ ###Markdown Create class dirs ###Code existing_classes = {f.name for f in Path(f'images').iterdir() if f.is_dir()} matched_classes = set(cls for _, cls in images_and_classes) classes = matched_classes - existing_classes print(f'creating new class dirs: {classes}') for cls in classes: Path(f'images/{cls}').mkdir(parents=True, exist_ok=False) for img, cls in images_and_classes: try: o = f'images/{img}' n = f'images/{cls}/{img}' print(f'{o} -> {n}') Path(o).rename(n) except Exception as e: print(e) ###Output _____no_output_____ ###Markdown Undo Labeling if needed ###Code # undo_labeling('images') ###Output _____no_output_____
work/GFW_climate_biomass_widgets.ipynb
###Markdown GFW climate biomass widgets ###Code #!pip install progressbar2 #!pip install retrying import geopandas as gpd import pandas as pd import numpy as np import requests import os import json import progressbar from retrying import retry %matplotlib inline ###Output _____no_output_____ ###Markdown Table with biomass density and total biomass **GADM 3.6 admin 2** ###Code df = gpd.read_file('/Users/Ben/Downloads/gadm36_shp/gadm36.shp') df.head() #gadm_ids = df[['GID_0', 'ID_0', 'NAME_0', 'ID_1', 'NAME_1', 'ID_2', 'NAME_2','GID_1','GID_2']] #gadm_ids[gadm_ids['GID_2'] == 'AFG.2.1_1'] #tmp = gadm_ids[gadm_ids['GID_0']=='BRA'] #tmp[tmp['GID_1'] == 'BRA.2_1'].head() missing_df = df[df['GID_2'] == ''] f'{len(missing_df)/len(df) * 100:3.2f}% of rows are missing admin-2 id codes.' def process_gid_2(gid_2): """Return dict of iso (string), and admin_1 and admin_2 (ints) from gid_2 entry.""" try: iso, admin_1, tmp_admin_2 = gid_2.split('.') admin_2 = tmp_admin_2.split('_')[0] return {'iso':iso, 'admin_1':int(admin_1), 'admin_2':int(admin_2)} except: return None # Create list of GIDS to process all_areas = [] for x in df['GID_2'].values: tmp = process_gid_2(x) if tmp: all_areas.append(tmp) len(all_areas) # Create gadm3.6 GID_2 data list with open("./data/gadm_36_gid2.json", "w") as f: for row in all_areas: f.write(json.dumps(row) +'\n') # now we have all the codes for all areas I am going to de-allocate the memory of the df to save RAM df = 0 ###Output _____no_output_____ ###Markdown Begin here if gadm 3.6 data file exists ###Code # Restore list of GID_2 data if the file exists gid_list = "./data/gadm_36_gid2.json" if os.path.exists(gid_list): print("Found existing gadm-3.6 gid-2 file, restoring previous data! 🍺") with open(gid_list,"r") as f: all_areas = [] for row in f.readlines(): all_areas.append(json.loads(row)) print(f'Loaded {len(all_areas)} rows of data.') all_areas[0:5] ###Output _____no_output_____ ###Markdown The API contains an endpoint for `whrc-biomass` to compute the total biomass and biomass density of a given municipality which uses geostore v2 endpoint for gadm geometries. ###Code len(all_areas) # Use session to persist connection between requests (for speed-up) http://docs.python-requests.org/en/master/user/advanced/ s = requests.Session() @retry(stop_max_attempt_number=5, wait_fixed=2000) def make_query(area): try: r = s.get(f"https://production-api.globalforestwatch.org/v1/whrc-biomass/admin/{area['iso']}/{area['admin_1']}/{area['admin_2']}") if r.status_code == 200: return r.json().get('data').get('attributes') else: return None except: #print(f"Failed on {area['iso']}/{area['admin_1']}/{area['admin_2']}") #raise IOError(f"EE failure: {r.status_code}") return None def find_in_written_data(written_data, iso, admin_1, admin_2): for row in written_data: if row.get('iso') == iso and row.get('admin_1') == admin_1 and row.get('admin_2') == admin_2: return True else: pass return False def get_written_data(backup_file): '''Create or restore data from a backup file e.g ./tmp_whrc_data.json ''' if os.path.exists(backup_file): #print("Found existing file, restoring previous data! 🍺") written_data = [] with open(backup_file, 'r') as f: for line in f.readlines(): written_data.append(json.loads(line)) return written_data else: #print("No previous data found, starting queries from scratch... 🏃‍♂️") return [] def check_writen_lenght(): check_data = [] with open("./tmp_whrc_data.json", 'r') as f: for line in f.readlines(): check_data.append(json.loads(line)) print(f"Number of records sucessfully written: {len(check_data):,g}") # Single thread process # %%time # with open(backup_file, "a+") as f: # with progressbar.ProgressBar(max_value=len(all_areas)) as bar: # for n, area in enumerate(all_areas[0:40]): # bar.update(n) # if not find_in_written_data(written_data, area.get('iso'), area.get('admin_1'), area.get('admin_2')): # # maybe we should try it several times if it fails.... # tmp_data = make_query(area) # if tmp_data: # tmp_d = {**area, **tmp_data} # written_data.append(tmp_d) # f.write(json.dumps(tmp_d) +'\n') # write a line to a temporary file incase the process fails and all data is lost # else: # pass def process_single_thread(gid_list, backup_file="./tmp_whrc_data.json"): with open(backup_file, "a+") as f: with progressbar.ProgressBar(max_value=len(gid_list)) as bar: for n, area in enumerate(gid_list): bar.update(n) if not find_in_written_data(written_data, area.get('iso'), area.get('admin_1'), area.get('admin_2')): # maybe we should try it several times if it fails.... tmp_data = make_query(area) if tmp_data: tmp_d = {**area, **tmp_data} written_data.append(tmp_d) f.write(json.dumps(tmp_d) +'\n') # write a line to a temporary file incase the process fails and all data is lost else: pass def process_gid_list(gid_list, backup_file="./tmp_whrc_data.json"): """e.g. process_gid_list(all_areas[0:20])""" written_data = get_written_data(backup_file) with open(backup_file, "a+") as f: #with progressbar.ProgressBar(max_value=len(gid_list)) as bar: for n, area in enumerate(gid_list): #bar.update(n) #print(f"Already processed area = {find_in_written_data(written_data, area.get('iso'), area.get('admin_1'), area.get('admin_2'))}") if not find_in_written_data(written_data, area.get('iso'), area.get('admin_1'), area.get('admin_2')): tmp_data = make_query(area) if tmp_data: tmp_d = {**area, **tmp_data} written_data.append(tmp_d) f.write(json.dumps(tmp_d) +'\n') # write a line to a temporary file incase the process fails and all data is lost else: pass ###Output _____no_output_____ ###Markdown Single thread requests ###Code process_single_thread(all_areas[0:10000]) check_writen_lenght() ###Output Number of records sucessfully written: 14,436 ###Markdown Multithreadded requests ###Code from multiprocessing import Pool len(all_areas) step_size = 100 chunked_list = [all_areas[i:i + step_size] for i in range(0, len(all_areas[200000:200200]), step_size)] print(f"{len(chunked_list)} chunks, with {len(chunked_list[0])} requests per chunk") #chunked_list[0] %%time with Pool(100) as p: p.map(process_gid_list, chunked_list) check_writen_lenght() ###Output _____no_output_____ ###Markdown Load the written data and create a final output file ###Code # # If you need to load/restore the data from a tmp file (due to failure etc) you can do the following... written_data = [] with open("./tmp_whrc_data.json", 'r') as f: for line in f.readlines(): written_data.append(json.loads(line)) # Final table needs row names of 'biomassdensity','gid_0','id_1','id_2','totalbiomass','areaHa'. Use rename function below output_df = pd.DataFrame(written_data) output_df.head() len(output_df) output_df.keys() output_df = output_df.rename(index=str, columns={'admin_1':'id_1','admin_2':'id_2','biomassDensity':'biomassdensity','totalBiomass':'totalbiomass'}) output_df.head() # Finally, save the file output_df.to_csv('./whrc_biomass.csv') ###Output _____no_output_____
Freshworks_Task.ipynb
###Markdown Server ###Code map={} # global data storage def create(key,value,timeout=0): # timeout provided in seconds if key in map: print("Error !! Key is already stored") #error mmsg else: if(key.isalpha()): # string key #1073741824 bytes ==1 Gb if sys.getsizeof(map)<(1073741824) and sys.getsizeof(value)<=(16*1024): #Check file size<=1GB and Json obj size<=16kb if timeout==0: l=[value,-1] else: l=[value,time.time()+timeout] #adding timeout incase its not zero if len(key)<=32:# key is max of 32 chars map[key]=l else: print("Error !! Memory limit")#error mssg else: print("Error !! Key should have alphabet only")#error mssg def delete(key): if key not in map: print("Error !! Key is not in Database") #error mssg else: list=map[key] if list[1]!=-1: # time to live parameter isnt -1(means its provided by user) current_time=time.time() if current_time<list[1]: #Expiry & current time compared del map[key] print("Success! key is now deleted") else: print("Error !! time to live off expired") #error as time to live has expired so cant delete it else:# time to live is -1 then just delete the key del map[key] print("Success! key is now deleted") def read(key): if key not in map: print("Error !! Key is not in Database") #error mssg else: list=map[key] if list[1]!=-1: # time to live parameter isnt -1(means its provided by user) current_time=time.time() if current_time<list[1]:#Expiry & current time compared mapping=str(key)+" : "+str(list[0]) # Key - JSon pair returned from DB return mapping else: print("Error !! time to live off expired") #error mssg else: mapping=str(key)+" : "+str(list[0]) return mapping ###Output _____no_output_____ ###Markdown Client Testcase 1 ###Code json1={ "brand": "Ford", "model": "Mustang", "year": 1964} create("car",json1) #to create a key with key & json obj given and no time-to-live property json2=[23,12] create("Money",json2,200) #to create a key with key & json obj given and with time-to-live property value given(number of seconds) print(read("car")) #PRINTS key in Json object format 'key_name:value' print(read("Money")) #PRINTS key in Json object format 'key_name:value' if the (time to live) is not expired else it throws an ERROR ! json3={"32":"google"} create("car",json3) #it returns an error since the key_name already present in datastore delete("car") #it deletes the given key & json obj from datastore # #Using Multi threading json4=["New","Year"] thread1=Thread(target=(create),args=("moker",json4)) #as per the operation thread1.start() thread2=Thread(target=(delete),args=("moker",)) #as per the operation thread2.start() print("Final datastore",map) ###Output car : {'brand': 'Ford', 'model': 'Mustang', 'year': 1964} Money : [23, 12] Error !! Key is already stored Success! key is now deleted Success! key is now deleted Final datastore {'Money': [[23, 12], 1609154201.7596617]} ###Markdown Test Case 2 ###Code delete("just_key") json1={ "brand": "Ford", "model": "Mustang", "year": 1964} create("cars24",json1) #Error! as alphanumeric key with key & json obj given and no time-to-live property json2=[23,12] create("Money",json2,10) #to create a key with key & json obj given and with time-to-live property value given(number of seconds) as just 10 secs print(read("Money")) #PRINTS key in Json object format 'key_name:value' if the (time to live) is not expired else it throws an ERROR ! json3={"10":"FreshWork"} create("TechCos",json3) print("Final datastore",map) print(read("Money")) # throws error as run after 10 sec(time to live expired) ###Output Error !! time to live off expired None
analysis/alessandro_pisa/.ipynb_checkpoints/milestone2-checkpoint.ipynb
###Markdown Edibility of Mushrooms ---Exploring the different features of mushrooms with the hope of being able to identify edible versus posinous mushrooms. The data describes if the mushrooms are definitely edible or if they are poisonous or if it's unknown, in which case they are grouped with the poisonous category ("When in doubt throw them out"). Furthermore, the data goes over the observable physical features of the hypothetical mushrooms, such as gill size and spacing, odor, cap color, and much more. The data provides 8124 samples, recording 23 different parameters.The data is originally from this dataset in kaggle: [Original Data](https://www.kaggle.com/uciml/mushroom-classification) Importing Modules ###Code # !pip install pandas seaborn numpy matplotlib # Uncomment if modules are not found import pandas as pd import seaborn as sns import numpy as np import matplotlib.pyplot as plt from scripts import project_functions ###Output _____no_output_____ ###Markdown Load and Preprocess Data ###Code df = project_functions.load_and_process_data("../../data/raw/mushrooms.csv") df ###Output _____no_output_____ ###Markdown Exploratory Data Analysis ---In the following visualizations I will be comparing the features of each mushroom with the amount of poisonous/edible mushrooms that contain that specific characteristic. This is in hope of noticing prevalant feautures that can let us know if a musroom either deffinitley poisonous or edible. I have separated each characteristic into related groups including: cap, gill, stalk, veil, ring, life and miscellanious features for easier analysis. Cap Related Features ---Overall when it comes to the Cap of the mushroom there is really not enough prevelant distinctions to determine if a mushroom is poisonous or not. Many of the features are shared between both edible and poisonous mushrooms, for example: a convex cap shape, a scaly surface or a brown mushroom cap. Nontheless, there are some characteristics — like a knobbed cap shape and red or yellow caps — that seem to be a lot more common between poisonous mushrooms, so it might be better to play it safe and not eat those. ###Code project_functions.show_cap_related_features(df) ###Output _____no_output_____ ###Markdown Gill Related Features ---When it comes to the gill of the mushroom there are actually a couple carachteristics than can help us distingush between an edible or poisonous mushroom. The most prevelant one is the gill color, as it appears that green and buff colored gill's are really good indicators for the toxicity of a particular mushroom. Similarly, if a mushroom has a narrow gill it would be better to assume it as toxic as there is more than double the amount of poisonous mushrooms with narrow gills than edible. As for the other characteristics there is not enough distinction to be able to tell by that characteristic alone. ###Code project_functions.show_gill_related_features(df) ###Output _____no_output_____ ###Markdown Stalk Related Feautures ---For the stalk of the mushroom there seems to be a relation with the roughness of the stalk both above and below the ring as well as with the color of the stalk. Overall mushrooms with a silky stalk colored either cinammon, yellow, or buff (both above and below the ring) appear to be overall poisonous. In this case the better indicator is the color, as if the stalk happens to be of one of those colors it is most definitley poisonous, but they are more rare, as other colors seem to be more likeley. Another notable characteristic is that mushrooms with a rooted stalk are very likely to be edible, as well as mushrooms with gray or red stalks (both above and below ring). ###Code project_functions.show_stalk_related_features(df) ###Output _____no_output_____ ###Markdown Veil Related Fautures ---In the case of the veil, mushrooms with an orange or brown veil seem to be edible, altough they are quite rare. When it comes to a partial veil both poisonous and edible mushrooms share this characteristic. ###Code project_functions.show_veil_related_features(df) ###Output _____no_output_____ ###Markdown Ring Related Feautures ---As for the ring of the mushrooms, it appears that mushrooms with no rings, or large rings are poisonous. This appears to be a good indicator for the toxicity. As for the edibility of mushrooms if a mushroom has a flaring ring type is likely for it to be edible, and similarly (but not always) a pendant ring could suggest an edible mushroom. ###Code project_functions.show_ring_related_features(df) ###Output _____no_output_____ ###Markdown Life Related Features ---For the population type and habitat of the mushrooms there are some characteristics that allow us to know if the mushroom is edible or not. For example if a mushroom has an abundant or numerous population the mushroom is most likely edible, similiarly if it grows on waste funny enough the mushroom is edible. As for poisonous mushrooms it is better to not eat any mushrooms found on paths as the majority of these seem to be poisonous. ###Code project_functions.show_life_related_features(df) ###Output _____no_output_____ ###Markdown Miscellaneous Features ---Surprisingly this category has some of the most telling signs for the edibility of a mushroom. When it comes to the other of the mushroom most mushrooms that smell like something are likely to be poisonous, but more specifically any mushroom that smells spicy, fishy, foul, pungent, musty, or, treosote will be poisonous while most mushrooms with no smell are edible. Another good sign for poisonous mushrooms are the color of the spore print, as any mushrooms with green, or chocolate colored spores prints are highly likely to be poisonous. When it comes to the bruises most edible mushrooms have them while poisounous do not, but this is not always the case so its not such a good characteristic to tell them apart. ###Code project_functions.show_miscellaneous_features(df) ###Output _____no_output_____
figure2_create_plots.ipynb
###Markdown ###Code import matplotlib.pyplot as plt from scipy.integrate import solve_ivp import numpy as np from algae_population import * SMALL_SIZE = 16 MEDIUM_SIZE = 18 BIGGER_SIZE = 20 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title np.set_printoptions(formatter={'float': lambda x: "{0:0.3f}".format(x)}) # %matplotlib tk import pickle # solutions = pickle.load(open('figure1.p','rb')) solutions = pickle.load(open('figure2.p','rb')) # def figure1(solutions, tend=None, K = 10): from mpl_toolkits.axes_grid1.inset_locator import inset_axes fig, ax = plt.subplots(1,3,figsize=(18,6)) axins1 = inset_axes(ax[0], width="35%", height="35%",loc=7) axins2 = inset_axes(ax[2], width="35%", height="35%",loc=7) for sol in solutions: t0 = sol.t[0] if tend is None: tend = sol.t[-1] if sol.t_events[0].size > 0 and sol.t_events[0] < tend: print(f'sporulation event at {sol.t_events[0]}') tend = sol.t_events[0] t = np.arange(t0, tend) z = sol.sol(t) # fig,ax = plt.subplots(1,3,figsize=(20,6)) # ax[0].plot(t, z[:-1,:].T,'-o') # ax[0].set_ylabel('Age $a_i$') # ax[0].set_xlabel('days') # # ax[0].legend(['a0', 'a1', 'a2'], shadow=True) # ax[0].set_title('Population age evolution') # mass and inhibitor biomass = z[:-1, :] I = z[-1,:] # what we gain is: _yield = np.sum( biomass.T - biomass[:,0], axis=1) ax[0].plot(t, _yield,'-',label = sol['s'][0]) # _yield[_yield==0] = 0.001 # ax[0].plot(t, np.log(_yield),'-o',label = sol['s'][0]) ax[0].set_xlabel('days') ax[0].set_ylabel(r'Yield kg/m$^3$') # ax.set_title('Total biomass') ax[0].set_ylim([-1, 11]) ax[0].set_xlim([0,100]) # ax[0].set_yscale('symlog') # ax[0].legend() ax[0].text(2.1, 9.5, 'a)', size=14) axins1.plot(t[:10], _yield[:10],'-') # if sol.t_events[0].size > 0: # ax[0].annotate('sporulation', xy=(tend, 0), xycoords='data', # xytext=(tend, 0.05), # arrowprops=dict(arrowstyle="->", # connectionstyle="arc3", color='red') # ) ax[2].plot(t,I,'-',label= sol['s'][0]) ax[2].set_xlabel('days') ax[2].set_ylabel(r'$I$') ax[2].plot([0,120],[1.8, 1.8],'k--',lw=0.1) ax[2].set_xlim([0,100]) # ax[1].set_yscale('symlog') # ax[1].set_title("Inhibitor") ax[2].text(10,1.65, 'c)',fontsize=14) axins2.plot(t[:10], I[:10]) ind = np.argmax(_yield >= 0.9*9.8) # the percentage of youngs youngs = int(sol['s'][0].split('/')[0]) # print(youngs) settling_time = t[ind] if settling_time == 0: settling_time = np.nan # ax[2].plot(t, np.cumsum(_yield)/biomass[:,0].sum(),'-',label = sol['s'][0]) # if settling_time > 0: ax[1].plot(youngs, settling_time,'o-', label = sol['s'][0]) # _yield[_yield==0] = 0.001 # ax[0].plot(t, np.log(_yield),'-o',) ax[1].set_xlabel('Percentage of young') ax[1].set_ylabel(r'Time to 90\%') # ax[2].set_xlim([0,100]) # ax.set_title('Total biomass') # ax[0].set_ylim([-1, 11]) # ax[0].set_xlim([0,100]) # ax[0].set_yscale('symlog') ax[1].legend() fmt = mpl.ticker.StrMethodFormatter("{x:g}") ax[0].yaxis.set_major_formatter(fmt) ax[0].yaxis.set_minor_formatter(fmt) ax[1].yaxis.set_major_formatter(fmt) ax[1].yaxis.set_minor_formatter(fmt) ax[1].text(20,57, 'b)',fontsize=14) # ax[0].legend(bbox_to_anchor=(1.5, 1.0)) plt.show() # return fig, ax fig.savefig('figure2.png',dpi=300, bbox_inches='tight', transparent=True, pad_inches=0) settling_times = [] for sol in solutions: t0 = sol.t[0] if tend is None: tend = sol.t[-1] if sol.t_events[0].size > 0 and sol.t_events[0] < tend: print(f'sporulation event at {sol.t_events[0]}') tend = sol.t_events[0] t = np.arange(t0, tend) z = sol.sol(t) # mass and inhibitor biomass = z[:-1, :] I = z[-1,:] # what we gain is: _yield = np.sum( biomass.T - biomass[:,0], axis=1) ind = np.argmax(_yield >= 0.9*9.8) youngs = int(sol['s'][0].split('/')[0]) print(youngs) settling_time = t[ind] if settling_time == 0: settling_time = np.nan settling_times.append(settling_time) ###Output 100 90 80 70 60 50 40 30 20 10 0
notebooks/B02_ML_Examples.ipynb
###Markdown ML model examples ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns sns.set_context('notebook', font_scale=1.5) ###Output _____no_output_____ ###Markdown Dimension reduction ###Code from sklearn.datasets import load_breast_cancer bc = load_breast_cancer(as_frame=True) bc.data.head() bc.target_names bc.target.head() ! python3 -m pip install --quiet umap-learn ! python3 -m pip install --quiet phate from sklearn.decomposition import PCA from sklearn.manifold import TSNE from umap import UMAP from phate import PHATE dr_models = { 'PCA': PCA(), 't-SNE': TSNE(), 'UMAP': UMAP(), 'PHATE': PHATE(verbose=0), } from sklearn.preprocessing import StandardScaler scaler = StandardScaler() fig, axes = plt.subplots(2,2,figsize=(8,8)) axes = axes.ravel() for i, (k, v) in enumerate(dr_models.items()): X = v.fit_transform(scaler.fit_transform(bc.data)) target = bc.target ax = axes[i] ax.scatter(X[:, 0], X[:, 1], c=target) ax.set_xlabel(f'{k}1') ax.set_ylabel(f'{k}2') ax.set_xticks([]) ax.set_yticks([]) ###Output _____no_output_____ ###Markdown A3.2 Clustering- K-means- Agglomerative hierarchical clustering- Mixture models ###Code from sklearn.cluster import KMeans, AgglomerativeClustering, DBSCAN from sklearn.mixture import GaussianMixture cl_models = { 'true': None, 'k-means': KMeans(n_clusters=2), 'ahc': AgglomerativeClustering(n_clusters=2), 'gmm': GaussianMixture(n_components=2), } pca = PCA() X = pca.fit_transform(scaler.fit_transform(bc.data)) fig, axes = plt.subplots(2,2,figsize=(8, 8)) axes = axes.ravel() for i, (k, v) in enumerate(cl_models.items()): if i == 0: y = bc.target else: y = v.fit_predict(scaler.fit_transform(bc.data)) target = y ax = axes[i] ax.scatter(X[:, 0], X[:, 1], c=target) ax.set_xlabel('PC1') ax.set_ylabel('PC2') ax.set_xticks([]) ax.set_yticks([]) ax.set_title(k) ###Output _____no_output_____ ###Markdown A3.3 Supervised learning - Nearest neighbor![img](https://res.cloudinary.com/dyd911kmh/image/upload/f_auto,q_auto:best/v1531424125/KNN_final_a1mrv9.png)- Linear models![img](https://static.javatpoint.com/tutorial/machine-learning/images/machine-learning-polynomial-regression.png)- Support vector machines![img](https://upload.wikimedia.org/wikipedia/commons/thumb/7/72/SVM_margin.png/300px-SVM_margin.png)- Trees![img](https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2016/02/Example-Decision-Tree.png)- Neural networks![img](https://ml-cheatsheet.readthedocs.io/en/latest/_images/dynamic_resizing_neural_network_4_obs.png) ###Code from sklearn.model_selection import train_test_split from sklearn.dummy import DummyClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neural_network import MLPClassifier ###Output _____no_output_____ ###Markdown Proprocess data ###Code X = bc.data y = bc.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0, stratify=y) X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) pd.Series(y_test).value_counts(normalize=True) sl_modles = dict( dummy = DummyClassifier(strategy='prior'), knn = KNeighborsClassifier(), lr = LogisticRegression(), svc = SVC(), nn = MLPClassifier(max_iter=500), ) for name, clf in sl_modles.items(): clf.fit(X_train, y_train) score = clf.score(X_test, y_test) print(f'{name}: {score:.3f}') ###Output _____no_output_____ ###Markdown ML model examples ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns sns.set_context('notebook', font_scale=1.5) ###Output _____no_output_____ ###Markdown Dimension reduction ###Code from sklearn.datasets import load_breast_cancer bc = load_breast_cancer(as_frame=True) bc.data.head() bc.target_names bc.target.head() %%capture ! python3 -m pip install --quiet umap-learn ! python3 -m pip install --quiet phate from sklearn.decomposition import PCA from sklearn.manifold import TSNE from umap import UMAP dr_models = { 'PCA': PCA(), 't-SNE': TSNE(), 'UMAP': UMAP(), } from sklearn.preprocessing import StandardScaler scaler = StandardScaler() fig, axes = plt.subplots(1,3,figsize=(12,4)) axes = axes.ravel() for i, (k, v) in enumerate(dr_models.items()): X = v.fit_transform(scaler.fit_transform(bc.data)) target = bc.target ax = axes[i] ax.scatter(X[:, 0], X[:, 1], c=target) ax.set_xlabel(f'{k}1') ax.set_ylabel(f'{k}2') ax.set_xticks([]) ax.set_yticks([]) ###Output _____no_output_____ ###Markdown A3.2 Clustering- K-means- Agglomerative hierarchical clustering- Mixture models ###Code from sklearn.cluster import KMeans, AgglomerativeClustering, DBSCAN from sklearn.mixture import GaussianMixture cl_models = { 'true': None, 'k-means': KMeans(n_clusters=2), 'ahc': AgglomerativeClustering(n_clusters=2), 'gmm': GaussianMixture(n_components=2), } pca = PCA() X = pca.fit_transform(scaler.fit_transform(bc.data)) fig, axes = plt.subplots(2,2,figsize=(8, 8)) axes = axes.ravel() for i, (k, v) in enumerate(cl_models.items()): if i == 0: y = bc.target else: y = v.fit_predict(scaler.fit_transform(bc.data)) target = y ax = axes[i] ax.scatter(X[:, 0], X[:, 1], c=target) ax.set_xlabel('PC1') ax.set_ylabel('PC2') ax.set_xticks([]) ax.set_yticks([]) ax.set_title(k) ###Output _____no_output_____ ###Markdown A3.3 Supervised learning - Nearest neighbor![img](https://res.cloudinary.com/dyd911kmh/image/upload/f_auto,q_auto:best/v1531424125/KNN_final_a1mrv9.png)- Linear models![img](https://static.javatpoint.com/tutorial/machine-learning/images/machine-learning-polynomial-regression.png)- Support vector machines![img](https://upload.wikimedia.org/wikipedia/commons/thumb/7/72/SVM_margin.png/300px-SVM_margin.png)- Trees![img](https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2016/02/Example-Decision-Tree.png)- Neural networks![img](https://ml-cheatsheet.readthedocs.io/en/latest/_images/dynamic_resizing_neural_network_4_obs.png) ###Code from sklearn.model_selection import train_test_split from sklearn.dummy import DummyClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neural_network import MLPClassifier ###Output _____no_output_____ ###Markdown Proprocess data ###Code X = bc.data y = bc.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0, stratify=y) X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) pd.Series(y_test).value_counts(normalize=True) sl_modles = dict( dummy = DummyClassifier(strategy='prior'), knn = KNeighborsClassifier(), lr = LogisticRegression(), svc = SVC(), nn = MLPClassifier(max_iter=500), ) for name, clf in sl_modles.items(): clf.fit(X_train, y_train) score = clf.score(X_test, y_test) print(f'{name}: {score:.3f}') ###Output _____no_output_____ ###Markdown ML model examples ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns sns.set_context('notebook', font_scale=1.5) ###Output _____no_output_____ ###Markdown Dimension reduction ###Code from sklearn.datasets import load_breast_cancer bc = load_breast_cancer(as_frame=True) bc.data.head() bc.target_names bc.target.head() ! python3 -m pip install --quiet umap-learn ! python3 -m pip install --quiet phate from sklearn.decomposition import PCA from sklearn.manifold import TSNE from umap import UMAP from phate import PHATE dr_models = { 'PCA': PCA(), 't-SNE': TSNE(), 'UMAP': UMAP(), 'PHATE': PHATE(verbose=0), } from sklearn.preprocessing import StandardScaler scaler = StandardScaler() fig, axes = plt.subplots(2,2,figsize=(8,8)) axes = axes.ravel() for i, (k, v) in enumerate(dr_models.items()): X = v.fit_transform(scaler.fit_transform(bc.data)) target = bc.target ax = axes[i] ax.scatter(X[:, 0], X[:, 1], c=target) ax.set_xlabel(f'{k}1') ax.set_ylabel(f'{k}2') ax.set_xticks([]) ax.set_yticks([]) ###Output _____no_output_____ ###Markdown A3.2 Clustering- K-means- Agglomerative hierarchical clustering- Mixture models ###Code from sklearn.cluster import KMeans, AgglomerativeClustering, DBSCAN from sklearn.mixture import GaussianMixture cl_models = { 'true': None, 'k-means': KMeans(n_clusters=2), 'ahc': AgglomerativeClustering(n_clusters=2), 'gmm': GaussianMixture(n_components=2), } pca = PCA() X = pca.fit_transform(scaler.fit_transform(bc.data)) fig, axes = plt.subplots(2,2,figsize=(8, 8)) axes = axes.ravel() for i, (k, v) in enumerate(cl_models.items()): if i == 0: y = bc.target else: y = v.fit_predict(scaler.fit_transform(bc.data)) target = y ax = axes[i] ax.scatter(X[:, 0], X[:, 1], c=target) ax.set_xlabel('PC1') ax.set_ylabel('PC2') ax.set_xticks([]) ax.set_yticks([]) ax.set_title(k) ###Output _____no_output_____ ###Markdown A3.3 Supervised learning - Nearest neighbor![img](https://res.cloudinary.com/dyd911kmh/image/upload/f_auto,q_auto:best/v1531424125/KNN_final_a1mrv9.png)- Linear models![img](https://static.javatpoint.com/tutorial/machine-learning/images/machine-learning-polynomial-regression.png)- Support vector machines![img](https://upload.wikimedia.org/wikipedia/commons/thumb/7/72/SVM_margin.png/300px-SVM_margin.png)- Trees![img](https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2016/02/Example-Decision-Tree.png)- Neural networks![img](https://ml-cheatsheet.readthedocs.io/en/latest/_images/dynamic_resizing_neural_network_4_obs.png) ###Code from sklearn.model_selection import train_test_split from sklearn.dummy import DummyClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neural_network import MLPClassifier ###Output _____no_output_____ ###Markdown Proprocess data ###Code X = bc.data y = bc.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0, stratify=y) X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) pd.Series(y_test).value_counts(normalize=True) sl_modles = dict( dummy = DummyClassifier(strategy='prior'), knn = KNeighborsClassifier(), lr = LogisticRegression(), svc = SVC(), nn = MLPClassifier(max_iter=500), ) for name, clf in sl_modles.items(): clf.fit(X_train, y_train) score = clf.score(X_test, y_test) print(f'{name}: {score:.3f}') ###Output _____no_output_____
_notebooks/ML_Model2.ipynb
###Markdown ML_Model2--Titanic Case 0. Background Infokaggle's case:Titanic - Machine Learning from Disasterinformation link:https://www.kaggle.com/c/titanic/overview ###Code # import package import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline from sklearn.preprocessing import StandardScaler from sklearn.metrics import accuracy_score, f1_score,roc_auc_score from sklearn import tree from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier from sklearn.linear_model import LogisticRegression,SGDClassifier from sklearn.naive_bayes import GaussianNB from xgboost import XGBClassifier ###Output _____no_output_____ ###Markdown 1. Load the data ###Code #Load the data data1 = pd.read_csv("train.csv") data2 = pd.read_csv("test.csv") data3 = pd.read_csv("gender_submission.csv") data4=pd.merge(data3,data2) data=pd.concat([data1,data4],axis=0) data=data.reset_index() data.head() ###Output _____no_output_____ ###Markdown 2. Pre-process the data (aka data wrangling) 1, Data cleanning ###Code # drop the unrelated columns data.drop(['PassengerId','Cabin','Ticket'],axis=1,inplace=True) data.head() ###Output _____no_output_____ ###Markdown 2, Identification and treatment of missing values and outliers. ###Code # find the missing value data.isnull().sum() #Find the null value in Fare catergory and fill with mean value data[data['Embarked'].isnull()] # Miss. Amelie and Mrs. George Nelson was embarked with 'S',since the search from #https://www.encyclopedia-titanica.org/titanic-survivor/martha-evelyn-stone.html data['Embarked'] = data['Embarked'].fillna('S') data.corr() # find the missing value in fare column data[data['Fare'].isnull()] #fill NA value within "Fare" column data['Fare'] = data['Fare'].fillna(data.groupby(['Pclass'])['Fare'].mean()[3]) # Since ['age'] has no large empty value, #so fill the age with mean value data['Age'].fillna(data['Age'].mean(), inplace = True) # Check each numerical,compare the mean,max,min data.describe() # for the descibe table, the fare have the outlier more 400 sns.boxplot(x="Survived", y="Fare", data=data) # Remove the outlier of Fare with more than 400 data.drop(data[data.Fare > 400].index, inplace=True) ###Output _____no_output_____ ###Markdown 3, Feature engineering ###Code # encoding the sex (categorical variable) table1=pd.get_dummies(data['Sex']) data=pd.concat([data, table1], axis=1) # encoding the embarked (categorical variable) table2=pd.get_dummies(data['Embarked']) data=pd.concat([data, table2], axis=1) ###Output _____no_output_____ ###Markdown 3. Exploratory data analysis. 1, At least two plots describing different aspects of the data set (e.g. identifying outliers, histograms of different distributions, or scatter plots to explore correlations). ###Code # heatmap for correlations table3=data.drop(['Name','Sex','Embarked'],axis=1) plt.figure(figsize=(8,8)) sns.heatmap(table3.astype(float).corr(), mask=np.triu(table3.astype(float).corr()), cmap = sns.diverging_palette(230, 20, as_cmap=True), annot=True, fmt='.1g', square=True, linewidths=.5, cbar_kws={"shrink": .5}) #the relationship between survival and categorical datad catergircal data(sex,Embarked) sns.pointplot(x="Embarked", y="Survived", hue="Sex", kind="box", data=data,palette="Set3") ###Output _____no_output_____ ###Markdown 2, Print a basic data description (e.g. number of examples, number features, number of examples in each class and such). ###Code data.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 1305 entries, 0 to 1308 Data columns (total 15 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 index 1305 non-null int64 1 Survived 1305 non-null int64 2 Pclass 1305 non-null int64 3 Name 1305 non-null object 4 Sex 1305 non-null object 5 Age 1305 non-null float64 6 SibSp 1305 non-null int64 7 Parch 1305 non-null int64 8 Fare 1305 non-null float64 9 Embarked 1305 non-null object 10 female 1305 non-null uint8 11 male 1305 non-null uint8 12 C 1305 non-null uint8 13 Q 1305 non-null uint8 14 S 1305 non-null uint8 dtypes: float64(2), int64(5), object(3), uint8(5) memory usage: 158.5+ KB ###Markdown 3, Print (or include in the plots) descriptive statistics (e.g. means, medians, standard deviation) ###Code data.describe() ###Output _____no_output_____ ###Markdown 4. Partition data into train, validation and test sets. From Lecture06.slide:\training set: 60% of total data set 1305*0.6= 783 \Validation set: 20% of total data set 1305*0.2 = 261 \Testing setzz: 20% of total data set 1305*0.2=261 ###Code train_data=data[:783] valid_data=data[783:1044] test_data=data[1044:] ###Output _____no_output_____ ###Markdown 5. Fit models on the training set (this can include a hyper-parameter search) and select the best based on validation set performance. 1,building the machine learning model for both test and valid data ###Code def build_x(df): return StandardScaler().fit_transform(df.drop(columns=['Name','Sex','Embarked','index','Survived'])) train_x=build_x(train_data) valid_x=build_x(valid_data) test_x=build_x(test_data) train_y = train_data['Survived'].values valid_y = valid_data['Survived'].values test_y = test_data['Survived'].values ###Output _____no_output_____ ###Markdown 2, runing into different model ###Code #Decision Tree Classifier parameters={'criterion':('gini','entropy'), 'splitter':('random','best'),'max_depth':range(1,5)} clf=tree.DecisionTreeClassifier(random_state=30) clf_gs=GridSearchCV(clf,parameters) clf_gs=clf_gs.fit(train_x,train_y) clf_score=clf_gs.score(valid_x,valid_y) #Random Forest Classifier parameters={'criterion':('gini','entropy'), 'max_features':('auto','sqrt','log2'),'max_depth':range(1,5)} random_forest=RandomForestClassifier() random_forest_rs=RandomizedSearchCV(random_forest,parameters) random_forest_rs=random_forest_rs.fit(train_x,train_y) random_forest_score=random_forest_rs.score(valid_x,valid_y) #Gradient Boosting Classifier Gradient_Boosting=GradientBoostingClassifier().fit(train_x,train_y) Gradient_Boosting_score=Gradient_Boosting.score(valid_x,valid_y) #Logistic Regression parameters={'solver':('newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga')} logis_R=LogisticRegression() logis_R_gs=GridSearchCV(logis_R,parameters) logis_R_gs=logis_R_gs.fit(train_x,train_y) logis_R_score=logis_R_gs.score(valid_x,valid_y) #Gaussian Naive Bayes(GNB) GNB=GaussianNB().fit(train_x,train_y) GNB.score=GNB.score(valid_x,valid_y) #Stochastic Gradient Descent (SGD) parameters={'loss':('deviance','exponential'),'learning_rate':[0.01,0.05,0.1,0.2],'n_estimators':[50,100,150]} SGD=GradientBoostingClassifier() SGD_gs=GridSearchCV(SGD,parameters) SGD_gs=SGD_gs.fit(train_x,train_y) SGD_score=SGD_gs.score(valid_x,valid_y) SGD_score #xgboost Xgboost=XGBClassifier().fit(train_x,train_y) Xgboost_score=Xgboost.score(valid_x,valid_y) ###Output _____no_output_____ ###Markdown 3, select the table from best performance of validation ###Code results = pd.DataFrame({ 'Model': ['Decision Tree', 'Random Forest Classifier','Gradient Boosting', 'Logistic Regression','Gaussian Naive Bayes','Stochastic Gradient Decent', 'xgbooste'], 'Score': [clf_score,random_forest_score,Gradient_Boosting_score, logis_R_score,GNB.score,SGD_score,Xgboost_score]}) result_df = results.sort_values(by='Score', ascending=False) result_df = result_df.set_index('Score') print(result_df) ###Output Model Score 0.915709 Random Forest Classifier 0.892720 Gaussian Naive Bayes 0.885057 Logistic Regression 0.865900 Decision Tree 0.865900 Gradient Boosting 0.858238 xgbooste 0.850575 Stochastic Gradient Decent ###Markdown 6. Print the results of the final model on the test set. This should include accuracy, F1-score and AUC. ###Code #find the predicted value from test_data Y_prediction = random_forest_rs.predict(test_x) #Accuracy accuracy=accuracy_score(test_y, Y_prediction) print('accuracy:', accuracy) # F1-score f1_score=f1_score(test_y, Y_prediction) print('F1 score:',f1_score ) # AUC score y_scores = random_forest_rs.predict_proba(test_x)[:,1] r_a_score = roc_auc_score(test_y, y_scores) print("ROC-AUC-Score:", r_a_score) Final_result = pd.DataFrame({ 'Indicator': ['Accuracy','F1 score','AUC Score'], 'Score': [accuracy,f1_score,r_a_score]}) print(Final_result) ###Output Indicator Score 0 Accuracy 0.969349 1 F1 score 0.957447 2 AUC Score 0.995987
lessons/03_Simulated_Sky_Signal/simsky_timedomain.ipynb
###Markdown Simulated Sky Signal in time domainIn this lesson we will use the TOAST Operator `OpSimPySM` to create timestreams for an instrument given a sky model. ###Code # Load common tools for all lessons import sys sys.path.insert(0, "..") from lesson_tools import ( fake_focalplane ) # Capture C++ output in the jupyter cells %reload_ext wurlitzer import toast import healpy as hp import numpy as np env = toast.Environment.get() env.set_log_level("DEBUG") ###Output _____no_output_____ ###Markdown Scanning strategyBefore being able to scan a map into a timestream we need to define a scanning strategyand get pointing information for each channel.We use the same **satellite** scanning used in lesson 2 about scanning strategies,see the `02_Simulated_Scan_Strategies/simscan_satellite.ipynb` for more details. ###Code focal_plane = fake_focalplane() focal_plane.keys() focal_plane["0A"]["fwhm_arcmin"] # Scan parameters alpha = 50.0 # precession opening angle, degrees beta = 45.0 # spin opening angle, degrees p_alpha = 25.0 # precession period, minutes p_beta = 1.25 # spin period, minutes samplerate = 0.5 # sample rate, Hz hwprpm = 5.0 # HWP rotation in RPM nside = 64 # Healpix NSIDE # We will use one observation per day, with no gaps in between, and # run for one year. obs_samples = int(24 * 3600.0 * samplerate) - 1 nobs = 366 # Slew the precession axis so that it completes one circle deg_per_day = 360.0 / nobs from toast.todmap import TODSatellite, slew_precession_axis detquat = {ch: focal_plane[ch]["quat"] for ch in focal_plane} # Create distributed data comm = toast.Comm() data = toast.Data(comm) # Append observations for ob in range(nobs): obsname = "{:03d}".format(ob) obsfirst = ob * (obs_samples + 1) obsstart = 24 * 3600.0 tod = TODSatellite( comm.comm_group, detquat, obs_samples, firstsamp=obsfirst, firsttime=obsstart, rate=samplerate, spinperiod=p_beta, spinangle=beta, precperiod=p_alpha, precangle=alpha, coord="E", hwprpm=hwprpm ) qprec = np.empty(4 * tod.local_samples[1], dtype=np.float64).reshape((-1, 4)) slew_precession_axis( qprec, firstsamp=obsfirst, samplerate=samplerate, degday=deg_per_day, ) tod.set_prec_axis(qprec=qprec) obs = dict() obs["tod"] = tod data.obs.append(obs) from toast.todmap import ( OpPointingHpix, OpAccumDiag ) from toast.map import ( DistPixels ) # Make a simple pointing matrix pointing = OpPointingHpix(nside=nside, nest=True, mode="IQU") pointing.exec(data) # Construct a distributed map to store the hit map npix = 12 * nside**2 hits = DistPixels( data, nnz=1, dtype=np.int64, ) hits.data.fill(0) # Accumulate the hit map locally build_hits = OpAccumDiag(hits=hits) build_hits.exec(data) # Reduce the map across processes (a No-op in this case) hits.allreduce() %matplotlib inline hp.mollview(hits.data.flatten(), nest=True) ###Output _____no_output_____ ###Markdown Define PySM parameters and instrument bandpassesThen we define the sky model parameters, choosing the desired set of `PySM` models and then we specify the band center and the bandwidth for a top-hat bandpass.Currently top-hat bandpasses are the only type supported by the operator, in the future we will implement arbitrary bandpasses.Then bandpass parameters can be added directly to the `focal_plane` dictionary: ###Code for ch in focal_plane: focal_plane[ch]["bandcenter_ghz"] = 70 focal_plane[ch]["bandwidth_ghz"] = 10 focal_plane[ch]["fwhm"] = 60*2 pysm_sky_config = ["s1", "f1", "a1", "d1"] ###Output _____no_output_____ ###Markdown Run the OpSimPySM operatorThe `OpSimPySM` operator: * Creates top-hat bandpasses arrays (frequency axis and weights) as expected by `PySM` * Loops by channel and for each: * Creates a `PySMSky` object just with 1 channel at a time * Executes `PySMSky` to evaluate the sky models and bandpass-integrate * Calls `PySM` to perform distributed smoothing with `libsharp` * Gathers the map on the first MPI process * Applies coordinate transformation if necessary (not currently implemented in `libsharp`) * Use the `DistMap` object to communicate to each process the part of the sky they observe * Calls `OpSimScan` to rescan the map to a timeline ###Code from toast.todmap import OpSimPySM OpSimPySM? opsim_pysm = OpSimPySM( data, comm=None, pysm_model=pysm_sky_config, apply_beam=True, debug=True, focalplanes=[focal_plane], ) opsim_pysm.exec(data) ###Output _____no_output_____ ###Markdown Plot output timelines ###Code %matplotlib inline import matplotlib.pyplot as plt tod = data.obs[0]['tod'] pix = tod.cache.reference("pixels_0A") import toast.qarray as qa theta, phi, pa = qa.to_angles(tod.read_pntg(detector="0A")) pix num = 10000 plt.figure(figsize=(7, 5)) plt.plot(np.degrees(theta[:num]), tod.cache.reference("signal_0A")[:num], ".") plt.xlabel("$Colatitude [deg]$") plt.ylabel("$Signal [ \mu K_{RJ} ]$"); ###Output _____no_output_____ ###Markdown Bin the output to a map ###Code from numba import njit @njit def just_make_me_a_map(output_map, signals): """Temperature only binner Bins a list of (pix, signal) tuples into an output map, it does not support polarization, so it just averages it out. Parameters ---------- output_map : np.array already zeroed output map signals : numba.typed.List of (np.array[int64] pix, np.array[np.double] signal) Returns ------- hits : np.array[np.int64] hitmap """ hits = np.zeros(len(output_map), dtype=np.int64) for pix, signal in signals: for p,s in zip(pix, signal): output_map[p] += s hits[p] += 1 output_map[hits != 0] /= hits[hits != 0] return hits from numba.typed import List signals = List() for obs in data.obs: for ch in focal_plane: signals.append((obs["tod"].cache.reference("pixels_%s" % ch), obs["tod"].cache.reference("signal_%s" % ch))) output_map = np.zeros(npix, dtype=np.double) h = just_make_me_a_map(output_map, signals) hp.mollview(h, title="hitmap", nest=True) hp.mollview(output_map, nest=True, min=0, max=1e-3, cmap="coolwarm") hp.gnomview(output_map, rot=(0,0), xsize=5000, ysize=2000, cmap="coolwarm", nest=True, min=0, max=1e-2) ###Output _____no_output_____ ###Markdown Simulated Sky Signal in time domainIn this lesson we will use the TOAST Operator `OpSimPySM` to create timestreams for an instrument given a sky model. ###Code # Load common tools for all lessons import sys sys.path.insert(0, "..") from lesson_tools import ( fake_focalplane ) # Capture C++ output in the jupyter cells %reload_ext wurlitzer import toast import healpy as hp import numpy as np env = toast.Environment.get() env.set_log_level("DEBUG") ###Output _____no_output_____ ###Markdown Scanning strategyBefore being able to scan a map into a timestream we need to define a scanning strategyand get pointing information for each channel.We use the same **satellite** scanning used in lesson 2 about scanning strategies,see the `02_Simulated_Scan_Strategies/simscan_satellite.ipynb` for more details. ###Code focal_plane = fake_focalplane() focal_plane.keys() focal_plane["0A"]["fwhm_arcmin"] # Scan parameters alpha = 50.0 # precession opening angle, degrees beta = 45.0 # spin opening angle, degrees p_alpha = 25.0 # precession period, minutes p_beta = 1.25 # spin period, minutes samplerate = 0.5 # sample rate, Hz hwprpm = 5.0 # HWP rotation in RPM nside = 64 # Healpix NSIDE # We will use one observation per day, with no gaps in between, and # run for one year. obs_samples = int(24 * 3600.0 * samplerate) - 1 nobs = 366 # Slew the precession axis so that it completes one circle deg_per_day = 360.0 / nobs from toast.todmap import TODSatellite, slew_precession_axis detquat = {ch: focal_plane[ch]["quat"] for ch in focal_plane} # Create distributed data comm = toast.Comm() data = toast.Data(comm) # Append observations for ob in range(nobs): obsname = "{:03d}".format(ob) obsfirst = ob * (obs_samples + 1) obsstart = 24 * 3600.0 tod = TODSatellite( comm.comm_group, detquat, obs_samples, firstsamp=obsfirst, firsttime=obsstart, rate=samplerate, spinperiod=p_beta, spinangle=beta, precperiod=p_alpha, precangle=alpha, coord="E", hwprpm=hwprpm ) qprec = np.empty(4 * tod.local_samples[1], dtype=np.float64).reshape((-1, 4)) slew_precession_axis( qprec, firstsamp=obsfirst, samplerate=samplerate, degday=deg_per_day, ) tod.set_prec_axis(qprec=qprec) obs = dict() obs["tod"] = tod data.obs.append(obs) from toast.todmap import ( get_submaps_nested, OpPointingHpix, OpAccumDiag ) from toast.map import ( DistPixels ) # Make a simple pointing matrix pointing = OpPointingHpix(nside=nside, nest=True, mode="IQU") pointing.exec(data) # Compute the locally hit pixels localpix, localsm, subnpix = get_submaps_nested(data, nside) # Construct a distributed map to store the hit map npix = 12 * nside**2 hits = DistPixels( comm=data.comm.comm_world, size=npix, nnz=1, dtype=np.int64, submap=subnpix, local=localsm, ) hits.data.fill(0) # Accumulate the hit map locally build_hits = OpAccumDiag(hits=hits) build_hits.exec(data) # Reduce the map across processes (a No-op in this case) hits.allreduce() %matplotlib inline hp.mollview(hits.data.flatten(), nest=True) ###Output _____no_output_____ ###Markdown Define PySM parameters and instrument bandpassesThen we define the sky model parameters, choosing the desired set of `PySM` models and then we specify the band center and the bandwidth for a top-hat bandpass.Currently top-hat bandpasses are the only type supported by the operator, in the future we will implement arbitrary bandpasses.Then bandpass parameters can be added directly to the `focal_plane` dictionary: ###Code for ch in focal_plane: focal_plane[ch]["bandcenter_ghz"] = 70 focal_plane[ch]["bandwidth_ghz"] = 10 focal_plane[ch]["fwhm"] = 60*2 pysm_sky_config = ["s1", "f1", "a1", "d1"] ###Output _____no_output_____ ###Markdown Run the OpSimPySM operatorThe `OpSimPySM` operator: * Creates top-hat bandpasses arrays (frequency axis and weights) as expected by `PySM` * Loops by channel and for each: * Creates a `PySMSky` object just with 1 channel at a time * Executes `PySMSky` to evaluate the sky models and bandpass-integrate * Calls `PySM` to perform distributed smoothing with `libsharp` * Gathers the map on the first MPI process * Applies coordinate transformation if necessary (not currently implemented in `libsharp`) * Use the `DistMap` object to communicate to each process the part of the sky they observe * Calls `OpSimScan` to rescan the map to a timeline ###Code from toast.todmap import OpSimPySM OpSimPySM? opsim_pysm = OpSimPySM( comm=None, pysm_model=pysm_sky_config, nside=nside, apply_beam=True, debug=True, focalplanes=[focal_plane], subnpix=subnpix, localsm=localsm ) opsim_pysm.exec(data) ###Output _____no_output_____ ###Markdown Plot output timelines ###Code %matplotlib inline import matplotlib.pyplot as plt tod = data.obs[0]['tod'] pix = tod.cache.reference("pixels_0A") import toast.qarray as qa theta, phi, pa = qa.to_angles(tod.read_pntg(detector="0A")) pix num = 10000 plt.figure(figsize=(7, 5)) plt.plot(np.degrees(theta[:num]), tod.cache.reference("signal_0A")[:num], ".") plt.xlabel("$Colatitude [deg]$") plt.ylabel("$Signal [ \mu K_{RJ} ]$"); ###Output _____no_output_____ ###Markdown Bin the output to a map ###Code from numba import njit @njit def just_make_me_a_map(output_map, signals): """Temperature only binner Bins a list of (pix, signal) tuples into an output map, it does not support polarization, so it just averages it out. Parameters ---------- output_map : np.array already zeroed output map signals : numba.typed.List of (np.array[int64] pix, np.array[np.double] signal) Returns ------- hits : np.array[np.int64] hitmap """ hits = np.zeros(len(output_map), dtype=np.int64) for pix, signal in signals: for p,s in zip(pix, signal): output_map[p] += s hits[p] += 1 output_map[hits != 0] /= hits[hits != 0] return hits from numba.typed import List signals = List() for obs in data.obs: for ch in focal_plane: signals.append((obs["tod"].cache.reference("pixels_%s" % ch), obs["tod"].cache.reference("signal_%s" % ch))) output_map = np.zeros(npix, dtype=np.double) h = just_make_me_a_map(output_map, signals) hp.mollview(h, title="hitmap", nest=True) hp.mollview(output_map, nest=True, min=0, max=1e-3, cmap="coolwarm") hp.gnomview(output_map, rot=(0,0), xsize=5000, ysize=2000, cmap="coolwarm", nest=True, min=0, max=1e-2) ###Output _____no_output_____ ###Markdown Simulated Sky Signal in time domainIn this lesson we will use the TOAST Operator `OpSimPySM` to create timestreams for an instrument given a sky model. ###Code # Load common tools for all lessons import sys sys.path.insert(0, "..") from lesson_tools import ( fake_focalplane ) # Capture C++ output in the jupyter cells %reload_ext wurlitzer import toast import healpy as hp import numpy as np env = toast.Environment.get() env.set_log_level("DEBUG") ###Output _____no_output_____ ###Markdown Scanning strategyBefore being able to scan a map into a timestream we need to define a scanning strategyand get pointing information for each channel.We use the same **satellite** scanning used in lesson 2 about scanning strategies,see the `02_Simulated_Scan_Strategies/simscan_satellite.ipynb` for more details. ###Code focal_plane = fake_focalplane() focal_plane.keys() focal_plane["0A"]["fwhm_arcmin"] # Scan parameters alpha = 50.0 # precession opening angle, degrees beta = 45.0 # spin opening angle, degrees p_alpha = 25.0 # precession period, minutes p_beta = 1.25 # spin period, minutes samplerate = 0.5 # sample rate, Hz hwprpm = 5.0 # HWP rotation in RPM nside = 64 # Healpix NSIDE # We will use one observation per day, with no gaps in between, and # run for one year. obs_samples = int(24 * 3600.0 * samplerate) - 1 nobs = 366 # Slew the precession axis so that it completes one circle deg_per_day = 360.0 / nobs from toast.todmap import TODSatellite, slew_precession_axis detquat = {ch: focal_plane[ch]["quat"] for ch in focal_plane} # Create distributed data comm = toast.Comm() data = toast.Data(comm) # Append observations for ob in range(nobs): obsname = "{:03d}".format(ob) obsfirst = ob * (obs_samples + 1) obsstart = 24 * 3600.0 tod = TODSatellite( comm.comm_group, detquat, obs_samples, firstsamp=obsfirst, firsttime=obsstart, rate=samplerate, spinperiod=p_beta, spinangle=beta, precperiod=p_alpha, precangle=alpha, coord="E", hwprpm=hwprpm ) qprec = np.empty(4 * tod.local_samples[1], dtype=np.float64).reshape((-1, 4)) slew_precession_axis( qprec, firstsamp=obsfirst, samplerate=samplerate, degday=deg_per_day, ) tod.set_prec_axis(qprec=qprec) obs = dict() obs["tod"] = tod data.obs.append(obs) from toast.todmap import ( get_submaps_nested, OpPointingHpix, OpAccumDiag ) from toast.map import ( DistPixels ) # Make a simple pointing matrix pointing = OpPointingHpix(nside=nside, nest=True, mode="IQU") pointing.exec(data) # Compute the locally hit pixels localpix, localsm, subnpix = get_submaps_nested(data, nside) # Construct a distributed map to store the hit map npix = 12 * nside**2 hits = DistPixels( comm=data.comm.comm_world, size=npix, nnz=1, dtype=np.int64, submap=subnpix, local=localsm, ) hits.data.fill(0) # Accumulate the hit map locally build_hits = OpAccumDiag(hits=hits) build_hits.exec(data) # Reduce the map across processes (a No-op in this case) hits.allreduce() %matplotlib inline hp.mollview(hits.data.flatten(), nest=True) ###Output _____no_output_____ ###Markdown Define PySM parameters and instrument bandpassesThen we define the sky model parameters, choosing the desired set of `PySM` models and then we specify the band center and the bandwidth for a top-hat bandpass.Currently top-hat bandpasses are the only type supported by the operator, in the future we will implement arbitrary bandpasses.Then bandpass parameters can be added directly to the `focal_plane` dictionary: ###Code for ch in focal_plane: focal_plane[ch]["bandcenter_ghz"] = 70 focal_plane[ch]["bandwidth_ghz"] = 10 focal_plane[ch]["fwhm"] = 60*2 pysm_sky_config = ["s1", "f1", "a1", "d1"] #syncrotron free free a&e and dust components of the sky ###Output _____no_output_____ ###Markdown Run the OpSimPySM operatorThe `OpSimPySM` operator: * Creates top-hat bandpasses arrays (frequency axis and weights) as expected by `PySM` * Loops by channel and for each: * Creates a `PySMSky` object just with 1 channel at a time * Executes `PySMSky` to evaluate the sky models and bandpass-integrate * Calls `PySM` to perform distributed smoothing with `libsharp` * Gathers the map on the first MPI process * Applies coordinate transformation if necessary (not currently implemented in `libsharp`) * Use the `DistMap` object to communicate to each process the part of the sky they observe * Calls `OpSimScan` to rescan the map to a timeline ###Code from toast.todmap import OpSimPySM OpSimPySM? opsim_pysm = OpSimPySM( comm=None, pysm_model=pysm_sky_config, nside=nside, apply_beam=True, debug=True, focalplanes=[focal_plane], subnpix=subnpix, localsm=localsm ) opsim_pysm.exec(data) ###Output _____no_output_____ ###Markdown Plot output timelines ###Code %matplotlib inline import matplotlib.pyplot as plt tod = data.obs[0]['tod'] pix = tod.cache.reference("pixels_0A") import toast.qarray as qa theta, phi, pa = qa.to_angles(tod.read_pntg(detector="0A")) #read_pntg gives quaternials and to angles gives theta the colatitude (0 = NP, 180 = SP) and phi and pa pix num = 10000 plt.figure(figsize=(7, 5)) plt.plot(np.degrees(theta[:num]), tod.cache.reference("signal_0A")[:num], ".") plt.xlabel("$Colatitude [deg]$") plt.ylabel("$Signal [ \mu K_{RJ} ]$"); num = 1000 plt.figure(figsize=(7, 5)) plt.plot(tod.cache.reference("signal_0A")[:num], "-") plt.xlabel("$Time [arb.]$") plt.ylabel("$Signal [ \mu K_{RJ} ]$"); #can see the signal as the pixel goes over the galaxy, another view of the same data ###Output _____no_output_____ ###Markdown Bin the output to a map ###Code from numba import njit #just in time compiler for python can use this sometimes to avoid writting C++ @njit #causes numba to compile this function so that it runs faster def just_make_me_a_map(output_map, signals): """Temperature only binner Bins a list of (pix, signal) tuples into an output map, it does not support polarization, so it just averages it out. Parameters ---------- output_map : np.array already zeroed output map signals : numba.typed.List of (np.array[int64] pix, np.array[np.double] signal) Returns ------- hits : np.array[np.int64] hitmap """ hits = np.zeros(len(output_map), dtype=np.int64) for pix, signal in signals: for p,s in zip(pix, signal): output_map[p] += s hits[p] += 1 output_map[hits != 0] /= hits[hits != 0] return hits from numba.typed import List signals = List() for obs in data.obs: for ch in focal_plane: signals.append((obs["tod"].cache.reference("pixels_%s" % ch), obs["tod"].cache.reference("signal_%s" % ch))) output_map = np.zeros(npix, dtype=np.double) h = just_make_me_a_map(output_map, signals) hp.mollview(h, title="hitmap", nest=True) hp.mollview(output_map, nest=True, min=0, max=1e-3, cmap="coolwarm") #making a map from our focal plane with 2 deg beams hp.gnomview(output_map, rot=(0,0), xsize=5000, ysize=2000, cmap="coolwarm", nest=True, min=0, max=1e-2) ###Output _____no_output_____ ###Markdown Simulated Sky Signal in time domainIn this lesson we will use the TOAST Operator `OpSimPySM` to create timestreams for an instrument given a sky model. ###Code # Load common tools for all lessons import sys sys.path.insert(0, "..") from lesson_tools import ( fake_focalplane ) # Capture C++ output in the jupyter cells %reload_ext wurlitzer import toast import healpy as hp import numpy as np env = toast.Environment.get() env.set_log_level("DEBUG") ###Output _____no_output_____ ###Markdown Scanning strategyBefore being able to scan a map into a timestream we need to define a scanning strategyand get pointing information for each channel.We use the same **satellite** scanning used in lesson 2 about scanning strategies,see the `02_Simulated_Scan_Strategies/simscan_satellite.ipynb` for more details. ###Code focal_plane = fake_focalplane() focal_plane.keys() focal_plane["0A"]["fwhm_arcmin"] # Scan parameters alpha = 50.0 # precession opening angle, degrees beta = 45.0 # spin opening angle, degrees p_alpha = 25.0 # precession period, minutes p_beta = 1.25 # spin period, minutes samplerate = 0.5 # sample rate, Hz hwprpm = 5.0 # HWP rotation in RPM nside = 64 # Healpix NSIDE # We will use one observation per day, with no gaps in between, and # run for one year. obs_samples = int(24 * 3600.0 * samplerate) - 1 nobs = 366 # Slew the precession axis so that it completes one circle deg_per_day = 360.0 / nobs from toast.todmap import TODSatellite, slew_precession_axis detquat = {ch: focal_plane[ch]["quat"] for ch in focal_plane} # Create distributed data comm = toast.Comm() data = toast.Data(comm) # Append observations for ob in range(nobs): obsname = "{:03d}".format(ob) obsfirst = ob * (obs_samples + 1) obsstart = 24 * 3600.0 tod = TODSatellite( comm.comm_group, detquat, obs_samples, firstsamp=obsfirst, firsttime=obsstart, rate=samplerate, spinperiod=p_beta, spinangle=beta, precperiod=p_alpha, precangle=alpha, coord="E", hwprpm=hwprpm ) qprec = np.empty(4 * tod.local_samples[1], dtype=np.float64).reshape((-1, 4)) slew_precession_axis( qprec, firstsamp=obsfirst, samplerate=samplerate, degday=deg_per_day, ) tod.set_prec_axis(qprec=qprec) obs = dict() obs["tod"] = tod data.obs.append(obs) from toast.todmap import ( OpPointingHpix, OpAccumDiag ) from toast.map import ( DistPixels ) # Make a simple pointing matrix pointing = OpPointingHpix(nside=nside, nest=True, mode="IQU") pointing.exec(data) # Construct a distributed map to store the hit map npix = 12 * nside**2 hits = DistPixels( data, nnz=1, dtype=np.int64, ) hits.data.fill(0) # Accumulate the hit map locally build_hits = OpAccumDiag(hits=hits) build_hits.exec(data) # Reduce the map across processes (a No-op in this case) hits.allreduce() %matplotlib inline hp.mollview(hits.data.flatten(), nest=True) ###Output _____no_output_____ ###Markdown Define PySM parameters and instrument bandpassesThen we define the sky model parameters, choosing the desired set of `PySM` models and then we specify the band center and the bandwidth for a top-hat bandpass.Currently top-hat bandpasses are the only type supported by the operator, in the future we will implement arbitrary bandpasses.Then bandpass parameters can be added directly to the `focal_plane` dictionary: ###Code for ch in focal_plane: focal_plane[ch]["bandcenter_ghz"] = 70 focal_plane[ch]["bandwidth_ghz"] = 10 focal_plane[ch]["fwhm"] = 60*2 pysm_sky_config = ["s1", "f1", "a1", "d1"] ###Output _____no_output_____ ###Markdown Run the OpSimPySM operatorThe `OpSimPySM` operator: * Creates top-hat bandpasses arrays (frequency axis and weights) as expected by `PySM` * Loops by channel and for each: * Creates a `PySMSky` object just with 1 channel at a time * Executes `PySMSky` to evaluate the sky models and bandpass-integrate * Calls `PySM` to perform distributed smoothing with `libsharp` * Gathers the map on the first MPI process * Applies coordinate transformation if necessary (not currently implemented in `libsharp`) * Use the `DistMap` object to communicate to each process the part of the sky they observe * Calls `OpSimScan` to rescan the map to a timeline ###Code from toast.todmap import OpSimPySM OpSimPySM? opsim_pysm = OpSimPySM( data, comm=None, pysm_model=pysm_sky_config, apply_beam=True, debug=True, focalplanes=[focal_plane], ) opsim_pysm.exec(data) ###Output _____no_output_____ ###Markdown Plot output timelines ###Code %matplotlib inline import matplotlib.pyplot as plt tod = data.obs[0]['tod'] pix = tod.cache.reference("pixels_0A") import toast.qarray as qa theta, phi, pa = qa.to_angles(tod.read_pntg(detector="0A")) pix num = 10000 plt.figure(figsize=(7, 5)) plt.plot(np.degrees(theta[:num]), tod.cache.reference("signal_0A")[:num], ".") plt.xlabel("$Colatitude [deg]$") plt.ylabel("$Signal [ \mu K_{RJ} ]$"); ###Output _____no_output_____ ###Markdown Bin the output to a map ###Code from numba import njit @njit def just_make_me_a_map(output_map, signals): """Temperature only binner Bins a list of (pix, signal) tuples into an output map, it does not support polarization, so it just averages it out. Parameters ---------- output_map : np.array already zeroed output map signals : numba.typed.List of (np.array[int64] pix, np.array[np.double] signal) Returns ------- hits : np.array[np.int64] hitmap """ hits = np.zeros(len(output_map), dtype=np.int64) for pix, signal in signals: for p,s in zip(pix, signal): output_map[p] += s hits[p] += 1 output_map[hits != 0] /= hits[hits != 0] return hits from numba.typed import List signals = List() for obs in data.obs: for ch in focal_plane: signals.append((obs["tod"].cache.reference("pixels_%s" % ch), obs["tod"].cache.reference("signal_%s" % ch))) output_map = np.zeros(npix, dtype=np.double) h = just_make_me_a_map(output_map, signals) hp.mollview(h, title="hitmap", nest=True) hp.mollview(output_map, nest=True, min=0, max=1e-3, cmap="coolwarm") hp.gnomview(output_map, rot=(0,0), xsize=5000, ysize=2000, cmap="coolwarm", nest=True, min=0, max=1e-2) ###Output _____no_output_____
notebooks/Marriage-LR.ipynb
###Markdown Marriageability - Logistic Regression ###Code #Importing Python packages import pandas as pd import numpy as np import seaborn as sns import matplotlib.mlab as mlab import matplotlib.pyplot as plt import pickle import yellowbrick as yb from sklearn import metrics import os import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) warnings.filterwarnings("ignore") #Importing CLassifier Packages for Scikitlearn from sklearn.metrics import f1_score from sklearn.pipeline import Pipeline from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegressionCV, LogisticRegression, SGDClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import (RandomForestClassifier, BaggingClassifier, RandomTreesEmbedding,GradientBoostingClassifier) from sklearn.model_selection import train_test_split from yellowbrick.classifier import ClassificationReport ###Output _____no_output_____ ###Markdown Loading the data ###Code #Load the data ACSproject = pd.read_csv('data/ACSproject.csv', sep=',', header=0, skipinitialspace=True) ACSproject.head() ###Output _____no_output_____ ###Markdown Creating Location Features The GEOID yields(n = 2,378) distint locations in the dataframe. Not enough computing power to run the algorithms. Instead, the project utilizes ST_T (state) in place of location and created Tri_State (0/1) to denote states with economnic and geographic ties. ###Code #Create Tri-state indicator Ex: MD+DC+VA ACSproject['Tri_State'] = 0 ACSproject.loc[(ACSproject.ST_T ==9) | (ACSproject.ST_T ==10)| (ACSproject.ST_T ==11)|(ACSproject.ST_T ==17)|(ACSproject.ST_T ==18)|(ACSproject.ST_T ==21)|(ACSproject.ST_T ==24)|(ACSproject.ST_T ==34)|(ACSproject.ST_T ==36)|(ACSproject.ST_T ==39)|(ACSproject.ST_T ==42)|(ACSproject.ST_T ==51)|(ACSproject.ST_T ==54), 'Tri_State'] = 1 ACSproject['Tri_State'].value_counts(normalize=False) pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) ACSproject.dtypes #Casting all columns as integers ACSproject.astype('int64').dtypes #One-hot encoding states ACSproject = pd.get_dummies(ACSproject, columns=['ST'], prefix = 'ST_', drop_first=False) ACSproject.head() ###Output _____no_output_____ ###Markdown Modeling ###Code # Labeling our X and y data X = ACSproject[['CITIZEN','MOVER','EDUCATION','WORK_SOC','SEX_T','DIS_T','HISPANIC','WHITE','BLACK','INDIAN','ASIAN','OTHER', 'AGE_BIN', 'INCOME_BIN', 'OCC_BUS', 'OCC_CMM','OCC_CMS','OCC_CON', 'OCC_EAT', 'OCC_EDU','OCC_ENG', 'OCC_ENT', 'OCC_EXT', 'OCC_FFF', 'OCC_FIN', 'OCC_HLS', 'OCC_LGL', 'OCC_MED', 'OCC_MGR', 'OCC_MIL', 'OCC_OFF', 'OCC_PRD', 'OCC_PRS', 'OCC_PRT', 'OCC_RPR', 'OCC_SAL', 'OCC_SCI', 'OCC_TRN', 'OCC_UNE','FAMILY','ENGLISH','Tri_State', 'ST__1','ST__2','ST__4','ST__5','ST__6','ST__8','ST__9','ST__10','ST__11','ST__12','ST__13', 'ST__15','ST__16','ST__17','ST__18','ST__19','ST__20','ST__21','ST__22','ST__23','ST__24', 'ST__25','ST__26','ST__27','ST__28','ST__29','ST__30','ST__31','ST__32','ST__33','ST__34', 'ST__35','ST__36','ST__37','ST__38','ST__39','ST__40','ST__41','ST__42','ST__44','ST__45', 'ST__46','ST__47','ST__48','ST__49','ST__50','ST__51','ST__53','ST__54','ST__55','ST__56', ]].values y = ACSproject['MARRIED'].values #Specify the class of the target classes = ['Not Married', 'Married'] #Splitting train and test data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state = 42) #LogisticRegression LR = LogisticRegression() #Train the algorithm LR.fit(X_train, y_train) # predict the response pred = LR.predict(X_test) # evaluate accuracy print ("Logistic Regression f1 score : ",f1_score(y_test, pred)) # Visualize LR visualizer = ClassificationReport(LR, classes=classes, support=True, size=(500, 300)) visualizer.fit(X_train, y_train) # Fit the visualizer and the model visualizer.score(X_test, y_test) # Evaluate the model on the test data visualizer.poof() # Draw/show/poof the data ###Output _____no_output_____ ###Markdown Cross Validation ###Code # #Logistic Regression CV # from sklearn.model_selection import StratifiedKFold, cross_val_score # from sklearn.model_selection import train_test_split # kfold = StratifiedKFold(n_splits=6,shuffle=True,random_state=0) # scores = cross_val_score(LR, X, y, cv=kfold) # print('Cross-Validation Scores: {}'.format(scores)) # print('Average Shuffled Cross-Validation Score: {}'.format(scores.mean())) ###Output _____no_output_____ ###Markdown Grid Search ###Code # # This model doesn't work any more! # #Logistic Regression # from sklearn.model_selection import GridSearchCV # from sklearn.linear_model import LogisticRegression # grid={"C":np.logspace(-3,3,7), "penalty":["l1","l2"]}# l1 lasso l2 ridge # logreg=LogisticRegression() # logreg_cv=GridSearchCV(logreg,grid,cv=3) # logreg_cv.fit(X_train,y_train) # print("tuned hpyerparameters :(best parameters) ",logreg_cv.best_params_) # print("accuracy :",logreg_cv.best_score_) ###Output _____no_output_____ ###Markdown Tuning Model ###Code #LogisticRegression LR = LogisticRegression(penalty = 'l2', C=0.0001) #Train the algorithm LR.fit(X_train, y_train) #Saving the model filename = 'finalized_LR_model.sav' pickle.dump(LR, open(filename, 'wb')) # predict the response pred = LR.predict(X_test) # evaluate accuracy print ("Logistic Regression f1 score : ",f1_score(y_test, pred)) # Visualize LR visualizer = ClassificationReport(LR, classes=classes, support=True, size=(500, 300)) visualizer.fit(X_train, y_train) # Fit the visualizer and the model visualizer.score(X_test, y_test) # Evaluate the model on the test data # visualizer.poof() # Draw/show/poof the data def visualize_results(cm,score): plt.figure(figsize=(9,9)) sns.heatmap(cm, annot=True, fmt=".3f", linewidths=.5, square = True, cmap = 'gray_r'); plt.ylabel('Actual label'); plt.xlabel('Predicted label'); all_sample_title = 'Accuracy Score: {0}'.format(score) plt.title(all_sample_title, size = 15); def fit_and_evaluate(X, y, model): #, args): #model = model(**args) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) model.fit(X_train, y_train) predictions = model.predict(X_test) #avg_score = cross_val_score(model, X_test, y_test, cv=5).mean() avg_score = 0.6772239180472 cm = metrics.confusion_matrix(y_test, predictions) visualize_results(cm, avg_score) #To do: Fill in the best performing parameters below and call the fit_and_evaluate function to fit and score our model #best_parameters= {'C':'0.0001', penalty:'l2'} fit_and_evaluate(X_train, y_train, LR) # load the model from disk loaded_model = pickle.load(open(filename, 'rb')) result = loaded_model.score(X_test, y_test) print(result) #End of code. ###Output _____no_output_____
docs/Math_Introduction.ipynb
###Markdown Introduction to `Φ.math`[![Google Collab Book](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/tum-pbs/PhiFlow/blob/develop/docs/Math_Introduction.ipynb) ###Code # !pip install --quiet phiflow from phi import math from phi.math import spatial, channel, batch, instance, tensor, wrap ###Output _____no_output_____ ###Markdown Shapes and Dimension Types ###Code spatial(x=4, y=3) x = math.zeros(spatial(x=4, y=3), channel(vector=2)) ###Output _____no_output_____
0003 Algorithm Selection/03. 1 Hyperparameter Optimization.ipynb
###Markdown Aalto ###Code X= np.concatenate([X_train, X_test]) test_fold = [-1 for _ in range(X_train.shape[0])] + [0 for _ in range(X_test.shape[0])] y = np.concatenate([y_train, y_test]) ps = PredefinedSplit(test_fold) def run_random_search(model, params, x_train, y_train): #grid = GridSearchCV(model, params, cv = ps, n_jobs = -1, scoring = score, verbose = 0, refit = False) grid =RandomizedSearchCV(model, param_grid, cv=ps,scoring = 'f1_macro') grid.fit(x_train, y_train) return (grid.best_params_, round(grid.best_score_,8),grid.best_estimator_) ###Output _____no_output_____ ###Markdown RandomizedSearchCV DT ###Code print ('%-90s %-20s %-8s %-8s' % ("HYPERPARAMETERS","F1 Score", "Time", "No")) nfolds=10 param_grid = { 'criterion':['gini','entropy'], "max_depth":np.linspace(1, 32, 32, endpoint=True), "min_samples_split": sp_randint(2,10),#uniform(0.1,1 ), # "min_samples_leafs" : np.linspace(0.1, 0.5, 5, endpoint=True) "max_features" : sp_randint(1,X_train.shape[1])} second=time() f1=[] clf=DecisionTreeClassifier() for ii in range(25): clf.fit(X_train, y_train) predict =clf.predict(X_test) f1.append(sklearn.metrics.f1_score(y_test, predict,average= "macro") ) f1=sum(f1)/len(f1) #if f1>0.76: print('%-90s %-20s %-8s %-8s' % ("default",f1,round(time()-second,3),ii)) for i in range(100): second=time() a,b,clf=run_random_search(DecisionTreeClassifier(),param_grid,X,y) f1=[] for ii in range(25): clf.fit(X_train, y_train) predict =clf.predict(X_test) f1.append(sklearn.metrics.f1_score(y_test, predict,average= "macro") ) f1=sum(f1)/len(f1) #if f1>0.76: print('%-90s %-20s %-8s %-8s' % (a,f1,round(time()-second,3),i)) ###Output HYPERPARAMETERS F1 Score Time No default 0.7216903208093847 10.534 24 {'criterion': 'gini', 'max_depth': 24.0, 'max_features': 29, 'min_samples_split': 2} 0.7270150996774428 14.381 0 {'criterion': 'entropy', 'max_depth': 26.0, 'max_features': 29, 'min_samples_split': 9} 0.724980440036087 15.236 1 {'criterion': 'gini', 'max_depth': 26.0, 'max_features': 13, 'min_samples_split': 2} 0.7252618968864211 9.218 2 {'criterion': 'gini', 'max_depth': 30.0, 'max_features': 16, 'min_samples_split': 9} 0.7245593084832818 10.306 3 {'criterion': 'gini', 'max_depth': 30.0, 'max_features': 27, 'min_samples_split': 6} 0.7251107950372347 13.949 4 {'criterion': 'entropy', 'max_depth': 26.0, 'max_features': 20, 'min_samples_split': 9} 0.7244973995041137 13.091 5 {'criterion': 'entropy', 'max_depth': 28.0, 'max_features': 16, 'min_samples_split': 2} 0.7231765310218701 12.385 6 {'criterion': 'gini', 'max_depth': 30.0, 'max_features': 21, 'min_samples_split': 9} 0.7247943363351329 12.858 7 {'criterion': 'gini', 'max_depth': 27.0, 'max_features': 18, 'min_samples_split': 9} 0.7248002515917541 12.961 8 {'criterion': 'gini', 'max_depth': 32.0, 'max_features': 8, 'min_samples_split': 5} 0.723367681399762 9.64 9 {'criterion': 'gini', 'max_depth': 22.0, 'max_features': 27, 'min_samples_split': 8} 0.7244262045209183 14.53 10 {'criterion': 'entropy', 'max_depth': 19.0, 'max_features': 19, 'min_samples_split': 2} 0.7236455988378891 13.168 11 {'criterion': 'entropy', 'max_depth': 26.0, 'max_features': 20, 'min_samples_split': 8} 0.723866087060152 14.352 12 {'criterion': 'entropy', 'max_depth': 26.0, 'max_features': 8, 'min_samples_split': 8} 0.7237479956150793 11.079 13 {'criterion': 'entropy', 'max_depth': 26.0, 'max_features': 7, 'min_samples_split': 9} 0.7241165685092735 9.799 14 {'criterion': 'gini', 'max_depth': 26.0, 'max_features': 20, 'min_samples_split': 2} 0.7257924263102572 12.802 15 {'criterion': 'entropy', 'max_depth': 31.0, 'max_features': 15, 'min_samples_split': 8} 0.7232163736578001 12.453 16 {'criterion': 'gini', 'max_depth': 21.0, 'max_features': 18, 'min_samples_split': 5} 0.7231862602417674 12.192 17 {'criterion': 'entropy', 'max_depth': 23.0, 'max_features': 12, 'min_samples_split': 8} 0.7242180589439537 12.623 18 {'criterion': 'entropy', 'max_depth': 25.0, 'max_features': 8, 'min_samples_split': 9} 0.7237966278378923 10.075 19 {'criterion': 'gini', 'max_depth': 28.0, 'max_features': 13, 'min_samples_split': 6} 0.7253347945229431 10.037 20 {'criterion': 'gini', 'max_depth': 31.0, 'max_features': 26, 'min_samples_split': 6} 0.725302991802814 12.981 21 {'criterion': 'gini', 'max_depth': 26.0, 'max_features': 17, 'min_samples_split': 3} 0.7248940115045128 10.636 22 {'criterion': 'entropy', 'max_depth': 17.0, 'max_features': 20, 'min_samples_split': 4} 0.7209539428720394 11.647 23 {'criterion': 'entropy', 'max_depth': 19.0, 'max_features': 9, 'min_samples_split': 8} 0.722450295095256 8.9 24 {'criterion': 'gini', 'max_depth': 27.0, 'max_features': 18, 'min_samples_split': 3} 0.7250459496902333 10.466 25 {'criterion': 'gini', 'max_depth': 21.0, 'max_features': 6, 'min_samples_split': 5} 0.724028654176219 7.67 26 {'criterion': 'gini', 'max_depth': 29.0, 'max_features': 14, 'min_samples_split': 6} 0.725094307029027 9.462 27 {'criterion': 'entropy', 'max_depth': 20.0, 'max_features': 26, 'min_samples_split': 9} 0.7251236464849294 13.486 28 {'criterion': 'gini', 'max_depth': 29.0, 'max_features': 12, 'min_samples_split': 6} 0.7246663845617409 9.562 29 {'criterion': 'gini', 'max_depth': 21.0, 'max_features': 7, 'min_samples_split': 4} 0.7228604700446687 8.017 30 {'criterion': 'entropy', 'max_depth': 21.0, 'max_features': 18, 'min_samples_split': 4} 0.7234831398596584 10.994 31 {'criterion': 'entropy', 'max_depth': 25.0, 'max_features': 22, 'min_samples_split': 8} 0.7242566965576555 12.191 32 {'criterion': 'entropy', 'max_depth': 22.0, 'max_features': 25, 'min_samples_split': 8} 0.724689598515635 14.339 33 {'criterion': 'entropy', 'max_depth': 19.0, 'max_features': 10, 'min_samples_split': 6} 0.7231456172138455 9.195 34 {'criterion': 'gini', 'max_depth': 19.0, 'max_features': 12, 'min_samples_split': 6} 0.7186509273016304 9.17 35 {'criterion': 'gini', 'max_depth': 30.0, 'max_features': 27, 'min_samples_split': 3} 0.7246350578939911 13.181 36 {'criterion': 'gini', 'max_depth': 23.0, 'max_features': 22, 'min_samples_split': 5} 0.7260497250645431 11.054 37 {'criterion': 'gini', 'max_depth': 21.0, 'max_features': 24, 'min_samples_split': 8} 0.7190099059589314 11.804 38 {'criterion': 'gini', 'max_depth': 32.0, 'max_features': 29, 'min_samples_split': 5} 0.7251969331434204 13.558 39 {'criterion': 'gini', 'max_depth': 22.0, 'max_features': 11, 'min_samples_split': 5} 0.7247805981039107 8.714 40 {'criterion': 'gini', 'max_depth': 24.0, 'max_features': 18, 'min_samples_split': 8} 0.7250182827569855 9.906 41 {'criterion': 'gini', 'max_depth': 30.0, 'max_features': 23, 'min_samples_split': 5} 0.7256816573850342 12.52 42 {'criterion': 'gini', 'max_depth': 26.0, 'max_features': 18, 'min_samples_split': 7} 0.7244911364951246 9.992 43 {'criterion': 'gini', 'max_depth': 24.0, 'max_features': 29, 'min_samples_split': 5} 0.7271805851132336 14.186 44 {'criterion': 'gini', 'max_depth': 25.0, 'max_features': 29, 'min_samples_split': 8} 0.725989247364035 13.222 45 {'criterion': 'entropy', 'max_depth': 18.0, 'max_features': 16, 'min_samples_split': 8} 0.7235095351931019 10.251 46 {'criterion': 'gini', 'max_depth': 25.0, 'max_features': 26, 'min_samples_split': 2} 0.7267338625528005 13.176 47 {'criterion': 'gini', 'max_depth': 25.0, 'max_features': 26, 'min_samples_split': 2} 0.7266859440773427 13.061 48 {'criterion': 'gini', 'max_depth': 26.0, 'max_features': 27, 'min_samples_split': 3} 0.7268408251957146 12.488 49 {'criterion': 'entropy', 'max_depth': 19.0, 'max_features': 8, 'min_samples_split': 5} 0.7221796067233227 7.971 50 {'criterion': 'gini', 'max_depth': 30.0, 'max_features': 20, 'min_samples_split': 6} 0.7250337431216138 10.596 51 {'criterion': 'gini', 'max_depth': 21.0, 'max_features': 23, 'min_samples_split': 2} 0.7211636749895688 11.646 52 {'criterion': 'gini', 'max_depth': 24.0, 'max_features': 3, 'min_samples_split': 2} 0.7234949727863585 6.745 53 {'criterion': 'gini', 'max_depth': 25.0, 'max_features': 22, 'min_samples_split': 6} 0.7271052189634853 11.83 54 {'criterion': 'gini', 'max_depth': 21.0, 'max_features': 14, 'min_samples_split': 7} 0.7237087117579789 8.427 55 {'criterion': 'entropy', 'max_depth': 23.0, 'max_features': 12, 'min_samples_split': 8} 0.724436783952094 9.811 56 {'criterion': 'gini', 'max_depth': 32.0, 'max_features': 29, 'min_samples_split': 9} 0.7252723672583222 14.184 57 {'criterion': 'gini', 'max_depth': 24.0, 'max_features': 24, 'min_samples_split': 4} 0.725737715800568 11.45 58 {'criterion': 'gini', 'max_depth': 30.0, 'max_features': 1, 'min_samples_split': 9} 0.7234410867960476 6.701 59 {'criterion': 'gini', 'max_depth': 24.0, 'max_features': 10, 'min_samples_split': 2} 0.7251610309852468 9.171 60 {'criterion': 'entropy', 'max_depth': 25.0, 'max_features': 17, 'min_samples_split': 9} 0.7245209535453699 10.934 61 ###Markdown GridSearchCV DT ###Code param_grid = { 'criterion':['gini','entropy'], "max_depth":list(range(1,32)), "min_samples_split":list(range(2,10)),#uniform(0.1,1 ), # "min_samples_leafs" : np.linspace(0.1, 0.5, 5, endpoint=True) "max_features" :list(range(1,X_train.shape[1]))} nbModel_grid = GridSearchCV(estimator=DecisionTreeClassifier(), param_grid=param_grid, verbose=1, cv=ps, n_jobs=-1) nbModel_grid.fit(X, y) print(nbModel_grid.best_estimator_) ###Output Fitting 1 folds for each of 14384 candidates, totalling 14384 fits ###Markdown RandomizedSearchCV RF ###Code # use a full grid over all parameters param_grid = {"max_depth":np.linspace(1, 32, 32, endpoint=True), "n_estimators" : sp_randint(1, 200), "max_features": sp_randint(1, 11), "min_samples_split":sp_randint(2, 11), "bootstrap": [True, False], "criterion": ["gini", "entropy"]} second=time() f1=[] clf=RandomForestClassifier() for ii in range(1): clf.fit(X_train, y_train) predict =clf.predict(X_test) f1.append(sklearn.metrics.f1_score(y_test, predict,average= "macro") ) f1=sum(f1)/len(f1) #if f1>0.76: print('%-90s %-20s %-8s %-8s' % ("default",f1,round(time()-second,3),ii)) for i in range(50): second=time() a,b,clf=run_random_search(RandomForestClassifier(),param_grid,X,y) clf.fit(X_train, y_train) predict =clf.predict(X_test) f1=sklearn.metrics.f1_score(y_test, predict,average= "macro") print('%-90s %-20s %-8s %-8s' % (a,f1,round(time()-second,3),i)) ###Output default 0.7227299454671903 10.844 0 {'bootstrap': True, 'criterion': 'entropy', 'max_depth': 22.0, 'max_features': 2, 'min_samples_split': 10, 'n_estimators': 156} 0.7289502435293613 159.548 0 {'bootstrap': False, 'criterion': 'gini', 'max_depth': 25.0, 'max_features': 1, 'min_samples_split': 8, 'n_estimators': 113} 0.7262619535233411 193.489 1 {'bootstrap': True, 'criterion': 'entropy', 'max_depth': 22.0, 'max_features': 10, 'min_samples_split': 10, 'n_estimators': 148} 0.7236580905885828 183.427 2 {'bootstrap': True, 'criterion': 'entropy', 'max_depth': 27.0, 'max_features': 4, 'min_samples_split': 10, 'n_estimators': 82} 0.727171992889616 113.511 3 {'bootstrap': True, 'criterion': 'entropy', 'max_depth': 29.0, 'max_features': 3, 'min_samples_split': 7, 'n_estimators': 90} 0.7246079997419235 147.829 4 {'bootstrap': True, 'criterion': 'gini', 'max_depth': 17.0, 'max_features': 3, 'min_samples_split': 7, 'n_estimators': 179} 0.7261607773967084 141.951 5 {'bootstrap': False, 'criterion': 'entropy', 'max_depth': 24.0, 'max_features': 8, 'min_samples_split': 9, 'n_estimators': 71} 0.7274836873217096 159.158 6 {'bootstrap': False, 'criterion': 'entropy', 'max_depth': 27.0, 'max_features': 2, 'min_samples_split': 10, 'n_estimators': 44} 0.7272760895770615 125.654 7 {'bootstrap': True, 'criterion': 'gini', 'max_depth': 31.0, 'max_features': 5, 'min_samples_split': 7, 'n_estimators': 57} 0.7223700356865719 110.93 8 {'bootstrap': True, 'criterion': 'entropy', 'max_depth': 27.0, 'max_features': 6, 'min_samples_split': 7, 'n_estimators': 170} 0.726462732206969 197.449 9 {'bootstrap': True, 'criterion': 'gini', 'max_depth': 15.0, 'max_features': 7, 'min_samples_split': 8, 'n_estimators': 65} 0.7271774612920666 103.825 10 {'bootstrap': True, 'criterion': 'gini', 'max_depth': 15.0, 'max_features': 3, 'min_samples_split': 9, 'n_estimators': 192} 0.7259226691785232 118.783 11 {'bootstrap': True, 'criterion': 'entropy', 'max_depth': 20.0, 'max_features': 5, 'min_samples_split': 10, 'n_estimators': 101} 0.7264429266577636 139.107 12 {'bootstrap': False, 'criterion': 'gini', 'max_depth': 29.0, 'max_features': 1, 'min_samples_split': 9, 'n_estimators': 168} 0.7273870266442394 159.972 13 {'bootstrap': True, 'criterion': 'gini', 'max_depth': 20.0, 'max_features': 4, 'min_samples_split': 2, 'n_estimators': 42} 0.721795284493693 192.037 14 {'bootstrap': False, 'criterion': 'entropy', 'max_depth': 15.0, 'max_features': 7, 'min_samples_split': 2, 'n_estimators': 179} 0.725948017769752 226.695 15 {'bootstrap': False, 'criterion': 'entropy', 'max_depth': 20.0, 'max_features': 9, 'min_samples_split': 10, 'n_estimators': 88} 0.7268684877036256 177.318 16 {'bootstrap': False, 'criterion': 'gini', 'max_depth': 16.0, 'max_features': 5, 'min_samples_split': 3, 'n_estimators': 40} 0.7275582826119787 158.053 17 {'bootstrap': True, 'criterion': 'gini', 'max_depth': 29.0, 'max_features': 10, 'min_samples_split': 4, 'n_estimators': 131} 0.7261681352406946 150.095 18 {'bootstrap': False, 'criterion': 'gini', 'max_depth': 16.0, 'max_features': 10, 'min_samples_split': 8, 'n_estimators': 51} 0.7254586605586391 106.204 19 {'bootstrap': True, 'criterion': 'entropy', 'max_depth': 15.0, 'max_features': 6, 'min_samples_split': 7, 'n_estimators': 97} 0.7260312420099452 84.556 20 {'bootstrap': True, 'criterion': 'entropy', 'max_depth': 18.0, 'max_features': 7, 'min_samples_split': 10, 'n_estimators': 72} 0.7281730893615443 94.277 21 {'bootstrap': False, 'criterion': 'entropy', 'max_depth': 30.0, 'max_features': 6, 'min_samples_split': 10, 'n_estimators': 87} 0.7271905907490757 128.626 22 {'bootstrap': False, 'criterion': 'gini', 'max_depth': 28.0, 'max_features': 7, 'min_samples_split': 9, 'n_estimators': 48} 0.7270876642348131 105.576 23 {'bootstrap': False, 'criterion': 'entropy', 'max_depth': 16.0, 'max_features': 3, 'min_samples_split': 3, 'n_estimators': 75} 0.7256443228361186 66.597 24 {'bootstrap': True, 'criterion': 'entropy', 'max_depth': 16.0, 'max_features': 10, 'min_samples_split': 7, 'n_estimators': 170} 0.7288270925057012 134.969 25 {'bootstrap': True, 'criterion': 'gini', 'max_depth': 29.0, 'max_features': 3, 'min_samples_split': 5, 'n_estimators': 150} 0.7244428726674976 116.494 26 {'bootstrap': False, 'criterion': 'gini', 'max_depth': 18.0, 'max_features': 8, 'min_samples_split': 8, 'n_estimators': 173} 0.7262569086702089 163.22 27 {'bootstrap': True, 'criterion': 'entropy', 'max_depth': 24.0, 'max_features': 10, 'min_samples_split': 7, 'n_estimators': 58} 0.7270239359734808 99.236 28 {'bootstrap': False, 'criterion': 'entropy', 'max_depth': 17.0, 'max_features': 5, 'min_samples_split': 6, 'n_estimators': 40} 0.7236789322288364 89.597 29 {'bootstrap': True, 'criterion': 'gini', 'max_depth': 27.0, 'max_features': 5, 'min_samples_split': 5, 'n_estimators': 78} 0.7226860148579904 67.1 30 {'bootstrap': True, 'criterion': 'gini', 'max_depth': 22.0, 'max_features': 2, 'min_samples_split': 8, 'n_estimators': 158} 0.7251134866724035 107.267 31 {'bootstrap': True, 'criterion': 'entropy', 'max_depth': 32.0, 'max_features': 9, 'min_samples_split': 8, 'n_estimators': 137} 0.7282017198879392 154.268 32 {'bootstrap': True, 'criterion': 'entropy', 'max_depth': 29.0, 'max_features': 8, 'min_samples_split': 9, 'n_estimators': 72} 0.7239421297620993 100.141 33 {'bootstrap': True, 'criterion': 'entropy', 'max_depth': 21.0, 'max_features': 7, 'min_samples_split': 8, 'n_estimators': 114} 0.7272023152708532 107.083 34 {'bootstrap': True, 'criterion': 'gini', 'max_depth': 21.0, 'max_features': 2, 'min_samples_split': 3, 'n_estimators': 153} 0.7243882279289854 89.127 35 {'bootstrap': False, 'criterion': 'entropy', 'max_depth': 22.0, 'max_features': 9, 'min_samples_split': 9, 'n_estimators': 69} 0.7268893812726851 96.224 36 {'bootstrap': False, 'criterion': 'gini', 'max_depth': 25.0, 'max_features': 3, 'min_samples_split': 7, 'n_estimators': 60} 0.7270006719672821 79.197 37 {'bootstrap': False, 'criterion': 'entropy', 'max_depth': 15.0, 'max_features': 8, 'min_samples_split': 10, 'n_estimators': 150} 0.7269748732859105 140.889 38 {'bootstrap': True, 'criterion': 'gini', 'max_depth': 18.0, 'max_features': 8, 'min_samples_split': 9, 'n_estimators': 96} 0.729092339928399 82.865 39 {'bootstrap': True, 'criterion': 'entropy', 'max_depth': 15.0, 'max_features': 10, 'min_samples_split': 4, 'n_estimators': 134} 0.7279725366435981 99.794 40 {'bootstrap': False, 'criterion': 'gini', 'max_depth': 19.0, 'max_features': 7, 'min_samples_split': 4, 'n_estimators': 27} 0.726429423617312 89.002 41 {'bootstrap': False, 'criterion': 'gini', 'max_depth': 25.0, 'max_features': 1, 'min_samples_split': 10, 'n_estimators': 24} 0.7278031608325315 121.184 42 {'bootstrap': False, 'criterion': 'gini', 'max_depth': 17.0, 'max_features': 7, 'min_samples_split': 9, 'n_estimators': 60} 0.7268951830128271 126.641 43 {'bootstrap': False, 'criterion': 'entropy', 'max_depth': 22.0, 'max_features': 4, 'min_samples_split': 9, 'n_estimators': 154} 0.72544300622277 137.125 44 {'bootstrap': True, 'criterion': 'entropy', 'max_depth': 18.0, 'max_features': 2, 'min_samples_split': 8, 'n_estimators': 123} 0.7267975800525236 103.93 45 {'bootstrap': True, 'criterion': 'entropy', 'max_depth': 29.0, 'max_features': 8, 'min_samples_split': 10, 'n_estimators': 52} 0.725383068130239 98.231 46 {'bootstrap': True, 'criterion': 'gini', 'max_depth': 21.0, 'max_features': 8, 'min_samples_split': 10, 'n_estimators': 139} 0.727666811668462 115.969 47 {'bootstrap': False, 'criterion': 'gini', 'max_depth': 20.0, 'max_features': 7, 'min_samples_split': 9, 'n_estimators': 93} 0.7276667091992742 113.684 48 ###Markdown RandomizedSearchCV KNeighborsClassifier ###Code # use a full grid over all parameters param_grid = {"n_neighbors" : sp_randint(1,64) , "leaf_size": sp_randint(1,50) , "algorithm" : ["auto", "ball_tree", "kd_tree", "brute"], "weights" : ["uniform", "distance"]} second=time() f1=[] clf=KNeighborsClassifier() for ii in range(1): clf.fit(X_train, y_train) predict =clf.predict(X_test) f1.append(sklearn.metrics.f1_score(y_test, predict,average= "macro") ) f1=sum(f1)/len(f1) #if f1>0.76: print('%-90s %-20s %-8s %-8s' % ("default",f1,round(time()-second,3),i)) for i in range(50): second=time() a,b,clf=run_random_search(KNeighborsClassifier(),param_grid,X,y) clf.fit(X_train, y_train) predict =clf.predict(X_test) f1=sklearn.metrics.f1_score(y_test, predict,average= "macro") print('%-90s %-20s %-8s %-8s' % (a,f1,round(time()-second,3),i)) ###Output default 0.7097573078498426 31.042 49 {'algorithm': 'auto', 'leaf_size': 30, 'n_neighbors': 63, 'weights': 'distance'} 0.7169344588030341 211.957 0 {'algorithm': 'auto', 'leaf_size': 16, 'n_neighbors': 47, 'weights': 'distance'} 0.7176466921242463 245.564 1 {'algorithm': 'brute', 'leaf_size': 18, 'n_neighbors': 44, 'weights': 'distance'} 0.7169670826387976 273.454 2 {'algorithm': 'brute', 'leaf_size': 2, 'n_neighbors': 48, 'weights': 'distance'} 0.718017143478749 227.629 3 {'algorithm': 'auto', 'leaf_size': 43, 'n_neighbors': 46, 'weights': 'distance'} 0.7176244604190383 228.35 4 {'algorithm': 'auto', 'leaf_size': 18, 'n_neighbors': 40, 'weights': 'distance'} 0.7175984782540666 257.862 5 {'algorithm': 'brute', 'leaf_size': 20, 'n_neighbors': 61, 'weights': 'distance'} 0.7170127067216242 234.887 6 {'algorithm': 'kd_tree', 'leaf_size': 1, 'n_neighbors': 46, 'weights': 'distance'} 0.7104694436974722 202.743 7 {'algorithm': 'brute', 'leaf_size': 35, 'n_neighbors': 7, 'weights': 'uniform'} 0.7081961280125751 209.964 8 {'algorithm': 'brute', 'leaf_size': 23, 'n_neighbors': 52, 'weights': 'distance'} 0.7173685344914941 212.04 9 {'algorithm': 'auto', 'leaf_size': 37, 'n_neighbors': 54, 'weights': 'distance'} 0.7177129935879529 224.004 10 {'algorithm': 'brute', 'leaf_size': 4, 'n_neighbors': 62, 'weights': 'distance'} 0.7170097076382455 207.909 11 {'algorithm': 'brute', 'leaf_size': 8, 'n_neighbors': 63, 'weights': 'distance'} 0.7169344588030341 271.655 12 {'algorithm': 'brute', 'leaf_size': 17, 'n_neighbors': 43, 'weights': 'distance'} 0.7178903666497938 228.07 13 {'algorithm': 'brute', 'leaf_size': 14, 'n_neighbors': 42, 'weights': 'distance'} 0.7176872387392771 208.902 14 {'algorithm': 'kd_tree', 'leaf_size': 4, 'n_neighbors': 44, 'weights': 'distance'} 0.7102768121197465 252.865 15 {'algorithm': 'brute', 'leaf_size': 45, 'n_neighbors': 23, 'weights': 'distance'} 0.7114519450706117 230.086 16 {'algorithm': 'auto', 'leaf_size': 7, 'n_neighbors': 16, 'weights': 'distance'} 0.7131093630276617 202.224 17 {'algorithm': 'auto', 'leaf_size': 13, 'n_neighbors': 48, 'weights': 'distance'} 0.718017143478749 288.878 18 {'algorithm': 'brute', 'leaf_size': 31, 'n_neighbors': 56, 'weights': 'distance'} 0.7176132491846418 167.248 19 {'algorithm': 'kd_tree', 'leaf_size': 35, 'n_neighbors': 56, 'weights': 'distance'} 0.7079073271193573 190.033 20 {'algorithm': 'brute', 'leaf_size': 7, 'n_neighbors': 44, 'weights': 'distance'} 0.7169670826387976 251.166 21 {'algorithm': 'auto', 'leaf_size': 15, 'n_neighbors': 54, 'weights': 'distance'} 0.7177129935879529 232.68 22 {'algorithm': 'brute', 'leaf_size': 13, 'n_neighbors': 51, 'weights': 'distance'} 0.7173184534887421 230.976 23 {'algorithm': 'auto', 'leaf_size': 3, 'n_neighbors': 38, 'weights': 'distance'} 0.7167155412508265 246.683 24 {'algorithm': 'brute', 'leaf_size': 11, 'n_neighbors': 32, 'weights': 'distance'} 0.7102365799223443 229.454 25 {'algorithm': 'brute', 'leaf_size': 24, 'n_neighbors': 50, 'weights': 'distance'} 0.717631726693687 206.894 26 {'algorithm': 'ball_tree', 'leaf_size': 49, 'n_neighbors': 33, 'weights': 'distance'} 0.7103457394465497 166.123 27 {'algorithm': 'brute', 'leaf_size': 41, 'n_neighbors': 48, 'weights': 'distance'} 0.718017143478749 255.024 28 {'algorithm': 'kd_tree', 'leaf_size': 16, 'n_neighbors': 34, 'weights': 'distance'} 0.7111808408837775 191.456 29 {'algorithm': 'auto', 'leaf_size': 26, 'n_neighbors': 54, 'weights': 'distance'} 0.7177129935879529 291.692 30 {'algorithm': 'auto', 'leaf_size': 16, 'n_neighbors': 62, 'weights': 'distance'} 0.7170097076382455 211.092 31 {'algorithm': 'auto', 'leaf_size': 11, 'n_neighbors': 54, 'weights': 'distance'} 0.7177129935879529 198.097 32 {'algorithm': 'brute', 'leaf_size': 28, 'n_neighbors': 45, 'weights': 'distance'} 0.7174484819687488 206.553 33 {'algorithm': 'auto', 'leaf_size': 14, 'n_neighbors': 22, 'weights': 'distance'} 0.7113581356843974 170.384 34 {'algorithm': 'ball_tree', 'leaf_size': 16, 'n_neighbors': 42, 'weights': 'distance'} 0.7102057347512681 171.394 35 {'algorithm': 'brute', 'leaf_size': 25, 'n_neighbors': 44, 'weights': 'distance'} 0.7169670826387976 253.003 36 {'algorithm': 'brute', 'leaf_size': 38, 'n_neighbors': 45, 'weights': 'distance'} 0.7174484819687488 220.847 37 {'algorithm': 'brute', 'leaf_size': 24, 'n_neighbors': 38, 'weights': 'distance'} 0.7167155412508265 239.582 38 {'algorithm': 'brute', 'leaf_size': 32, 'n_neighbors': 61, 'weights': 'distance'} 0.7170127067216242 246.425 39 {'algorithm': 'ball_tree', 'leaf_size': 15, 'n_neighbors': 55, 'weights': 'distance'} 0.7066496694373934 200.188 40 {'algorithm': 'brute', 'leaf_size': 40, 'n_neighbors': 29, 'weights': 'distance'} 0.7102025057910922 254.251 41 {'algorithm': 'auto', 'leaf_size': 13, 'n_neighbors': 63, 'weights': 'distance'} 0.7169344588030341 253.98 42 {'algorithm': 'brute', 'leaf_size': 1, 'n_neighbors': 44, 'weights': 'distance'} 0.7169670826387976 194.761 43 {'algorithm': 'brute', 'leaf_size': 24, 'n_neighbors': 45, 'weights': 'distance'} 0.7174484819687488 249.6 44 {'algorithm': 'auto', 'leaf_size': 23, 'n_neighbors': 19, 'weights': 'distance'} 0.7141141781681122 221.987 45 {'algorithm': 'brute', 'leaf_size': 28, 'n_neighbors': 15, 'weights': 'distance'} 0.7131475504599976 231.722 46 {'algorithm': 'brute', 'leaf_size': 14, 'n_neighbors': 52, 'weights': 'distance'} 0.7173685344914941 205.543 47 {'algorithm': 'auto', 'leaf_size': 36, 'n_neighbors': 56, 'weights': 'distance'} 0.7176132491846418 218.377 48 {'algorithm': 'brute', 'leaf_size': 4, 'n_neighbors': 60, 'weights': 'distance'} 0.7169916986321065 228.11 49 ###Markdown RandomizedSearchCV GradientBoostingClassifier ###Code # use a full grid over all parameters param_grid = {"learning_rate": sp_randFloat(), "subsample" : sp_randFloat(), "n_estimators" : sp_randInt(100, 1000), "max_depth" : sp_randInt(4, 10) } second=time() f1=[] clf=GradientBoostingClassifier() for ii in range(1): clf.fit(X_train, y_train) predict =clf.predict(X_test) f1.append(sklearn.metrics.f1_score(y_test, predict,average= "macro") ) f1=sum(f1)/len(f1) #if f1>0.76: print('%-90s %-20s %-8s %-8s' % ("default",f1,round(time()-second,3),ii)) for i in range(1): second=time() a,b,clf=run_random_search(GradientBoostingClassifier(),param_grid,X,y) clf.fit(X_train, y_train) predict =clf.predict(X_test) f1=sklearn.metrics.f1_score(y_test, predict,average= "macro") print('%-90s %-20s %-8s %-8s' % (a,f1,round(time()-second,3),i)) ###Output default 0.6247629147200783 323.341 0 {'learning_rate': 0.1838641631843394, 'max_depth': 6, 'n_estimators': 535, 'subsample': 0.7134682210818548} 0.010075373269035157 41527.706 0 ###Markdown SVM ###Code param_grid = {'C': [0.001, 0.01, 0.1, 1, 10], 'gamma' : [0.001, 0.01, 0.1, 1]} nbModel_grid = GridSearchCV(estimator=svm.SVC(), param_grid=param_grid, verbose=1, cv=ps, n_jobs=-1) nbModel_grid.fit(X, y) print(nbModel_grid.best_estimator_) ###Output Fitting 1 folds for each of 20 candidates, totalling 20 fits SVC(C=10, gamma=1) ###Markdown RandomizedSearchCV SVM ###Code param_grid = {'C': [0.001, 0.01, 0.1, 1, 10], 'gamma' : [0.001, 0.01, 0.1, 1]} second=time() a,b,clf=run_random_search(svm.SVC(),param_grid,X,y) clf.fit(X_train, y_train) predict =clf.predict(X_test) f1=(sklearn.metrics.f1_score(y_test, predict,average= "macro") ) print('%-90s %-20s %-8s %-8s' % (a,f1,round(time()-second,3),b)) param_grid = {'C': [0.001, 0.01, 0.1, 1, 10], 'gamma' : [0.001, 0.01, 0.1, 1]} for i in range(33): second=time() a,b,clf=run_random_search(svm.SVC(),param_grid,X,y) f1=[] for ii in range(10): clf.fit(X_train, y_train) predict =clf.predict(X_test) f1.append(sklearn.metrics.f1_score(y_test, predict,average= "macro") ) f1=sum(f1)/len(f1) #if f1>0.76: print('%-90s %-20s %-8s %-8s' % (a,f1,round(time()-second,3),i)) param_grid = {"C": stats.uniform(0.001, 10), "gamma": stats.uniform(0.001, 1)} for i in range(33): second=time() a,b,clf=run_random_search(svm.SVC(),param_grid,X,y) f1=[] for ii in range(10): clf.fit(X_train, y_train) predict =clf.predict(X_test) f1.append(sklearn.metrics.f1_score(y_test, predict,average= "macro") ) f1=sum(f1)/len(f1) #if f1>0.76: print('%-90s %-20s %-8s %-8s' % (a,f1,round(time()-second,3),i)) ###Output _____no_output_____ ###Markdown NB ###Code from sklearn.naive_bayes import CategoricalNB from sklearn.model_selection import GridSearchCV param_grid_nb = { 'alpha': np.logspace(0,-9, num=100), "fit_prior":["True","False"] } nbModel_grid = GridSearchCV(estimator=CategoricalNB(), param_grid=param_grid_nb, verbose=1, cv=ps, n_jobs=-1) nbModel_grid.fit(X, y) print(nbModel_grid.best_estimator_) from sklearn.naive_bayes import CategoricalNB from sklearn.model_selection import GridSearchCV param_grid_nb = { 'alpha': np.logspace(0,-9, num=100), "fit_prior":["True","False"] } nbModel_grid = GridSearchCV(estimator=CategoricalNB(), param_grid=param_grid_nb, verbose=1, cv=ps, n_jobs=-1) nbModel_grid.fit(X, y) print(nbModel_grid.best_estimator_) ###Output Fitting 1 folds for each of 200 candidates, totalling 200 fits ###Markdown RandomizedSearchCV NB ###Code second=time() param_grid = { 'alpha': np.logspace(0,-9, num=100), "fit_prior":["True","False"] } a,b,clf=run_random_search(CategoricalNB(),param_grid,X,y) clf.fit(X_train, y_train) predict =clf.predict(X_test) f1=(sklearn.metrics.f1_score(y_test, predict,average= "macro") ) print('%-90s %-20s %-8s %-8s' % (a,f1,round(time()-second,3),b)) from sklearn.naive_bayes import CategoricalNB second=time() param_grid = { 'alpha': np.logspace(0,-9, num=100), "fit_prior":["True","False"] } for i in range(100): second=time() a,b,clf=run_random_search(CategoricalNB(),param_grid,X,y) f1=[] for ii in range(25): clf.fit(X_train, y_train) predict =clf.predict(X_test) f1.append(sklearn.metrics.f1_score(y_test, predict,average= "macro") ) f1=sum(f1)/len(f1) #if f1>0.76: print('%-90s %-20s %-8s %-8s' % (a,f1,round(time()-second,3),i)) ###Output {'fit_prior': 'False', 'alpha': 8.111308307896873e-08} 0.5585527392583353 27.113 0 {'fit_prior': 'False', 'alpha': 5.336699231206313e-07} 0.5585321247002658 26.625 1 {'fit_prior': 'False', 'alpha': 1.873817422860383e-08} 0.5585237755311087 27.33 2 {'fit_prior': 'False', 'alpha': 2.310129700083158e-07} 0.5585787416692072 26.851 3 {'fit_prior': 'False', 'alpha': 1.232846739442066e-07} 0.5585527392583353 28.996 4 {'fit_prior': 'False', 'alpha': 5.336699231206313e-07} 0.5585321247002658 30.334 5 {'fit_prior': 'False', 'alpha': 1.873817422860383e-07} 0.5585787416692072 25.975 6 {'fit_prior': 'True', 'alpha': 2.848035868435799e-07} 0.5585787416692072 30.5 7 {'fit_prior': 'True', 'alpha': 8.111308307896856e-09} 0.5585237755311087 28.78 8 {'fit_prior': 'False', 'alpha': 8.111308307896872e-07} 0.5585042848171752 29.407 9 {'fit_prior': 'False', 'alpha': 1.232846739442066e-08} 0.5585237755311087 27.218 10 {'fit_prior': 'False', 'alpha': 1.873817422860383e-07} 0.5585787416692072 28.401 11 {'fit_prior': 'False', 'alpha': 1.519911082952933e-07} 0.5585684317597219 26.954 12 {'fit_prior': 'True', 'alpha': 1.873817422860383e-07} 0.5585787416692072 26.104 13 {'fit_prior': 'False', 'alpha': 1e-09} 0.5587468285337281 26.859 14 {'fit_prior': 'False', 'alpha': 2.310129700083158e-07} 0.5585787416692072 29.226 15 {'fit_prior': 'True', 'alpha': 1.873817422860387e-09} 0.5585322432937763 29.316 16 {'fit_prior': 'True', 'alpha': 4.3287612810830526e-07} 0.5585321247002658 28.82 17 {'fit_prior': 'True', 'alpha': 1.2328467394420635e-09} 0.5585322432937763 29.354 18 {'fit_prior': 'False', 'alpha': 1.2328467394420635e-09} 0.5585322432937763 27.082 19 {'fit_prior': 'False', 'alpha': 1e-09} 0.5587468285337281 27.493 20 {'fit_prior': 'True', 'alpha': 1e-09} 0.5587468285337281 30.35 21 {'fit_prior': 'True', 'alpha': 6.579332246575682e-07} 0.5585042848171752 30.642 22 {'fit_prior': 'False', 'alpha': 1.519911082952933e-07} 0.5585684317597219 27.113 23 {'fit_prior': 'False', 'alpha': 2.310129700083158e-07} 0.5585787416692072 25.374 24 {'fit_prior': 'True', 'alpha': 1e-09} 0.5587468285337281 24.098 25 {'fit_prior': 'True', 'alpha': 1.519911082952933e-07} 0.5585684317597219 25.978 26 {'fit_prior': 'False', 'alpha': 3.5111917342151273e-09} 0.5585237755311087 26.621 27 {'fit_prior': 'False', 'alpha': 1.2328467394420635e-09} 0.5585322432937763 27.302 28 {'fit_prior': 'False', 'alpha': 1.873817422860387e-09} 0.5585322432937763 27.096 29 {'fit_prior': 'False', 'alpha': 5.336699231206313e-06} 0.5583590427195376 27.005 30 {'fit_prior': 'True', 'alpha': 2.848035868435799e-07} 0.5585787416692072 28.666 31 {'fit_prior': 'False', 'alpha': 6.579332246575682e-08} 0.55850429035763 27.525 32 {'fit_prior': 'True', 'alpha': 3.5111917342151277e-07} 0.5585321247002658 24.992 33 {'fit_prior': 'True', 'alpha': 2.310129700083158e-07} 0.5585787416692072 23.676 34 {'fit_prior': 'True', 'alpha': 8.111308307896873e-08} 0.5585527392583353 24.551 35 {'fit_prior': 'True', 'alpha': 2.310129700083158e-07} 0.5585787416692072 23.799 36 {'fit_prior': 'True', 'alpha': 1e-08} 0.5585237755311087 24.209 37 {'fit_prior': 'True', 'alpha': 1.2328467394420635e-09} 0.5585322432937763 24.771 38 {'fit_prior': 'True', 'alpha': 1.519911082952933e-08} 0.5585237755311087 23.929 39 {'fit_prior': 'False', 'alpha': 2.848035868435799e-07} 0.5585787416692072 27.103 40 {'fit_prior': 'False', 'alpha': 1.519911082952933e-09} 0.5585322432937763 27.803 41 {'fit_prior': 'False', 'alpha': 5.336699231206313e-07} 0.5585321247002658 27.139 42 {'fit_prior': 'False', 'alpha': 5.336699231206313e-07} 0.5585321247002658 26.77 43 {'fit_prior': 'True', 'alpha': 1.873817422860383e-07} 0.5585787416692072 28.174 44 {'fit_prior': 'True', 'alpha': 8.111308307896873e-08} 0.5585527392583353 25.43 45 {'fit_prior': 'True', 'alpha': 1.873817422860383e-07} 0.5585787416692072 27.594 46 {'fit_prior': 'False', 'alpha': 1.873817422860387e-09} 0.5585322432937763 28.726 47 {'fit_prior': 'True', 'alpha': 1.232846739442066e-07} 0.5585527392583353 26.621 48 {'fit_prior': 'False', 'alpha': 8.111308307896873e-08} 0.5585527392583353 32.861 49 {'fit_prior': 'True', 'alpha': 1.873817422860383e-08} 0.5585237755311087 57.316 50 {'fit_prior': 'True', 'alpha': 1.519911082952933e-08} 0.5585237755311087 23.86 51 {'fit_prior': 'True', 'alpha': 2.310129700083158e-07} 0.5585787416692072 27.31 52 {'fit_prior': 'True', 'alpha': 2.310129700083158e-07} 0.5585787416692072 28.759 53 {'fit_prior': 'True', 'alpha': 1.232846739442066e-08} 0.5585237755311087 28.147 54 {'fit_prior': 'False', 'alpha': 5.336699231206313e-07} 0.5585321247002658 30.088 55 {'fit_prior': 'False', 'alpha': 1.519911082952933e-09} 0.5585322432937763 28.261 56 {'fit_prior': 'True', 'alpha': 1.232846739442066e-08} 0.5585237755311087 24.938 57 {'fit_prior': 'True', 'alpha': 1.873817422860387e-09} 0.5585322432937763 24.441 58 {'fit_prior': 'True', 'alpha': 3.5111917342151277e-08} 0.5585237755311087 26.641 59 {'fit_prior': 'True', 'alpha': 1.519911082952933e-07} 0.5585684317597219 25.333 60 {'fit_prior': 'False', 'alpha': 2.310129700083158e-07} 0.5585787416692072 25.032 61 {'fit_prior': 'False', 'alpha': 8.111308307896873e-08} 0.5585527392583353 25.714 62 {'fit_prior': 'True', 'alpha': 1.232846739442066e-07} 0.5585527392583353 26.345 63 ###Markdown ------------- IoTSense- IoTsentinel ###Code %matplotlib inline from scipy.stats import randint as sp_randint from scipy.stats import uniform from scipy.stats import uniform as sp_randFloat from sklearn import svm from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from time import time import numpy as np import pandas as pd import sklearn import warnings warnings.filterwarnings('ignore') from scipy.stats import randint as sp_randInt from sklearn.model_selection import GridSearchCV, PredefinedSplit from sklearn.metrics import make_scorer from scipy import sparse ###Output _____no_output_____ ###Markdown IoTSentinel ###Code df=pd.read_csv("Aalto_IoTSentinel_Train.csv") df df.columns features= ['ARP', 'LLC', 'EAPOL', 'IP', 'ICMP', 'ICMP6', 'TCP', 'UDP', 'HTTP', 'HTTPS', 'DHCP', 'BOOTP', 'SSDP', 'DNS', 'MDNS', 'NTP', 'IP_padding', 'IP_add_count', 'IP_ralert', 'Portcl_src', 'Portcl_dst', 'Pck_size', 'Pck_rawdata', 'Label'] df=pd.read_csv("Aalto_IoTSentinel_Train.csv",usecols=features) X_train = df.iloc[:,0:-1] df['Label'] = df['Label'].astype('category') y_train=df['Label'].cat.codes df=pd.read_csv("Aalto_IoTSentinel_Test.csv",usecols=features) X_test = df.iloc[:,0:-1] df['Label'] = df['Label'].astype('category') y_test=df['Label'].cat.codes print(X_train.shape,X_test.shape) X= np.concatenate([X_train, X_test]) test_fold = [-1 for _ in range(X_train.shape[0])] + [0 for _ in range(X_test.shape[0])] y = np.concatenate([y_train, y_test]) ps = PredefinedSplit(test_fold) def run_random_search(model, params, x_train, y_train): #grid = GridSearchCV(model, params, cv = ps, n_jobs = -1, scoring = score, verbose = 0, refit = False) grid =RandomizedSearchCV(model, param_grid, cv=ps,scoring = 'f1_macro') grid.fit(x_train, y_train) return (grid.best_params_, round(grid.best_score_,8),grid.best_estimator_) ###Output _____no_output_____ ###Markdown RandomizedSearchCV DT ###Code print ('%-90s %-20s %-8s %-8s' % ("HYPERPARAMETERS","F1 Score", "Time", "No")) nfolds=10 param_grid = { 'criterion':['gini','entropy'], "max_depth":np.linspace(1, 32, 32, endpoint=True), "min_samples_split": sp_randint(2,10),#uniform(0.1,1 ), # "min_samples_leafs" : np.linspace(0.1, 0.5, 5, endpoint=True) "max_features" : sp_randint(1,X_train.shape[1])} second=time() f1=[] clf=DecisionTreeClassifier() for ii in range(25): clf.fit(X_train, y_train) predict =clf.predict(X_test) f1.append(sklearn.metrics.f1_score(y_test, predict,average= "macro") ) f1=sum(f1)/len(f1) #if f1>0.76: print('%-90s %-20s %-8s %-8s' % ("default",f1,round(time()-second,3),ii)) for i in range(100): second=time() a,b,clf=run_random_search(DecisionTreeClassifier(),param_grid,X,y) f1=[] for ii in range(25): clf.fit(X_train, y_train) predict =clf.predict(X_test) f1.append(sklearn.metrics.f1_score(y_test, predict,average= "macro") ) f1=sum(f1)/len(f1) #if f1>0.76: print('%-90s %-20s %-8s %-8s' % (a,f1,round(time()-second,3),i)) ###Output HYPERPARAMETERS F1 Score Time No default 0.6009580335884174 3.297 24 {'criterion': 'entropy', 'max_depth': 29.0, 'max_features': 19, 'min_samples_split': 6} 0.6030508357696247 3.882 0 {'criterion': 'entropy', 'max_depth': 28.0, 'max_features': 11, 'min_samples_split': 2} 0.6019134446933325 2.7 1 {'criterion': 'entropy', 'max_depth': 30.0, 'max_features': 7, 'min_samples_split': 4} 0.6008899861597053 2.675 2 {'criterion': 'gini', 'max_depth': 25.0, 'max_features': 12, 'min_samples_split': 2} 0.6011518449043427 3.048 3 {'criterion': 'gini', 'max_depth': 29.0, 'max_features': 14, 'min_samples_split': 4} 0.6019271172312137 3.166 4 {'criterion': 'entropy', 'max_depth': 21.0, 'max_features': 8, 'min_samples_split': 5} 0.600776034294108 2.699 5 {'criterion': 'entropy', 'max_depth': 32.0, 'max_features': 13, 'min_samples_split': 4} 0.6012155830985823 3.5 6 {'criterion': 'entropy', 'max_depth': 26.0, 'max_features': 12, 'min_samples_split': 4} 0.6007169103536598 3.149 7 {'criterion': 'gini', 'max_depth': 32.0, 'max_features': 20, 'min_samples_split': 4} 0.6011493068164223 3.807 8 {'criterion': 'gini', 'max_depth': 25.0, 'max_features': 6, 'min_samples_split': 5} 0.6013879377666946 2.508 9 {'criterion': 'gini', 'max_depth': 21.0, 'max_features': 13, 'min_samples_split': 8} 0.6001132367734511 3.339 10 {'criterion': 'entropy', 'max_depth': 29.0, 'max_features': 8, 'min_samples_split': 5} 0.6011763041325195 2.934 11 {'criterion': 'entropy', 'max_depth': 28.0, 'max_features': 12, 'min_samples_split': 6} 0.6021024566596548 3.493 12 {'criterion': 'entropy', 'max_depth': 20.0, 'max_features': 19, 'min_samples_split': 9} 0.6016383576743459 3.964 13 {'criterion': 'gini', 'max_depth': 29.0, 'max_features': 20, 'min_samples_split': 2} 0.6020742363039984 3.852 14 {'criterion': 'entropy', 'max_depth': 19.0, 'max_features': 11, 'min_samples_split': 6} 0.6020211030396712 3.283 15 {'criterion': 'entropy', 'max_depth': 23.0, 'max_features': 14, 'min_samples_split': 8} 0.6018172305951058 3.374 16 {'criterion': 'gini', 'max_depth': 26.0, 'max_features': 17, 'min_samples_split': 6} 0.6014710326768737 3.63 17 {'criterion': 'gini', 'max_depth': 19.0, 'max_features': 4, 'min_samples_split': 3} 0.5968674903457019 2.483 18 {'criterion': 'entropy', 'max_depth': 23.0, 'max_features': 20, 'min_samples_split': 8} 0.6022104439491639 4.286 19 {'criterion': 'gini', 'max_depth': 26.0, 'max_features': 7, 'min_samples_split': 4} 0.6015693137161562 2.792 20 {'criterion': 'gini', 'max_depth': 22.0, 'max_features': 14, 'min_samples_split': 6} 0.6017949216348957 3.074 21 {'criterion': 'entropy', 'max_depth': 29.0, 'max_features': 19, 'min_samples_split': 6} 0.6024430151083207 3.692 22 {'criterion': 'gini', 'max_depth': 28.0, 'max_features': 5, 'min_samples_split': 5} 0.6022739364798936 2.498 23 {'criterion': 'gini', 'max_depth': 23.0, 'max_features': 21, 'min_samples_split': 7} 0.6016857134025669 3.667 24 {'criterion': 'entropy', 'max_depth': 27.0, 'max_features': 13, 'min_samples_split': 3} 0.6015151763417111 3.33 25 {'criterion': 'gini', 'max_depth': 22.0, 'max_features': 3, 'min_samples_split': 5} 0.5998416932351841 2.64 26 {'criterion': 'entropy', 'max_depth': 29.0, 'max_features': 9, 'min_samples_split': 7} 0.603140806980107 3.021 27 {'criterion': 'entropy', 'max_depth': 30.0, 'max_features': 17, 'min_samples_split': 7} 0.6029479447390311 3.835 28 {'criterion': 'gini', 'max_depth': 31.0, 'max_features': 11, 'min_samples_split': 5} 0.6013014797072703 3.124 29 {'criterion': 'entropy', 'max_depth': 25.0, 'max_features': 21, 'min_samples_split': 9} 0.6019580675893905 3.98 30 {'criterion': 'gini', 'max_depth': 25.0, 'max_features': 12, 'min_samples_split': 4} 0.6010475693032766 3.181 31 {'criterion': 'entropy', 'max_depth': 27.0, 'max_features': 9, 'min_samples_split': 3} 0.6018394030497072 2.939 32 {'criterion': 'entropy', 'max_depth': 24.0, 'max_features': 12, 'min_samples_split': 3} 0.6012430819654145 3.022 33 {'criterion': 'gini', 'max_depth': 19.0, 'max_features': 9, 'min_samples_split': 8} 0.5985461479436998 2.964 34 {'criterion': 'entropy', 'max_depth': 28.0, 'max_features': 8, 'min_samples_split': 7} 0.601039893545091 3.005 35 {'criterion': 'gini', 'max_depth': 24.0, 'max_features': 20, 'min_samples_split': 8} 0.6007605099676454 3.967 36 {'criterion': 'gini', 'max_depth': 22.0, 'max_features': 8, 'min_samples_split': 5} 0.6008745629513287 2.611 37 {'criterion': 'gini', 'max_depth': 32.0, 'max_features': 7, 'min_samples_split': 2} 0.6024562181865079 2.861 38 {'criterion': 'entropy', 'max_depth': 21.0, 'max_features': 4, 'min_samples_split': 3} 0.6023181079153617 2.604 39 {'criterion': 'entropy', 'max_depth': 21.0, 'max_features': 21, 'min_samples_split': 7} 0.6029429057703155 4.212 40 {'criterion': 'entropy', 'max_depth': 27.0, 'max_features': 18, 'min_samples_split': 7} 0.60174529230521 3.86 41 {'criterion': 'gini', 'max_depth': 23.0, 'max_features': 13, 'min_samples_split': 3} 0.6016370279207668 3.332 42 {'criterion': 'gini', 'max_depth': 26.0, 'max_features': 5, 'min_samples_split': 4} 0.6011680084683833 2.629 43 {'criterion': 'entropy', 'max_depth': 26.0, 'max_features': 7, 'min_samples_split': 3} 0.6021200172252105 2.691 44 {'criterion': 'gini', 'max_depth': 23.0, 'max_features': 12, 'min_samples_split': 2} 0.6013955748810014 3.242 45 {'criterion': 'entropy', 'max_depth': 24.0, 'max_features': 22, 'min_samples_split': 8} 0.6025412911227193 3.791 46 {'criterion': 'gini', 'max_depth': 31.0, 'max_features': 6, 'min_samples_split': 5} 0.6019437360503138 2.675 47 {'criterion': 'entropy', 'max_depth': 18.0, 'max_features': 12, 'min_samples_split': 9} 0.5991803543717217 2.868 48 {'criterion': 'gini', 'max_depth': 25.0, 'max_features': 21, 'min_samples_split': 6} 0.6014563832507143 3.87 49 {'criterion': 'entropy', 'max_depth': 21.0, 'max_features': 21, 'min_samples_split': 3} 0.602723854653127 3.975 50 {'criterion': 'gini', 'max_depth': 26.0, 'max_features': 16, 'min_samples_split': 5} 0.6019333950583351 3.25 51 {'criterion': 'gini', 'max_depth': 26.0, 'max_features': 6, 'min_samples_split': 7} 0.6009520232475655 2.597 52 {'criterion': 'gini', 'max_depth': 27.0, 'max_features': 9, 'min_samples_split': 2} 0.6015812662827617 3.174 53 {'criterion': 'gini', 'max_depth': 20.0, 'max_features': 5, 'min_samples_split': 2} 0.5997503129299953 2.637 54 {'criterion': 'gini', 'max_depth': 30.0, 'max_features': 3, 'min_samples_split': 3} 0.6025699515987437 2.563 55 {'criterion': 'entropy', 'max_depth': 18.0, 'max_features': 5, 'min_samples_split': 6} 0.5997699179427607 2.413 56 {'criterion': 'gini', 'max_depth': 22.0, 'max_features': 9, 'min_samples_split': 5} 0.6011193171473207 2.811 57 {'criterion': 'entropy', 'max_depth': 19.0, 'max_features': 17, 'min_samples_split': 2} 0.6011052786908276 3.656 58 {'criterion': 'gini', 'max_depth': 25.0, 'max_features': 14, 'min_samples_split': 9} 0.5996343767546538 3.469 59 {'criterion': 'gini', 'max_depth': 32.0, 'max_features': 3, 'min_samples_split': 4} 0.6013376013918397 2.458 60 {'criterion': 'gini', 'max_depth': 26.0, 'max_features': 19, 'min_samples_split': 8} 0.6007069584492748 3.748 61 ###Markdown IoT Sense ###Code df=pd.read_csv("Aalto_IoTSense_Train.csv") df df.columns features= ['ARP', 'EAPOL', 'IP', 'ICMP', 'ICMP6', 'TCP', 'UDP', 'TCP_w_size', 'HTTP', 'HTTPS', 'DHCP', 'BOOTP', 'SSDP', 'DNS', 'MDNS', 'NTP', 'IP_padding', 'IP_ralert', 'payload_l', 'Entropy', 'Label'] df=pd.read_csv("Aalto_IoTSense_Train.csv",usecols=features) X_train = df.iloc[:,0:-1] df['Label'] = df['Label'].astype('category') y_train=df['Label'].cat.codes df=pd.read_csv("Aalto_IoTSense_Test.csv",usecols=features) X_test = df.iloc[:,0:-1] df['Label'] = df['Label'].astype('category') y_test=df['Label'].cat.codes print(X_train.shape,X_test.shape) X= np.concatenate([X_train, X_test]) test_fold = [-1 for _ in range(X_train.shape[0])] + [0 for _ in range(X_test.shape[0])] y = np.concatenate([y_train, y_test]) ps = PredefinedSplit(test_fold) def run_random_search(model, params, x_train, y_train): #grid = GridSearchCV(model, params, cv = ps, n_jobs = -1, scoring = score, verbose = 0, refit = False) grid =RandomizedSearchCV(model, param_grid, cv=ps,scoring = 'f1_macro') grid.fit(x_train, y_train) return (grid.best_params_, round(grid.best_score_,8),grid.best_estimator_) ###Output _____no_output_____ ###Markdown RandomizedSearchCV DT ###Code print ('%-90s %-20s %-8s %-8s' % ("HYPERPARAMETERS","F1 Score", "Time", "No")) nfolds=10 param_grid = { 'criterion':['gini','entropy'], "max_depth":np.linspace(1, 32, 32, endpoint=True), "min_samples_split": sp_randint(2,10),#uniform(0.1,1 ), # "min_samples_leafs" : np.linspace(0.1, 0.5, 5, endpoint=True) "max_features" : sp_randint(1,X_train.shape[1])} second=time() f1=[] clf=DecisionTreeClassifier() for ii in range(25): clf.fit(X_train, y_train) predict =clf.predict(X_test) f1.append(sklearn.metrics.f1_score(y_test, predict,average= "macro") ) f1=sum(f1)/len(f1) #if f1>0.76: print('%-90s %-20s %-8s %-8s' % ("default",f1,round(time()-second,3),ii)) for i in range(100): second=time() a,b,clf=run_random_search(DecisionTreeClassifier(),param_grid,X,y) f1=[] for ii in range(25): clf.fit(X_train, y_train) predict =clf.predict(X_test) f1.append(sklearn.metrics.f1_score(y_test, predict,average= "macro") ) f1=sum(f1)/len(f1) #if f1>0.76: print('%-90s %-20s %-8s %-8s' % (a,f1,round(time()-second,3),i)) ###Output HYPERPARAMETERS F1 Score Time No default 0.558691645008419 3.763 24 {'criterion': 'entropy', 'max_depth': 29.0, 'max_features': 15, 'min_samples_split': 2} 0.5595939405707852 5.056 0 {'criterion': 'gini', 'max_depth': 27.0, 'max_features': 17, 'min_samples_split': 5} 0.5598395436693392 4.321 1 {'criterion': 'gini', 'max_depth': 27.0, 'max_features': 11, 'min_samples_split': 5} 0.5588452549829972 3.867 2 {'criterion': 'gini', 'max_depth': 30.0, 'max_features': 9, 'min_samples_split': 2} 0.558784869621737 4.126 3 {'criterion': 'gini', 'max_depth': 22.0, 'max_features': 10, 'min_samples_split': 7} 0.5584838920603935 3.171 4 {'criterion': 'entropy', 'max_depth': 26.0, 'max_features': 17, 'min_samples_split': 3} 0.5594077404103128 5.856 5 {'criterion': 'entropy', 'max_depth': 20.0, 'max_features': 6, 'min_samples_split': 2} 0.5578979723451639 4.352 6 {'criterion': 'entropy', 'max_depth': 22.0, 'max_features': 19, 'min_samples_split': 5} 0.560104098992348 5.024 7 {'criterion': 'entropy', 'max_depth': 30.0, 'max_features': 15, 'min_samples_split': 7} 0.5589826281197542 4.628 8 {'criterion': 'entropy', 'max_depth': 25.0, 'max_features': 10, 'min_samples_split': 3} 0.5578691798198041 3.807 9 {'criterion': 'entropy', 'max_depth': 22.0, 'max_features': 19, 'min_samples_split': 4} 0.5599425244566223 5.04 10 {'criterion': 'gini', 'max_depth': 31.0, 'max_features': 8, 'min_samples_split': 2} 0.5588144386309883 3.277 11 {'criterion': 'gini', 'max_depth': 29.0, 'max_features': 10, 'min_samples_split': 5} 0.5591740766338967 3.24 12 {'criterion': 'entropy', 'max_depth': 20.0, 'max_features': 12, 'min_samples_split': 8} 0.5584870456857225 4.284 13 {'criterion': 'entropy', 'max_depth': 17.0, 'max_features': 12, 'min_samples_split': 2} 0.557735271771046 4.3 14 {'criterion': 'gini', 'max_depth': 19.0, 'max_features': 11, 'min_samples_split': 9} 0.5566510739652359 3.45 15 {'criterion': 'gini', 'max_depth': 23.0, 'max_features': 19, 'min_samples_split': 3} 0.5594735232503032 4.289 16 {'criterion': 'gini', 'max_depth': 25.0, 'max_features': 16, 'min_samples_split': 4} 0.5589298593903004 4.128 17 {'criterion': 'entropy', 'max_depth': 21.0, 'max_features': 19, 'min_samples_split': 4} 0.5602022199981592 5.156 18 {'criterion': 'entropy', 'max_depth': 18.0, 'max_features': 18, 'min_samples_split': 4} 0.5590846382513375 4.714 19 {'criterion': 'entropy', 'max_depth': 21.0, 'max_features': 17, 'min_samples_split': 3} 0.5597057425436107 5.141 20 {'criterion': 'gini', 'max_depth': 32.0, 'max_features': 10, 'min_samples_split': 2} 0.5592884775615491 3.736 21 {'criterion': 'gini', 'max_depth': 23.0, 'max_features': 14, 'min_samples_split': 4} 0.5581566203445458 3.984 22 {'criterion': 'gini', 'max_depth': 22.0, 'max_features': 6, 'min_samples_split': 2} 0.557453022529816 3.228 23 {'criterion': 'entropy', 'max_depth': 20.0, 'max_features': 19, 'min_samples_split': 7} 0.5608599075029683 5.074 24 {'criterion': 'gini', 'max_depth': 22.0, 'max_features': 7, 'min_samples_split': 6} 0.5586587463390914 3.311 25 {'criterion': 'gini', 'max_depth': 20.0, 'max_features': 17, 'min_samples_split': 7} 0.5588660384128833 3.979 26 {'criterion': 'entropy', 'max_depth': 31.0, 'max_features': 14, 'min_samples_split': 6} 0.559312407927916 4.668 27 {'criterion': 'gini', 'max_depth': 21.0, 'max_features': 14, 'min_samples_split': 3} 0.5586897649017216 3.761 28 {'criterion': 'entropy', 'max_depth': 18.0, 'max_features': 11, 'min_samples_split': 3} 0.5579665105908079 4.155 29 {'criterion': 'gini', 'max_depth': 32.0, 'max_features': 8, 'min_samples_split': 6} 0.5593412054537021 3.308 30 {'criterion': 'gini', 'max_depth': 26.0, 'max_features': 12, 'min_samples_split': 6} 0.5596784723687197 3.674 31 {'criterion': 'entropy', 'max_depth': 27.0, 'max_features': 10, 'min_samples_split': 2} 0.5593189676546773 4.357 32 {'criterion': 'entropy', 'max_depth': 28.0, 'max_features': 14, 'min_samples_split': 8} 0.55838562534971 4.617 33 {'criterion': 'gini', 'max_depth': 27.0, 'max_features': 1, 'min_samples_split': 2} 0.5577650446097624 3.211 34 {'criterion': 'entropy', 'max_depth': 28.0, 'max_features': 18, 'min_samples_split': 6} 0.5600714036121163 5.242 35 {'criterion': 'gini', 'max_depth': 26.0, 'max_features': 7, 'min_samples_split': 6} 0.5585427420728055 3.198 36 {'criterion': 'gini', 'max_depth': 31.0, 'max_features': 12, 'min_samples_split': 2} 0.5590093924223245 3.926 37 {'criterion': 'gini', 'max_depth': 30.0, 'max_features': 17, 'min_samples_split': 6} 0.5601038879511053 4.011 38 {'criterion': 'entropy', 'max_depth': 18.0, 'max_features': 19, 'min_samples_split': 9} 0.5599754145942392 5.115 39 {'criterion': 'gini', 'max_depth': 25.0, 'max_features': 16, 'min_samples_split': 8} 0.5583923741615665 4.255 40 {'criterion': 'entropy', 'max_depth': 21.0, 'max_features': 10, 'min_samples_split': 3} 0.5575411779984907 4.314 41 {'criterion': 'gini', 'max_depth': 28.0, 'max_features': 15, 'min_samples_split': 6} 0.5599309334421654 4.362 42 {'criterion': 'gini', 'max_depth': 30.0, 'max_features': 16, 'min_samples_split': 9} 0.5582932766894707 4.177 43 {'criterion': 'gini', 'max_depth': 20.0, 'max_features': 10, 'min_samples_split': 8} 0.5572775116595065 3.099 44 {'criterion': 'gini', 'max_depth': 27.0, 'max_features': 16, 'min_samples_split': 7} 0.5587037658238144 4.133 45 {'criterion': 'entropy', 'max_depth': 27.0, 'max_features': 10, 'min_samples_split': 3} 0.5582054018609128 4.351 46 {'criterion': 'gini', 'max_depth': 27.0, 'max_features': 15, 'min_samples_split': 3} 0.5585986325141291 3.965 47 {'criterion': 'entropy', 'max_depth': 18.0, 'max_features': 15, 'min_samples_split': 3} 0.558407787064271 5.62 48 {'criterion': 'entropy', 'max_depth': 28.0, 'max_features': 19, 'min_samples_split': 6} 0.5601370285703191 6.537 49 {'criterion': 'gini', 'max_depth': 22.0, 'max_features': 19, 'min_samples_split': 4} 0.5600779171190392 4.643 50 {'criterion': 'entropy', 'max_depth': 22.0, 'max_features': 15, 'min_samples_split': 3} 0.5588715078396503 4.686 51 {'criterion': 'gini', 'max_depth': 25.0, 'max_features': 15, 'min_samples_split': 6} 0.559884329460211 3.843 52 {'criterion': 'gini', 'max_depth': 25.0, 'max_features': 10, 'min_samples_split': 2} 0.559055485102379 3.753 53 {'criterion': 'entropy', 'max_depth': 17.0, 'max_features': 14, 'min_samples_split': 2} 0.5582864722741846 4.686 54 {'criterion': 'entropy', 'max_depth': 21.0, 'max_features': 17, 'min_samples_split': 2} 0.560359852182515 5.06 55 {'criterion': 'entropy', 'max_depth': 26.0, 'max_features': 15, 'min_samples_split': 3} 0.5584946497657707 4.855 56 {'criterion': 'gini', 'max_depth': 26.0, 'max_features': 19, 'min_samples_split': 6} 0.5601168896783831 4.718 57 {'criterion': 'entropy', 'max_depth': 18.0, 'max_features': 18, 'min_samples_split': 9} 0.5596546064605892 4.992 58 {'criterion': 'gini', 'max_depth': 27.0, 'max_features': 15, 'min_samples_split': 2} 0.5593275073070032 3.931 59 {'criterion': 'entropy', 'max_depth': 25.0, 'max_features': 16, 'min_samples_split': 2} 0.560227409908011 5.131 60 {'criterion': 'entropy', 'max_depth': 17.0, 'max_features': 17, 'min_samples_split': 7} 0.55894843824888 4.95 61 ###Markdown ________________ UNSW ###Code %matplotlib inline from scipy.stats import randint as sp_randint from scipy.stats import uniform from scipy.stats import uniform as sp_randFloat from sklearn import svm from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from time import time import numpy as np import pandas as pd import sklearn import warnings warnings.filterwarnings('ignore') from scipy.stats import randint as sp_randInt from sklearn.model_selection import GridSearchCV, PredefinedSplit from sklearn.metrics import make_scorer from scipy import sparse ###Output _____no_output_____ ###Markdown IoTSentinel ###Code df=pd.read_csv("UNSW_IoTSentinel_Train.csv") df df.columns features= ['ARP', 'LLC', 'EAPOL', 'IP', 'ICMP', 'ICMP6', 'TCP', 'UDP', 'HTTP', 'HTTPS', 'DHCP', 'BOOTP', 'SSDP', 'DNS', 'MDNS', 'NTP', 'IP_padding', 'IP_add_count', 'IP_ralert', 'Portcl_src', 'Portcl_dst', 'Pck_size', 'Pck_rawdata', 'Label'] df=pd.read_csv("UNSW_IoTSentinel_Train.csv",usecols=features) X_train = df.iloc[:,0:-1] df['Label'] = df['Label'].astype('category') y_train=df['Label'].cat.codes df=pd.read_csv("UNSW_IoTSentinel_Test.csv",usecols=features) X_test = df.iloc[:,0:-1] df['Label'] = df['Label'].astype('category') y_test=df['Label'].cat.codes print(X_train.shape,X_test.shape) X= np.concatenate([X_train, X_test]) test_fold = [-1 for _ in range(X_train.shape[0])] + [0 for _ in range(X_test.shape[0])] y = np.concatenate([y_train, y_test]) ps = PredefinedSplit(test_fold) def run_random_search(model, params, x_train, y_train): #grid = GridSearchCV(model, params, cv = ps, n_jobs = -1, scoring = score, verbose = 0, refit = False) grid =RandomizedSearchCV(model, param_grid, cv=ps,scoring = 'f1_macro') grid.fit(x_train, y_train) return (grid.best_params_, round(grid.best_score_,8),grid.best_estimator_) ###Output _____no_output_____ ###Markdown RandomizedSearchCV DT ###Code print ('%-90s %-20s %-8s %-8s' % ("HYPERPARAMETERS","F1 Score", "Time", "No")) nfolds=10 param_grid = { 'criterion':['gini','entropy'], "max_depth":np.linspace(1, 32, 32, endpoint=True), "min_samples_split": sp_randint(2,10),#uniform(0.1,1 ), # "min_samples_leafs" : np.linspace(0.1, 0.5, 5, endpoint=True) "max_features" : sp_randint(1,X_train.shape[1])} second=time() f1=[] clf=DecisionTreeClassifier() for ii in range(25): clf.fit(X_train, y_train) predict =clf.predict(X_test) f1.append(sklearn.metrics.f1_score(y_test, predict,average= "macro") ) f1=sum(f1)/len(f1) #if f1>0.76: print('%-90s %-20s %-8s %-8s' % ("default",f1,round(time()-second,3),ii)) for i in range(100): second=time() a,b,clf=run_random_search(DecisionTreeClassifier(),param_grid,X,y) f1=[] for ii in range(25): clf.fit(X_train, y_train) predict =clf.predict(X_test) f1.append(sklearn.metrics.f1_score(y_test, predict,average= "macro") ) f1=sum(f1)/len(f1) #if f1>0.76: print('%-90s %-20s %-8s %-8s' % (a,f1,round(time()-second,3),i)) ###Output HYPERPARAMETERS F1 Score Time No default 0.504726029658401 13.599 24 {'criterion': 'entropy', 'max_depth': 27.0, 'max_features': 6, 'min_samples_split': 5} 0.5011076161175921 10.733 0 {'criterion': 'gini', 'max_depth': 31.0, 'max_features': 1, 'min_samples_split': 4} 0.5099407835954021 10.322 1 {'criterion': 'gini', 'max_depth': 27.0, 'max_features': 20, 'min_samples_split': 7} 0.5034832751111291 17.245 2 {'criterion': 'gini', 'max_depth': 14.0, 'max_features': 8, 'min_samples_split': 8} 0.4840597514969355 11.02 3 {'criterion': 'gini', 'max_depth': 16.0, 'max_features': 8, 'min_samples_split': 9} 0.4902067490058035 12.682 4 {'criterion': 'entropy', 'max_depth': 20.0, 'max_features': 12, 'min_samples_split': 2} 0.5016726208159694 12.441 5 {'criterion': 'gini', 'max_depth': 27.0, 'max_features': 7, 'min_samples_split': 9} 0.5034736913310647 10.913 6 {'criterion': 'gini', 'max_depth': 16.0, 'max_features': 8, 'min_samples_split': 6} 0.5008376244569992 12.164 7 {'criterion': 'entropy', 'max_depth': 32.0, 'max_features': 7, 'min_samples_split': 3} 0.5039092700355589 10.641 8 {'criterion': 'entropy', 'max_depth': 28.0, 'max_features': 15, 'min_samples_split': 6} 0.4996327590271571 16.35 9 {'criterion': 'gini', 'max_depth': 18.0, 'max_features': 11, 'min_samples_split': 4} 0.5061354111005771 12.233 10 {'criterion': 'entropy', 'max_depth': 15.0, 'max_features': 4, 'min_samples_split': 5} 0.4986113240344758 9.395 11 {'criterion': 'gini', 'max_depth': 25.0, 'max_features': 20, 'min_samples_split': 7} 0.5050065394085064 18.013 12 {'criterion': 'entropy', 'max_depth': 22.0, 'max_features': 12, 'min_samples_split': 7} 0.4960164778500743 12.823 13 {'criterion': 'gini', 'max_depth': 27.0, 'max_features': 7, 'min_samples_split': 3} 0.5075217944059709 12.056 14 {'criterion': 'gini', 'max_depth': 22.0, 'max_features': 1, 'min_samples_split': 4} 0.5077250843318716 10.546 15 {'criterion': 'entropy', 'max_depth': 21.0, 'max_features': 11, 'min_samples_split': 5} 0.4986665069490616 12.909 16 {'criterion': 'gini', 'max_depth': 29.0, 'max_features': 1, 'min_samples_split': 2} 0.5100791293821751 9.719 17 {'criterion': 'entropy', 'max_depth': 27.0, 'max_features': 7, 'min_samples_split': 5} 0.5006937243444661 12.388 18 {'criterion': 'gini', 'max_depth': 18.0, 'max_features': 10, 'min_samples_split': 2} 0.5038110574780196 13.683 19 {'criterion': 'entropy', 'max_depth': 19.0, 'max_features': 4, 'min_samples_split': 3} 0.5081433291552055 10.394 20 {'criterion': 'gini', 'max_depth': 16.0, 'max_features': 17, 'min_samples_split': 2} 0.5029991392838162 14.67 21 {'criterion': 'entropy', 'max_depth': 27.0, 'max_features': 13, 'min_samples_split': 2} 0.4986205079473723 12.995 22 {'criterion': 'gini', 'max_depth': 20.0, 'max_features': 15, 'min_samples_split': 6} 0.5062511840151633 18.285 23 {'criterion': 'gini', 'max_depth': 32.0, 'max_features': 6, 'min_samples_split': 7} 0.5090669921246591 12.73 24 {'criterion': 'gini', 'max_depth': 15.0, 'max_features': 8, 'min_samples_split': 5} 0.4906767680208231 12.137 25 {'criterion': 'gini', 'max_depth': 31.0, 'max_features': 7, 'min_samples_split': 5} 0.5070183295947354 11.813 26 {'criterion': 'entropy', 'max_depth': 29.0, 'max_features': 3, 'min_samples_split': 2} 0.5085798825005508 10.277 27 {'criterion': 'gini', 'max_depth': 32.0, 'max_features': 2, 'min_samples_split': 2} 0.5119003823868639 10.773 28 {'criterion': 'gini', 'max_depth': 32.0, 'max_features': 22, 'min_samples_split': 3} 0.5044494289399762 20.797 29 {'criterion': 'gini', 'max_depth': 23.0, 'max_features': 8, 'min_samples_split': 6} 0.5054691586463822 11.663 30 {'criterion': 'gini', 'max_depth': 31.0, 'max_features': 6, 'min_samples_split': 5} 0.5091749882257619 11.075 31 {'criterion': 'entropy', 'max_depth': 24.0, 'max_features': 20, 'min_samples_split': 5} 0.5012757402327029 16.771 32 {'criterion': 'entropy', 'max_depth': 16.0, 'max_features': 7, 'min_samples_split': 3} 0.5031779087491085 10.291 33 {'criterion': 'entropy', 'max_depth': 11.0, 'max_features': 19, 'min_samples_split': 4} 0.4911663108778608 13.677 34 {'criterion': 'entropy', 'max_depth': 20.0, 'max_features': 5, 'min_samples_split': 6} 0.5015989686107943 9.756 35 {'criterion': 'entropy', 'max_depth': 27.0, 'max_features': 10, 'min_samples_split': 7} 0.4965797407924477 12.52 36 {'criterion': 'gini', 'max_depth': 32.0, 'max_features': 21, 'min_samples_split': 7} 0.5033311331482704 18.193 37 {'criterion': 'entropy', 'max_depth': 22.0, 'max_features': 6, 'min_samples_split': 5} 0.504662660944637 10.959 38 {'criterion': 'gini', 'max_depth': 15.0, 'max_features': 6, 'min_samples_split': 6} 0.4872157537399422 10.647 39 {'criterion': 'entropy', 'max_depth': 15.0, 'max_features': 3, 'min_samples_split': 4} 0.4982487639434857 9.373 40 {'criterion': 'gini', 'max_depth': 17.0, 'max_features': 10, 'min_samples_split': 6} 0.5050965370624528 11.397 41 {'criterion': 'entropy', 'max_depth': 22.0, 'max_features': 5, 'min_samples_split': 2} 0.5026617658618661 10.701 42 {'criterion': 'entropy', 'max_depth': 26.0, 'max_features': 20, 'min_samples_split': 4} 0.500004790575644 16.968 43 {'criterion': 'entropy', 'max_depth': 19.0, 'max_features': 18, 'min_samples_split': 6} 0.49891426702570124 16.496 44 {'criterion': 'entropy', 'max_depth': 32.0, 'max_features': 15, 'min_samples_split': 8} 0.4944616282131263 17.819 45 {'criterion': 'entropy', 'max_depth': 22.0, 'max_features': 13, 'min_samples_split': 6} 0.503500611071228 14.531 46 {'criterion': 'gini', 'max_depth': 27.0, 'max_features': 2, 'min_samples_split': 9} 0.5071728953550535 12.655 47 {'criterion': 'gini', 'max_depth': 28.0, 'max_features': 14, 'min_samples_split': 8} 0.5078407122747342 18.85 48 {'criterion': 'entropy', 'max_depth': 31.0, 'max_features': 18, 'min_samples_split': 3} 0.5013723903832534 18.582 49 {'criterion': 'entropy', 'max_depth': 32.0, 'max_features': 4, 'min_samples_split': 5} 0.5047723891239894 14.321 50 {'criterion': 'entropy', 'max_depth': 32.0, 'max_features': 13, 'min_samples_split': 9} 0.5004311190785782 18.093 51 {'criterion': 'entropy', 'max_depth': 29.0, 'max_features': 9, 'min_samples_split': 6} 0.5011535971703264 14.24 52 {'criterion': 'gini', 'max_depth': 27.0, 'max_features': 8, 'min_samples_split': 4} 0.5092393261112336 11.935 53 {'criterion': 'gini', 'max_depth': 24.0, 'max_features': 1, 'min_samples_split': 3} 0.5122428509301188 10.181 54 {'criterion': 'entropy', 'max_depth': 17.0, 'max_features': 15, 'min_samples_split': 7} 0.5019485168697276 17.64 55 {'criterion': 'gini', 'max_depth': 16.0, 'max_features': 13, 'min_samples_split': 8} 0.49506843259753497 14.223 56 {'criterion': 'entropy', 'max_depth': 14.0, 'max_features': 2, 'min_samples_split': 6} 0.4904174980600612 10.34 57 {'criterion': 'gini', 'max_depth': 20.0, 'max_features': 1, 'min_samples_split': 4} 0.5079040871241363 12.143 58 {'criterion': 'entropy', 'max_depth': 15.0, 'max_features': 22, 'min_samples_split': 7} 0.49945671873638003 21.553 59 {'criterion': 'gini', 'max_depth': 17.0, 'max_features': 16, 'min_samples_split': 5} 0.5043649900323741 18.325 60 {'criterion': 'entropy', 'max_depth': 30.0, 'max_features': 18, 'min_samples_split': 3} 0.5006713367493819 19.049 61 ###Markdown IoT Sense ###Code df=pd.read_csv("UNSW_IoTSense_Train.csv") df df.columns features= ['ARP', 'EAPOL', 'IP', 'ICMP', 'ICMP6', 'TCP', 'UDP', 'TCP_w_size', 'HTTP', 'HTTPS', 'DHCP', 'BOOTP', 'SSDP', 'DNS', 'MDNS', 'NTP', 'IP_padding', 'IP_ralert', 'payload_l', 'Entropy', 'Label'] df=pd.read_csv("UNSW_IoTSense_Train.csv",usecols=features) X_train = df.iloc[:,0:-1] df['Label'] = df['Label'].astype('category') y_train=df['Label'].cat.codes df=pd.read_csv("UNSW_IoTSense_Test.csv",usecols=features) X_test = df.iloc[:,0:-1] df['Label'] = df['Label'].astype('category') y_test=df['Label'].cat.codes print(X_train.shape,X_test.shape) X= np.concatenate([X_train, X_test]) test_fold = [-1 for _ in range(X_train.shape[0])] + [0 for _ in range(X_test.shape[0])] y = np.concatenate([y_train, y_test]) ps = PredefinedSplit(test_fold) def run_random_search(model, params, x_train, y_train): #grid = GridSearchCV(model, params, cv = ps, n_jobs = -1, scoring = score, verbose = 0, refit = False) grid =RandomizedSearchCV(model, param_grid, cv=ps,scoring = 'f1_macro') grid.fit(x_train, y_train) return (grid.best_params_, round(grid.best_score_,8),grid.best_estimator_) ###Output _____no_output_____ ###Markdown RandomizedSearchCV DT ###Code print ('%-90s %-20s %-8s %-8s' % ("HYPERPARAMETERS","F1 Score", "Time", "No")) nfolds=10 param_grid = { 'criterion':['gini','entropy'], "max_depth":np.linspace(1, 32, 32, endpoint=True), "min_samples_split": sp_randint(2,10),#uniform(0.1,1 ), # "min_samples_leafs" : np.linspace(0.1, 0.5, 5, endpoint=True) "max_features" : sp_randint(1,X_train.shape[1])} second=time() f1=[] clf=DecisionTreeClassifier() for ii in range(25): clf.fit(X_train, y_train) predict =clf.predict(X_test) f1.append(sklearn.metrics.f1_score(y_test, predict,average= "macro") ) f1=sum(f1)/len(f1) #if f1>0.76: print('%-90s %-20s %-8s %-8s' % ("default",f1,round(time()-second,3),ii)) for i in range(100): second=time() a,b,clf=run_random_search(DecisionTreeClassifier(),param_grid,X,y) f1=[] for ii in range(25): clf.fit(X_train, y_train) predict =clf.predict(X_test) f1.append(sklearn.metrics.f1_score(y_test, predict,average= "macro") ) f1=sum(f1)/len(f1) #if f1>0.76: print('%-90s %-20s %-8s %-8s' % (a,f1,round(time()-second,3),i)) ###Output HYPERPARAMETERS F1 Score Time No default 0.7001257412876442 12.571 24 {'criterion': 'entropy', 'max_depth': 26.0, 'max_features': 10, 'min_samples_split': 2} 0.6962463666427438 16.541 0 {'criterion': 'gini', 'max_depth': 31.0, 'max_features': 16, 'min_samples_split': 6} 0.6838823911295954 18.952 1 {'criterion': 'entropy', 'max_depth': 29.0, 'max_features': 13, 'min_samples_split': 4} 0.6936496038475042 18.467 2 {'criterion': 'entropy', 'max_depth': 20.0, 'max_features': 6, 'min_samples_split': 4} 0.6912024571500703 14.505 3 {'criterion': 'gini', 'max_depth': 32.0, 'max_features': 5, 'min_samples_split': 3} 0.6893947984204619 12.652 4 {'criterion': 'gini', 'max_depth': 24.0, 'max_features': 6, 'min_samples_split': 2} 0.6899510406043099 14.627 5 {'criterion': 'entropy', 'max_depth': 29.0, 'max_features': 9, 'min_samples_split': 6} 0.6928022946125325 20.951 6 {'criterion': 'gini', 'max_depth': 31.0, 'max_features': 9, 'min_samples_split': 3} 0.6910147378351368 19.288 7 {'criterion': 'gini', 'max_depth': 28.0, 'max_features': 7, 'min_samples_split': 2} 0.6918778120243164 16.435 8 {'criterion': 'entropy', 'max_depth': 32.0, 'max_features': 9, 'min_samples_split': 8} 0.688732867102963 18.739 9 {'criterion': 'gini', 'max_depth': 23.0, 'max_features': 12, 'min_samples_split': 2} 0.690491354887647 15.243 10 {'criterion': 'entropy', 'max_depth': 32.0, 'max_features': 11, 'min_samples_split': 5} 0.6957719438700803 16.739 11 {'criterion': 'entropy', 'max_depth': 30.0, 'max_features': 9, 'min_samples_split': 9} 0.6863490179307066 15.766 12 {'criterion': 'gini', 'max_depth': 26.0, 'max_features': 9, 'min_samples_split': 5} 0.6839057256556476 14.682 13 {'criterion': 'entropy', 'max_depth': 32.0, 'max_features': 12, 'min_samples_split': 4} 0.6951327129964894 18.031 14 {'criterion': 'gini', 'max_depth': 26.0, 'max_features': 9, 'min_samples_split': 2} 0.6912623877924392 13.39 15 {'criterion': 'entropy', 'max_depth': 24.0, 'max_features': 16, 'min_samples_split': 4} 0.6911555500792397 18.095 16 {'criterion': 'gini', 'max_depth': 25.0, 'max_features': 19, 'min_samples_split': 6} 0.691319250520437 21.042 17 {'criterion': 'entropy', 'max_depth': 30.0, 'max_features': 5, 'min_samples_split': 2} 0.6932637029791313 17.78 18 {'criterion': 'entropy', 'max_depth': 18.0, 'max_features': 3, 'min_samples_split': 9} 0.6813813756446596 17.994 19 {'criterion': 'entropy', 'max_depth': 29.0, 'max_features': 12, 'min_samples_split': 8} 0.6905132076847235 21.092 20 {'criterion': 'entropy', 'max_depth': 26.0, 'max_features': 12, 'min_samples_split': 7} 0.6922000969803984 19.078 21 {'criterion': 'entropy', 'max_depth': 23.0, 'max_features': 11, 'min_samples_split': 4} 0.6985094029104743 18.59 22 {'criterion': 'entropy', 'max_depth': 30.0, 'max_features': 2, 'min_samples_split': 5} 0.688680060771191 13.692 23 {'criterion': 'gini', 'max_depth': 20.0, 'max_features': 14, 'min_samples_split': 7} 0.6729053258232088 19.847 24 {'criterion': 'entropy', 'max_depth': 26.0, 'max_features': 14, 'min_samples_split': 9} 0.690791475801948 19.001 25 {'criterion': 'gini', 'max_depth': 28.0, 'max_features': 9, 'min_samples_split': 3} 0.689423557315838 14.935 26 {'criterion': 'gini', 'max_depth': 31.0, 'max_features': 14, 'min_samples_split': 2} 0.6929113635081885 17.307 27 {'criterion': 'entropy', 'max_depth': 26.0, 'max_features': 12, 'min_samples_split': 9} 0.6906661681031472 18.024 28 {'criterion': 'entropy', 'max_depth': 32.0, 'max_features': 14, 'min_samples_split': 3} 0.6954950672962711 17.919 29 {'criterion': 'gini', 'max_depth': 20.0, 'max_features': 9, 'min_samples_split': 4} 0.6752863725180661 14.823 30 {'criterion': 'entropy', 'max_depth': 22.0, 'max_features': 19, 'min_samples_split': 5} 0.6939793078044088 23.807 31 {'criterion': 'entropy', 'max_depth': 31.0, 'max_features': 13, 'min_samples_split': 6} 0.6960335610638793 16.733 32 {'criterion': 'gini', 'max_depth': 29.0, 'max_features': 17, 'min_samples_split': 5} 0.68859082912847 16.22 33 {'criterion': 'entropy', 'max_depth': 22.0, 'max_features': 8, 'min_samples_split': 4} 0.6939052438445559 16.382 34 {'criterion': 'entropy', 'max_depth': 18.0, 'max_features': 11, 'min_samples_split': 7} 0.6907153997235231 17.37 35 {'criterion': 'entropy', 'max_depth': 20.0, 'max_features': 11, 'min_samples_split': 5} 0.6957428893615905 17.498 36 {'criterion': 'gini', 'max_depth': 32.0, 'max_features': 14, 'min_samples_split': 4} 0.6879947391126389 16.527 37 {'criterion': 'entropy', 'max_depth': 31.0, 'max_features': 10, 'min_samples_split': 8} 0.6890183156304949 15.672 38 {'criterion': 'gini', 'max_depth': 27.0, 'max_features': 13, 'min_samples_split': 3} 0.6860991474660654 14.942 39 {'criterion': 'entropy', 'max_depth': 26.0, 'max_features': 14, 'min_samples_split': 8} 0.6924603073747808 18.62 40 {'criterion': 'gini', 'max_depth': 31.0, 'max_features': 19, 'min_samples_split': 9} 0.6916950973740211 17.531 41 {'criterion': 'entropy', 'max_depth': 29.0, 'max_features': 6, 'min_samples_split': 8} 0.6912850163871483 14.64 42 {'criterion': 'entropy', 'max_depth': 32.0, 'max_features': 13, 'min_samples_split': 9} 0.6915718682190396 17.658 43 {'criterion': 'entropy', 'max_depth': 27.0, 'max_features': 9, 'min_samples_split': 9} 0.6837315616684481 15.4 44 {'criterion': 'entropy', 'max_depth': 24.0, 'max_features': 13, 'min_samples_split': 9} 0.6847142639138403 18.055 45 {'criterion': 'entropy', 'max_depth': 25.0, 'max_features': 13, 'min_samples_split': 5} 0.6948649111091717 19.62 46 {'criterion': 'entropy', 'max_depth': 17.0, 'max_features': 8, 'min_samples_split': 6} 0.6872834908850775 16.565 47 {'criterion': 'entropy', 'max_depth': 25.0, 'max_features': 4, 'min_samples_split': 3} 0.6896827700556419 15.197 48 {'criterion': 'entropy', 'max_depth': 21.0, 'max_features': 7, 'min_samples_split': 8} 0.6883226495321716 15.687 49 {'criterion': 'gini', 'max_depth': 29.0, 'max_features': 14, 'min_samples_split': 3} 0.6941825750005505 16.143 50 {'criterion': 'gini', 'max_depth': 28.0, 'max_features': 2, 'min_samples_split': 3} 0.6871883610876159 12.064 51 {'criterion': 'entropy', 'max_depth': 32.0, 'max_features': 17, 'min_samples_split': 3} 0.6910708862009356 18.878 52 {'criterion': 'gini', 'max_depth': 27.0, 'max_features': 8, 'min_samples_split': 5} 0.6890964566116566 13.411 53 {'criterion': 'entropy', 'max_depth': 24.0, 'max_features': 17, 'min_samples_split': 2} 0.697008296565034 19.799 54 {'criterion': 'entropy', 'max_depth': 17.0, 'max_features': 13, 'min_samples_split': 5} 0.6876337004224824 17.405 55 {'criterion': 'entropy', 'max_depth': 29.0, 'max_features': 12, 'min_samples_split': 9} 0.6880851815352907 16.976 56 {'criterion': 'gini', 'max_depth': 30.0, 'max_features': 11, 'min_samples_split': 3} 0.6874227213264116 15.943 57 {'criterion': 'gini', 'max_depth': 29.0, 'max_features': 12, 'min_samples_split': 2} 0.6895681016627089 15.402 58 {'criterion': 'entropy', 'max_depth': 31.0, 'max_features': 13, 'min_samples_split': 2} 0.7011795266098307 20.808 59 {'criterion': 'entropy', 'max_depth': 15.0, 'max_features': 13, 'min_samples_split': 2} 0.68570676479959 19.183 60 {'criterion': 'entropy', 'max_depth': 22.0, 'max_features': 8, 'min_samples_split': 5} 0.6920184736238427 19.815 61 ###Markdown IoTDevID ###Code df=pd.read_csv("UNSW_train_IoTDevID.csv") df df.columns features= ['pck_size', 'Ether_type', 'LLC_ctrl', 'EAPOL_version', 'EAPOL_type', 'IP_ihl', 'IP_tos', 'IP_len', 'IP_flags', 'IP_DF', 'IP_ttl', 'IP_options', 'ICMP_code', 'TCP_dataofs', 'TCP_FIN', 'TCP_ACK', 'TCP_window', 'UDP_len', 'DHCP_options', 'BOOTP_hlen', 'BOOTP_flags', 'BOOTP_sname', 'BOOTP_file', 'BOOTP_options', 'DNS_qr', 'DNS_rd', 'DNS_qdcount', 'dport_class', 'payload_bytes', 'entropy', 'Label'] df=pd.read_csv("UNSW_train_IoTDevID.csv",usecols=features) X_train = df.iloc[:,0:-1] df['Label'] = df['Label'].astype('category') y_train=df['Label'].cat.codes df=pd.read_csv("UNSW_test_IoTDevID.csv",usecols=features) X_test = df.iloc[:,0:-1] df['Label'] = df['Label'].astype('category') y_test=df['Label'].cat.codes print(X_train.shape,X_test.shape) X= np.concatenate([X_train, X_test]) test_fold = [-1 for _ in range(X_train.shape[0])] + [0 for _ in range(X_test.shape[0])] y = np.concatenate([y_train, y_test]) ps = PredefinedSplit(test_fold) def run_random_search(model, params, x_train, y_train): #grid = GridSearchCV(model, params, cv = ps, n_jobs = -1, scoring = score, verbose = 0, refit = False) grid =RandomizedSearchCV(model, param_grid, cv=ps,scoring = 'f1_macro') grid.fit(x_train, y_train) return (grid.best_params_, round(grid.best_score_,8),grid.best_estimator_) ###Output _____no_output_____ ###Markdown RandomizedSearchCV DT ###Code print ('%-90s %-20s %-8s %-8s' % ("HYPERPARAMETERS","F1 Score", "Time", "No")) nfolds=10 param_grid = { 'criterion':['gini','entropy'], "max_depth":np.linspace(1, 32, 32, endpoint=True), "min_samples_split": sp_randint(2,10),#uniform(0.1,1 ), # "min_samples_leafs" : np.linspace(0.1, 0.5, 5, endpoint=True) "max_features" : sp_randint(1,X_train.shape[1])} second=time() f1=[] clf=DecisionTreeClassifier() for ii in range(25): clf.fit(X_train, y_train) predict =clf.predict(X_test) f1.append(sklearn.metrics.f1_score(y_test, predict,average= "macro") ) f1=sum(f1)/len(f1) #if f1>0.76: print('%-90s %-20s %-8s %-8s' % ("default",f1,round(time()-second,3),ii)) for i in range(100): second=time() a,b,clf=run_random_search(DecisionTreeClassifier(),param_grid,X,y) f1=[] for ii in range(25): clf.fit(X_train, y_train) predict =clf.predict(X_test) f1.append(sklearn.metrics.f1_score(y_test, predict,average= "macro") ) f1=sum(f1)/len(f1) #if f1>0.76: print('%-90s %-20s %-8s %-8s' % (a,f1,round(time()-second,3),i)) ###Output HYPERPARAMETERS F1 Score Time No default 0.8195978420312032 21.566 24 {'criterion': 'entropy', 'max_depth': 30.0, 'max_features': 5, 'min_samples_split': 7} 0.8323455036302395 14.317 0 {'criterion': 'gini', 'max_depth': 28.0, 'max_features': 9, 'min_samples_split': 4} 0.8280182896840249 16.834 1 {'criterion': 'gini', 'max_depth': 22.0, 'max_features': 22, 'min_samples_split': 7} 0.8234451217809853 21.915 2 {'criterion': 'entropy', 'max_depth': 27.0, 'max_features': 17, 'min_samples_split': 8} 0.8401239596610508 22.14 3 {'criterion': 'entropy', 'max_depth': 30.0, 'max_features': 17, 'min_samples_split': 3} 0.8389146492593934 21.593 4 {'criterion': 'entropy', 'max_depth': 26.0, 'max_features': 24, 'min_samples_split': 3} 0.8298105842136465 24.507 5 {'criterion': 'entropy', 'max_depth': 23.0, 'max_features': 29, 'min_samples_split': 5} 0.8266814904437577 27.172 6 {'criterion': 'entropy', 'max_depth': 28.0, 'max_features': 6, 'min_samples_split': 4} 0.8346399252015262 13.768 7 {'criterion': 'gini', 'max_depth': 24.0, 'max_features': 19, 'min_samples_split': 4} 0.8353015991591904 22.487 8 {'criterion': 'entropy', 'max_depth': 24.0, 'max_features': 5, 'min_samples_split': 2} 0.8356332249673563 13.116 9 {'criterion': 'entropy', 'max_depth': 22.0, 'max_features': 18, 'min_samples_split': 3} 0.8367648201378618 20.709 10 {'criterion': 'entropy', 'max_depth': 21.0, 'max_features': 21, 'min_samples_split': 8} 0.8288974575127522 22.085 11 {'criterion': 'entropy', 'max_depth': 24.0, 'max_features': 10, 'min_samples_split': 5} 0.835427634371817 16.389 12 {'criterion': 'entropy', 'max_depth': 26.0, 'max_features': 24, 'min_samples_split': 6} 0.8283315455395912 24.892 13 {'criterion': 'entropy', 'max_depth': 24.0, 'max_features': 9, 'min_samples_split': 7} 0.8326494183633478 16.294 14 {'criterion': 'entropy', 'max_depth': 17.0, 'max_features': 28, 'min_samples_split': 5} 0.8281997425077925 27.357 15 {'criterion': 'entropy', 'max_depth': 28.0, 'max_features': 4, 'min_samples_split': 3} 0.8361018737158247 14.633 16 {'criterion': 'gini', 'max_depth': 29.0, 'max_features': 5, 'min_samples_split': 4} 0.8296858067121526 14.078 17 {'criterion': 'gini', 'max_depth': 32.0, 'max_features': 13, 'min_samples_split': 3} 0.8317979710762653 19.518 18 {'criterion': 'gini', 'max_depth': 32.0, 'max_features': 11, 'min_samples_split': 6} 0.827274386170492 18.25 19 {'criterion': 'entropy', 'max_depth': 31.0, 'max_features': 21, 'min_samples_split': 3} 0.8303547862220337 22.429 20 {'criterion': 'entropy', 'max_depth': 32.0, 'max_features': 15, 'min_samples_split': 3} 0.8363697294745656 22.048 21 {'criterion': 'entropy', 'max_depth': 16.0, 'max_features': 16, 'min_samples_split': 7} 0.8227403753292174 22.993 22 {'criterion': 'gini', 'max_depth': 26.0, 'max_features': 13, 'min_samples_split': 6} 0.8351418271651093 17.502 23 {'criterion': 'gini', 'max_depth': 32.0, 'max_features': 10, 'min_samples_split': 2} 0.8292249495394688 15.769 24 {'criterion': 'entropy', 'max_depth': 24.0, 'max_features': 20, 'min_samples_split': 5} 0.8411410044532194 25.58 25 {'criterion': 'entropy', 'max_depth': 23.0, 'max_features': 19, 'min_samples_split': 3} 0.8338041860639126 21.014 26 {'criterion': 'gini', 'max_depth': 30.0, 'max_features': 29, 'min_samples_split': 2} 0.8221013484287332 28.225 27 {'criterion': 'gini', 'max_depth': 28.0, 'max_features': 21, 'min_samples_split': 7} 0.8286730688563122 21.69 28 {'criterion': 'entropy', 'max_depth': 25.0, 'max_features': 21, 'min_samples_split': 2} 0.8376517597728984 25.465 29 {'criterion': 'entropy', 'max_depth': 22.0, 'max_features': 19, 'min_samples_split': 5} 0.8267613648787466 21.379 30 {'criterion': 'entropy', 'max_depth': 28.0, 'max_features': 16, 'min_samples_split': 8} 0.8378037767957747 21.963 31 {'criterion': 'entropy', 'max_depth': 31.0, 'max_features': 12, 'min_samples_split': 4} 0.8341055809299021 22.311 32 {'criterion': 'entropy', 'max_depth': 25.0, 'max_features': 23, 'min_samples_split': 7} 0.8325632711164136 22.559 33 {'criterion': 'entropy', 'max_depth': 32.0, 'max_features': 17, 'min_samples_split': 9} 0.8359108124141309 19.842 34 {'criterion': 'entropy', 'max_depth': 31.0, 'max_features': 4, 'min_samples_split': 6} 0.833650714187229 15.562 35 {'criterion': 'entropy', 'max_depth': 21.0, 'max_features': 5, 'min_samples_split': 6} 0.8269793763911965 16.518 36 {'criterion': 'entropy', 'max_depth': 16.0, 'max_features': 22, 'min_samples_split': 4} 0.826203696033005 24.615 37 {'criterion': 'gini', 'max_depth': 30.0, 'max_features': 26, 'min_samples_split': 4} 0.8256713663177898 25.719 38 {'criterion': 'entropy', 'max_depth': 28.0, 'max_features': 15, 'min_samples_split': 2} 0.8373348279853662 20.841 39 {'criterion': 'gini', 'max_depth': 30.0, 'max_features': 17, 'min_samples_split': 3} 0.8352639855001773 20.756 40 {'criterion': 'entropy', 'max_depth': 16.0, 'max_features': 26, 'min_samples_split': 7} 0.8262450735090955 24.209 41 {'criterion': 'gini', 'max_depth': 31.0, 'max_features': 22, 'min_samples_split': 9} 0.8223447037776687 23.171 42 {'criterion': 'entropy', 'max_depth': 18.0, 'max_features': 26, 'min_samples_split': 4} 0.8330573117260226 26.9 43 {'criterion': 'gini', 'max_depth': 29.0, 'max_features': 5, 'min_samples_split': 9} 0.8267224483547463 14.151 44 {'criterion': 'gini', 'max_depth': 30.0, 'max_features': 20, 'min_samples_split': 5} 0.8310907364605014 28.152 45 {'criterion': 'gini', 'max_depth': 24.0, 'max_features': 22, 'min_samples_split': 5} 0.8262053912756336 22.675 46 {'criterion': 'entropy', 'max_depth': 31.0, 'max_features': 11, 'min_samples_split': 4} 0.8371924331341448 19.724 47 {'criterion': 'gini', 'max_depth': 26.0, 'max_features': 22, 'min_samples_split': 2} 0.8282200594539677 27.26 48 {'criterion': 'entropy', 'max_depth': 22.0, 'max_features': 10, 'min_samples_split': 6} 0.8311058103028012 18.823 49 {'criterion': 'entropy', 'max_depth': 26.0, 'max_features': 1, 'min_samples_split': 5} 0.8268240505977196 14.623 50 {'criterion': 'entropy', 'max_depth': 31.0, 'max_features': 4, 'min_samples_split': 5} 0.8311645150991157 15.399 51 {'criterion': 'entropy', 'max_depth': 22.0, 'max_features': 19, 'min_samples_split': 7} 0.8348119469335796 20.102 52 {'criterion': 'gini', 'max_depth': 20.0, 'max_features': 16, 'min_samples_split': 9} 0.8192823410531247 19.806 53 {'criterion': 'entropy', 'max_depth': 27.0, 'max_features': 14, 'min_samples_split': 8} 0.834122383357036 17.543 54 {'criterion': 'entropy', 'max_depth': 24.0, 'max_features': 1, 'min_samples_split': 5} 0.8217907553009752 13.364 55 {'criterion': 'gini', 'max_depth': 26.0, 'max_features': 16, 'min_samples_split': 6} 0.8298804542236533 18.353 56 {'criterion': 'gini', 'max_depth': 31.0, 'max_features': 10, 'min_samples_split': 6} 0.8288904647120535 14.997 57 {'criterion': 'entropy', 'max_depth': 27.0, 'max_features': 13, 'min_samples_split': 3} 0.8388303013983308 19.271 58 {'criterion': 'gini', 'max_depth': 28.0, 'max_features': 27, 'min_samples_split': 2} 0.8217666179953043 25.057 59 {'criterion': 'entropy', 'max_depth': 23.0, 'max_features': 19, 'min_samples_split': 8} 0.8362543423910034 21.237 60 {'criterion': 'gini', 'max_depth': 19.0, 'max_features': 10, 'min_samples_split': 5} 0.8110013361357734 13.993 61
Tutorials/Boston Housing - XGBoost (Batch Transform) - Low Level.ipynb
###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output INFO:sagemaker:Created S3 bucket: sagemaker-us-east-1-440180731255 ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacst stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output _____no_output_____ ###Markdown Execute the training jobNow that we've built the dict containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2018-10-11 05:00:50 Starting - Launching requested ML instances......... Preparing the instances for training...... 2018-10-11 05:02:59 Downloading - Downloading input data 2018-10-11 05:03:07 Training - Downloading the training image.. Arguments: train [2018-10-11:05:03:35:INFO] Running standalone xgboost training. [2018-10-11:05:03:35:INFO] File size need to be processed in the node: 0.03mb. Available memory size in the node: 8584.64mb [2018-10-11:05:03:35:INFO] Determined delimiter of CSV input is ',' [05:03:35] S3DistributionType set as FullyReplicated [05:03:35] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2018-10-11:05:03:35:INFO] Determined delimiter of CSV input is ',' [05:03:35] S3DistributionType set as FullyReplicated [05:03:35] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:19.6255#011validation-rmse:20.3723 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [1]#011train-rmse:15.9806#011validation-rmse:17 [2]#011train-rmse:13.0901#011validation-rmse:14.3797 [3]#011train-rmse:10.7437#011validation-rmse:12.427 [4]#011train-rmse:8.82626#011validation-rmse:10.6373 [5]#011train-rmse:7.26402#011validation-rmse:9.27117 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [6]#011train-rmse:6.10398#011validation-rmse:8.40006 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [7]#011train-rmse:5.16357#011validation-rmse:7.61637 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [8]#011train-rmse:4.43563#011validation-rmse:7.02392 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [9]#011train-rmse:3.85331#011validation-rmse:6.61666 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [10]#011train-rmse:3.39415#011validation-rmse:6.27109 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [11]#011train-rmse:3.04076#011validation-rmse:6.09621 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [12]#011train-rmse:2.75692#011validation-rmse:5.90831 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 2 pruned nodes, max_depth=5 [13]#011train-rmse:2.52399#011validation-rmse:5.74742 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [14]#011train-rmse:2.3549#011validation-rmse:5.67402 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.19168#011validation-rmse:5.62773 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [16]#011train-rmse:2.10692#011validation-rmse:5.57276 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [17]#011train-rmse:2.04891#011validation-rmse:5.49547 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [18]#011train-rmse:1.94392#011validation-rmse:5.43291 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 30 extra nodes, 2 pruned nodes, max_depth=5 [19]#011train-rmse:1.85915#011validation-rmse:5.38573 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:1.78#011validation-rmse:5.28107 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [21]#011train-rmse:1.73377#011validation-rmse:5.21082 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 4 pruned nodes, max_depth=5 [22]#011train-rmse:1.68226#011validation-rmse:5.18447 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=5 [23]#011train-rmse:1.65138#011validation-rmse:5.1788 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [24]#011train-rmse:1.60893#011validation-rmse:5.18785 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [25]#011train-rmse:1.57348#011validation-rmse:5.19231 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [26]#011train-rmse:1.54866#011validation-rmse:5.20387 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=5 [27]#011train-rmse:1.5359#011validation-rmse:5.2061 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [28]#011train-rmse:1.48284#011validation-rmse:5.2047 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [29]#011train-rmse:1.44001#011validation-rmse:5.22442 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [30]#011train-rmse:1.42455#011validation-rmse:5.19335 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 6 pruned nodes, max_depth=5 [31]#011train-rmse:1.39128#011validation-rmse:5.16391 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 4 pruned nodes, max_depth=5 [32]#011train-rmse:1.37067#011validation-rmse:5.15462 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [33]#011train-rmse:1.35998#011validation-rmse:5.15038 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [34]#011train-rmse:1.34122#011validation-rmse:5.15624 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 2 pruned nodes, max_depth=4 [35]#011train-rmse:1.32784#011validation-rmse:5.12332 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [36]#011train-rmse:1.30025#011validation-rmse:5.11416 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 4 pruned nodes, max_depth=3 [37]#011train-rmse:1.29075#011validation-rmse:5.10241 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [38]#011train-rmse:1.27334#011validation-rmse:5.11076 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 4 pruned nodes, max_depth=5 [39]#011train-rmse:1.26374#011validation-rmse:5.08404 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [40]#011train-rmse:1.23758#011validation-rmse:5.07725 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [41]#011train-rmse:1.21792#011validation-rmse:5.05967 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 4 pruned nodes, max_depth=3 [42]#011train-rmse:1.20485#011validation-rmse:5.08134 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 4 pruned nodes, max_depth=5 [43]#011train-rmse:1.17556#011validation-rmse:5.08723 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [44]#011train-rmse:1.15115#011validation-rmse:5.10521 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 6 pruned nodes, max_depth=3 [45]#011train-rmse:1.13803#011validation-rmse:5.08627 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [46]#011train-rmse:1.12508#011validation-rmse:5.05624 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 28 pruned nodes, max_depth=3 [47]#011train-rmse:1.11249#011validation-rmse:5.06889 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [48]#011train-rmse:1.0964#011validation-rmse:5.08904 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 10 pruned nodes, max_depth=2 [49]#011train-rmse:1.09154#011validation-rmse:5.09736 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 2 pruned nodes, max_depth=4 [50]#011train-rmse:1.08763#011validation-rmse:5.10814 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [51]#011train-rmse:1.07454#011validation-rmse:5.10932 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 8 pruned nodes, max_depth=5 [52]#011train-rmse:1.05423#011validation-rmse:5.09225 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 4 pruned nodes, max_depth=5 [53]#011train-rmse:1.04396#011validation-rmse:5.0971 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 14 pruned nodes, max_depth=1 [54]#011train-rmse:1.04523#011validation-rmse:5.11451 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 12 pruned nodes, max_depth=0 [55]#011train-rmse:1.04524#011validation-rmse:5.11538 [05:03:35] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 14 pruned nodes, max_depth=4 [56]#011train-rmse:1.03594#011validation-rmse:5.11774 Stopping. Best iteration: [46]#011train-rmse:1.12508#011validation-rmse:5.05624  ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to as SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ......................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 2.3 KiB/2.3 KiB (15.9 KiB/s) with 1 file(s) remaining download: s3://sagemaker-us-east-1-440180731255/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. ###Code # Make sure that we use SageMaker 1.x !pip install sagemaker==1.72.0 ###Output Collecting sagemaker==1.72.0 Downloading sagemaker-1.72.0.tar.gz (297 kB)  |████████████████████████████████| 297 kB 19.7 MB/s eta 0:00:01 [?25hRequirement already satisfied: boto3>=1.14.12 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.17.98) Requirement already satisfied: numpy>=1.9.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.19.5) Requirement already satisfied: protobuf>=3.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (3.15.2) Requirement already satisfied: scipy>=0.19.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.5.3) Requirement already satisfied: protobuf3-to-dict>=0.1.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (0.1.5) Collecting smdebug-rulesconfig==0.1.4 Downloading smdebug_rulesconfig-0.1.4-py2.py3-none-any.whl (10 kB) Requirement already satisfied: importlib-metadata>=1.4.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (3.7.0) Requirement already satisfied: packaging>=20.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (20.9) Requirement already satisfied: botocore<1.21.0,>=1.20.98 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (1.20.98) Requirement already satisfied: s3transfer<0.5.0,>=0.4.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.4.2) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.10.0) Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.21.0,>=1.20.98->boto3>=1.14.12->sagemaker==1.72.0) (2.8.1) Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.21.0,>=1.20.98->boto3>=1.14.12->sagemaker==1.72.0) (1.26.5) Requirement already satisfied: typing-extensions>=3.6.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from importlib-metadata>=1.4.0->sagemaker==1.72.0) (3.7.4.3) Requirement already satisfied: zipp>=0.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from importlib-metadata>=1.4.0->sagemaker==1.72.0) (3.4.0) Requirement already satisfied: pyparsing>=2.0.2 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from packaging>=20.0->sagemaker==1.72.0) (2.4.7) Requirement already satisfied: six>=1.9 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from protobuf>=3.1->sagemaker==1.72.0) (1.15.0) Building wheels for collected packages: sagemaker Building wheel for sagemaker (setup.py) ... [?25ldone [?25h Created wheel for sagemaker: filename=sagemaker-1.72.0-py2.py3-none-any.whl size=386358 sha256=66018ddc11f6b2e53db14178fab194037574d96b8b1754cc4dee3c819e1500a1 Stored in directory: /home/ec2-user/.cache/pip/wheels/c3/58/70/85faf4437568bfaa4c419937569ba1fe54d44c5db42406bbd7 Successfully built sagemaker Installing collected packages: smdebug-rulesconfig, sagemaker Attempting uninstall: smdebug-rulesconfig Found existing installation: smdebug-rulesconfig 1.0.1 Uninstalling smdebug-rulesconfig-1.0.1: Successfully uninstalled smdebug-rulesconfig-1.0.1 Attempting uninstall: sagemaker Found existing installation: sagemaker 2.45.0 Uninstalling sagemaker-2.45.0: Successfully uninstalled sagemaker-2.45.0 Successfully installed sagemaker-1.72.0 smdebug-rulesconfig-0.1.4 WARNING: You are using pip version 21.1.2; however, version 21.1.3 is available. You should consider upgrading via the '/home/ec2-user/anaconda3/envs/pytorch_p36/bin/python -m pip install --upgrade pip' command. ###Markdown Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output 'get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2. There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='1.0-1'. For example: get_image_uri(region, 'xgboost', '1.0-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2021-06-30 11:37:23 Starting - Starting the training job... 2021-06-30 11:37:27 Starting - Launching requested ML instances...... 2021-06-30 11:38:55 Starting - Preparing the instances for training......... 2021-06-30 11:40:07 Downloading - Downloading input data... 2021-06-30 11:40:53 Training - Training image download completed. Training in progress..Arguments: train [2021-06-30:11:40:53:INFO] Running standalone xgboost training. [2021-06-30:11:40:53:INFO] File size need to be processed in the node: 0.03mb. Available memory size in the node: 8414.87mb [2021-06-30:11:40:53:INFO] Determined delimiter of CSV input is ',' [11:40:53] S3DistributionType set as FullyReplicated [11:40:53] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2021-06-30:11:40:53:INFO] Determined delimiter of CSV input is ',' [11:40:53] S3DistributionType set as FullyReplicated [11:40:53] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:20.0455#011validation-rmse:19.1471 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [1]#011train-rmse:16.4083#011validation-rmse:15.5607 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [2]#011train-rmse:13.4625#011validation-rmse:12.7217 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [3]#011train-rmse:11.1752#011validation-rmse:10.5243 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [4]#011train-rmse:9.21224#011validation-rmse:8.81655 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.7486#011validation-rmse:7.40066 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [6]#011train-rmse:6.60457#011validation-rmse:6.28638 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 2 pruned nodes, max_depth=5 [7]#011train-rmse:5.57188#011validation-rmse:5.40527 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [8]#011train-rmse:4.79998#011validation-rmse:4.88118 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 30 extra nodes, 4 pruned nodes, max_depth=5 [9]#011train-rmse:4.16098#011validation-rmse:4.45257 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [10]#011train-rmse:3.65806#011validation-rmse:4.15943 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [11]#011train-rmse:3.23908#011validation-rmse:3.93055 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 36 extra nodes, 4 pruned nodes, max_depth=5 [12]#011train-rmse:2.89453#011validation-rmse:3.78524 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [13]#011train-rmse:2.65122#011validation-rmse:3.6097 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [14]#011train-rmse:2.44983#011validation-rmse:3.52992 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.29414#011validation-rmse:3.42587 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 6 pruned nodes, max_depth=5 [16]#011train-rmse:2.14874#011validation-rmse:3.34927 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [17]#011train-rmse:2.02736#011validation-rmse:3.28692 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [18]#011train-rmse:1.93653#011validation-rmse:3.25042 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [19]#011train-rmse:1.87055#011validation-rmse:3.24323 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [20]#011train-rmse:1.81157#011validation-rmse:3.22785 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [21]#011train-rmse:1.75346#011validation-rmse:3.21783 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [22]#011train-rmse:1.67489#011validation-rmse:3.18978 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [23]#011train-rmse:1.6246#011validation-rmse:3.19896 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [24]#011train-rmse:1.59585#011validation-rmse:3.19926 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [25]#011train-rmse:1.56014#011validation-rmse:3.17775 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [26]#011train-rmse:1.52449#011validation-rmse:3.18747 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 4 pruned nodes, max_depth=5 [27]#011train-rmse:1.47026#011validation-rmse:3.1788 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 6 pruned nodes, max_depth=5 [28]#011train-rmse:1.39102#011validation-rmse:3.18309 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [29]#011train-rmse:1.36814#011validation-rmse:3.16683 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [30]#011train-rmse:1.34703#011validation-rmse:3.17415 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [31]#011train-rmse:1.29517#011validation-rmse:3.14671 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 4 pruned nodes, max_depth=5 [32]#011train-rmse:1.2646#011validation-rmse:3.16526 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [33]#011train-rmse:1.21977#011validation-rmse:3.16876 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 10 pruned nodes, max_depth=5 [34]#011train-rmse:1.18149#011validation-rmse:3.18001 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 12 pruned nodes, max_depth=4 [35]#011train-rmse:1.1557#011validation-rmse:3.18672 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 18 pruned nodes, max_depth=5 [36]#011train-rmse:1.13532#011validation-rmse:3.19159 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 4 pruned nodes, max_depth=5 [37]#011train-rmse:1.08596#011validation-rmse:3.1949 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 14 pruned nodes, max_depth=4 [38]#011train-rmse:1.06459#011validation-rmse:3.19661 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 10 pruned nodes, max_depth=5 [39]#011train-rmse:1.03739#011validation-rmse:3.20179 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [40]#011train-rmse:1.01287#011validation-rmse:3.19291 [11:40:53] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 10 pruned nodes, max_depth=5 [41]#011train-rmse:0.994812#011validation-rmse:3.20625 Stopping. Best iteration: [31]#011train-rmse:1.29517#011validation-rmse:3.14671  ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output .........................................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 3.0 KiB/3.0 KiB (31.6 KiB/s) with 1 file(s) remaining download: s3://sagemaker-us-east-1-608850729155/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output WARNING:root:There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='0.90-1'. For example: get_image_uri(region, 'xgboost', '0.90-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-07-02 23:52:42 Starting - Launching requested ML instances... 2020-07-02 23:53:50 Starting - Preparing the instances for training...... 2020-07-02 23:54:39 Downloading - Downloading input data... 2020-07-02 23:55:21 Training - Training image download completed. Training in progress. 2020-07-02 23:55:21 Uploading - Uploading generated training model.Arguments: train [2020-07-02:23:55:16:INFO] Running standalone xgboost training. [2020-07-02:23:55:16:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8480.74mb [2020-07-02:23:55:16:INFO] Determined delimiter of CSV input is ',' [23:55:16] S3DistributionType set as FullyReplicated [23:55:16] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2020-07-02:23:55:16:INFO] Determined delimiter of CSV input is ',' [23:55:16] S3DistributionType set as FullyReplicated [23:55:16] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:19.5349#011validation-rmse:20.0095 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [1]#011train-rmse:16.0295#011validation-rmse:16.4723 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=4 [2]#011train-rmse:13.1826#011validation-rmse:13.5878 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=4 [3]#011train-rmse:10.9007#011validation-rmse:11.3021 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=4 [4]#011train-rmse:9.10543#011validation-rmse:9.54216 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.67648#011validation-rmse:8.00256 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 0 pruned nodes, max_depth=5 [6]#011train-rmse:6.49668#011validation-rmse:6.76869 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [7]#011train-rmse:5.54486#011validation-rmse:5.70259 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 0 pruned nodes, max_depth=5 [8]#011train-rmse:4.82021#011validation-rmse:5.03261 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [9]#011train-rmse:4.24024#011validation-rmse:4.50189 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [10]#011train-rmse:3.73283#011validation-rmse:4.00402 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [11]#011train-rmse:3.40501#011validation-rmse:3.69053 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [12]#011train-rmse:3.11796#011validation-rmse:3.43768 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [13]#011train-rmse:2.9235#011validation-rmse:3.2496 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [14]#011train-rmse:2.6865#011validation-rmse:3.11507 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.54203#011validation-rmse:3.02304 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [16]#011train-rmse:2.42834#011validation-rmse:2.94678 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [17]#011train-rmse:2.32616#011validation-rmse:2.86833 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [18]#011train-rmse:2.2495#011validation-rmse:2.88175 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [19]#011train-rmse:2.16987#011validation-rmse:2.82182 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [20]#011train-rmse:2.0791#011validation-rmse:2.75277 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [21]#011train-rmse:1.97759#011validation-rmse:2.76833 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [22]#011train-rmse:1.92475#011validation-rmse:2.76183 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [23]#011train-rmse:1.83957#011validation-rmse:2.77321 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [24]#011train-rmse:1.81939#011validation-rmse:2.7597 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=5 [25]#011train-rmse:1.80255#011validation-rmse:2.73751 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [26]#011train-rmse:1.77656#011validation-rmse:2.73705 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [27]#011train-rmse:1.73855#011validation-rmse:2.73453 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [28]#011train-rmse:1.6715#011validation-rmse:2.72806 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [29]#011train-rmse:1.62278#011validation-rmse:2.7062 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [30]#011train-rmse:1.58266#011validation-rmse:2.69513 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 8 pruned nodes, max_depth=5 [31]#011train-rmse:1.53218#011validation-rmse:2.70662 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 6 pruned nodes, max_depth=5 [32]#011train-rmse:1.45112#011validation-rmse:2.71283 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 4 pruned nodes, max_depth=5 [33]#011train-rmse:1.43352#011validation-rmse:2.70041 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [34]#011train-rmse:1.41027#011validation-rmse:2.70625 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 2 pruned nodes, max_depth=5 [35]#011train-rmse:1.3631#011validation-rmse:2.69217 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 6 pruned nodes, max_depth=5 [36]#011train-rmse:1.33892#011validation-rmse:2.67485 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 6 pruned nodes, max_depth=2 [37]#011train-rmse:1.33429#011validation-rmse:2.67064 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [38]#011train-rmse:1.30198#011validation-rmse:2.68521 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=4 [39]#011train-rmse:1.26927#011validation-rmse:2.66847 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=5 [40]#011train-rmse:1.25382#011validation-rmse:2.6752 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 10 pruned nodes, max_depth=5 [41]#011train-rmse:1.20534#011validation-rmse:2.68296 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 18 pruned nodes, max_depth=5 [42]#011train-rmse:1.17756#011validation-rmse:2.68655 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 12 pruned nodes, max_depth=4 [43]#011train-rmse:1.15384#011validation-rmse:2.70143 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 14 pruned nodes, max_depth=4 [44]#011train-rmse:1.14285#011validation-rmse:2.70507 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 10 pruned nodes, max_depth=5 [45]#011train-rmse:1.12554#011validation-rmse:2.71033 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 20 pruned nodes, max_depth=3 [46]#011train-rmse:1.11146#011validation-rmse:2.69953 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 12 pruned nodes, max_depth=0 [47]#011train-rmse:1.11138#011validation-rmse:2.69947 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 8 pruned nodes, max_depth=5 [48]#011train-rmse:1.09107#011validation-rmse:2.69417 [23:55:16] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 14 pruned nodes, max_depth=2 [49]#011train-rmse:1.08086#011validation-rmse:2.69133 Stopping. Best iteration: [39]#011train-rmse:1.26927#011validation-rmse:2.66847  ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ............................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output _____no_output_____ ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown 预测波士顿房价 在 SageMaker 中使用 XGBoost(批转换)_机器学习工程师纳米学位课程 | 开发_---为了介绍 SageMaker 的低阶 Python API,我们将查看一个相对简单的问题。我们将使用[波士顿房价数据集](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html)预测波士顿地区的房价中位数。此 notebook 中使用的 API 的参考文档位于 [SageMaker 开发人员指南](https://docs.aws.amazon.com/sagemaker/latest/dg/)页面 一般步骤通常,在 notebook 实例中使用 SageMaker 时,你需要完成以下步骤。当然,并非每个项目都要完成每一步。此外,有很多步骤有很大的变化余地,你将在这些课程中发现这一点。1. 下载或检索数据。2. 处理/准备数据。3. 将处理的数据上传到 S3。4. 训练所选的模型。5. 测试训练的模型(通常使用批转换作业)。6. 部署训练的模型。7. 使用部署的模型。在此 notebook 中,我们将仅介绍第 1-5 步,因为只是大致了解如何使用 SageMaker。在后面的 notebook 中,我们将详细介绍如何部署训练的模型。 第 0 步:设置 notebook先进行必要的设置以运行 notebook。首先,加载所需的所有 Python 模块。 ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown 除了上面的模块之外,我们还需要导入将使用的各种 SageMaker 模块。 ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown 第 1 步:下载数据幸运的是,我们可以使用 sklearn 检索数据集,所以这一步相对比较简单。 ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown 第 2 步:准备和拆分数据因为使用的是整洁的表格数据,所以不需要进行任何处理。但是,我们需要将数据集中的各行拆分成训练集、测试集和验证集。 ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown 第 3 步:将数据文件上传到 S3使用 SageMaker 创建训练作业后,进行训练操作的容器会执行。此容器可以访问存储在 S3 上的数据。所以我们需要将用来训练的数据上传到 S3。此外,在执行批转换作业时,SageMaker 要求输入数据存储在 S3 上。我们可以使用 SageMaker API 完成这一步,它会在后台自动处理完一些步骤。 将数据保存到本地首先,我们需要创建测试、训练和验证 csv 文件,并将这些文件上传到 S3。 ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown 上传到 S3因为目前正在 SageMaker 会话中运行,所以可以使用代表此会话的对象将数据上传到默认的 S3 存储桶中。注意,建议提供自定义 prefix(即 S3 文件夹),以防意外地破坏了其他 notebook 或项目上传的数据。 ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown 第 4 步:训练和构建 XGBoost 模型将训练和验证数据上传到 S3 后,我们可以为 XGBoost 模型创建训练作业并构建模型本身了。 设置训练作业首先,我们将为模型设置和执行训练作业。我们需要指定一些信息,供 SageMaker 设置和正确地执行计算过程。要查看构建训练作业的其他文档,请参阅 [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) 参考文档。 ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output _____no_output_____ ###Markdown 执行训练作业构建了包含训练作业参数的字典对象后,我们可以要求 SageMaker 执行训练作业了。 ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown SageMaker 已经创建了训练作业,并且训练作业现在正在运行中。因为我们需要获得训练作业的输出,所以需要等待运行完毕。我们可以要求 SageMaker 输出训练作业生成的日志,并继续要求输出日志,直到训练作业运行完毕。 ###Code session.logs_for_job(training_job_name, wait=True) ###Output _____no_output_____ ###Markdown 构建模型训练作业运行完毕后,我们可以使用一些模型工件构建模型。注意,我们说的模型是 SageMaker 所定义的模型,即关于特定算法及其训练作业生成的工件的信息集合。 ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown 第 5 步:测试模型将模型拟合训练数据并使用验证数据避免过拟合后,我们可以测试模型了。我们将使用 SageMaker 的批转换功能。也就是说,我们需要设置和执行批转换作业,与之前构建训练作业的方式相似。 设置批转换作业就像训练模型一样,我们首先需要提供一些信息,并且所采用的数据结构描述了我们要执行的批转换作业。我们将仅使用这里可用的某些选项,如果你想了解其他选项,请参阅[创建批转换作业](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html) SageMaker 文档。 ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown 执行批转换作业创建了请求数据结构后,下面要求 SageMaker 设置和运行批转换作业。与之前的步骤一样,SageMaker 会在后台执行这些任务,如果你想等待转换作业运行完毕(并查看作业的进度),可以调用 wait() 方法来等待转换作业运行完毕。 ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output _____no_output_____ ###Markdown 分析结果现在转换作业已经运行完毕,结果按照我们的要求存储到了 S3 上。因为我们想要在 notebook 中分析输出结果,所以将使用一个 notebook 功能将输出文件从 S3 复制到本地。 ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output _____no_output_____ ###Markdown 为了查看模型的运行效果,我们可以绘制一个简单的预测值与真实值散点图。如果模型的预测完全准确的话,那么散点图将是一条直线 $x=y$。可以看出,我们的模型表现不错,但是还有改进的余地。 ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown 可选步骤:清理数据SageMaker 上的默认 notebook 实例没有太多的可用磁盘空间。当你继续完成和执行 notebook 时,最终会耗尽磁盘空间,导致难以诊断的错误。完全使用完 notebook 后,建议删除创建的文件。你可以从终端或 notebook hub 删除文件。以下单元格中包含了从 notebook 内清理文件的命令。 ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output WARNING:root:There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='0.90-1'. For example: get_image_uri(region, 'xgboost', '0.90-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-04-14 14:46:40 Starting - Launching requested ML instances...... 2020-04-14 14:47:35 Starting - Preparing the instances for training...... 2020-04-14 14:48:24 Downloading - Downloading input data... 2020-04-14 14:48:55 Training - Downloading the training image.Arguments: train [2020-04-14:14:49:17:INFO] Running standalone xgboost training. [2020-04-14:14:49:17:INFO] File size need to be processed in the node: 0.03mb. Available memory size in the node: 8494.77mb [2020-04-14:14:49:17:INFO] Determined delimiter of CSV input is ',' [14:49:17] S3DistributionType set as FullyReplicated [14:49:17] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2020-04-14:14:49:17:INFO] Determined delimiter of CSV input is ',' [14:49:17] S3DistributionType set as FullyReplicated [14:49:17] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:19.7609#011validation-rmse:19.1682 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=4 [1]#011train-rmse:16.1967#011validation-rmse:15.6966 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [2]#011train-rmse:13.3648#011validation-rmse:12.9694 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=4 [3]#011train-rmse:11.0289#011validation-rmse:10.8856 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [4]#011train-rmse:9.1454#011validation-rmse:9.19592 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.63525#011validation-rmse:7.96811 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 4 pruned nodes, max_depth=5 [6]#011train-rmse:6.39922#011validation-rmse:6.85879 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [7]#011train-rmse:5.43053#011validation-rmse:5.98722 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 2 pruned nodes, max_depth=5 [8]#011train-rmse:4.69399#011validation-rmse:5.45012 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [9]#011train-rmse:4.07708#011validation-rmse:4.97611 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [10]#011train-rmse:3.64117#011validation-rmse:4.61562 [11]#011train-rmse:3.28091#011validation-rmse:4.33273 [12]#011train-rmse:2.98585#011validation-rmse:4.1501 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=5 [13]#011train-rmse:2.72889#011validation-rmse:3.97094 [14]#011train-rmse:2.54252#011validation-rmse:3.88057 [15]#011train-rmse:2.42174#011validation-rmse:3.82436 [16]#011train-rmse:2.31638#011validation-rmse:3.76621 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [17]#011train-rmse:2.20377#011validation-rmse:3.75277 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [18]#011train-rmse:2.15031#011validation-rmse:3.75847 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [19]#011train-rmse:2.0685#011validation-rmse:3.72955 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [20]#011train-rmse:2.00768#011validation-rmse:3.68507 [21]#011train-rmse:1.89877#011validation-rmse:3.67804 [22]#011train-rmse:1.86018#011validation-rmse:3.64269 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 6 pruned nodes, max_depth=5 [23]#011train-rmse:1.81219#011validation-rmse:3.66234 [24]#011train-rmse:1.7391#011validation-rmse:3.60227 [25]#011train-rmse:1.66666#011validation-rmse:3.59597 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [26]#011train-rmse:1.61992#011validation-rmse:3.57984 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 2 pruned nodes, max_depth=5 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 14 pruned nodes, max_depth=5 [27]#011train-rmse:1.57184#011validation-rmse:3.55381 [28]#011train-rmse:1.51017#011validation-rmse:3.59905 [29]#011train-rmse:1.48296#011validation-rmse:3.5877 [30]#011train-rmse:1.46414#011validation-rmse:3.57715 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [31]#011train-rmse:1.44535#011validation-rmse:3.58324 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [32]#011train-rmse:1.40263#011validation-rmse:3.57565 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [33]#011train-rmse:1.37779#011validation-rmse:3.58435 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [34]#011train-rmse:1.35549#011validation-rmse:3.56363 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 14 pruned nodes, max_depth=5 [35]#011train-rmse:1.33581#011validation-rmse:3.55864 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 8 pruned nodes, max_depth=5 [36]#011train-rmse:1.28596#011validation-rmse:3.53334 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 14 pruned nodes, max_depth=1 [37]#011train-rmse:1.28605#011validation-rmse:3.52887 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 10 pruned nodes, max_depth=4 [38]#011train-rmse:1.26977#011validation-rmse:3.53011 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [39]#011train-rmse:1.25247#011validation-rmse:3.53172 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 12 pruned nodes, max_depth=1 [40]#011train-rmse:1.25293#011validation-rmse:3.53788 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 22 pruned nodes, max_depth=4 [41]#011train-rmse:1.23408#011validation-rmse:3.52964 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 14 pruned nodes, max_depth=0 [42]#011train-rmse:1.23402#011validation-rmse:3.52977 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [43]#011train-rmse:1.21243#011validation-rmse:3.51098 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 14 pruned nodes, max_depth=4 [44]#011train-rmse:1.19662#011validation-rmse:3.5051 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [45]#011train-rmse:1.16845#011validation-rmse:3.51165 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 8 pruned nodes, max_depth=1 [46]#011train-rmse:1.16875#011validation-rmse:3.51747 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 12 pruned nodes, max_depth=5 [47]#011train-rmse:1.14177#011validation-rmse:3.53711 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 8 pruned nodes, max_depth=5 [48]#011train-rmse:1.10918#011validation-rmse:3.55157 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 8 pruned nodes, max_depth=5 [49]#011train-rmse:1.09321#011validation-rmse:3.53864 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 10 pruned nodes, max_depth=1 [50]#011train-rmse:1.09545#011validation-rmse:3.54497 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 16 pruned nodes, max_depth=0 [51]#011train-rmse:1.09554#011validation-rmse:3.54481 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 24 pruned nodes, max_depth=2 [52]#011train-rmse:1.08445#011validation-rmse:3.55104 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 18 pruned nodes, max_depth=2 [53]#011train-rmse:1.07551#011validation-rmse:3.54359 [14:49:17] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [54]#011train-rmse:1.05946#011validation-rmse:3.53222 Stopping. Best iteration: [44]#011train-rmse:1.19662#011validation-rmse:3.5051  ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ........................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 2.3 KiB/2.3 KiB (37.1 KiB/s) with 1 file(s) remaining download: s3://sagemaker-us-east-2-656708836476/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output WARNING:root:There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='0.90-1'. For example: get_image_uri(region, 'xgboost', '0.90-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-02-01 03:35:14 Starting - Launching requested ML instances...... 2020-02-01 03:36:12 Starting - Preparing the instances for training...... 2020-02-01 03:37:13 Downloading - Downloading input data... 2020-02-01 03:37:46 Training - Downloading the training image..Arguments: train [2020-02-01:03:38:07:INFO] Running standalone xgboost training. [2020-02-01:03:38:07:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8504.19mb [2020-02-01:03:38:07:INFO] Determined delimiter of CSV input is ',' [03:38:07] S3DistributionType set as FullyReplicated [03:38:07] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2020-02-01:03:38:07:INFO] Determined delimiter of CSV input is ',' [03:38:07] S3DistributionType set as FullyReplicated [03:38:07] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:19.1172#011validation-rmse:18.6556 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [1]#011train-rmse:15.6297#011validation-rmse:15.272 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [2]#011train-rmse:12.7775#011validation-rmse:12.51 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=4 [3]#011train-rmse:10.5138#011validation-rmse:10.265 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=4 [4]#011train-rmse:8.69958#011validation-rmse:8.48376 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.32432#011validation-rmse:7.09967 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [6]#011train-rmse:6.19629#011validation-rmse:6.12459 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 30 extra nodes, 0 pruned nodes, max_depth=5 [7]#011train-rmse:5.29551#011validation-rmse:5.24242 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 0 pruned nodes, max_depth=5 [8]#011train-rmse:4.57674#011validation-rmse:4.61836 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [9]#011train-rmse:3.99336#011validation-rmse:4.22168 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [10]#011train-rmse:3.52629#011validation-rmse:3.9051 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [11]#011train-rmse:3.16166#011validation-rmse:3.65637 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [12]#011train-rmse:2.89004#011validation-rmse:3.48761 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 2 pruned nodes, max_depth=5 [13]#011train-rmse:2.63432#011validation-rmse:3.41627 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [14]#011train-rmse:2.48286#011validation-rmse:3.36191 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.30543#011validation-rmse:3.2967 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 2 pruned nodes, max_depth=5 [16]#011train-rmse:2.22745#011validation-rmse:3.27292 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [17]#011train-rmse:2.13328#011validation-rmse:3.1846 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [18]#011train-rmse:2.04643#011validation-rmse:3.19862 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [19]#011train-rmse:1.9664#011validation-rmse:3.2279 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:1.90068#011validation-rmse:3.23915 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [21]#011train-rmse:1.86218#011validation-rmse:3.22959 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [22]#011train-rmse:1.82202#011validation-rmse:3.24607 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 6 pruned nodes, max_depth=5 [23]#011train-rmse:1.77011#011validation-rmse:3.22517 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 4 pruned nodes, max_depth=5 [24]#011train-rmse:1.6661#011validation-rmse:3.22185 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [25]#011train-rmse:1.62356#011validation-rmse:3.22954 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [26]#011train-rmse:1.59638#011validation-rmse:3.2245 [03:38:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [27]#011train-rmse:1.54878#011validation-rmse:3.21692 Stopping. Best iteration: [17]#011train-rmse:2.13328#011validation-rmse:3.1846  2020-02-01 03:38:19 Uploading - Uploading generated training model 2020-02-01 03:38:19 Completed - Training job completed Training seconds: 66 Billable seconds: 66 ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output .............................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 2.3 KiB/2.3 KiB (32.9 KiB/s) with 1 file(s) remaining download: s3://sagemaker-ap-northeast-2-148514131281/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output 'get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2. There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='1.0-1'. For example: get_image_uri(region, 'xgboost', '1.0-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-08-29 08:34:50 Starting - Starting the training job... 2020-08-29 08:34:52 Starting - Launching requested ML instances...... 2020-08-29 08:35:59 Starting - Preparing the instances for training........................ 2020-08-29 08:40:09 Starting - Insufficient capacity error from EC2 while launching instances, retrying!......... 2020-08-29 08:41:41 Starting - Preparing the instances for training...... 2020-08-29 08:42:39 Downloading - Downloading input data... 2020-08-29 08:43:07 Training - Downloading the training image..Arguments: train [2020-08-29:08:43:28:INFO] Running standalone xgboost training. [2020-08-29:08:43:28:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8486.28mb [2020-08-29:08:43:28:INFO] Determined delimiter of CSV input is ',' [08:43:28] S3DistributionType set as FullyReplicated [08:43:28] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2020-08-29:08:43:28:INFO] Determined delimiter of CSV input is ',' [08:43:28] S3DistributionType set as FullyReplicated [08:43:28] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:18.7029#011validation-rmse:19.6951 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [1]#011train-rmse:15.275#011validation-rmse:16.4419 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=3 [2]#011train-rmse:12.5144#011validation-rmse:13.7609 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=4 [3]#011train-rmse:10.3218#011validation-rmse:11.6737 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [4]#011train-rmse:8.49589#011validation-rmse:9.90509 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.10867#011validation-rmse:8.61485 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [6]#011train-rmse:6.01999#011validation-rmse:7.61111 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [7]#011train-rmse:5.16222#011validation-rmse:6.82755 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 2 pruned nodes, max_depth=5 [8]#011train-rmse:4.50016#011validation-rmse:6.28904 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 2 pruned nodes, max_depth=5 [9]#011train-rmse:3.94681#011validation-rmse:5.83838 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [10]#011train-rmse:3.49877#011validation-rmse:5.46054 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [11]#011train-rmse:3.1799#011validation-rmse:5.1954 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [12]#011train-rmse:2.91891#011validation-rmse:4.9771 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [13]#011train-rmse:2.68051#011validation-rmse:4.80496 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [14]#011train-rmse:2.5175#011validation-rmse:4.6281 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.38476#011validation-rmse:4.58223 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 2 pruned nodes, max_depth=5 [16]#011train-rmse:2.25601#011validation-rmse:4.48618 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [17]#011train-rmse:2.17092#011validation-rmse:4.43051 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [18]#011train-rmse:2.0746#011validation-rmse:4.42643 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [19]#011train-rmse:2.01785#011validation-rmse:4.37482 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [20]#011train-rmse:1.95759#011validation-rmse:4.31231 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [21]#011train-rmse:1.91203#011validation-rmse:4.24657 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [22]#011train-rmse:1.86587#011validation-rmse:4.18259 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [23]#011train-rmse:1.82478#011validation-rmse:4.16257 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [24]#011train-rmse:1.7847#011validation-rmse:4.10561 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [25]#011train-rmse:1.76423#011validation-rmse:4.13305 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [26]#011train-rmse:1.7219#011validation-rmse:4.07273 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [27]#011train-rmse:1.70112#011validation-rmse:4.03749 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [28]#011train-rmse:1.68454#011validation-rmse:4.06049 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [29]#011train-rmse:1.65073#011validation-rmse:4.02017 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [30]#011train-rmse:1.62359#011validation-rmse:4.02385 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [31]#011train-rmse:1.58176#011validation-rmse:4.04744 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [32]#011train-rmse:1.57692#011validation-rmse:4.05676 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [33]#011train-rmse:1.55374#011validation-rmse:4.08729 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 2 pruned nodes, max_depth=4 [34]#011train-rmse:1.54066#011validation-rmse:4.0484 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [35]#011train-rmse:1.52079#011validation-rmse:4.01949 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [36]#011train-rmse:1.47634#011validation-rmse:4.00968 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 8 pruned nodes, max_depth=5 [37]#011train-rmse:1.45368#011validation-rmse:3.9975 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=4 [38]#011train-rmse:1.42378#011validation-rmse:3.99711 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [39]#011train-rmse:1.39891#011validation-rmse:4.00692 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [40]#011train-rmse:1.38219#011validation-rmse:4.01636 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 8 pruned nodes, max_depth=5 [41]#011train-rmse:1.37383#011validation-rmse:4.02698 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 8 pruned nodes, max_depth=2 [42]#011train-rmse:1.36283#011validation-rmse:3.99468 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 14 pruned nodes, max_depth=1 [43]#011train-rmse:1.35721#011validation-rmse:3.97173 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [44]#011train-rmse:1.34357#011validation-rmse:3.9473 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [45]#011train-rmse:1.33816#011validation-rmse:3.97051 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 14 pruned nodes, max_depth=5 [46]#011train-rmse:1.32664#011validation-rmse:3.94102 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [47]#011train-rmse:1.30885#011validation-rmse:3.95296 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 8 pruned nodes, max_depth=5 [48]#011train-rmse:1.29652#011validation-rmse:3.92841 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 4 pruned nodes, max_depth=4 [49]#011train-rmse:1.27754#011validation-rmse:3.90936 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 6 pruned nodes, max_depth=5 [50]#011train-rmse:1.26342#011validation-rmse:3.91605 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [51]#011train-rmse:1.25783#011validation-rmse:3.91868 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 18 pruned nodes, max_depth=5 [52]#011train-rmse:1.2374#011validation-rmse:3.93203 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 12 pruned nodes, max_depth=1 [53]#011train-rmse:1.23427#011validation-rmse:3.91722 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 12 pruned nodes, max_depth=2 [54]#011train-rmse:1.23743#011validation-rmse:3.9357 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 12 pruned nodes, max_depth=5 [55]#011train-rmse:1.21955#011validation-rmse:3.92035 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 8 pruned nodes, max_depth=5 [56]#011train-rmse:1.18865#011validation-rmse:3.94761 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 14 pruned nodes, max_depth=2 [57]#011train-rmse:1.17002#011validation-rmse:3.95552 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 18 pruned nodes, max_depth=3 [58]#011train-rmse:1.13935#011validation-rmse:3.96458 [08:43:28] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 14 pruned nodes, max_depth=1 [59]#011train-rmse:1.13655#011validation-rmse:3.951 Stopping. Best iteration: [49]#011train-rmse:1.27754#011validation-rmse:3.90936  2020-08-29 08:43:40 Uploading - Uploading generated training model 2020-08-29 08:43:40 Completed - Training job completed Training seconds: 61 Billable seconds: 61 ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output .......................................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output download: s3://sagemaker-eu-west-1-100264508876/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output WARNING:root:There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='0.90-1'. For example: get_image_uri(region, 'xgboost', '0.90-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-05-01 10:47:14 Starting - Launching requested ML instances......... 2020-05-01 10:48:38 Starting - Preparing the instances for training...... 2020-05-01 10:49:44 Downloading - Downloading input data 2020-05-01 10:49:44 Training - Downloading the training image... 2020-05-01 10:50:10 Uploading - Uploading generated training modelArguments: train [2020-05-01:10:50:05:INFO] Running standalone xgboost training. [2020-05-01:10:50:05:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8505.26mb [2020-05-01:10:50:05:INFO] Determined delimiter of CSV input is ',' [10:50:05] S3DistributionType set as FullyReplicated [10:50:05] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2020-05-01:10:50:05:INFO] Determined delimiter of CSV input is ',' [10:50:05] S3DistributionType set as FullyReplicated [10:50:05] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [10:50:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:19.7521#011validation-rmse:20.1513 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [10:50:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [1]#011train-rmse:16.0784#011validation-rmse:16.5989 [10:50:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=4 [2]#011train-rmse:13.1605#011validation-rmse:13.7377 [10:50:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=4 [3]#011train-rmse:10.8641#011validation-rmse:11.4992 [10:50:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=4 [4]#011train-rmse:8.95659#011validation-rmse:9.63835 [10:50:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.48741#011validation-rmse:8.20246 [10:50:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [6]#011train-rmse:6.34253#011validation-rmse:7.17045 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 4 pruned nodes, max_depth=5 [7]#011train-rmse:5.35219#011validation-rmse:6.36555 [8]#011train-rmse:4.5632#011validation-rmse:5.71432 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 2 pruned nodes, max_depth=5 [9]#011train-rmse:3.90932#011validation-rmse:5.26637 [10]#011train-rmse:3.40825#011validation-rmse:4.92068 [11]#011train-rmse:3.02481#011validation-rmse:4.73513 [12]#011train-rmse:2.72427#011validation-rmse:4.57922 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [13]#011train-rmse:2.52085#011validation-rmse:4.48979 [14]#011train-rmse:2.33247#011validation-rmse:4.38224 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.21231#011validation-rmse:4.32762 [16]#011train-rmse:2.09356#011validation-rmse:4.27357 [17]#011train-rmse:2.02211#011validation-rmse:4.22485 [18]#011train-rmse:1.95408#011validation-rmse:4.18295 [19]#011train-rmse:1.88318#011validation-rmse:4.15666 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:1.79872#011validation-rmse:4.16034 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [21]#011train-rmse:1.75617#011validation-rmse:4.149 [22]#011train-rmse:1.70418#011validation-rmse:4.11824 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [23]#011train-rmse:1.66811#011validation-rmse:4.14435 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [24]#011train-rmse:1.63033#011validation-rmse:4.15155 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 2 pruned nodes, max_depth=5 [25]#011train-rmse:1.55656#011validation-rmse:4.14606 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=5 [26]#011train-rmse:1.52191#011validation-rmse:4.1627 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [27]#011train-rmse:1.47521#011validation-rmse:4.15834 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [28]#011train-rmse:1.44399#011validation-rmse:4.15041 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [29]#011train-rmse:1.38052#011validation-rmse:4.1171 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [30]#011train-rmse:1.3269#011validation-rmse:4.1475 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [31]#011train-rmse:1.28994#011validation-rmse:4.1578 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [32]#011train-rmse:1.25981#011validation-rmse:4.1644 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [33]#011train-rmse:1.23546#011validation-rmse:4.16078 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [34]#011train-rmse:1.2145#011validation-rmse:4.15819 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [35]#011train-rmse:1.19571#011validation-rmse:4.14231 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [36]#011train-rmse:1.15502#011validation-rmse:4.12796 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=5 [37]#011train-rmse:1.14195#011validation-rmse:4.12794 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 6 pruned nodes, max_depth=5 [38]#011train-rmse:1.09873#011validation-rmse:4.12835 [10:50:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 10 pruned nodes, max_depth=4 [39]#011train-rmse:1.0933#011validation-rmse:4.12415 Stopping. Best iteration: [29]#011train-rmse:1.38052#011validation-rmse:4.1171  ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ........................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 2.3 KiB/2.3 KiB (35.8 KiB/s) with 1 file(s) remaining download: s3://sagemaker-us-east-2-180564272071/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output _____no_output_____ ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2019-04-15 11:25:42 Starting - Launching requested ML instances...... 2019-04-15 11:26:45 Starting - Preparing the instances for training...... 2019-04-15 11:27:51 Downloading - Downloading input data.. Arguments: train [2019-04-15:11:28:23:INFO] Running standalone xgboost training. [2019-04-15:11:28:23:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8410.32mb [2019-04-15:11:28:23:INFO] Determined delimiter of CSV input is ',' [11:28:23] S3DistributionType set as FullyReplicated [11:28:23] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2019-04-15:11:28:23:INFO] Determined delimiter of CSV input is ',' [11:28:23] S3DistributionType set as FullyReplicated [11:28:23] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:19.9065#011validation-rmse:18.6901 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [1]#011train-rmse:16.2867#011validation-rmse:15.2844 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [2]#011train-rmse:13.3261#011validation-rmse:12.5001 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=4 [3]#011train-rmse:10.9774#011validation-rmse:10.2619 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=4 [4]#011train-rmse:9.09364#011validation-rmse:8.75573 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [5]#011train-rmse:7.62318#011validation-rmse:7.50781 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [6]#011train-rmse:6.46277#011validation-rmse:6.59186 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [7]#011train-rmse:5.57428#011validation-rmse:5.93149 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [8]#011train-rmse:4.81609#011validation-rmse:5.27565 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [9]#011train-rmse:4.22447#011validation-rmse:4.88894 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [10]#011train-rmse:3.70744#011validation-rmse:4.52316 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [11]#011train-rmse:3.32707#011validation-rmse:4.27038 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 0 pruned nodes, max_depth=5 [12]#011train-rmse:3.05772#011validation-rmse:4.17343 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [13]#011train-rmse:2.8421#011validation-rmse:4.12927 [14]#011train-rmse:2.6406#011validation-rmse:3.95668 [15]#011train-rmse:2.52359#011validation-rmse:3.8854 [16]#011train-rmse:2.41457#011validation-rmse:3.90974 [17]#011train-rmse:2.31033#011validation-rmse:3.83253 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [18]#011train-rmse:2.22727#011validation-rmse:3.76019 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [19]#011train-rmse:2.10795#011validation-rmse:3.63786 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [20]#011train-rmse:2.05875#011validation-rmse:3.64712 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [21]#011train-rmse:2.00617#011validation-rmse:3.60796 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=5 [22]#011train-rmse:1.98138#011validation-rmse:3.58907 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [23]#011train-rmse:1.90768#011validation-rmse:3.54222 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [24]#011train-rmse:1.85772#011validation-rmse:3.53911 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [25]#011train-rmse:1.83182#011validation-rmse:3.49351 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [26]#011train-rmse:1.77594#011validation-rmse:3.47132 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 4 pruned nodes, max_depth=5 [27]#011train-rmse:1.69735#011validation-rmse:3.43927 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 4 pruned nodes, max_depth=5 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [28]#011train-rmse:1.66622#011validation-rmse:3.45545 [29]#011train-rmse:1.63549#011validation-rmse:3.43284 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [30]#011train-rmse:1.58835#011validation-rmse:3.43761 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [31]#011train-rmse:1.5632#011validation-rmse:3.427 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 6 pruned nodes, max_depth=5 [32]#011train-rmse:1.53995#011validation-rmse:3.43876 [33]#011train-rmse:1.50094#011validation-rmse:3.45964 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [34]#011train-rmse:1.46876#011validation-rmse:3.44794 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [35]#011train-rmse:1.43595#011validation-rmse:3.45971 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 12 pruned nodes, max_depth=2 [36]#011train-rmse:1.40873#011validation-rmse:3.40671 [37]#011train-rmse:1.34522#011validation-rmse:3.39946 [38]#011train-rmse:1.29936#011validation-rmse:3.32717 [39]#011train-rmse:1.27493#011validation-rmse:3.34027 [40]#011train-rmse:1.26523#011validation-rmse:3.32152 [41]#011train-rmse:1.24979#011validation-rmse:3.32939 [42]#011train-rmse:1.24133#011validation-rmse:3.3182 [43]#011train-rmse:1.22602#011validation-rmse:3.30243 [44]#011train-rmse:1.19154#011validation-rmse:3.31035 [45]#011train-rmse:1.16447#011validation-rmse:3.26667 [46]#011train-rmse:1.14887#011validation-rmse:3.27873 [47]#011train-rmse:1.1278#011validation-rmse:3.27807 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 6 pruned nodes, max_depth=2 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 18 pruned nodes, max_depth=4 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 2 pruned nodes, max_depth=4 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 4 pruned nodes, max_depth=4 [48]#011train-rmse:1.11381#011validation-rmse:3.28562 [49]#011train-rmse:1.0787#011validation-rmse:3.25942 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 10 pruned nodes, max_depth=4 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 22 pruned nodes, max_depth=2 [50]#011train-rmse:1.06935#011validation-rmse:3.2378 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=4 [51]#011train-rmse:1.04705#011validation-rmse:3.22798 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 22 pruned nodes, max_depth=3 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 8 pruned nodes, max_depth=2 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 12 pruned nodes, max_depth=2 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 8 pruned nodes, max_depth=4 [52]#011train-rmse:1.02238#011validation-rmse:3.21924 [53]#011train-rmse:1.01524#011validation-rmse:3.21879 [54]#011train-rmse:1.00226#011validation-rmse:3.23297 [55]#011train-rmse:0.99439#011validation-rmse:3.24438 [56]#011train-rmse:0.979284#011validation-rmse:3.24914 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=4 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 16 pruned nodes, max_depth=4 [57]#011train-rmse:0.963044#011validation-rmse:3.23341 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 10 pruned nodes, max_depth=4 [58]#011train-rmse:0.947#011validation-rmse:3.24382 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [59]#011train-rmse:0.940707#011validation-rmse:3.24347 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 16 pruned nodes, max_depth=0 [60]#011train-rmse:0.94086#011validation-rmse:3.24351 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [61]#011train-rmse:0.940686#011validation-rmse:3.24346 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 6 pruned nodes, max_depth=5 [62]#011train-rmse:0.92834#011validation-rmse:3.23796 [11:28:23] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 8 pruned nodes, max_depth=3 [63]#011train-rmse:0.921661#011validation-rmse:3.22149 Stopping. Best iteration: [53]#011train-rmse:1.01524#011validation-rmse:3.21879  2019-04-15 11:28:34 Training - Training image download completed. Training in progress. 2019-04-15 11:28:34 Uploading - Uploading generated training model 2019-04-15 11:28:34 Completed - Training job completed Billable seconds: 44 ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] training_job_info['ModelArtifacts'].keys() # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ..........................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output download: s3://sagemaker-eu-west-1-345073139350/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output rm: cannot remove ‘../data/boston/*’: No such file or directory rmdir: failed to remove ‘../data/boston’: No such file or directory ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output _____no_output_____ ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output _____no_output_____ ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output _____no_output_____ ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output 'get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2. There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='1.0-1'. For example: get_image_uri(region, 'xgboost', '1.0-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-08-16 17:24:31 Starting - Launching requested ML instances......... 2020-08-16 17:25:52 Starting - Preparing the instances for training...... 2020-08-16 17:26:50 Downloading - Downloading input data 2020-08-16 17:26:50 Training - Downloading the training image..Arguments: train [2020-08-16:17:27:11:INFO] Running standalone xgboost training. [2020-08-16:17:27:11:INFO] File size need to be processed in the node: 0.03mb. Available memory size in the node: 8485.08mb [2020-08-16:17:27:11:INFO] Determined delimiter of CSV input is ',' [17:27:11] S3DistributionType set as FullyReplicated [17:27:11] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2020-08-16:17:27:11:INFO] Determined delimiter of CSV input is ',' [17:27:11] S3DistributionType set as FullyReplicated [17:27:11] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 2 pruned nodes, max_depth=3 [0]#011train-rmse:20.2265#011validation-rmse:19.3455 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [1]#011train-rmse:16.4853#011validation-rmse:15.9476 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=3 [2]#011train-rmse:13.4304#011validation-rmse:13.3301 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=4 [3]#011train-rmse:11.0452#011validation-rmse:11.342 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [4]#011train-rmse:9.15469#011validation-rmse:9.86338 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [5]#011train-rmse:7.67557#011validation-rmse:8.69899 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [6]#011train-rmse:6.39794#011validation-rmse:7.72622 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [7]#011train-rmse:5.44119#011validation-rmse:7.18118 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [8]#011train-rmse:4.70627#011validation-rmse:6.74208 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 6 pruned nodes, max_depth=5 [9]#011train-rmse:4.10401#011validation-rmse:6.37084 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 2 pruned nodes, max_depth=5 [10]#011train-rmse:3.61132#011validation-rmse:6.12419 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [11]#011train-rmse:3.2893#011validation-rmse:5.97836 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 2 pruned nodes, max_depth=5 [12]#011train-rmse:2.96522#011validation-rmse:5.79106 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [13]#011train-rmse:2.7268#011validation-rmse:5.65702 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 0 pruned nodes, max_depth=5 [14]#011train-rmse:2.50642#011validation-rmse:5.47376 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.34554#011validation-rmse:5.41039 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [16]#011train-rmse:2.21067#011validation-rmse:5.38938 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [17]#011train-rmse:2.08006#011validation-rmse:5.44885 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [18]#011train-rmse:2.01389#011validation-rmse:5.38357 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [19]#011train-rmse:1.9154#011validation-rmse:5.28994 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:1.83877#011validation-rmse:5.21545 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [21]#011train-rmse:1.79577#011validation-rmse:5.20044 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [22]#011train-rmse:1.73453#011validation-rmse:5.2242 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [23]#011train-rmse:1.70339#011validation-rmse:5.18571 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [24]#011train-rmse:1.6488#011validation-rmse:5.16807 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [25]#011train-rmse:1.57292#011validation-rmse:5.12246 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 0 pruned nodes, max_depth=5 [26]#011train-rmse:1.51913#011validation-rmse:5.12638 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [27]#011train-rmse:1.46548#011validation-rmse:5.15762 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=5 [28]#011train-rmse:1.44039#011validation-rmse:5.12817 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [29]#011train-rmse:1.41186#011validation-rmse:5.11006 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 6 pruned nodes, max_depth=5 [30]#011train-rmse:1.36725#011validation-rmse:5.11709 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [31]#011train-rmse:1.35027#011validation-rmse:5.12082 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [32]#011train-rmse:1.3314#011validation-rmse:5.11608 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [33]#011train-rmse:1.27882#011validation-rmse:5.07585 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [34]#011train-rmse:1.26015#011validation-rmse:5.09982 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 6 pruned nodes, max_depth=5 [35]#011train-rmse:1.2427#011validation-rmse:5.08117 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 2 pruned nodes, max_depth=5 [36]#011train-rmse:1.19904#011validation-rmse:5.10216 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 10 pruned nodes, max_depth=5 [37]#011train-rmse:1.1737#011validation-rmse:5.1217 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 12 pruned nodes, max_depth=5 [38]#011train-rmse:1.14549#011validation-rmse:5.1237 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 12 pruned nodes, max_depth=5 [39]#011train-rmse:1.12599#011validation-rmse:5.11164 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 14 pruned nodes, max_depth=4 [40]#011train-rmse:1.10173#011validation-rmse:5.09333 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 14 pruned nodes, max_depth=3 [41]#011train-rmse:1.09267#011validation-rmse:5.07198 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [42]#011train-rmse:1.07007#011validation-rmse:5.07637 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 14 pruned nodes, max_depth=5 [43]#011train-rmse:1.05392#011validation-rmse:5.07178 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [44]#011train-rmse:1.03749#011validation-rmse:5.03848 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 10 pruned nodes, max_depth=4 [45]#011train-rmse:1.02603#011validation-rmse:5.01586 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [46]#011train-rmse:1.01061#011validation-rmse:4.97294 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 10 pruned nodes, max_depth=4 [47]#011train-rmse:0.992629#011validation-rmse:4.96537 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 12 pruned nodes, max_depth=5 [48]#011train-rmse:0.981203#011validation-rmse:4.96091 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 10 pruned nodes, max_depth=4 [49]#011train-rmse:0.970397#011validation-rmse:4.95208 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 18 pruned nodes, max_depth=2 [50]#011train-rmse:0.962033#011validation-rmse:4.9497 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 14 pruned nodes, max_depth=5 [51]#011train-rmse:0.948746#011validation-rmse:4.95781 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 24 pruned nodes, max_depth=3 [52]#011train-rmse:0.943393#011validation-rmse:4.92282 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 12 pruned nodes, max_depth=3 [53]#011train-rmse:0.93655#011validation-rmse:4.9068 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 12 pruned nodes, max_depth=4 [54]#011train-rmse:0.920382#011validation-rmse:4.90073 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 10 pruned nodes, max_depth=4 [55]#011train-rmse:0.909817#011validation-rmse:4.88985 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 24 pruned nodes, max_depth=4 [56]#011train-rmse:0.900043#011validation-rmse:4.88699 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 10 pruned nodes, max_depth=5 [57]#011train-rmse:0.880627#011validation-rmse:4.88204 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 8 pruned nodes, max_depth=5 [58]#011train-rmse:0.867286#011validation-rmse:4.87112 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 14 pruned nodes, max_depth=4 [59]#011train-rmse:0.853921#011validation-rmse:4.87381 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [60]#011train-rmse:0.853825#011validation-rmse:4.87472 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 14 pruned nodes, max_depth=4 [61]#011train-rmse:0.845434#011validation-rmse:4.8644 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 18 pruned nodes, max_depth=3 [62]#011train-rmse:0.838463#011validation-rmse:4.86851 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 14 pruned nodes, max_depth=0 [63]#011train-rmse:0.83856#011validation-rmse:4.86734 [64]#011train-rmse:0.827451#011validation-rmse:4.86207 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 22 pruned nodes, max_depth=4 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [65]#011train-rmse:0.82744#011validation-rmse:4.86217 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 16 pruned nodes, max_depth=3 [66]#011train-rmse:0.820681#011validation-rmse:4.86553 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 18 pruned nodes, max_depth=5 [67]#011train-rmse:0.810196#011validation-rmse:4.86026 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 16 pruned nodes, max_depth=2 [68]#011train-rmse:0.807359#011validation-rmse:4.85853 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 24 pruned nodes, max_depth=0 [69]#011train-rmse:0.807286#011validation-rmse:4.85968 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 16 pruned nodes, max_depth=0 [70]#011train-rmse:0.807282#011validation-rmse:4.86012 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 34 pruned nodes, max_depth=0 [71]#011train-rmse:0.807352#011validation-rmse:4.86148 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [72]#011train-rmse:0.807282#011validation-rmse:4.85987 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 20 pruned nodes, max_depth=2 [73]#011train-rmse:0.803372#011validation-rmse:4.85471 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 12 pruned nodes, max_depth=0 [74]#011train-rmse:0.803403#011validation-rmse:4.85417 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 24 pruned nodes, max_depth=0 [75]#011train-rmse:0.803381#011validation-rmse:4.85452 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [76]#011train-rmse:0.803367#011validation-rmse:4.85486 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [77]#011train-rmse:0.803367#011validation-rmse:4.85561 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 16 pruned nodes, max_depth=0 [78]#011train-rmse:0.803436#011validation-rmse:4.85671 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 32 pruned nodes, max_depth=0 [79]#011train-rmse:0.803489#011validation-rmse:4.85718 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [80]#011train-rmse:0.803413#011validation-rmse:4.85646 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [81]#011train-rmse:0.80339#011validation-rmse:4.85614 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 10 pruned nodes, max_depth=0 [82]#011train-rmse:0.803387#011validation-rmse:4.8544 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [83]#011train-rmse:0.803425#011validation-rmse:4.8539 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 20 pruned nodes, max_depth=0 [84]#011train-rmse:0.803369#011validation-rmse:4.8548 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 20 pruned nodes, max_depth=0 [85]#011train-rmse:0.803426#011validation-rmse:4.85389 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 16 pruned nodes, max_depth=0 [86]#011train-rmse:0.803385#011validation-rmse:4.85444 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [87]#011train-rmse:0.803385#011validation-rmse:4.85444 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [88]#011train-rmse:0.803434#011validation-rmse:4.85381 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 8 pruned nodes, max_depth=4 [89]#011train-rmse:0.795356#011validation-rmse:4.86775 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [90]#011train-rmse:0.795354#011validation-rmse:4.8676 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [91]#011train-rmse:0.795366#011validation-rmse:4.86682 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 24 pruned nodes, max_depth=3 [92]#011train-rmse:0.787607#011validation-rmse:4.88536 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 22 pruned nodes, max_depth=2 [93]#011train-rmse:0.784493#011validation-rmse:4.8835 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 20 pruned nodes, max_depth=0 [94]#011train-rmse:0.784439#011validation-rmse:4.8838 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 26 pruned nodes, max_depth=0 [95]#011train-rmse:0.784262#011validation-rmse:4.88556 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 30 pruned nodes, max_depth=0 [96]#011train-rmse:0.784259#011validation-rmse:4.88566 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 26 pruned nodes, max_depth=0 [97]#011train-rmse:0.784257#011validation-rmse:4.88571 [17:27:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 26 pruned nodes, max_depth=0 [98]#011train-rmse:0.784257#011validation-rmse:4.88631 Stopping. Best iteration: [88]#011train-rmse:0.803434#011validation-rmse:4.85381  ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ..........................................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output _____no_output_____ ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output _____no_output_____ ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2018-12-05 05:31:40 Starting - Starting the training job... 2018-12-05 05:32:05 Starting - Launching requested ML instances...... 2018-12-05 05:33:03 Starting - Preparing the instances for training......... 2018-12-05 05:34:41 Downloading - Downloading input data 2018-12-05 05:34:41 Training - Downloading the training image. Arguments: train [2018-12-05:05:34:45:INFO] Running standalone xgboost training. [2018-12-05:05:34:45:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8388.47mb [2018-12-05:05:34:45:INFO] Determined delimiter of CSV input is ',' [05:34:45] S3DistributionType set as FullyReplicated [05:34:45] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2018-12-05:05:34:45:INFO] Determined delimiter of CSV input is ',' [05:34:45] S3DistributionType set as FullyReplicated [05:34:45] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:18.9172#011validation-rmse:21.5178 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [1]#011train-rmse:15.4002#011validation-rmse:17.6521 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [2]#011train-rmse:12.6235#011validation-rmse:14.7216 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [3]#011train-rmse:10.3477#011validation-rmse:12.3026 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=4 [4]#011train-rmse:8.58284#011validation-rmse:10.457 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=4 [5]#011train-rmse:7.17488#011validation-rmse:8.99078 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [6]#011train-rmse:5.97956#011validation-rmse:7.86737 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 2 pruned nodes, max_depth=5 [7]#011train-rmse:5.05166#011validation-rmse:7.03463 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [8]#011train-rmse:4.33317#011validation-rmse:6.40078 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [9]#011train-rmse:3.75081#011validation-rmse:5.85356 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [10]#011train-rmse:3.28174#011validation-rmse:5.43365 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [11]#011train-rmse:2.91581#011validation-rmse:5.16029 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [12]#011train-rmse:2.64005#011validation-rmse:5.00644 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [13]#011train-rmse:2.3951#011validation-rmse:4.90395 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [14]#011train-rmse:2.22468#011validation-rmse:4.81022 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.05786#011validation-rmse:4.70601 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [16]#011train-rmse:1.93112#011validation-rmse:4.61248 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 4 pruned nodes, max_depth=5 [17]#011train-rmse:1.84605#011validation-rmse:4.58024 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 4 pruned nodes, max_depth=5 [18]#011train-rmse:1.79227#011validation-rmse:4.53928 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [19]#011train-rmse:1.73342#011validation-rmse:4.52377 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:1.66078#011validation-rmse:4.54059 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [21]#011train-rmse:1.63031#011validation-rmse:4.55337 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [22]#011train-rmse:1.59953#011validation-rmse:4.52276 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [23]#011train-rmse:1.55256#011validation-rmse:4.51886 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 6 pruned nodes, max_depth=5 [24]#011train-rmse:1.49168#011validation-rmse:4.48123 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 4 pruned nodes, max_depth=5 [25]#011train-rmse:1.44604#011validation-rmse:4.4447 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [26]#011train-rmse:1.40946#011validation-rmse:4.43294 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 6 pruned nodes, max_depth=5 [27]#011train-rmse:1.35453#011validation-rmse:4.42985 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 10 pruned nodes, max_depth=5 [28]#011train-rmse:1.31068#011validation-rmse:4.45228 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 8 pruned nodes, max_depth=5 [29]#011train-rmse:1.27766#011validation-rmse:4.42568 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 14 pruned nodes, max_depth=5 [30]#011train-rmse:1.22776#011validation-rmse:4.43719 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [31]#011train-rmse:1.20054#011validation-rmse:4.41115 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 10 pruned nodes, max_depth=2 [32]#011train-rmse:1.19482#011validation-rmse:4.40869 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 14 pruned nodes, max_depth=5 [33]#011train-rmse:1.16382#011validation-rmse:4.4266 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 8 pruned nodes, max_depth=5 [34]#011train-rmse:1.13072#011validation-rmse:4.42917 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=5 [35]#011train-rmse:1.11744#011validation-rmse:4.43787 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [36]#011train-rmse:1.10004#011validation-rmse:4.41296 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 12 pruned nodes, max_depth=4 [37]#011train-rmse:1.09144#011validation-rmse:4.42654 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 4 pruned nodes, max_depth=5 [38]#011train-rmse:1.08041#011validation-rmse:4.41043 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 6 pruned nodes, max_depth=5 [39]#011train-rmse:1.04299#011validation-rmse:4.4048 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 14 pruned nodes, max_depth=5 [40]#011train-rmse:1.02203#011validation-rmse:4.39526 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [41]#011train-rmse:1.00905#011validation-rmse:4.38558 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 12 pruned nodes, max_depth=5 [42]#011train-rmse:0.997572#011validation-rmse:4.36736 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 14 pruned nodes, max_depth=5 [43]#011train-rmse:0.979626#011validation-rmse:4.34729 [44]#011train-rmse:0.972102#011validation-rmse:4.33716 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 10 pruned nodes, max_depth=4 [45]#011train-rmse:0.950873#011validation-rmse:4.31641 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 14 pruned nodes, max_depth=5 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 10 pruned nodes, max_depth=5 [46]#011train-rmse:0.934356#011validation-rmse:4.33178 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 12 pruned nodes, max_depth=0 [47]#011train-rmse:0.934352#011validation-rmse:4.33296 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 18 pruned nodes, max_depth=4 [48]#011train-rmse:0.92892#011validation-rmse:4.30632 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 14 pruned nodes, max_depth=4 [49]#011train-rmse:0.917794#011validation-rmse:4.29065 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 18 pruned nodes, max_depth=5 [50]#011train-rmse:0.90184#011validation-rmse:4.293 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 26 pruned nodes, max_depth=3 [51]#011train-rmse:0.892298#011validation-rmse:4.29791 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 6 pruned nodes, max_depth=5 [52]#011train-rmse:0.880179#011validation-rmse:4.28427 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 12 pruned nodes, max_depth=3 [53]#011train-rmse:0.875295#011validation-rmse:4.29341 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 26 pruned nodes, max_depth=0 [54]#011train-rmse:0.875366#011validation-rmse:4.29406 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 24 pruned nodes, max_depth=0 [55]#011train-rmse:0.875441#011validation-rmse:4.2946 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 6 pruned nodes, max_depth=4 [56]#011train-rmse:0.867401#011validation-rmse:4.29797 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 32 pruned nodes, max_depth=0 [57]#011train-rmse:0.867235#011validation-rmse:4.29632 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 24 pruned nodes, max_depth=0 [58]#011train-rmse:0.867207#011validation-rmse:4.29499 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 32 pruned nodes, max_depth=2 [59]#011train-rmse:0.86211#011validation-rmse:4.29494 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 20 pruned nodes, max_depth=3 [60]#011train-rmse:0.85272#011validation-rmse:4.33103 [61]#011train-rmse:0.842024#011validation-rmse:4.33756 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 14 pruned nodes, max_depth=5 [05:34:45] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 26 pruned nodes, max_depth=0 [62]#011train-rmse:0.842114#011validation-rmse:4.33826 Stopping. Best iteration: [52]#011train-rmse:0.880179#011validation-rmse:4.28427  2018-12-05 05:34:51 Uploading - Uploading generated training model 2018-12-05 05:34:51 Completed - Training job completed Billable seconds: 17 ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output .......................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output download: s3://sagemaker-ap-south-1-651711011978/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output WARNING:root:There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='0.90-1'. For example: get_image_uri(region, 'xgboost', '0.90-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-06-22 11:27:13 Starting - Launching requested ML instances......... 2020-06-22 11:28:20 Starting - Preparing the instances for training...... 2020-06-22 11:29:16 Downloading - Downloading input data... 2020-06-22 11:30:09 Training - Training image download completed. Training in progress..Arguments: train [2020-06-22:11:30:10:INFO] Running standalone xgboost training. [2020-06-22:11:30:10:INFO] File size need to be processed in the node: 0.03mb. Available memory size in the node: 8502.01mb [2020-06-22:11:30:10:INFO] Determined delimiter of CSV input is ',' [11:30:10] S3DistributionType set as FullyReplicated [11:30:10] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2020-06-22:11:30:10:INFO] Determined delimiter of CSV input is ',' [11:30:10] S3DistributionType set as FullyReplicated [11:30:10] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 2 pruned nodes, max_depth=3 [0]#011train-rmse:18.981#011validation-rmse:19.2766 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=4 [1]#011train-rmse:15.556#011validation-rmse:15.7182 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [2]#011train-rmse:12.8265#011validation-rmse:12.915 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [3]#011train-rmse:10.6264#011validation-rmse:10.5855 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [4]#011train-rmse:8.83662#011validation-rmse:8.747 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.42514#011validation-rmse:7.30804 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [6]#011train-rmse:6.34168#011validation-rmse:6.33101 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [7]#011train-rmse:5.45181#011validation-rmse:5.63067 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [8]#011train-rmse:4.74557#011validation-rmse:5.04 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [9]#011train-rmse:4.1905#011validation-rmse:4.56195 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [10]#011train-rmse:3.74638#011validation-rmse:4.26149 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [11]#011train-rmse:3.42449#011validation-rmse:4.01691 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [12]#011train-rmse:3.1267#011validation-rmse:3.83082 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [13]#011train-rmse:2.89156#011validation-rmse:3.68527 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [14]#011train-rmse:2.67944#011validation-rmse:3.58707 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.55994#011validation-rmse:3.51551 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [16]#011train-rmse:2.46371#011validation-rmse:3.48704 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 6 pruned nodes, max_depth=5 [17]#011train-rmse:2.34792#011validation-rmse:3.46315 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [18]#011train-rmse:2.24066#011validation-rmse:3.48511 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [19]#011train-rmse:2.1789#011validation-rmse:3.4407 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:2.08505#011validation-rmse:3.42545 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [21]#011train-rmse:2.02886#011validation-rmse:3.43828 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 2 pruned nodes, max_depth=5 [22]#011train-rmse:1.95693#011validation-rmse:3.43134 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [23]#011train-rmse:1.89126#011validation-rmse:3.38539 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 4 pruned nodes, max_depth=5 [24]#011train-rmse:1.84762#011validation-rmse:3.36507 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [25]#011train-rmse:1.81557#011validation-rmse:3.35717 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [26]#011train-rmse:1.78268#011validation-rmse:3.3355 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [27]#011train-rmse:1.73615#011validation-rmse:3.3308 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 6 pruned nodes, max_depth=5 [28]#011train-rmse:1.69443#011validation-rmse:3.32833 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [29]#011train-rmse:1.65845#011validation-rmse:3.30043 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [30]#011train-rmse:1.6154#011validation-rmse:3.3089 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 10 pruned nodes, max_depth=5 [31]#011train-rmse:1.56617#011validation-rmse:3.32911 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [32]#011train-rmse:1.51735#011validation-rmse:3.31193 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 4 pruned nodes, max_depth=5 [33]#011train-rmse:1.47505#011validation-rmse:3.28774 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [34]#011train-rmse:1.45634#011validation-rmse:3.28651 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 8 pruned nodes, max_depth=5 [35]#011train-rmse:1.42334#011validation-rmse:3.27541 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 6 pruned nodes, max_depth=5 [36]#011train-rmse:1.3947#011validation-rmse:3.26806 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [37]#011train-rmse:1.38629#011validation-rmse:3.26626 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 6 pruned nodes, max_depth=5 [38]#011train-rmse:1.38064#011validation-rmse:3.26908 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 12 pruned nodes, max_depth=5 [39]#011train-rmse:1.36151#011validation-rmse:3.27405 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [40]#011train-rmse:1.32682#011validation-rmse:3.29127 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 8 pruned nodes, max_depth=5 [41]#011train-rmse:1.28461#011validation-rmse:3.2774 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 8 pruned nodes, max_depth=3 [42]#011train-rmse:1.27727#011validation-rmse:3.27474 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 8 pruned nodes, max_depth=5 [43]#011train-rmse:1.26151#011validation-rmse:3.24906 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [44]#011train-rmse:1.2264#011validation-rmse:3.21744 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 14 pruned nodes, max_depth=5 [45]#011train-rmse:1.19708#011validation-rmse:3.21958 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 8 pruned nodes, max_depth=4 [46]#011train-rmse:1.1728#011validation-rmse:3.20443 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [47]#011train-rmse:1.14306#011validation-rmse:3.21022 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 8 pruned nodes, max_depth=2 [48]#011train-rmse:1.13807#011validation-rmse:3.20272 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [49]#011train-rmse:1.13805#011validation-rmse:3.20289 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 20 pruned nodes, max_depth=4 [50]#011train-rmse:1.11874#011validation-rmse:3.20855 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 16 pruned nodes, max_depth=2 [51]#011train-rmse:1.11202#011validation-rmse:3.21129 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [52]#011train-rmse:1.10509#011validation-rmse:3.21354 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 16 pruned nodes, max_depth=2 [53]#011train-rmse:1.09056#011validation-rmse:3.21037 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 16 pruned nodes, max_depth=4 [54]#011train-rmse:1.07007#011validation-rmse:3.20592 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 12 pruned nodes, max_depth=5 [55]#011train-rmse:1.05963#011validation-rmse:3.1906 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [56]#011train-rmse:1.05139#011validation-rmse:3.20328 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 18 pruned nodes, max_depth=5 [57]#011train-rmse:1.03617#011validation-rmse:3.18722 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 14 pruned nodes, max_depth=2 [58]#011train-rmse:1.02599#011validation-rmse:3.19119 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 18 pruned nodes, max_depth=2 [59]#011train-rmse:1.0207#011validation-rmse:3.18222 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=4 [60]#011train-rmse:0.999316#011validation-rmse:3.17506 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 12 pruned nodes, max_depth=5 [61]#011train-rmse:0.982697#011validation-rmse:3.18895 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 24 pruned nodes, max_depth=2 [62]#011train-rmse:0.980357#011validation-rmse:3.19 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 16 pruned nodes, max_depth=4 [63]#011train-rmse:0.961294#011validation-rmse:3.18641 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 18 pruned nodes, max_depth=5 [64]#011train-rmse:0.946977#011validation-rmse:3.17243 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [65]#011train-rmse:0.94691#011validation-rmse:3.17263 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 14 pruned nodes, max_depth=5 [66]#011train-rmse:0.927537#011validation-rmse:3.16717 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 8 pruned nodes, max_depth=3 [67]#011train-rmse:0.91847#011validation-rmse:3.15783 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 18 pruned nodes, max_depth=2 [68]#011train-rmse:0.909934#011validation-rmse:3.15312 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 14 pruned nodes, max_depth=3 [69]#011train-rmse:0.897996#011validation-rmse:3.16648 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [70]#011train-rmse:0.89797#011validation-rmse:3.16684 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 16 pruned nodes, max_depth=0 [71]#011train-rmse:0.897982#011validation-rmse:3.16663 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 10 pruned nodes, max_depth=5 [72]#011train-rmse:0.882783#011validation-rmse:3.15461 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 10 pruned nodes, max_depth=2 [73]#011train-rmse:0.877671#011validation-rmse:3.15547 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=4 [74]#011train-rmse:0.865433#011validation-rmse:3.14371 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 20 pruned nodes, max_depth=0 [75]#011train-rmse:0.86542#011validation-rmse:3.1428 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 14 pruned nodes, max_depth=0 [76]#011train-rmse:0.865411#011validation-rmse:3.1429 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 8 pruned nodes, max_depth=5 [77]#011train-rmse:0.849927#011validation-rmse:3.14144 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 10 pruned nodes, max_depth=5 [78]#011train-rmse:0.839832#011validation-rmse:3.14751 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 16 pruned nodes, max_depth=0 [79]#011train-rmse:0.839929#011validation-rmse:3.14686 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=5 [80]#011train-rmse:0.827212#011validation-rmse:3.15361 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 30 pruned nodes, max_depth=0 [81]#011train-rmse:0.8272#011validation-rmse:3.15367 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 22 pruned nodes, max_depth=2 [82]#011train-rmse:0.822933#011validation-rmse:3.15417 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 38 pruned nodes, max_depth=0 [83]#011train-rmse:0.823084#011validation-rmse:3.15369 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [84]#011train-rmse:0.823051#011validation-rmse:3.15377 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 16 pruned nodes, max_depth=3 [85]#011train-rmse:0.818507#011validation-rmse:3.1427 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 32 pruned nodes, max_depth=0 [86]#011train-rmse:0.818446#011validation-rmse:3.14286 [11:30:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 20 pruned nodes, max_depth=0 [87]#011train-rmse:0.81833#011validation-rmse:3.14334 Stopping. Best iteration: [77]#011train-rmse:0.849927#011validation-rmse:3.14144  ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ...................................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 2.3 KiB/2.3 KiB (35.1 KiB/s) with 1 file(s) remaining download: s3://sagemaker-eu-central-1-245452871727/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. ###Code # Make sure that we use SageMaker 1.x !pip install sagemaker==1.72.0 ###Output Collecting sagemaker==1.72.0 Downloading sagemaker-1.72.0.tar.gz (297 kB)  |████████████████████████████████| 297 kB 13.8 MB/s eta 0:00:01 [?25hRequirement already satisfied: boto3>=1.14.12 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.16.37) Requirement already satisfied: numpy>=1.9.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.19.4) Requirement already satisfied: protobuf>=3.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (3.14.0) Requirement already satisfied: scipy>=0.19.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.4.1) Requirement already satisfied: protobuf3-to-dict>=0.1.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (0.1.5) Requirement already satisfied: importlib-metadata>=1.4.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (3.1.0) Requirement already satisfied: packaging>=20.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (20.7) Requirement already satisfied: s3transfer<0.4.0,>=0.3.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.3.3) Requirement already satisfied: botocore<1.20.0,>=1.19.37 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (1.19.37) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.10.0) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.10.0) Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.20.0,>=1.19.37->boto3>=1.14.12->sagemaker==1.72.0) (1.25.11) Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.20.0,>=1.19.37->boto3>=1.14.12->sagemaker==1.72.0) (2.8.1) Requirement already satisfied: zipp>=0.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from importlib-metadata>=1.4.0->sagemaker==1.72.0) (3.4.0) Requirement already satisfied: pyparsing>=2.0.2 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from packaging>=20.0->sagemaker==1.72.0) (2.4.7) Requirement already satisfied: six>=1.9 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from protobuf>=3.1->sagemaker==1.72.0) (1.15.0) Requirement already satisfied: six>=1.9 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from protobuf>=3.1->sagemaker==1.72.0) (1.15.0) Requirement already satisfied: protobuf>=3.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (3.14.0) Requirement already satisfied: six>=1.9 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from protobuf>=3.1->sagemaker==1.72.0) (1.15.0) Requirement already satisfied: botocore<1.20.0,>=1.19.37 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (1.19.37) Requirement already satisfied: numpy>=1.9.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.19.4) Collecting smdebug-rulesconfig==0.1.4 Downloading smdebug_rulesconfig-0.1.4-py2.py3-none-any.whl (10 kB) Building wheels for collected packages: sagemaker Building wheel for sagemaker (setup.py) ... [?25ldone [?25h Created wheel for sagemaker: filename=sagemaker-1.72.0-py2.py3-none-any.whl size=386358 sha256=357553d9e0f555e4251950085cdc200308d9af0bcc2ae7fb3ec686d6a8c863df Stored in directory: /home/ec2-user/.cache/pip/wheels/c3/58/70/85faf4437568bfaa4c419937569ba1fe54d44c5db42406bbd7 Successfully built sagemaker Installing collected packages: smdebug-rulesconfig, sagemaker Attempting uninstall: smdebug-rulesconfig Found existing installation: smdebug-rulesconfig 1.0.0 Uninstalling smdebug-rulesconfig-1.0.0: Successfully uninstalled smdebug-rulesconfig-1.0.0 Attempting uninstall: sagemaker Found existing installation: sagemaker 2.19.0 Uninstalling sagemaker-2.19.0: Successfully uninstalled sagemaker-2.19.0 Successfully installed sagemaker-1.72.0 smdebug-rulesconfig-0.1.4 WARNING: You are using pip version 20.3; however, version 20.3.3 is available. You should consider upgrading via the '/home/ec2-user/anaconda3/envs/pytorch_p36/bin/python -m pip install --upgrade pip' command. ###Markdown Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output 'get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2. There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='1.0-1'. For example: get_image_uri(region, 'xgboost', '1.0-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2021-01-14 19:31:13 Starting - Launching requested ML instances...... 2021-01-14 19:32:19 Starting - Preparing the instances for training...... 2021-01-14 19:33:28 Downloading - Downloading input data 2021-01-14 19:33:28 Training - Downloading the training image..Arguments: train [2021-01-14:19:33:48:INFO] Running standalone xgboost training. [2021-01-14:19:33:48:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8439.36mb [2021-01-14:19:33:48:INFO] Determined delimiter of CSV input is ',' [19:33:48] S3DistributionType set as FullyReplicated [19:33:48] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2021-01-14:19:33:48:INFO] Determined delimiter of CSV input is ',' [19:33:48] S3DistributionType set as FullyReplicated [19:33:48] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:20.1923#011validation-rmse:19.9594 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [1]#011train-rmse:16.4654#011validation-rmse:16.168 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=4 [2]#011train-rmse:13.5149#011validation-rmse:13.2798 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=4 [3]#011train-rmse:11.1294#011validation-rmse:11.0008 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [4]#011train-rmse:9.20893#011validation-rmse:9.32069 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.66008#011validation-rmse:7.85713 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [6]#011train-rmse:6.44634#011validation-rmse:6.88376 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 2 pruned nodes, max_depth=5 [7]#011train-rmse:5.51856#011validation-rmse:6.10812 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [8]#011train-rmse:4.73323#011validation-rmse:5.55834 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [9]#011train-rmse:4.09218#011validation-rmse:5.0439 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [10]#011train-rmse:3.60244#011validation-rmse:4.74105 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [11]#011train-rmse:3.28628#011validation-rmse:4.51091 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [12]#011train-rmse:2.94207#011validation-rmse:4.33658 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [13]#011train-rmse:2.71207#011validation-rmse:4.20595 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 0 pruned nodes, max_depth=5 [14]#011train-rmse:2.473#011validation-rmse:4.09117 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [15]#011train-rmse:2.3303#011validation-rmse:4.03929 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [16]#011train-rmse:2.21599#011validation-rmse:3.98067 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [17]#011train-rmse:2.10607#011validation-rmse:3.94202 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [18]#011train-rmse:2.02197#011validation-rmse:3.90705 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 4 pruned nodes, max_depth=5 [19]#011train-rmse:1.91127#011validation-rmse:3.85877 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:1.84211#011validation-rmse:3.8278 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [21]#011train-rmse:1.78758#011validation-rmse:3.80388 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [22]#011train-rmse:1.75182#011validation-rmse:3.80522 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [23]#011train-rmse:1.70056#011validation-rmse:3.77427 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [24]#011train-rmse:1.65685#011validation-rmse:3.78449 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [25]#011train-rmse:1.63166#011validation-rmse:3.79138 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [26]#011train-rmse:1.61294#011validation-rmse:3.79605 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [27]#011train-rmse:1.56947#011validation-rmse:3.7823 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [28]#011train-rmse:1.53615#011validation-rmse:3.78774 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [29]#011train-rmse:1.51971#011validation-rmse:3.79683 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 4 pruned nodes, max_depth=5 [30]#011train-rmse:1.48306#011validation-rmse:3.77044 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 4 pruned nodes, max_depth=5 [31]#011train-rmse:1.44567#011validation-rmse:3.76663 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [32]#011train-rmse:1.41149#011validation-rmse:3.78141 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 10 pruned nodes, max_depth=5 [33]#011train-rmse:1.38407#011validation-rmse:3.75235 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [34]#011train-rmse:1.3448#011validation-rmse:3.72846 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 6 pruned nodes, max_depth=3 [35]#011train-rmse:1.33449#011validation-rmse:3.7332 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [36]#011train-rmse:1.32233#011validation-rmse:3.73291 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=5 [37]#011train-rmse:1.30324#011validation-rmse:3.73753 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 30 extra nodes, 6 pruned nodes, max_depth=5 [38]#011train-rmse:1.2392#011validation-rmse:3.74427 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=5 [39]#011train-rmse:1.22917#011validation-rmse:3.74493 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 10 pruned nodes, max_depth=5 [40]#011train-rmse:1.20426#011validation-rmse:3.72517 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [41]#011train-rmse:1.18228#011validation-rmse:3.73118 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 8 pruned nodes, max_depth=2 [42]#011train-rmse:1.17046#011validation-rmse:3.73331 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [43]#011train-rmse:1.15856#011validation-rmse:3.71751 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 14 pruned nodes, max_depth=3 [44]#011train-rmse:1.12368#011validation-rmse:3.71129 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [45]#011train-rmse:1.10405#011validation-rmse:3.71758 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [46]#011train-rmse:1.08336#011validation-rmse:3.71286 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [47]#011train-rmse:1.07172#011validation-rmse:3.72461 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 20 pruned nodes, max_depth=4 [48]#011train-rmse:1.04548#011validation-rmse:3.72036 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 14 pruned nodes, max_depth=0 [49]#011train-rmse:1.04546#011validation-rmse:3.7201 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=4 [50]#011train-rmse:1.03114#011validation-rmse:3.72968 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 12 pruned nodes, max_depth=4 [51]#011train-rmse:1.02411#011validation-rmse:3.73602 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=5 [52]#011train-rmse:1.01006#011validation-rmse:3.74152 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 14 pruned nodes, max_depth=3 [53]#011train-rmse:0.997358#011validation-rmse:3.74899 [19:33:48] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 14 pruned nodes, max_depth=1 [54]#011train-rmse:0.99677#011validation-rmse:3.74091 Stopping. Best iteration: [44]#011train-rmse:1.12368#011validation-rmse:3.71129  ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output .........................................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 2.3 KiB/2.3 KiB (24.8 KiB/s) with 1 file(s) remaining download: s3://sagemaker-eu-central-1-941012658317/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. ###Code # Make sure that we use SageMaker 1.x !pip install sagemaker==1.72.0 ###Output Collecting sagemaker==1.72.0 Using cached sagemaker-1.72.0-py2.py3-none-any.whl Requirement already satisfied: packaging>=20.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (21.3) Requirement already satisfied: protobuf>=3.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (3.17.2) Requirement already satisfied: scipy>=0.19.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.5.3) Requirement already satisfied: numpy>=1.9.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.19.5) Collecting smdebug-rulesconfig==0.1.4 Using cached smdebug_rulesconfig-0.1.4-py2.py3-none-any.whl (10 kB) Requirement already satisfied: protobuf3-to-dict>=0.1.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (0.1.5) Requirement already satisfied: boto3>=1.14.12 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.20.25) Requirement already satisfied: importlib-metadata>=1.4.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (4.5.0) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.10.0) Requirement already satisfied: s3transfer<0.6.0,>=0.5.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.5.0) Requirement already satisfied: botocore<1.24.0,>=1.23.25 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (1.23.25) Requirement already satisfied: typing-extensions>=3.6.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from importlib-metadata>=1.4.0->sagemaker==1.72.0) (3.10.0.0) Requirement already satisfied: zipp>=0.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from importlib-metadata>=1.4.0->sagemaker==1.72.0) (3.4.1) Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from packaging>=20.0->sagemaker==1.72.0) (2.4.7) Requirement already satisfied: six>=1.9 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from protobuf>=3.1->sagemaker==1.72.0) (1.16.0) Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.24.0,>=1.23.25->boto3>=1.14.12->sagemaker==1.72.0) (2.8.1) Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.24.0,>=1.23.25->boto3>=1.14.12->sagemaker==1.72.0) (1.26.5) Installing collected packages: smdebug-rulesconfig, sagemaker Attempting uninstall: smdebug-rulesconfig Found existing installation: smdebug-rulesconfig 1.0.1 Uninstalling smdebug-rulesconfig-1.0.1: Successfully uninstalled smdebug-rulesconfig-1.0.1 Attempting uninstall: sagemaker Found existing installation: sagemaker 2.72.1 Uninstalling sagemaker-2.72.1: Successfully uninstalled sagemaker-2.72.1 Successfully installed sagemaker-1.72.0 smdebug-rulesconfig-0.1.4 ###Markdown Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output 'get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2. There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='1.0-1'. For example: get_image_uri(region, 'xgboost', '1.0-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) print(training_params) ###Output {'RoleArn': 'arn:aws:iam::963845225402:role/service-role/AmazonSageMaker-ExecutionRole-20220123T182626', 'AlgorithmSpecification': {'TrainingImage': '811284229777.dkr.ecr.us-east-1.amazonaws.com/xgboost:1', 'TrainingInputMode': 'File'}, 'OutputDataConfig': {'S3OutputPath': 's3://sagemaker-us-east-1-963845225402/boston-xgboost-LL/output'}, 'ResourceConfig': {'InstanceCount': 1, 'InstanceType': 'ml.m4.xlarge', 'VolumeSizeInGB': 5}, 'StoppingCondition': {'MaxRuntimeInSeconds': 86400}, 'HyperParameters': {'max_depth': '5', 'eta': '0.2', 'gamma': '4', 'min_child_weight': '6', 'subsample': '0.8', 'objective': 'reg:linear', 'early_stopping_rounds': '10', 'num_round': '200'}, 'InputDataConfig': [{'ChannelName': 'train', 'DataSource': {'S3DataSource': {'S3DataType': 'S3Prefix', 'S3Uri': 's3://sagemaker-us-east-1-963845225402/boston-xgboost-LL/train.csv', 'S3DataDistributionType': 'FullyReplicated'}}, 'ContentType': 'csv', 'CompressionType': 'None'}, {'ChannelName': 'validation', 'DataSource': {'S3DataSource': {'S3DataType': 'S3Prefix', 'S3Uri': 's3://sagemaker-us-east-1-963845225402/boston-xgboost-LL/validation.csv', 'S3DataDistributionType': 'FullyReplicated'}}, 'ContentType': 'csv', 'CompressionType': 'None'}], 'TrainingJobName': 'boston-xgboost-2022-01-29-19-51-35'} ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code print(transform_request) transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ...........................................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 3.0 KiB/3.0 KiB (33.9 KiB/s) with 1 file(s) remaining download: s3://sagemaker-us-east-1-963845225402/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output _____no_output_____ ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output _____no_output_____ ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output _____no_output_____ ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output _____no_output_____ ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output _____no_output_____ ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2018-12-24 10:25:44 Starting - Launching requested ML instances......... 2018-12-24 10:26:45 Starting - Preparing the instances for training... 2018-12-24 10:27:42 Downloading - Downloading input data... 2018-12-24 10:28:12 Training - Training image download completed. Training in progress. 2018-12-24 10:28:12 Uploading - Uploading generated training model. Arguments: train [2018-12-24:10:28:10:INFO] Running standalone xgboost training. [2018-12-24:10:28:10:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8370.41mb [2018-12-24:10:28:10:INFO] Determined delimiter of CSV input is ',' [10:28:10] S3DistributionType set as FullyReplicated [10:28:10] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2018-12-24:10:28:10:INFO] Determined delimiter of CSV input is ',' [10:28:10] S3DistributionType set as FullyReplicated [10:28:10] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:20.0873#011validation-rmse:19.187 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [1]#011train-rmse:16.3862#011validation-rmse:15.6498 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [2]#011train-rmse:13.514#011validation-rmse:12.9302 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=4 [3]#011train-rmse:11.1229#011validation-rmse:10.7689 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=4 [4]#011train-rmse:9.28682#011validation-rmse:9.12407 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [5]#011train-rmse:7.71841#011validation-rmse:7.69864 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [6]#011train-rmse:6.47755#011validation-rmse:6.72882 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [7]#011train-rmse:5.54573#011validation-rmse:6.0006 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 2 pruned nodes, max_depth=5 [8]#011train-rmse:4.79556#011validation-rmse:5.40596 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [9]#011train-rmse:4.23815#011validation-rmse:5.00858 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [10]#011train-rmse:3.73375#011validation-rmse:4.66928 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 2 pruned nodes, max_depth=5 [11]#011train-rmse:3.3596#011validation-rmse:4.46338 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [12]#011train-rmse:3.05883#011validation-rmse:4.27047 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [13]#011train-rmse:2.83087#011validation-rmse:4.14418 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [14]#011train-rmse:2.64985#011validation-rmse:4.08418 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.53003#011validation-rmse:3.97294 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [16]#011train-rmse:2.35601#011validation-rmse:3.87915 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [17]#011train-rmse:2.20624#011validation-rmse:3.8048 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [18]#011train-rmse:2.114#011validation-rmse:3.8039 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [19]#011train-rmse:2.03966#011validation-rmse:3.80222 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:1.97544#011validation-rmse:3.82326 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [21]#011train-rmse:1.93208#011validation-rmse:3.81683 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 4 pruned nodes, max_depth=5 [22]#011train-rmse:1.87865#011validation-rmse:3.82601 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [23]#011train-rmse:1.83744#011validation-rmse:3.82121 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [24]#011train-rmse:1.8024#011validation-rmse:3.8175 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [25]#011train-rmse:1.77311#011validation-rmse:3.79909 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [26]#011train-rmse:1.73275#011validation-rmse:3.85504 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [27]#011train-rmse:1.65388#011validation-rmse:3.85342 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 0 pruned nodes, max_depth=5 [28]#011train-rmse:1.55806#011validation-rmse:3.8416 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [29]#011train-rmse:1.51695#011validation-rmse:3.84577 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [30]#011train-rmse:1.48807#011validation-rmse:3.85109 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [31]#011train-rmse:1.41759#011validation-rmse:3.83609 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [32]#011train-rmse:1.40029#011validation-rmse:3.84788 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 6 pruned nodes, max_depth=5 [33]#011train-rmse:1.37087#011validation-rmse:3.84048 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [34]#011train-rmse:1.3535#011validation-rmse:3.82955 [10:28:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [35]#011train-rmse:1.30865#011validation-rmse:3.8248 Stopping. Best iteration: [25]#011train-rmse:1.77311#011validation-rmse:3.79909  2018-12-24 10:28:17 Completed - Training job completed Billable seconds: 36 ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-transform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output .....................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 2.3 KiB/2.3 KiB (17.7 KiB/s) with 1 file(s) remaining download: s3://sagemaker-ap-northeast-2-458503936460/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output 'get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2. There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='1.0-1'. For example: get_image_uri(region, 'xgboost', '1.0-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-09-26 12:42:01 Starting - Starting the training job... 2020-09-26 12:42:03 Starting - Launching requested ML instances...... 2020-09-26 12:43:30 Starting - Preparing the instances for training...... 2020-09-26 12:44:22 Downloading - Downloading input data... 2020-09-26 12:44:45 Training - Downloading the training image.Arguments: train [2020-09-26:12:45:05:INFO] Running standalone xgboost training. [2020-09-26:12:45:05:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8480.45mb [2020-09-26:12:45:05:INFO] Determined delimiter of CSV input is ',' [12:45:05] S3DistributionType set as FullyReplicated [12:45:05] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2020-09-26:12:45:05:INFO] Determined delimiter of CSV input is ',' [12:45:05] S3DistributionType set as FullyReplicated [12:45:05] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:19.8188#011validation-rmse:19.4225 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [1]#011train-rmse:16.2242#011validation-rmse:16.0779 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [2]#011train-rmse:13.3642#011validation-rmse:13.2868 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [3]#011train-rmse:11.051#011validation-rmse:11.046 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [4]#011train-rmse:9.24534#011validation-rmse:9.40268 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.76061#011validation-rmse:8.06597 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [6]#011train-rmse:6.58101#011validation-rmse:6.9824 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [7]#011train-rmse:5.63247#011validation-rmse:6.15856 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [8]#011train-rmse:4.8836#011validation-rmse:5.54448 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [9]#011train-rmse:4.29672#011validation-rmse:5.05043 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [10]#011train-rmse:3.83113#011validation-rmse:4.64241 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [11]#011train-rmse:3.51306#011validation-rmse:4.36591 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [12]#011train-rmse:3.23348#011validation-rmse:4.13003 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [13]#011train-rmse:2.99883#011validation-rmse:3.93631 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [14]#011train-rmse:2.82583#011validation-rmse:3.82191 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.72383#011validation-rmse:3.71543 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [16]#011train-rmse:2.60969#011validation-rmse:3.63841 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [17]#011train-rmse:2.54866#011validation-rmse:3.58956 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [18]#011train-rmse:2.47292#011validation-rmse:3.55691 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [19]#011train-rmse:2.37177#011validation-rmse:3.51814 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [20]#011train-rmse:2.29501#011validation-rmse:3.4728 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [21]#011train-rmse:2.24266#011validation-rmse:3.42883 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [22]#011train-rmse:2.17961#011validation-rmse:3.39305 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 8 pruned nodes, max_depth=5 [23]#011train-rmse:2.15021#011validation-rmse:3.3747 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [24]#011train-rmse:2.08373#011validation-rmse:3.32324 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [25]#011train-rmse:1.99851#011validation-rmse:3.24952 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [26]#011train-rmse:1.96714#011validation-rmse:3.2683 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [27]#011train-rmse:1.93519#011validation-rmse:3.25596 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [28]#011train-rmse:1.88818#011validation-rmse:3.2912 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [29]#011train-rmse:1.82575#011validation-rmse:3.26119 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [30]#011train-rmse:1.7764#011validation-rmse:3.26416 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 6 pruned nodes, max_depth=5 [31]#011train-rmse:1.73532#011validation-rmse:3.2362 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 2 pruned nodes, max_depth=5 [32]#011train-rmse:1.6802#011validation-rmse:3.21414 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [33]#011train-rmse:1.63928#011validation-rmse:3.21957 [12:45:05] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [34]#011train-rmse:1.61691#011validation-rmse:3.22156 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [35]#011train-rmse:1.59335#011validation-rmse:3.19622 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [36]#011train-rmse:1.57469#011validation-rmse:3.19879 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 8 pruned nodes, max_depth=4 [37]#011train-rmse:1.5345#011validation-rmse:3.18594 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 12 pruned nodes, max_depth=5 [38]#011train-rmse:1.52252#011validation-rmse:3.19615 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=4 [39]#011train-rmse:1.48486#011validation-rmse:3.18308 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [40]#011train-rmse:1.47198#011validation-rmse:3.18904 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [41]#011train-rmse:1.45285#011validation-rmse:3.19304 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 4 pruned nodes, max_depth=5 [42]#011train-rmse:1.43815#011validation-rmse:3.19679 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [43]#011train-rmse:1.41239#011validation-rmse:3.18932 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [44]#011train-rmse:1.40737#011validation-rmse:3.17214 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 8 pruned nodes, max_depth=5 [45]#011train-rmse:1.35649#011validation-rmse:3.18188 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [46]#011train-rmse:1.33763#011validation-rmse:3.17296 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [47]#011train-rmse:1.32357#011validation-rmse:3.17163 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [48]#011train-rmse:1.31028#011validation-rmse:3.15813 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [49]#011train-rmse:1.29206#011validation-rmse:3.16892 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 8 pruned nodes, max_depth=5 [50]#011train-rmse:1.27318#011validation-rmse:3.14841 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 8 pruned nodes, max_depth=3 [51]#011train-rmse:1.26242#011validation-rmse:3.14212 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 10 pruned nodes, max_depth=3 [52]#011train-rmse:1.25699#011validation-rmse:3.14786 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [53]#011train-rmse:1.2399#011validation-rmse:3.12796 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 14 pruned nodes, max_depth=4 [54]#011train-rmse:1.21838#011validation-rmse:3.15749 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 4 pruned nodes, max_depth=3 [55]#011train-rmse:1.20411#011validation-rmse:3.16398 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 8 pruned nodes, max_depth=5 [56]#011train-rmse:1.18331#011validation-rmse:3.14574 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 8 pruned nodes, max_depth=5 [57]#011train-rmse:1.14193#011validation-rmse:3.13419 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 10 pruned nodes, max_depth=1 [58]#011train-rmse:1.14157#011validation-rmse:3.13529 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 4 pruned nodes, max_depth=3 [59]#011train-rmse:1.13076#011validation-rmse:3.13901 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 10 pruned nodes, max_depth=1 [60]#011train-rmse:1.12944#011validation-rmse:3.13436 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 10 pruned nodes, max_depth=2 [61]#011train-rmse:1.11736#011validation-rmse:3.12119 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 10 pruned nodes, max_depth=3 [62]#011train-rmse:1.11083#011validation-rmse:3.11617 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 12 pruned nodes, max_depth=2 [63]#011train-rmse:1.10034#011validation-rmse:3.12131 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 14 pruned nodes, max_depth=1 [64]#011train-rmse:1.09944#011validation-rmse:3.12703 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 10 pruned nodes, max_depth=2 [65]#011train-rmse:1.09547#011validation-rmse:3.11522 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=3 [66]#011train-rmse:1.06805#011validation-rmse:3.1195 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 6 pruned nodes, max_depth=2 [67]#011train-rmse:1.06438#011validation-rmse:3.11523 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 12 pruned nodes, max_depth=5 [68]#011train-rmse:1.05785#011validation-rmse:3.12304 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 10 pruned nodes, max_depth=2 [69]#011train-rmse:1.05282#011validation-rmse:3.1329 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 8 pruned nodes, max_depth=5 [70]#011train-rmse:1.03174#011validation-rmse:3.1306 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 14 pruned nodes, max_depth=4 [71]#011train-rmse:1.01671#011validation-rmse:3.12947 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 20 pruned nodes, max_depth=4 [72]#011train-rmse:1.00919#011validation-rmse:3.13265 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [73]#011train-rmse:1.00259#011validation-rmse:3.11352 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 18 pruned nodes, max_depth=3 [74]#011train-rmse:0.996847#011validation-rmse:3.11704 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 8 pruned nodes, max_depth=5 [75]#011train-rmse:0.969105#011validation-rmse:3.13468 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 10 pruned nodes, max_depth=5 [76]#011train-rmse:0.952598#011validation-rmse:3.13399 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 12 pruned nodes, max_depth=0 [77]#011train-rmse:0.952601#011validation-rmse:3.13385 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 10 pruned nodes, max_depth=5 [78]#011train-rmse:0.941253#011validation-rmse:3.13158 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [79]#011train-rmse:0.941312#011validation-rmse:3.13187 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 12 pruned nodes, max_depth=4 [80]#011train-rmse:0.932329#011validation-rmse:3.13616 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 30 pruned nodes, max_depth=2 [81]#011train-rmse:0.929748#011validation-rmse:3.14159 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 10 pruned nodes, max_depth=2 [82]#011train-rmse:0.920885#011validation-rmse:3.13978 [12:45:06] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 26 pruned nodes, max_depth=3 [83]#011train-rmse:0.911005#011validation-rmse:3.147 Stopping. Best iteration: [73]#011train-rmse:1.00259#011validation-rmse:3.11352  ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ...........................................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 2.3 KiB/2.3 KiB (27.7 KiB/s) with 1 file(s) remaining download: s3://sagemaker-us-east-1-956613579044/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. ###Code # Make sure that we use SageMaker 1.x !pip install sagemaker==1.72.0 ###Output Requirement already satisfied: sagemaker==1.72.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (1.72.0) Requirement already satisfied: scipy>=0.19.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.4.1) Requirement already satisfied: protobuf3-to-dict>=0.1.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (0.1.5) Requirement already satisfied: smdebug-rulesconfig==0.1.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (0.1.4) Requirement already satisfied: packaging>=20.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (20.8) Requirement already satisfied: protobuf>=3.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (3.14.0) Requirement already satisfied: boto3>=1.14.12 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.16.63) Requirement already satisfied: importlib-metadata>=1.4.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (3.4.0) Requirement already satisfied: numpy>=1.9.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.19.5) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.10.0) Requirement already satisfied: s3transfer<0.4.0,>=0.3.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.3.4) Requirement already satisfied: botocore<1.20.0,>=1.19.63 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (1.19.63) Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.20.0,>=1.19.63->boto3>=1.14.12->sagemaker==1.72.0) (1.26.2) Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.20.0,>=1.19.63->boto3>=1.14.12->sagemaker==1.72.0) (2.8.1) Requirement already satisfied: typing-extensions>=3.6.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from importlib-metadata>=1.4.0->sagemaker==1.72.0) (3.7.4.3) Requirement already satisfied: zipp>=0.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from importlib-metadata>=1.4.0->sagemaker==1.72.0) (3.4.0) Requirement already satisfied: pyparsing>=2.0.2 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from packaging>=20.0->sagemaker==1.72.0) (2.4.7) Requirement already satisfied: six>=1.9 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from protobuf>=3.1->sagemaker==1.72.0) (1.15.0) WARNING: You are using pip version 20.3.3; however, version 21.0.1 is available. You should consider upgrading via the '/home/ec2-user/anaconda3/envs/pytorch_p36/bin/python -m pip install --upgrade pip' command. ###Markdown Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output 'get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2. There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='1.0-1'. For example: get_image_uri(region, 'xgboost', '1.0-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2021-02-10 22:12:34 Starting - Launching requested ML instances......... 2021-02-10 22:13:40 Starting - Preparing the instances for training...... 2021-02-10 22:14:36 Downloading - Downloading input data... 2021-02-10 22:15:35 Training - Training image download completed. Training in progress. 2021-02-10 22:15:35 Uploading - Uploading generated training model.Arguments: train [2021-02-10:22:15:30:INFO] Running standalone xgboost training. [2021-02-10:22:15:30:INFO] File size need to be processed in the node: 0.03mb. Available memory size in the node: 8452.65mb [2021-02-10:22:15:30:INFO] Determined delimiter of CSV input is ',' [22:15:30] S3DistributionType set as FullyReplicated [22:15:30] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2021-02-10:22:15:30:INFO] Determined delimiter of CSV input is ',' [22:15:30] S3DistributionType set as FullyReplicated [22:15:30] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=4 [0]#011train-rmse:19.2311#011validation-rmse:20.4823 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [1]#011train-rmse:15.6952#011validation-rmse:16.8887 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [2]#011train-rmse:12.8542#011validation-rmse:14.0626 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [3]#011train-rmse:10.5762#011validation-rmse:11.733 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [4]#011train-rmse:8.7619#011validation-rmse:9.9933 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.31548#011validation-rmse:8.59133 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [6]#011train-rmse:6.14557#011validation-rmse:7.43513 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [7]#011train-rmse:5.22276#011validation-rmse:6.74368 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [8]#011train-rmse:4.46188#011validation-rmse:6.09237 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [9]#011train-rmse:3.87797#011validation-rmse:5.6051 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 32 extra nodes, 2 pruned nodes, max_depth=5 [10]#011train-rmse:3.43204#011validation-rmse:5.27428 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [11]#011train-rmse:3.09601#011validation-rmse:5.04549 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [12]#011train-rmse:2.81947#011validation-rmse:4.7916 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [13]#011train-rmse:2.61265#011validation-rmse:4.68829 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [14]#011train-rmse:2.44741#011validation-rmse:4.61101 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.28975#011validation-rmse:4.50908 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [16]#011train-rmse:2.1873#011validation-rmse:4.45057 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [17]#011train-rmse:2.10201#011validation-rmse:4.43728 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [18]#011train-rmse:2.0251#011validation-rmse:4.34972 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [19]#011train-rmse:1.94772#011validation-rmse:4.30601 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:1.84603#011validation-rmse:4.29919 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [21]#011train-rmse:1.81224#011validation-rmse:4.28436 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [22]#011train-rmse:1.76976#011validation-rmse:4.31284 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [23]#011train-rmse:1.71659#011validation-rmse:4.23787 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 6 pruned nodes, max_depth=5 [24]#011train-rmse:1.63637#011validation-rmse:4.25167 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [25]#011train-rmse:1.60054#011validation-rmse:4.24818 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [26]#011train-rmse:1.5539#011validation-rmse:4.25385 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [27]#011train-rmse:1.53148#011validation-rmse:4.2318 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 2 pruned nodes, max_depth=5 [28]#011train-rmse:1.47713#011validation-rmse:4.18891 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 6 pruned nodes, max_depth=5 [29]#011train-rmse:1.46444#011validation-rmse:4.20555 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [30]#011train-rmse:1.42689#011validation-rmse:4.22405 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [31]#011train-rmse:1.3739#011validation-rmse:4.19202 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [32]#011train-rmse:1.34766#011validation-rmse:4.16896 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [33]#011train-rmse:1.33594#011validation-rmse:4.16418 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [34]#011train-rmse:1.31979#011validation-rmse:4.14719 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [35]#011train-rmse:1.3051#011validation-rmse:4.16859 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 10 pruned nodes, max_depth=4 [36]#011train-rmse:1.29083#011validation-rmse:4.16958 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [37]#011train-rmse:1.26031#011validation-rmse:4.1574 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [38]#011train-rmse:1.24258#011validation-rmse:4.15272 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 6 pruned nodes, max_depth=5 [39]#011train-rmse:1.22149#011validation-rmse:4.14428 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [40]#011train-rmse:1.21023#011validation-rmse:4.13578 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 12 pruned nodes, max_depth=4 [41]#011train-rmse:1.19874#011validation-rmse:4.11969 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [42]#011train-rmse:1.17447#011validation-rmse:4.10369 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 10 pruned nodes, max_depth=5 [43]#011train-rmse:1.16862#011validation-rmse:4.10189 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 8 pruned nodes, max_depth=2 [44]#011train-rmse:1.1618#011validation-rmse:4.08526 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 6 pruned nodes, max_depth=5 [45]#011train-rmse:1.12983#011validation-rmse:4.09062 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 8 pruned nodes, max_depth=5 [46]#011train-rmse:1.08507#011validation-rmse:4.04647 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 6 pruned nodes, max_depth=5 [47]#011train-rmse:1.07594#011validation-rmse:4.04705 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [48]#011train-rmse:1.05743#011validation-rmse:4.0339 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 6 pruned nodes, max_depth=4 [49]#011train-rmse:1.04964#011validation-rmse:4.02362 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 4 pruned nodes, max_depth=4 [50]#011train-rmse:1.04381#011validation-rmse:4.03279 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [51]#011train-rmse:1.03314#011validation-rmse:4.03014 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 6 pruned nodes, max_depth=5 [52]#011train-rmse:1.0076#011validation-rmse:4.01567 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=5 [53]#011train-rmse:0.995148#011validation-rmse:4.00343 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 16 pruned nodes, max_depth=0 [54]#011train-rmse:0.99513#011validation-rmse:4.00335 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 18 pruned nodes, max_depth=3 [55]#011train-rmse:0.976266#011validation-rmse:4.00321 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 20 pruned nodes, max_depth=2 [56]#011train-rmse:0.969279#011validation-rmse:4.00711 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 18 pruned nodes, max_depth=2 [57]#011train-rmse:0.96418#011validation-rmse:3.99266 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 14 pruned nodes, max_depth=4 [58]#011train-rmse:0.950256#011validation-rmse:3.99737 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [59]#011train-rmse:0.95023#011validation-rmse:3.99732 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 10 pruned nodes, max_depth=1 [60]#011train-rmse:0.949953#011validation-rmse:4.00773 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 16 pruned nodes, max_depth=1 [61]#011train-rmse:0.948444#011validation-rmse:4.00753 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 28 pruned nodes, max_depth=3 [62]#011train-rmse:0.938847#011validation-rmse:4.01518 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 16 pruned nodes, max_depth=3 [63]#011train-rmse:0.933799#011validation-rmse:4.01188 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 16 pruned nodes, max_depth=4 [64]#011train-rmse:0.925249#011validation-rmse:4.00381 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 26 pruned nodes, max_depth=0 [65]#011train-rmse:0.925251#011validation-rmse:4.00374 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [66]#011train-rmse:0.925374#011validation-rmse:4.00347 [22:15:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 8 pruned nodes, max_depth=4 [67]#011train-rmse:0.918711#011validation-rmse:4.0127 Stopping. Best iteration: [57]#011train-rmse:0.96418#011validation-rmse:3.99266  2021-02-10 22:15:42 Completed - Training job completed Training seconds: 66 Billable seconds: 66 ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ...........................................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output _____no_output_____ ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output _____no_output_____ ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output _____no_output_____ ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output _____no_output_____ ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output _____no_output_____ ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. ###Code # Make sure that we use SageMaker 1.x !pip install sagemaker==1.72.0 ###Output Collecting sagemaker==1.72.0 Downloading sagemaker-1.72.0.tar.gz (297 kB)  |████████████████████████████████| 297 kB 2.0 MB/s eta 0:00:01 [?25hRequirement already satisfied: boto3>=1.14.12 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.17.35) Requirement already satisfied: numpy>=1.9.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.19.5) Requirement already satisfied: protobuf>=3.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (3.15.2) Requirement already satisfied: scipy>=0.19.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.5.3) Requirement already satisfied: protobuf3-to-dict>=0.1.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (0.1.5) Collecting smdebug-rulesconfig==0.1.4 Downloading smdebug_rulesconfig-0.1.4-py2.py3-none-any.whl (10 kB) Requirement already satisfied: importlib-metadata>=1.4.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (3.7.0) Requirement already satisfied: packaging>=20.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (20.9) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.10.0) Requirement already satisfied: s3transfer<0.4.0,>=0.3.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.3.4) Requirement already satisfied: botocore<1.21.0,>=1.20.35 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (1.20.35) Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.21.0,>=1.20.35->boto3>=1.14.12->sagemaker==1.72.0) (1.26.3) Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.21.0,>=1.20.35->boto3>=1.14.12->sagemaker==1.72.0) (2.8.1) Requirement already satisfied: typing-extensions>=3.6.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from importlib-metadata>=1.4.0->sagemaker==1.72.0) (3.7.4.3) Requirement already satisfied: zipp>=0.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from importlib-metadata>=1.4.0->sagemaker==1.72.0) (3.4.0) Requirement already satisfied: pyparsing>=2.0.2 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from packaging>=20.0->sagemaker==1.72.0) (2.4.7) Requirement already satisfied: six>=1.9 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from protobuf>=3.1->sagemaker==1.72.0) (1.15.0) Building wheels for collected packages: sagemaker Building wheel for sagemaker (setup.py) ... [?25ldone [?25h Created wheel for sagemaker: filename=sagemaker-1.72.0-py2.py3-none-any.whl size=386358 sha256=e08922dffa075881746660c40a51c2ff056507cbd0bbdeda922316e9d78fc57f Stored in directory: /home/ec2-user/.cache/pip/wheels/c3/58/70/85faf4437568bfaa4c419937569ba1fe54d44c5db42406bbd7 Successfully built sagemaker Installing collected packages: smdebug-rulesconfig, sagemaker Attempting uninstall: smdebug-rulesconfig Found existing installation: smdebug-rulesconfig 1.0.1 Uninstalling smdebug-rulesconfig-1.0.1: Successfully uninstalled smdebug-rulesconfig-1.0.1 Attempting uninstall: sagemaker Found existing installation: sagemaker 2.31.1 Uninstalling sagemaker-2.31.1: Successfully uninstalled sagemaker-2.31.1 Successfully installed sagemaker-1.72.0 smdebug-rulesconfig-0.1.4 ###Markdown Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output 'get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2. There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='1.0-1'. For example: get_image_uri(region, 'xgboost', '1.0-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2021-04-20 16:37:05 Starting - Launching requested ML instances......... 2021-04-20 16:38:10 Starting - Preparing the instances for training...... 2021-04-20 16:39:34 Downloading - Downloading input data... 2021-04-20 16:40:05 Training - Downloading the training image... 2021-04-20 16:40:38 Uploading - Uploading generated training model 2021-04-20 16:40:38 Completed - Training job completed Arguments: train [2021-04-20:16:40:26:INFO] Running standalone xgboost training. [2021-04-20:16:40:26:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8421.91mb [2021-04-20:16:40:26:INFO] Determined delimiter of CSV input is ',' [16:40:26] S3DistributionType set as FullyReplicated [16:40:26] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2021-04-20:16:40:26:INFO] Determined delimiter of CSV input is ',' [16:40:26] S3DistributionType set as FullyReplicated [16:40:26] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:19.3544#011validation-rmse:18.9613 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [1]#011train-rmse:15.7937#011validation-rmse:15.4168 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [2]#011train-rmse:12.999#011validation-rmse:12.4933 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [3]#011train-rmse:10.6904#011validation-rmse:10.157 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [4]#011train-rmse:8.9237#011validation-rmse:8.36138 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.48572#011validation-rmse:7.02786 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [6]#011train-rmse:6.31324#011validation-rmse:5.94813 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [7]#011train-rmse:5.37586#011validation-rmse:5.09657 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [8]#011train-rmse:4.61952#011validation-rmse:4.3503 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [9]#011train-rmse:4.02452#011validation-rmse:3.85011 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [10]#011train-rmse:3.58894#011validation-rmse:3.44295 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 2 pruned nodes, max_depth=5 [11]#011train-rmse:3.22007#011validation-rmse:3.12891 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 0 pruned nodes, max_depth=5 [12]#011train-rmse:2.91874#011validation-rmse:2.91647 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 4 pruned nodes, max_depth=5 [13]#011train-rmse:2.69666#011validation-rmse:2.76039 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [14]#011train-rmse:2.52873#011validation-rmse:2.68131 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 2 pruned nodes, max_depth=5 [15]#011train-rmse:2.37425#011validation-rmse:2.61352 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [16]#011train-rmse:2.24411#011validation-rmse:2.58492 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 30 extra nodes, 0 pruned nodes, max_depth=5 [17]#011train-rmse:2.13914#011validation-rmse:2.57637 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 8 pruned nodes, max_depth=5 [18]#011train-rmse:2.08504#011validation-rmse:2.57951 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [19]#011train-rmse:2.00727#011validation-rmse:2.56486 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:1.92068#011validation-rmse:2.58371 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [21]#011train-rmse:1.89517#011validation-rmse:2.56571 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [22]#011train-rmse:1.85608#011validation-rmse:2.57257 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [23]#011train-rmse:1.83671#011validation-rmse:2.58019 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 4 pruned nodes, max_depth=5 [24]#011train-rmse:1.78803#011validation-rmse:2.59017 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [25]#011train-rmse:1.75715#011validation-rmse:2.59203 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [26]#011train-rmse:1.68562#011validation-rmse:2.59473 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 4 pruned nodes, max_depth=5 [27]#011train-rmse:1.59945#011validation-rmse:2.57609 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [28]#011train-rmse:1.53908#011validation-rmse:2.56628 [16:40:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [29]#011train-rmse:1.48873#011validation-rmse:2.57084 Stopping. Best iteration: [19]#011train-rmse:2.00727#011validation-rmse:2.56486  Training seconds: 64 Billable seconds: 64 ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ......................................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 3.0 KiB/3.0 KiB (58.6 KiB/s) with 1 file(s) remaining download: s3://sagemaker-ap-south-1-135661043022/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output WARNING:root:There is a more up to date SageMaker XGBoost image.To use the newer image, please set 'repo_version'='0.90-1. For example: get_image_uri(region, 'xgboost', 0.90-1). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2019-08-27 21:40:34 Starting - Starting the training job... 2019-08-27 21:40:37 Starting - Launching requested ML instances... 2019-08-27 21:41:33 Starting - Preparing the instances for training...... 2019-08-27 21:42:33 Downloading - Downloading input data... 2019-08-27 21:43:05 Training - Downloading the training image... 2019-08-27 21:43:35 Uploading - Uploading generated training model 2019-08-27 21:43:35 Completed - Training job completed Arguments: train [2019-08-27:21:43:24:INFO] Running standalone xgboost training. [2019-08-27:21:43:24:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8608.82mb [2019-08-27:21:43:24:INFO] Determined delimiter of CSV input is ',' [21:43:24] S3DistributionType set as FullyReplicated [21:43:24] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2019-08-27:21:43:24:INFO] Determined delimiter of CSV input is ',' [21:43:24] S3DistributionType set as FullyReplicated [21:43:24] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 0 pruned nodes, max_depth=2 [0]#011train-rmse:18.7446#011validation-rmse:20.3114 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=4 [1]#011train-rmse:15.3682#011validation-rmse:16.7187 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [2]#011train-rmse:12.7158#011validation-rmse:13.7853 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [3]#011train-rmse:10.5331#011validation-rmse:11.3954 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [4]#011train-rmse:8.83478#011validation-rmse:9.43905 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [5]#011train-rmse:7.42815#011validation-rmse:7.87723 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [6]#011train-rmse:6.26734#011validation-rmse:6.7776 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 2 pruned nodes, max_depth=5 [7]#011train-rmse:5.37792#011validation-rmse:6.02055 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [8]#011train-rmse:4.63321#011validation-rmse:5.3154 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [9]#011train-rmse:4.0998#011validation-rmse:4.73579 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [10]#011train-rmse:3.66009#011validation-rmse:4.41954 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [11]#011train-rmse:3.27343#011validation-rmse:4.12977 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [12]#011train-rmse:2.94521#011validation-rmse:3.99836 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [13]#011train-rmse:2.72809#011validation-rmse:3.87834 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [14]#011train-rmse:2.56878#011validation-rmse:3.80722 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.44744#011validation-rmse:3.76946 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [16]#011train-rmse:2.35383#011validation-rmse:3.75243 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [17]#011train-rmse:2.27894#011validation-rmse:3.76212 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [18]#011train-rmse:2.18099#011validation-rmse:3.7393 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [19]#011train-rmse:2.10517#011validation-rmse:3.73472 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:2.04672#011validation-rmse:3.74278 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [21]#011train-rmse:1.99714#011validation-rmse:3.75499 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [22]#011train-rmse:1.94976#011validation-rmse:3.74308 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [23]#011train-rmse:1.90629#011validation-rmse:3.7271 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=5 [24]#011train-rmse:1.87513#011validation-rmse:3.75118 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [25]#011train-rmse:1.84555#011validation-rmse:3.76824 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [26]#011train-rmse:1.79244#011validation-rmse:3.79013 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [27]#011train-rmse:1.74069#011validation-rmse:3.78957 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [28]#011train-rmse:1.66631#011validation-rmse:3.79269 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [29]#011train-rmse:1.58647#011validation-rmse:3.7964 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 10 pruned nodes, max_depth=5 [30]#011train-rmse:1.54195#011validation-rmse:3.79581 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [31]#011train-rmse:1.50808#011validation-rmse:3.77676 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [32]#011train-rmse:1.49174#011validation-rmse:3.76672 [21:43:24] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [33]#011train-rmse:1.46133#011validation-rmse:3.77876 Stopping. Best iteration: [23]#011train-rmse:1.90629#011validation-rmse:3.7271  Training seconds: 62 Billable seconds: 62 ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ........................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 2.3 KiB/2.3 KiB (36.7 KiB/s) with 1 file(s) remaining download: s3://sagemaker-us-east-2-080917825853/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output 'get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2. WARNING:root:There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='1.0-1'. For example: get_image_uri(region, 'xgboost', '1.0-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-07-15 21:20:56 Starting - Preparing the instances for training 2020-07-15 21:20:56 Downloading - Downloading input data 2020-07-15 21:20:56 Training - Training image download completed. Training in progress. 2020-07-15 21:20:56 Uploading - Uploading generated training model 2020-07-15 21:20:56 Completed - Training job completedArguments: train [2020-07-15:21:20:44:INFO] Running standalone xgboost training. [2020-07-15:21:20:44:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8486.62mb [2020-07-15:21:20:44:INFO] Determined delimiter of CSV input is ',' [21:20:44] S3DistributionType set as FullyReplicated [21:20:44] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2020-07-15:21:20:44:INFO] Determined delimiter of CSV input is ',' [21:20:44] S3DistributionType set as FullyReplicated [21:20:44] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [0]#011train-rmse:19.3131#011validation-rmse:19.3677 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=3 [1]#011train-rmse:15.7725#011validation-rmse:15.7909 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=4 [2]#011train-rmse:12.9638#011validation-rmse:13.1836 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=4 [3]#011train-rmse:10.6746#011validation-rmse:10.881 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [4]#011train-rmse:8.89508#011validation-rmse:9.08898 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=4 [5]#011train-rmse:7.484#011validation-rmse:7.62423 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 4 pruned nodes, max_depth=5 [6]#011train-rmse:6.32533#011validation-rmse:6.41224 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 6 pruned nodes, max_depth=5 [7]#011train-rmse:5.40288#011validation-rmse:5.58798 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [8]#011train-rmse:4.60501#011validation-rmse:4.91192 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [9]#011train-rmse:4.02601#011validation-rmse:4.41009 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [10]#011train-rmse:3.53431#011validation-rmse:4.06278 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 6 pruned nodes, max_depth=5 [11]#011train-rmse:3.14778#011validation-rmse:3.76259 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [12]#011train-rmse:2.88295#011validation-rmse:3.53324 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [13]#011train-rmse:2.71146#011validation-rmse:3.37197 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [14]#011train-rmse:2.57289#011validation-rmse:3.26341 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.41069#011validation-rmse:3.18323 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [16]#011train-rmse:2.33048#011validation-rmse:3.12445 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [17]#011train-rmse:2.20356#011validation-rmse:3.07399 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [18]#011train-rmse:2.1333#011validation-rmse:3.03724 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [19]#011train-rmse:2.09564#011validation-rmse:3.02887 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [20]#011train-rmse:2.03774#011validation-rmse:3.01375 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [21]#011train-rmse:1.99402#011validation-rmse:3.02047 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [22]#011train-rmse:1.963#011validation-rmse:3.01568 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 6 pruned nodes, max_depth=5 [23]#011train-rmse:1.89907#011validation-rmse:2.99705 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [24]#011train-rmse:1.87026#011validation-rmse:2.99435 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [25]#011train-rmse:1.84251#011validation-rmse:2.98808 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [26]#011train-rmse:1.76376#011validation-rmse:2.97719 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [27]#011train-rmse:1.74317#011validation-rmse:2.98012 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 4 pruned nodes, max_depth=5 [28]#011train-rmse:1.69456#011validation-rmse:2.98028 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [29]#011train-rmse:1.62058#011validation-rmse:2.95072 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [30]#011train-rmse:1.59493#011validation-rmse:2.96544 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 4 pruned nodes, max_depth=5 [31]#011train-rmse:1.54787#011validation-rmse:2.92863 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [32]#011train-rmse:1.49938#011validation-rmse:2.9007 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [33]#011train-rmse:1.46365#011validation-rmse:2.89019 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [34]#011train-rmse:1.43576#011validation-rmse:2.87515 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [35]#011train-rmse:1.41387#011validation-rmse:2.866 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 8 pruned nodes, max_depth=5 [36]#011train-rmse:1.3775#011validation-rmse:2.83455 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 12 pruned nodes, max_depth=5 [37]#011train-rmse:1.34647#011validation-rmse:2.84426 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 8 pruned nodes, max_depth=5 [38]#011train-rmse:1.31449#011validation-rmse:2.84333 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [39]#011train-rmse:1.29226#011validation-rmse:2.86315 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [40]#011train-rmse:1.26824#011validation-rmse:2.86945 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [41]#011train-rmse:1.2455#011validation-rmse:2.85772 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [42]#011train-rmse:1.22973#011validation-rmse:2.86418 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [43]#011train-rmse:1.21966#011validation-rmse:2.84275 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 12 pruned nodes, max_depth=3 [44]#011train-rmse:1.21451#011validation-rmse:2.83971 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 10 pruned nodes, max_depth=3 [45]#011train-rmse:1.19419#011validation-rmse:2.84262 [21:20:44] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 10 pruned nodes, max_depth=5 [46]#011train-rmse:1.18813#011validation-rmse:2.83644 Stopping. Best iteration: [36]#011train-rmse:1.3775#011validation-rmse:2.83455  Training seconds: 46 Billable seconds: 46 ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ...........................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output _____no_output_____ ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost', '0.90-1') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output _____no_output_____ ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-04-26 17:49:49 Starting - Launching requested ML instances...... 2020-04-26 17:50:49 Starting - Preparing the instances for training...... 2020-04-26 17:51:47 Downloading - Downloading input data... 2020-04-26 17:52:12 Training - Downloading the training image... 2020-04-26 17:52:49 Uploading - Uploading generated training model 2020-04-26 17:52:49 Completed - Training job completed INFO:sagemaker-containers:Imported framework sagemaker_xgboost_container.training INFO:sagemaker-containers:Failed to parse hyperparameter objective value reg:linear to Json. Returning the value itself INFO:sagemaker-containers:No GPUs detected (normal if no gpus installed) INFO:sagemaker_xgboost_container.training:Running XGBoost Sagemaker in algorithm mode INFO:root:Determined delimiter of CSV input is ',' INFO:root:Determined delimiter of CSV input is ',' INFO:root:Determined delimiter of CSV input is ',' [17:52:38] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, INFO:root:Determined delimiter of CSV input is ',' [17:52:38] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, INFO:root:Single node training. INFO:root:Train matrix has 227 rows INFO:root:Validation matrix has 112 rows [17:52:38] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [0]#011train-rmse:19.857#011validation-rmse:20.0832 [1]#011train-rmse:16.2128#011validation-rmse:16.3931 [2]#011train-rmse:13.2992#011validation-rmse:13.4946 [3]#011train-rmse:10.9037#011validation-rmse:11.2556 [4]#011train-rmse:8.96658#011validation-rmse:9.3318 [5]#011train-rmse:7.47607#011validation-rmse:7.93902 [6]#011train-rmse:6.33904#011validation-rmse:6.90935 [7]#011train-rmse:5.4345#011validation-rmse:6.13651 [8]#011train-rmse:4.63955#011validation-rmse:5.55331 [9]#011train-rmse:4.06301#011validation-rmse:5.16625 [10]#011train-rmse:3.60145#011validation-rmse:4.98551 [11]#011train-rmse:3.20871#011validation-rmse:4.83409 [12]#011train-rmse:2.90332#011validation-rmse:4.69032 [13]#011train-rmse:2.68747#011validation-rmse:4.59865 [14]#011train-rmse:2.45322#011validation-rmse:4.58851 [15]#011train-rmse:2.30508#011validation-rmse:4.57328 [16]#011train-rmse:2.1798#011validation-rmse:4.60795 [17]#011train-rmse:2.06882#011validation-rmse:4.57974 [18]#011train-rmse:1.98415#011validation-rmse:4.61893 [19]#011train-rmse:1.93782#011validation-rmse:4.61695 [20]#011train-rmse:1.88722#011validation-rmse:4.66425 [21]#011train-rmse:1.84453#011validation-rmse:4.66202 [22]#011train-rmse:1.79772#011validation-rmse:4.65719 [23]#011train-rmse:1.77737#011validation-rmse:4.67169 [24]#011train-rmse:1.74203#011validation-rmse:4.66672 [25]#011train-rmse:1.68991#011validation-rmse:4.66873 Training seconds: 62 Billable seconds: 62 ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ..............................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) print(transform_output) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 3.0 KiB/3.0 KiB (53.1 KiB/s) with 1 file(s) remaining download: s3://sagemaker-us-east-2-037690205935/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. ###Code # Make sure that we use SageMaker 1.x !pip install sagemaker==1.72.0 ###Output Collecting sagemaker==1.72.0 Downloading sagemaker-1.72.0.tar.gz (297 kB)  |████████████████████████████████| 297 kB 41.4 MB/s eta 0:00:01 [?25hRequirement already satisfied: boto3>=1.14.12 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.16.19) Requirement already satisfied: numpy>=1.9.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.18.1) Requirement already satisfied: protobuf>=3.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (3.11.4) Requirement already satisfied: scipy>=0.19.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.4.1) Requirement already satisfied: protobuf3-to-dict>=0.1.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (0.1.5) Collecting smdebug-rulesconfig==0.1.4 Downloading smdebug_rulesconfig-0.1.4-py2.py3-none-any.whl (10 kB) Requirement already satisfied: importlib-metadata>=1.4.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (2.0.0) Requirement already satisfied: packaging>=20.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (20.1) Requirement already satisfied: s3transfer<0.4.0,>=0.3.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.3.3) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.10.0) Requirement already satisfied: botocore<1.20.0,>=1.19.19 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (1.19.19) Requirement already satisfied: six>=1.9 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from protobuf>=3.1->sagemaker==1.72.0) (1.14.0) Requirement already satisfied: setuptools in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from protobuf>=3.1->sagemaker==1.72.0) (45.2.0.post20200210) Requirement already satisfied: zipp>=0.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from importlib-metadata>=1.4.0->sagemaker==1.72.0) (2.2.0) Requirement already satisfied: pyparsing>=2.0.2 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from packaging>=20.0->sagemaker==1.72.0) (2.4.6) Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.20.0,>=1.19.19->boto3>=1.14.12->sagemaker==1.72.0) (2.8.1) Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.20.0,>=1.19.19->boto3>=1.14.12->sagemaker==1.72.0) (1.25.10) Building wheels for collected packages: sagemaker Building wheel for sagemaker (setup.py) ... [?25ldone [?25h Created wheel for sagemaker: filename=sagemaker-1.72.0-py2.py3-none-any.whl size=386358 sha256=a54fee13acf38a3078ba71a95b0fcce300019dad296f9efd0342d37c1b8351d6 Stored in directory: /home/ec2-user/.cache/pip/wheels/c3/58/70/85faf4437568bfaa4c419937569ba1fe54d44c5db42406bbd7 Successfully built sagemaker Installing collected packages: smdebug-rulesconfig, sagemaker Attempting uninstall: smdebug-rulesconfig Found existing installation: smdebug-rulesconfig 0.1.6 Uninstalling smdebug-rulesconfig-0.1.6: Successfully uninstalled smdebug-rulesconfig-0.1.6 Attempting uninstall: sagemaker Found existing installation: sagemaker 2.16.4.dev0 Uninstalling sagemaker-2.16.4.dev0: Successfully uninstalled sagemaker-2.16.4.dev0 Successfully installed sagemaker-1.72.0 smdebug-rulesconfig-0.1.4 WARNING: You are using pip version 20.0.2; however, version 20.3.3 is available. You should consider upgrading via the '/home/ec2-user/anaconda3/envs/pytorch_p36/bin/python -m pip install --upgrade pip' command. ###Markdown Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output 'get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2. There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='1.0-1'. For example: get_image_uri(region, 'xgboost', '1.0-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-12-17 03:42:31 Starting - Starting the training job... 2020-12-17 03:42:33 Starting - Launching requested ML instances...... 2020-12-17 03:43:48 Starting - Preparing the instances for training...... 2020-12-17 03:44:42 Downloading - Downloading input data... 2020-12-17 03:45:17 Training - Downloading the training image..Arguments: train [2020-12-17:03:45:38:INFO] Running standalone xgboost training. [2020-12-17:03:45:38:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8446.92mb [2020-12-17:03:45:38:INFO] Determined delimiter of CSV input is ',' [03:45:38] S3DistributionType set as FullyReplicated [03:45:38] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2020-12-17:03:45:38:INFO] Determined delimiter of CSV input is ',' [03:45:38] S3DistributionType set as FullyReplicated [03:45:38] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:19.7065#011validation-rmse:18.5842 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [1]#011train-rmse:16.1671#011validation-rmse:15.2685 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=3 [2]#011train-rmse:13.2144#011validation-rmse:12.5412 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [3]#011train-rmse:10.8785#011validation-rmse:10.3291 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=4 [4]#011train-rmse:9.08219#011validation-rmse:8.6974 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.59479#011validation-rmse:7.33901 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [6]#011train-rmse:6.39213#011validation-rmse:6.31128 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [7]#011train-rmse:5.48037#011validation-rmse:5.61484 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 2 pruned nodes, max_depth=5 [8]#011train-rmse:4.70741#011validation-rmse:5.02152 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 30 extra nodes, 2 pruned nodes, max_depth=5 [9]#011train-rmse:4.15645#011validation-rmse:4.65854 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [10]#011train-rmse:3.69245#011validation-rmse:4.33171 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [11]#011train-rmse:3.34931#011validation-rmse:4.07579 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [12]#011train-rmse:3.04768#011validation-rmse:3.8819 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [13]#011train-rmse:2.78618#011validation-rmse:3.72065 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [14]#011train-rmse:2.63808#011validation-rmse:3.70509 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [15]#011train-rmse:2.50284#011validation-rmse:3.6421 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [16]#011train-rmse:2.37132#011validation-rmse:3.57954 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [17]#011train-rmse:2.29844#011validation-rmse:3.56863 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [18]#011train-rmse:2.19925#011validation-rmse:3.49482 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 6 pruned nodes, max_depth=5 [19]#011train-rmse:2.13312#011validation-rmse:3.4643 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [20]#011train-rmse:2.07915#011validation-rmse:3.45007 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [21]#011train-rmse:2.01566#011validation-rmse:3.42334 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [22]#011train-rmse:1.96578#011validation-rmse:3.37898 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [23]#011train-rmse:1.9326#011validation-rmse:3.37188 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [24]#011train-rmse:1.89971#011validation-rmse:3.34891 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 4 pruned nodes, max_depth=5 [25]#011train-rmse:1.79644#011validation-rmse:3.36891 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [26]#011train-rmse:1.75075#011validation-rmse:3.32175 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 4 pruned nodes, max_depth=5 [27]#011train-rmse:1.65705#011validation-rmse:3.2801 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 6 pruned nodes, max_depth=5 [28]#011train-rmse:1.61417#011validation-rmse:3.28417 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [29]#011train-rmse:1.58175#011validation-rmse:3.30193 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 12 pruned nodes, max_depth=5 [30]#011train-rmse:1.5509#011validation-rmse:3.32142 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [31]#011train-rmse:1.51497#011validation-rmse:3.3001 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [32]#011train-rmse:1.45906#011validation-rmse:3.27012 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 8 pruned nodes, max_depth=5 [33]#011train-rmse:1.4385#011validation-rmse:3.24937 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [34]#011train-rmse:1.40865#011validation-rmse:3.22099 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [35]#011train-rmse:1.39844#011validation-rmse:3.23563 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 6 pruned nodes, max_depth=4 [36]#011train-rmse:1.38464#011validation-rmse:3.22714 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [37]#011train-rmse:1.36937#011validation-rmse:3.22625 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 6 pruned nodes, max_depth=5 [38]#011train-rmse:1.36435#011validation-rmse:3.23085 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [39]#011train-rmse:1.34749#011validation-rmse:3.21578 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 8 pruned nodes, max_depth=5 [40]#011train-rmse:1.29011#011validation-rmse:3.19104 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [41]#011train-rmse:1.26507#011validation-rmse:3.17801 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 6 pruned nodes, max_depth=3 [42]#011train-rmse:1.25664#011validation-rmse:3.17489 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 10 pruned nodes, max_depth=5 [43]#011train-rmse:1.23078#011validation-rmse:3.15502 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [44]#011train-rmse:1.20449#011validation-rmse:3.14924 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 16 pruned nodes, max_depth=2 [45]#011train-rmse:1.20568#011validation-rmse:3.15654 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 14 pruned nodes, max_depth=5 [46]#011train-rmse:1.18716#011validation-rmse:3.15701 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 10 pruned nodes, max_depth=1 [47]#011train-rmse:1.1816#011validation-rmse:3.14747 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 12 pruned nodes, max_depth=5 [48]#011train-rmse:1.1653#011validation-rmse:3.13868 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [49]#011train-rmse:1.14584#011validation-rmse:3.13437 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 8 pruned nodes, max_depth=4 [50]#011train-rmse:1.13731#011validation-rmse:3.12423 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 20 pruned nodes, max_depth=3 [51]#011train-rmse:1.11298#011validation-rmse:3.11808 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 12 pruned nodes, max_depth=4 [52]#011train-rmse:1.09732#011validation-rmse:3.10818 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 14 pruned nodes, max_depth=4 [53]#011train-rmse:1.06984#011validation-rmse:3.12214 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 8 pruned nodes, max_depth=5 [54]#011train-rmse:1.04907#011validation-rmse:3.12844 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 20 pruned nodes, max_depth=4 [55]#011train-rmse:1.03942#011validation-rmse:3.11977 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [56]#011train-rmse:1.02553#011validation-rmse:3.11341 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 8 pruned nodes, max_depth=5 [57]#011train-rmse:1.00393#011validation-rmse:3.11076 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 18 pruned nodes, max_depth=1 [58]#011train-rmse:1.00433#011validation-rmse:3.1192 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 20 pruned nodes, max_depth=2 [59]#011train-rmse:0.996355#011validation-rmse:3.11243 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 22 pruned nodes, max_depth=3 [60]#011train-rmse:0.97763#011validation-rmse:3.11046 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 26 pruned nodes, max_depth=1 [61]#011train-rmse:0.977801#011validation-rmse:3.11732 [03:45:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [62]#011train-rmse:0.977827#011validation-rmse:3.11705 Stopping. Best iteration: [52]#011train-rmse:1.09732#011validation-rmse:3.10818  ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ..........................................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 2.3 KiB/2.3 KiB (28.7 KiB/s) with 1 file(s) remaining download: s3://sagemaker-us-east-1-302590777472/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output WARNING:root:There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='0.90-1'. For example: get_image_uri(region, 'xgboost', '0.90-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output _____no_output_____ ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output _____no_output_____ ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output _____no_output_____ ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output 'get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2. There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='1.0-1'. For example: get_image_uri(region, 'xgboost', '1.0-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-09-25 14:16:29 Starting - Launching requested ML instances...... 2020-09-25 14:17:37 Starting - Preparing the instances for training...... 2020-09-25 14:18:25 Downloading - Downloading input data... 2020-09-25 14:18:44 Training - Downloading the training image.Arguments: train [2020-09-25:14:19:04:INFO] Running standalone xgboost training. [2020-09-25:14:19:04:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8470.47mb [2020-09-25:14:19:04:INFO] Determined delimiter of CSV input is ',' [14:19:04] S3DistributionType set as FullyReplicated [14:19:04] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2020-09-25:14:19:04:INFO] Determined delimiter of CSV input is ',' [14:19:04] S3DistributionType set as FullyReplicated [14:19:04] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:19.3026#011validation-rmse:18.8207 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [1]#011train-rmse:15.7897#011validation-rmse:15.3731 [2]#011train-rmse:12.9123#011validation-rmse:12.687 [3]#011train-rmse:10.605#011validation-rmse:10.5764 [4]#011train-rmse:8.75906#011validation-rmse:8.95235 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 4 pruned nodes, max_depth=5 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 0 pruned nodes, max_depth=5 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 4 pruned nodes, max_depth=5 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 4 pruned nodes, max_depth=5 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 2 pruned nodes, max_depth=5 [5]#011train-rmse:7.30053#011validation-rmse:7.76143 [6]#011train-rmse:6.14763#011validation-rmse:6.83042 [7]#011train-rmse:5.22542#011validation-rmse:6.22573 [8]#011train-rmse:4.48973#011validation-rmse:5.73064 [9]#011train-rmse:3.91534#011validation-rmse:5.35467 [10]#011train-rmse:3.48694#011validation-rmse:5.11529 [11]#011train-rmse:3.1468#011validation-rmse:4.93854 [12]#011train-rmse:2.87099#011validation-rmse:4.83464 [13]#011train-rmse:2.69133#011validation-rmse:4.75837 [14]#011train-rmse:2.54452#011validation-rmse:4.68176 [15]#011train-rmse:2.42523#011validation-rmse:4.65465 [16]#011train-rmse:2.31566#011validation-rmse:4.63384 [17]#011train-rmse:2.17176#011validation-rmse:4.63517 [18]#011train-rmse:2.09744#011validation-rmse:4.58876 [19]#011train-rmse:2.03987#011validation-rmse:4.61157 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [20]#011train-rmse:1.95711#011validation-rmse:4.54262 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [21]#011train-rmse:1.91098#011validation-rmse:4.52819 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 2 pruned nodes, max_depth=5 [22]#011train-rmse:1.82428#011validation-rmse:4.46005 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [23]#011train-rmse:1.78544#011validation-rmse:4.43534 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [24]#011train-rmse:1.73691#011validation-rmse:4.35008 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [25]#011train-rmse:1.70083#011validation-rmse:4.32845 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [26]#011train-rmse:1.65479#011validation-rmse:4.32952 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 8 pruned nodes, max_depth=5 [27]#011train-rmse:1.59494#011validation-rmse:4.32859 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [28]#011train-rmse:1.56743#011validation-rmse:4.27241 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [29]#011train-rmse:1.55706#011validation-rmse:4.29764 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 6 pruned nodes, max_depth=2 [30]#011train-rmse:1.55#011validation-rmse:4.27712 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 8 pruned nodes, max_depth=5 [31]#011train-rmse:1.49524#011validation-rmse:4.28749 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 8 pruned nodes, max_depth=4 [32]#011train-rmse:1.47208#011validation-rmse:4.25974 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 8 pruned nodes, max_depth=5 [33]#011train-rmse:1.4543#011validation-rmse:4.24212 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [34]#011train-rmse:1.41346#011validation-rmse:4.23453 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 6 pruned nodes, max_depth=3 [35]#011train-rmse:1.38142#011validation-rmse:4.19044 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 8 pruned nodes, max_depth=5 [36]#011train-rmse:1.3472#011validation-rmse:4.18607 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 10 pruned nodes, max_depth=4 [37]#011train-rmse:1.32258#011validation-rmse:4.1569 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 10 pruned nodes, max_depth=4 [38]#011train-rmse:1.30757#011validation-rmse:4.15178 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [39]#011train-rmse:1.2776#011validation-rmse:4.15051 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 8 pruned nodes, max_depth=5 [40]#011train-rmse:1.25532#011validation-rmse:4.12735 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 10 pruned nodes, max_depth=5 [41]#011train-rmse:1.24366#011validation-rmse:4.12647 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 10 pruned nodes, max_depth=1 [42]#011train-rmse:1.23541#011validation-rmse:4.11076 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 8 pruned nodes, max_depth=5 [43]#011train-rmse:1.20841#011validation-rmse:4.08887 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 10 pruned nodes, max_depth=5 [44]#011train-rmse:1.18799#011validation-rmse:4.05191 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 16 pruned nodes, max_depth=3 [45]#011train-rmse:1.17547#011validation-rmse:4.04239 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 8 pruned nodes, max_depth=4 [46]#011train-rmse:1.15438#011validation-rmse:4.04319 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 12 pruned nodes, max_depth=2 [47]#011train-rmse:1.14776#011validation-rmse:4.03192 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 18 pruned nodes, max_depth=4 [48]#011train-rmse:1.13513#011validation-rmse:4.02094 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 4 pruned nodes, max_depth=5 [49]#011train-rmse:1.12721#011validation-rmse:4.02718 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 4 pruned nodes, max_depth=5 [50]#011train-rmse:1.116#011validation-rmse:4.01627 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 12 pruned nodes, max_depth=4 [51]#011train-rmse:1.09528#011validation-rmse:3.98664 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 12 pruned nodes, max_depth=5 [52]#011train-rmse:1.08917#011validation-rmse:3.99214 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 10 pruned nodes, max_depth=4 [53]#011train-rmse:1.08403#011validation-rmse:3.98462 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 10 pruned nodes, max_depth=4 [54]#011train-rmse:1.05489#011validation-rmse:3.98299 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 10 pruned nodes, max_depth=3 [55]#011train-rmse:1.04091#011validation-rmse:3.96258 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 16 pruned nodes, max_depth=1 [56]#011train-rmse:1.03877#011validation-rmse:3.95543 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 18 pruned nodes, max_depth=2 [57]#011train-rmse:1.0294#011validation-rmse:3.9647 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 12 pruned nodes, max_depth=4 [58]#011train-rmse:1.0161#011validation-rmse:3.94334 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 16 pruned nodes, max_depth=0 [59]#011train-rmse:1.0161#011validation-rmse:3.94347 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 22 pruned nodes, max_depth=2 [60]#011train-rmse:1.00374#011validation-rmse:3.93798 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 12 pruned nodes, max_depth=3 [61]#011train-rmse:0.994701#011validation-rmse:3.93634 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 20 pruned nodes, max_depth=2 [62]#011train-rmse:0.989821#011validation-rmse:3.93452 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 18 pruned nodes, max_depth=2 [63]#011train-rmse:0.983868#011validation-rmse:3.92101 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 14 pruned nodes, max_depth=1 [64]#011train-rmse:0.985067#011validation-rmse:3.92646 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 4 pruned nodes, max_depth=5 [65]#011train-rmse:0.975781#011validation-rmse:3.92662 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 14 pruned nodes, max_depth=1 [66]#011train-rmse:0.978054#011validation-rmse:3.93281 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 6 pruned nodes, max_depth=4 [67]#011train-rmse:0.968946#011validation-rmse:3.92875 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 10 pruned nodes, max_depth=3 [68]#011train-rmse:0.963615#011validation-rmse:3.91392 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 12 pruned nodes, max_depth=0 [69]#011train-rmse:0.963625#011validation-rmse:3.91401 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 12 pruned nodes, max_depth=1 [70]#011train-rmse:0.965249#011validation-rmse:3.91957 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [71]#011train-rmse:0.965135#011validation-rmse:3.91932 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 16 pruned nodes, max_depth=2 [72]#011train-rmse:0.951431#011validation-rmse:3.891 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 18 pruned nodes, max_depth=1 [73]#011train-rmse:0.949508#011validation-rmse:3.88594 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 12 pruned nodes, max_depth=3 [74]#011train-rmse:0.938006#011validation-rmse:3.88545 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [75]#011train-rmse:0.922393#011validation-rmse:3.86565 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 26 pruned nodes, max_depth=0 [76]#011train-rmse:0.922427#011validation-rmse:3.8659 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 22 pruned nodes, max_depth=3 [77]#011train-rmse:0.909516#011validation-rmse:3.8554 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 18 pruned nodes, max_depth=2 [78]#011train-rmse:0.906608#011validation-rmse:3.84918 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 16 pruned nodes, max_depth=0 [79]#011train-rmse:0.906622#011validation-rmse:3.84906 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 10 pruned nodes, max_depth=1 [80]#011train-rmse:0.905487#011validation-rmse:3.84467 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 14 pruned nodes, max_depth=0 [81]#011train-rmse:0.905456#011validation-rmse:3.84475 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 18 pruned nodes, max_depth=4 [82]#011train-rmse:0.888487#011validation-rmse:3.86496 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 18 pruned nodes, max_depth=3 [83]#011train-rmse:0.878274#011validation-rmse:3.87801 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 10 pruned nodes, max_depth=5 [84]#011train-rmse:0.867755#011validation-rmse:3.8593 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 12 pruned nodes, max_depth=0 [85]#011train-rmse:0.867763#011validation-rmse:3.85921 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 12 pruned nodes, max_depth=4 [86]#011train-rmse:0.860938#011validation-rmse:3.85567 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 12 pruned nodes, max_depth=0 [87]#011train-rmse:0.860829#011validation-rmse:3.85579 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 20 pruned nodes, max_depth=1 [88]#011train-rmse:0.861011#011validation-rmse:3.86203 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [89]#011train-rmse:0.861024#011validation-rmse:3.86221 [14:19:04] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 16 pruned nodes, max_depth=0 [90]#011train-rmse:0.861062#011validation-rmse:3.86186 Stopping. Best iteration: [80]#011train-rmse:0.905487#011validation-rmse:3.84467  ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ...........................................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 2.3 KiB/2.3 KiB (32.3 KiB/s) with 1 file(s) remaining download: s3://sagemaker-us-east-2-428747017283/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output _____no_output_____ ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output _____no_output_____ ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output _____no_output_____ ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output _____no_output_____ ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. ###Code # Make sure that we use SageMaker 1.x !pip install sagemaker==1.72.0 ###Output Collecting sagemaker==1.72.0 Using cached sagemaker-1.72.0-py2.py3-none-any.whl Requirement already satisfied: boto3>=1.14.12 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.17.16) Requirement already satisfied: importlib-metadata>=1.4.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (3.4.0) Collecting smdebug-rulesconfig==0.1.4 Using cached smdebug_rulesconfig-0.1.4-py2.py3-none-any.whl (10 kB) Requirement already satisfied: protobuf>=3.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (3.11.4) Requirement already satisfied: numpy>=1.9.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.18.1) Requirement already satisfied: protobuf3-to-dict>=0.1.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (0.1.5) Requirement already satisfied: scipy>=0.19.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.4.1) Requirement already satisfied: packaging>=20.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (20.1) Requirement already satisfied: s3transfer<0.4.0,>=0.3.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.3.4) Requirement already satisfied: botocore<1.21.0,>=1.20.16 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (1.20.16) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.10.0) Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.21.0,>=1.20.16->boto3>=1.14.12->sagemaker==1.72.0) (2.8.1) Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.21.0,>=1.20.16->boto3>=1.14.12->sagemaker==1.72.0) (1.25.10) Requirement already satisfied: typing-extensions>=3.6.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from importlib-metadata>=1.4.0->sagemaker==1.72.0) (3.7.4.3) Requirement already satisfied: zipp>=0.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from importlib-metadata>=1.4.0->sagemaker==1.72.0) (2.2.0) Requirement already satisfied: pyparsing>=2.0.2 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from packaging>=20.0->sagemaker==1.72.0) (2.4.6) Requirement already satisfied: six in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from packaging>=20.0->sagemaker==1.72.0) (1.14.0) Requirement already satisfied: setuptools in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from protobuf>=3.1->sagemaker==1.72.0) (45.2.0.post20200210) Installing collected packages: smdebug-rulesconfig, sagemaker Attempting uninstall: smdebug-rulesconfig Found existing installation: smdebug-rulesconfig 1.0.1 Uninstalling smdebug-rulesconfig-1.0.1: Successfully uninstalled smdebug-rulesconfig-1.0.1 Attempting uninstall: sagemaker Found existing installation: sagemaker 2.25.2 Uninstalling sagemaker-2.25.2: Successfully uninstalled sagemaker-2.25.2 Successfully installed sagemaker-1.72.0 smdebug-rulesconfig-0.1.4 ###Markdown Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output 'get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2. There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='1.0-1'. For example: get_image_uri(region, 'xgboost', '1.0-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2021-03-06 22:06:56 Starting - Launching requested ML instances...... 2021-03-06 22:07:59 Starting - Preparing the instances for training...... 2021-03-06 22:09:13 Downloading - Downloading input data 2021-03-06 22:09:13 Training - Downloading the training image... 2021-03-06 22:09:39 Uploading - Uploading generated training modelArguments: train [2021-03-06:22:09:34:INFO] Running standalone xgboost training. [2021-03-06:22:09:34:INFO] File size need to be processed in the node: 0.03mb. Available memory size in the node: 8447.92mb [2021-03-06:22:09:34:INFO] Determined delimiter of CSV input is ',' [22:09:34] S3DistributionType set as FullyReplicated [22:09:34] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2021-03-06:22:09:34:INFO] Determined delimiter of CSV input is ',' [22:09:34] S3DistributionType set as FullyReplicated [22:09:34] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 2 pruned nodes, max_depth=2 [0]#011train-rmse:19.0133#011validation-rmse:20.4131 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [1]#011train-rmse:15.563#011validation-rmse:16.77 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=3 [2]#011train-rmse:12.7543#011validation-rmse:13.885 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [3]#011train-rmse:10.585#011validation-rmse:11.7265 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [4]#011train-rmse:8.81173#011validation-rmse:9.73879 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.4135#011validation-rmse:8.3298 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 4 pruned nodes, max_depth=5 [6]#011train-rmse:6.2396#011validation-rmse:7.17067 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [7]#011train-rmse:5.32691#011validation-rmse:6.35407 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 0 pruned nodes, max_depth=5 [8]#011train-rmse:4.56633#011validation-rmse:5.6986 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [9]#011train-rmse:3.9854#011validation-rmse:5.19529 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [10]#011train-rmse:3.57145#011validation-rmse:4.90821 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [11]#011train-rmse:3.21947#011validation-rmse:4.59762 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [12]#011train-rmse:2.94027#011validation-rmse:4.41136 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [13]#011train-rmse:2.73156#011validation-rmse:4.28288 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 2 pruned nodes, max_depth=5 [14]#011train-rmse:2.53491#011validation-rmse:4.20839 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 6 pruned nodes, max_depth=5 [15]#011train-rmse:2.39359#011validation-rmse:4.15878 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [16]#011train-rmse:2.2927#011validation-rmse:4.12305 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [17]#011train-rmse:2.21078#011validation-rmse:4.0841 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [18]#011train-rmse:2.14364#011validation-rmse:4.04321 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [19]#011train-rmse:2.03457#011validation-rmse:4.01935 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:2.00659#011validation-rmse:4.00129 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [21]#011train-rmse:1.90176#011validation-rmse:3.94567 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [22]#011train-rmse:1.85004#011validation-rmse:3.91591 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [23]#011train-rmse:1.81268#011validation-rmse:3.90733 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [24]#011train-rmse:1.75597#011validation-rmse:3.89994 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [25]#011train-rmse:1.71317#011validation-rmse:3.86929 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [26]#011train-rmse:1.6497#011validation-rmse:3.84161 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [27]#011train-rmse:1.60305#011validation-rmse:3.8319 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [28]#011train-rmse:1.56476#011validation-rmse:3.83971 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [29]#011train-rmse:1.52867#011validation-rmse:3.84427 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 8 pruned nodes, max_depth=5 [30]#011train-rmse:1.49985#011validation-rmse:3.85014 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [31]#011train-rmse:1.47527#011validation-rmse:3.84552 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=4 [32]#011train-rmse:1.44001#011validation-rmse:3.82954 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 2 pruned nodes, max_depth=4 [33]#011train-rmse:1.43573#011validation-rmse:3.82847 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 6 pruned nodes, max_depth=5 [34]#011train-rmse:1.39624#011validation-rmse:3.84336 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 4 pruned nodes, max_depth=5 [35]#011train-rmse:1.34574#011validation-rmse:3.85026 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [36]#011train-rmse:1.30678#011validation-rmse:3.83752 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [37]#011train-rmse:1.26443#011validation-rmse:3.86382 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [38]#011train-rmse:1.24448#011validation-rmse:3.8519 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 14 pruned nodes, max_depth=4 [39]#011train-rmse:1.21439#011validation-rmse:3.83985 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [40]#011train-rmse:1.18818#011validation-rmse:3.85667 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=4 [41]#011train-rmse:1.16266#011validation-rmse:3.84795 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 10 pruned nodes, max_depth=5 [42]#011train-rmse:1.13203#011validation-rmse:3.86348 [22:09:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 10 pruned nodes, max_depth=5 [43]#011train-rmse:1.10376#011validation-rmse:3.85766 Stopping. Best iteration: [33]#011train-rmse:1.43573#011validation-rmse:3.82847  ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ..........................................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 2.3 KiB/2.3 KiB (36.0 KiB/s) with 1 file(s) remaining download: s3://sagemaker-eu-west-2-266442167964/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output _____no_output_____ ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2019-05-13 19:20:48 Starting - Starting the training job... 2019-05-13 19:20:49 Starting - Launching requested ML instances...... 2019-05-13 19:21:50 Starting - Preparing the instances for training...... 2019-05-13 19:22:57 Downloading - Downloading input data.. Arguments: train [2019-05-13:19:23:29:INFO] Running standalone xgboost training. [2019-05-13:19:23:29:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8408.31mb [2019-05-13:19:23:29:INFO] Determined delimiter of CSV input is ',' [19:23:29] S3DistributionType set as FullyReplicated [19:23:29] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2019-05-13:19:23:29:INFO] Determined delimiter of CSV input is ',' [19:23:29] S3DistributionType set as FullyReplicated [19:23:29] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:19.1877#011validation-rmse:20.8109 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [1]#011train-rmse:15.6164#011validation-rmse:17.0394 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=4 [2]#011train-rmse:12.87#011validation-rmse:14.065 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [3]#011train-rmse:10.6443#011validation-rmse:11.7172 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [4]#011train-rmse:8.84818#011validation-rmse:9.77126 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.48938#011validation-rmse:8.3451 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 0 pruned nodes, max_depth=5 [6]#011train-rmse:6.38541#011validation-rmse:7.22537 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [7]#011train-rmse:5.49051#011validation-rmse:6.32009 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [8]#011train-rmse:4.72935#011validation-rmse:5.58608 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [9]#011train-rmse:4.11245#011validation-rmse:5.02404 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [10]#011train-rmse:3.70679#011validation-rmse:4.66192 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [11]#011train-rmse:3.31103#011validation-rmse:4.30804 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [12]#011train-rmse:3.0436#011validation-rmse:4.06519 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [13]#011train-rmse:2.85228#011validation-rmse:3.87974 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 0 pruned nodes, max_depth=5 [14]#011train-rmse:2.6142#011validation-rmse:3.72517 [15]#011train-rmse:2.46766#011validation-rmse:3.60172 [16]#011train-rmse:2.37278#011validation-rmse:3.50086 [17]#011train-rmse:2.29178#011validation-rmse:3.36304 [18]#011train-rmse:2.23289#011validation-rmse:3.30724 [19]#011train-rmse:2.17642#011validation-rmse:3.28215 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:2.13221#011validation-rmse:3.29723 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [21]#011train-rmse:2.07872#011validation-rmse:3.22863 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [22]#011train-rmse:2.05821#011validation-rmse:3.19409 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [23]#011train-rmse:2.00547#011validation-rmse:3.12429 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [24]#011train-rmse:1.97759#011validation-rmse:3.14733 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [25]#011train-rmse:1.91685#011validation-rmse:3.17038 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 4 pruned nodes, max_depth=5 [26]#011train-rmse:1.81581#011validation-rmse:3.13649 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [27]#011train-rmse:1.77877#011validation-rmse:3.14364 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [28]#011train-rmse:1.74731#011validation-rmse:3.12877 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [29]#011train-rmse:1.65333#011validation-rmse:3.11497 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [30]#011train-rmse:1.59363#011validation-rmse:3.0535 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 4 pruned nodes, max_depth=5 [31]#011train-rmse:1.52059#011validation-rmse:3.00312 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 6 pruned nodes, max_depth=5 [32]#011train-rmse:1.48754#011validation-rmse:3.02415 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [33]#011train-rmse:1.47963#011validation-rmse:3.03443 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 8 pruned nodes, max_depth=5 [34]#011train-rmse:1.42069#011validation-rmse:3.0296 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 6 pruned nodes, max_depth=5 [35]#011train-rmse:1.38305#011validation-rmse:3.03351 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [36]#011train-rmse:1.36481#011validation-rmse:3.00463 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [37]#011train-rmse:1.35006#011validation-rmse:3.01029 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [38]#011train-rmse:1.31635#011validation-rmse:3.01064 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=5 [39]#011train-rmse:1.30499#011validation-rmse:3.00363 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [40]#011train-rmse:1.28969#011validation-rmse:3.00843 [19:23:29] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [41]#011train-rmse:1.26204#011validation-rmse:3.02095 Stopping. Best iteration: [31]#011train-rmse:1.52059#011validation-rmse:3.00312  ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output .........................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 2.3 KiB/2.3 KiB (38.8 KiB/s) with 1 file(s) remaining download: s3://sagemaker-us-east-2-129722534204/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. ###Code # Make sure that we use SageMaker 1.x !pip install sagemaker==1.72.0 ###Output Collecting sagemaker==1.72.0 Downloading sagemaker-1.72.0.tar.gz (297 kB)  |████████████████████████████████| 297 kB 13.8 MB/s eta 0:00:01 [?25hRequirement already satisfied: boto3>=1.14.12 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.16.19) Requirement already satisfied: numpy>=1.9.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.18.1) Requirement already satisfied: protobuf>=3.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (3.11.4) Requirement already satisfied: scipy>=0.19.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.4.1) Requirement already satisfied: protobuf3-to-dict>=0.1.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (0.1.5) Collecting smdebug-rulesconfig==0.1.4 Downloading smdebug_rulesconfig-0.1.4-py2.py3-none-any.whl (10 kB) Requirement already satisfied: importlib-metadata>=1.4.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (2.0.0) Requirement already satisfied: packaging>=20.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (20.1) Requirement already satisfied: s3transfer<0.4.0,>=0.3.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.3.3) Requirement already satisfied: botocore<1.20.0,>=1.19.19 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (1.19.19) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.10.0) Requirement already satisfied: six>=1.9 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from protobuf>=3.1->sagemaker==1.72.0) (1.14.0) Requirement already satisfied: setuptools in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from protobuf>=3.1->sagemaker==1.72.0) (45.2.0.post20200210) Requirement already satisfied: zipp>=0.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from importlib-metadata>=1.4.0->sagemaker==1.72.0) (2.2.0) Requirement already satisfied: pyparsing>=2.0.2 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from packaging>=20.0->sagemaker==1.72.0) (2.4.6) Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.20.0,>=1.19.19->boto3>=1.14.12->sagemaker==1.72.0) (1.25.10) Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.20.0,>=1.19.19->boto3>=1.14.12->sagemaker==1.72.0) (2.8.1) Building wheels for collected packages: sagemaker Building wheel for sagemaker (setup.py) ... [?25ldone [?25h Created wheel for sagemaker: filename=sagemaker-1.72.0-py2.py3-none-any.whl size=386358 sha256=231abdbe934b4ab5b52f0f82247a114a54c1101fe6a4d74a524f7b66d2b38f23 Stored in directory: /home/ec2-user/.cache/pip/wheels/c3/58/70/85faf4437568bfaa4c419937569ba1fe54d44c5db42406bbd7 Successfully built sagemaker Installing collected packages: smdebug-rulesconfig, sagemaker Attempting uninstall: smdebug-rulesconfig Found existing installation: smdebug-rulesconfig 0.1.6 Uninstalling smdebug-rulesconfig-0.1.6: Successfully uninstalled smdebug-rulesconfig-0.1.6 Attempting uninstall: sagemaker Found existing installation: sagemaker 2.16.4.dev0 Uninstalling sagemaker-2.16.4.dev0: Successfully uninstalled sagemaker-2.16.4.dev0 Successfully installed sagemaker-1.72.0 smdebug-rulesconfig-0.1.4 WARNING: You are using pip version 20.0.2; however, version 20.3.2 is available. You should consider upgrading via the '/home/ec2-user/anaconda3/envs/pytorch_p36/bin/python -m pip install --upgrade pip' command. ###Markdown Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output 'get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2. There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='1.0-1'. For example: get_image_uri(region, 'xgboost', '1.0-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-12-15 05:35:23 Starting - Launching requested ML instances...... 2020-12-15 05:36:38 Starting - Preparing the instances for training...... 2020-12-15 05:37:33 Downloading - Downloading input data... 2020-12-15 05:38:09 Training - Downloading the training image... 2020-12-15 05:38:35 Uploading - Uploading generated training modelArguments: train [2020-12-15:05:38:30:INFO] Running standalone xgboost training. [2020-12-15:05:38:30:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8436.02mb [2020-12-15:05:38:30:INFO] Determined delimiter of CSV input is ',' [05:38:30] S3DistributionType set as FullyReplicated [05:38:30] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2020-12-15:05:38:30:INFO] Determined delimiter of CSV input is ',' [05:38:30] S3DistributionType set as FullyReplicated [05:38:30] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:18.984#011validation-rmse:19.9479 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=4 [1]#011train-rmse:15.4652#011validation-rmse:16.3023 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=4 [2]#011train-rmse:12.706#011validation-rmse:13.5764 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=4 [3]#011train-rmse:10.4943#011validation-rmse:11.3741 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [4]#011train-rmse:8.75168#011validation-rmse:9.76818 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.28873#011validation-rmse:8.38001 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [6]#011train-rmse:6.16892#011validation-rmse:7.40655 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [7]#011train-rmse:5.26377#011validation-rmse:6.71636 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 0 pruned nodes, max_depth=5 [8]#011train-rmse:4.51142#011validation-rmse:6.14578 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [9]#011train-rmse:3.94237#011validation-rmse:5.79042 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [10]#011train-rmse:3.50182#011validation-rmse:5.56238 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [11]#011train-rmse:3.16446#011validation-rmse:5.4123 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [12]#011train-rmse:2.89326#011validation-rmse:5.33708 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [13]#011train-rmse:2.68234#011validation-rmse:5.30056 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [14]#011train-rmse:2.51943#011validation-rmse:5.2469 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [15]#011train-rmse:2.35487#011validation-rmse:5.13537 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [16]#011train-rmse:2.22026#011validation-rmse:5.08894 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [17]#011train-rmse:2.09944#011validation-rmse:5.10653 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [18]#011train-rmse:2.00823#011validation-rmse:5.10315 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 30 extra nodes, 2 pruned nodes, max_depth=5 [19]#011train-rmse:1.8963#011validation-rmse:5.09775 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:1.85834#011validation-rmse:5.12082 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [21]#011train-rmse:1.79486#011validation-rmse:5.13729 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [22]#011train-rmse:1.76622#011validation-rmse:5.15724 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [23]#011train-rmse:1.74129#011validation-rmse:5.16444 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 6 pruned nodes, max_depth=5 [24]#011train-rmse:1.71031#011validation-rmse:5.18369 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [25]#011train-rmse:1.65071#011validation-rmse:5.12887 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [26]#011train-rmse:1.6331#011validation-rmse:5.08413 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 4 pruned nodes, max_depth=5 [27]#011train-rmse:1.6137#011validation-rmse:5.07654 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 8 pruned nodes, max_depth=5 [28]#011train-rmse:1.58813#011validation-rmse:5.11564 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 6 pruned nodes, max_depth=3 [29]#011train-rmse:1.55355#011validation-rmse:5.08716 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 4 pruned nodes, max_depth=5 [30]#011train-rmse:1.50818#011validation-rmse:5.08223 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [31]#011train-rmse:1.49784#011validation-rmse:5.05668 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 8 pruned nodes, max_depth=5 [32]#011train-rmse:1.46564#011validation-rmse:5.07472 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [33]#011train-rmse:1.45501#011validation-rmse:5.08804 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [34]#011train-rmse:1.41418#011validation-rmse:5.09519 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [35]#011train-rmse:1.39002#011validation-rmse:5.10385 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [36]#011train-rmse:1.36221#011validation-rmse:5.1038 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 8 pruned nodes, max_depth=3 [37]#011train-rmse:1.35339#011validation-rmse:5.09853 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 10 pruned nodes, max_depth=4 [38]#011train-rmse:1.34296#011validation-rmse:5.10355 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 12 pruned nodes, max_depth=5 [39]#011train-rmse:1.30992#011validation-rmse:5.08814 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 12 pruned nodes, max_depth=2 [40]#011train-rmse:1.30326#011validation-rmse:5.08625 [05:38:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [41]#011train-rmse:1.28969#011validation-rmse:5.09038 Stopping. Best iteration: [31]#011train-rmse:1.49784#011validation-rmse:5.05668  ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] training_job_info # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ................................................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 2.3 KiB/2.3 KiB (25.5 KiB/s) with 1 file(s) remaining download: s3://sagemaker-us-east-1-701904821656/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. ###Code # Make sure that we use SageMaker 1.x !pip install sagemaker==1.72.0 ###Output Collecting sagemaker==1.72.0 Downloading sagemaker-1.72.0.tar.gz (297 kB)  |████████████████████████████████| 297 kB 16.2 MB/s eta 0:00:01 [?25hRequirement already satisfied: boto3>=1.14.12 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.16.63) Requirement already satisfied: numpy>=1.9.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.19.5) Requirement already satisfied: protobuf>=3.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (3.14.0) Requirement already satisfied: scipy>=0.19.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.4.1) Requirement already satisfied: protobuf3-to-dict>=0.1.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (0.1.5) Requirement already satisfied: importlib-metadata>=1.4.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (3.4.0) Requirement already satisfied: packaging>=20.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (20.8) Collecting smdebug-rulesconfig==0.1.4 Downloading smdebug_rulesconfig-0.1.4-py2.py3-none-any.whl (10 kB) Requirement already satisfied: botocore<1.20.0,>=1.19.63 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (1.19.63) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.10.0) Requirement already satisfied: s3transfer<0.4.0,>=0.3.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.3.4) Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.20.0,>=1.19.63->boto3>=1.14.12->sagemaker==1.72.0) (2.8.1) Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.20.0,>=1.19.63->boto3>=1.14.12->sagemaker==1.72.0) (1.26.2) Requirement already satisfied: typing-extensions>=3.6.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from importlib-metadata>=1.4.0->sagemaker==1.72.0) (3.7.4.3) Requirement already satisfied: zipp>=0.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from importlib-metadata>=1.4.0->sagemaker==1.72.0) (3.4.0) Requirement already satisfied: pyparsing>=2.0.2 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from packaging>=20.0->sagemaker==1.72.0) (2.4.7) Requirement already satisfied: six>=1.9 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from protobuf>=3.1->sagemaker==1.72.0) (1.15.0) Building wheels for collected packages: sagemaker Building wheel for sagemaker (setup.py) ... [?25ldone [?25h Created wheel for sagemaker: filename=sagemaker-1.72.0-py2.py3-none-any.whl size=386358 sha256=48317399b65c9776db0b563f0fbfa1793886e878eac84816982162e0acd1d0c8 Stored in directory: /home/ec2-user/.cache/pip/wheels/c3/58/70/85faf4437568bfaa4c419937569ba1fe54d44c5db42406bbd7 Successfully built sagemaker Installing collected packages: smdebug-rulesconfig, sagemaker Attempting uninstall: smdebug-rulesconfig Found existing installation: smdebug-rulesconfig 1.0.1 Uninstalling smdebug-rulesconfig-1.0.1: Successfully uninstalled smdebug-rulesconfig-1.0.1 Attempting uninstall: sagemaker Found existing installation: sagemaker 2.24.1 Uninstalling sagemaker-2.24.1: Successfully uninstalled sagemaker-2.24.1 Successfully installed sagemaker-1.72.0 smdebug-rulesconfig-0.1.4 WARNING: You are using pip version 20.3.3; however, version 21.0.1 is available. You should consider upgrading via the '/home/ec2-user/anaconda3/envs/pytorch_p36/bin/python -m pip install --upgrade pip' command. ###Markdown Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output 'get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2. There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='1.0-1'. For example: get_image_uri(region, 'xgboost', '1.0-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2021-02-27 13:54:07 Starting - Launching requested ML instances...... 2021-02-27 13:55:19 Starting - Preparing the instances for training...... 2021-02-27 13:56:13 Downloading - Downloading input data...... 2021-02-27 13:57:12 Training - Downloading the training image..Arguments: train [2021-02-27:13:57:34:INFO] Running standalone xgboost training. [2021-02-27:13:57:34:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8449.49mb [2021-02-27:13:57:34:INFO] Determined delimiter of CSV input is ',' [13:57:34] S3DistributionType set as FullyReplicated [13:57:34] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2021-02-27:13:57:34:INFO] Determined delimiter of CSV input is ',' [13:57:34] S3DistributionType set as FullyReplicated [13:57:34] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:20.0608#011validation-rmse:19.0298 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 2 pruned nodes, max_depth=3 [1]#011train-rmse:16.3366#011validation-rmse:15.8127 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [2]#011train-rmse:13.3987#011validation-rmse:13.4019 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=4 [3]#011train-rmse:11.0663#011validation-rmse:11.5235 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=4 [4]#011train-rmse:9.16467#011validation-rmse:10.0746 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.64567#011validation-rmse:9.02348 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [6]#011train-rmse:6.3857#011validation-rmse:8.09156 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [7]#011train-rmse:5.39364#011validation-rmse:7.46407 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 0 pruned nodes, max_depth=5 [8]#011train-rmse:4.59844#011validation-rmse:6.98317 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [9]#011train-rmse:3.95311#011validation-rmse:6.52888 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [10]#011train-rmse:3.46207#011validation-rmse:6.23252 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [11]#011train-rmse:3.06975#011validation-rmse:5.93991 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 4 pruned nodes, max_depth=5 [12]#011train-rmse:2.76824#011validation-rmse:5.74425 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [13]#011train-rmse:2.54193#011validation-rmse:5.60229 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [14]#011train-rmse:2.36777#011validation-rmse:5.50579 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.20177#011validation-rmse:5.38587 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 6 pruned nodes, max_depth=5 [16]#011train-rmse:2.0846#011validation-rmse:5.33102 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [17]#011train-rmse:1.98126#011validation-rmse:5.2819 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [18]#011train-rmse:1.89307#011validation-rmse:5.24712 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [19]#011train-rmse:1.82845#011validation-rmse:5.21607 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [20]#011train-rmse:1.78562#011validation-rmse:5.19663 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [21]#011train-rmse:1.73874#011validation-rmse:5.17098 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [22]#011train-rmse:1.67583#011validation-rmse:5.09917 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 2 pruned nodes, max_depth=5 [23]#011train-rmse:1.61748#011validation-rmse:5.066 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=5 [24]#011train-rmse:1.58774#011validation-rmse:5.00404 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [25]#011train-rmse:1.55804#011validation-rmse:4.99677 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [26]#011train-rmse:1.52264#011validation-rmse:4.94742 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [27]#011train-rmse:1.49447#011validation-rmse:4.95277 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [28]#011train-rmse:1.46231#011validation-rmse:4.92121 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=5 [29]#011train-rmse:1.45089#011validation-rmse:4.92931 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [30]#011train-rmse:1.41705#011validation-rmse:4.88958 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=5 [31]#011train-rmse:1.40194#011validation-rmse:4.89071 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [32]#011train-rmse:1.36054#011validation-rmse:4.87265 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 4 pruned nodes, max_depth=5 [33]#011train-rmse:1.34167#011validation-rmse:4.86506 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [34]#011train-rmse:1.31038#011validation-rmse:4.86944 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [35]#011train-rmse:1.28562#011validation-rmse:4.87601 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 12 pruned nodes, max_depth=5 [36]#011train-rmse:1.26271#011validation-rmse:4.83716 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [37]#011train-rmse:1.23712#011validation-rmse:4.78403 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 6 pruned nodes, max_depth=5 [38]#011train-rmse:1.21905#011validation-rmse:4.7747 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [39]#011train-rmse:1.17799#011validation-rmse:4.70338 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [40]#011train-rmse:1.16512#011validation-rmse:4.70558 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 8 pruned nodes, max_depth=5 [41]#011train-rmse:1.13723#011validation-rmse:4.66688 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [42]#011train-rmse:1.11588#011validation-rmse:4.66099 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 12 pruned nodes, max_depth=5 [43]#011train-rmse:1.1041#011validation-rmse:4.66518 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=4 [44]#011train-rmse:1.0922#011validation-rmse:4.66352 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 6 pruned nodes, max_depth=5 [45]#011train-rmse:1.07671#011validation-rmse:4.67644 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 12 pruned nodes, max_depth=4 [46]#011train-rmse:1.06939#011validation-rmse:4.64436 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 10 pruned nodes, max_depth=4 [47]#011train-rmse:1.05356#011validation-rmse:4.63767 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 16 pruned nodes, max_depth=3 [48]#011train-rmse:1.04407#011validation-rmse:4.62777 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 10 pruned nodes, max_depth=4 [49]#011train-rmse:1.01713#011validation-rmse:4.57332 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 6 pruned nodes, max_depth=5 [50]#011train-rmse:1.00466#011validation-rmse:4.57993 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=5 [51]#011train-rmse:0.991865#011validation-rmse:4.58069 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 6 pruned nodes, max_depth=4 [52]#011train-rmse:0.980156#011validation-rmse:4.58837 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 16 pruned nodes, max_depth=4 [53]#011train-rmse:0.962048#011validation-rmse:4.56262 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 12 pruned nodes, max_depth=5 [54]#011train-rmse:0.943057#011validation-rmse:4.55912 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 16 pruned nodes, max_depth=1 [55]#011train-rmse:0.941025#011validation-rmse:4.55312 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 16 pruned nodes, max_depth=2 [56]#011train-rmse:0.93587#011validation-rmse:4.55723 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 20 pruned nodes, max_depth=0 [57]#011train-rmse:0.9358#011validation-rmse:4.55454 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 16 pruned nodes, max_depth=3 [58]#011train-rmse:0.930816#011validation-rmse:4.53491 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [59]#011train-rmse:0.924456#011validation-rmse:4.55505 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=5 [60]#011train-rmse:0.908459#011validation-rmse:4.56672 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 14 pruned nodes, max_depth=3 [61]#011train-rmse:0.893612#011validation-rmse:4.55944 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 14 pruned nodes, max_depth=0 [62]#011train-rmse:0.893611#011validation-rmse:4.56011 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 22 pruned nodes, max_depth=2 [63]#011train-rmse:0.891366#011validation-rmse:4.55623 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [64]#011train-rmse:0.891328#011validation-rmse:4.55401 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 12 pruned nodes, max_depth=0 [65]#011train-rmse:0.891398#011validation-rmse:4.55182 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 14 pruned nodes, max_depth=0 [66]#011train-rmse:0.89139#011validation-rmse:4.55197 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 12 pruned nodes, max_depth=0 [67]#011train-rmse:0.891402#011validation-rmse:4.55175 [13:57:34] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 14 pruned nodes, max_depth=4 [68]#011train-rmse:0.881238#011validation-rmse:4.55492 Stopping. Best iteration: [58]#011train-rmse:0.930816#011validation-rmse:4.53491  ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ............................................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 2.3 KiB/2.3 KiB (32.1 KiB/s) with 1 file(s) remaining download: s3://sagemaker-us-east-1-208895044323/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. ###Code # Make sure that we use SageMaker 1.x !pip install sagemaker==1.72.0 ###Output Collecting sagemaker==1.72.0 Downloading sagemaker-1.72.0.tar.gz (297 kB) |████████████████████████████████| 297 kB 29.6 MB/s [?25h Preparing metadata (setup.py) ... [?25ldone [?25hRequirement already satisfied: boto3>=1.14.12 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.20.25) Requirement already satisfied: numpy>=1.9.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.19.5) Requirement already satisfied: protobuf>=3.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (3.17.2) Requirement already satisfied: scipy>=0.19.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.5.3) Requirement already satisfied: protobuf3-to-dict>=0.1.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (0.1.5) Collecting smdebug-rulesconfig==0.1.4 Downloading smdebug_rulesconfig-0.1.4-py2.py3-none-any.whl (10 kB) Requirement already satisfied: importlib-metadata>=1.4.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (4.5.0) Requirement already satisfied: packaging>=20.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (21.3) Requirement already satisfied: s3transfer<0.6.0,>=0.5.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.5.0) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.10.0) Requirement already satisfied: botocore<1.24.0,>=1.23.25 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (1.23.25) Requirement already satisfied: zipp>=0.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from importlib-metadata>=1.4.0->sagemaker==1.72.0) (3.4.1) Requirement already satisfied: typing-extensions>=3.6.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from importlib-metadata>=1.4.0->sagemaker==1.72.0) (3.10.0.0) Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from packaging>=20.0->sagemaker==1.72.0) (2.4.7) Requirement already satisfied: six>=1.9 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from protobuf>=3.1->sagemaker==1.72.0) (1.16.0) Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.24.0,>=1.23.25->boto3>=1.14.12->sagemaker==1.72.0) (1.26.5) Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.24.0,>=1.23.25->boto3>=1.14.12->sagemaker==1.72.0) (2.8.1) Building wheels for collected packages: sagemaker Building wheel for sagemaker (setup.py) ... [?25ldone [?25h Created wheel for sagemaker: filename=sagemaker-1.72.0-py2.py3-none-any.whl size=388327 sha256=ea8f0ebad44896a05f66746153023f143b4d97bb7ca06690cc0045e6cc392fe5 Stored in directory: /home/ec2-user/.cache/pip/wheels/c3/58/70/85faf4437568bfaa4c419937569ba1fe54d44c5db42406bbd7 Successfully built sagemaker Installing collected packages: smdebug-rulesconfig, sagemaker Attempting uninstall: smdebug-rulesconfig Found existing installation: smdebug-rulesconfig 1.0.1 Uninstalling smdebug-rulesconfig-1.0.1: Successfully uninstalled smdebug-rulesconfig-1.0.1 Attempting uninstall: sagemaker Found existing installation: sagemaker 2.72.1 Uninstalling sagemaker-2.72.1: Successfully uninstalled sagemaker-2.72.1 Successfully installed sagemaker-1.72.0 smdebug-rulesconfig-0.1.4 ###Markdown Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output 'get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2. There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='1.0-1'. For example: get_image_uri(region, 'xgboost', '1.0-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2022-01-27 06:51:52 Starting - Starting the training job... 2022-01-27 06:51:54 Starting - Launching requested ML instances...... 2022-01-27 06:52:56 Starting - Preparing the instances for training......... 2022-01-27 06:54:44 Downloading - Downloading input data 2022-01-27 06:54:44 Training - Downloading the training image... 2022-01-27 06:55:18 Uploading - Uploading generated training model 2022-01-27 06:55:18 Completed - Training job completed Arguments: train [2022-01-27:06:55:07:INFO] Running standalone xgboost training. [2022-01-27:06:55:07:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8380.95mb [2022-01-27:06:55:07:INFO] Determined delimiter of CSV input is ',' [06:55:07] S3DistributionType set as FullyReplicated [06:55:07] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2022-01-27:06:55:07:INFO] Determined delimiter of CSV input is ',' [06:55:07] S3DistributionType set as FullyReplicated [06:55:07] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [0]#011train-rmse:19.1785#011validation-rmse:20.0361 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping. Will train until validation-rmse hasn't improved in 10 rounds. [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [1]#011train-rmse:15.6863#011validation-rmse:16.516 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [2]#011train-rmse:12.9038#011validation-rmse:13.6218 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=4 [3]#011train-rmse:10.6658#011validation-rmse:11.2651 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [4]#011train-rmse:8.89163#011validation-rmse:9.41226 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.4353#011validation-rmse:7.94458 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [6]#011train-rmse:6.31402#011validation-rmse:6.779 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [7]#011train-rmse:5.39061#011validation-rmse:5.80495 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [8]#011train-rmse:4.66883#011validation-rmse:5.11774 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [9]#011train-rmse:4.06911#011validation-rmse:4.62374 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [10]#011train-rmse:3.58516#011validation-rmse:4.19038 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [11]#011train-rmse:3.2515#011validation-rmse:3.88393 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [12]#011train-rmse:2.96659#011validation-rmse:3.673 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [13]#011train-rmse:2.7733#011validation-rmse:3.52283 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [14]#011train-rmse:2.58201#011validation-rmse:3.39681 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.44465#011validation-rmse:3.26482 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [16]#011train-rmse:2.32244#011validation-rmse:3.15308 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [17]#011train-rmse:2.23117#011validation-rmse:3.10717 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [18]#011train-rmse:2.1558#011validation-rmse:3.06012 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [19]#011train-rmse:2.08741#011validation-rmse:3.02357 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [20]#011train-rmse:1.99486#011validation-rmse:3.00045 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 6 pruned nodes, max_depth=5 [21]#011train-rmse:1.94344#011validation-rmse:2.99151 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [22]#011train-rmse:1.90939#011validation-rmse:2.97408 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 8 pruned nodes, max_depth=5 [23]#011train-rmse:1.87688#011validation-rmse:2.95809 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [24]#011train-rmse:1.82621#011validation-rmse:2.954 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [25]#011train-rmse:1.74501#011validation-rmse:2.97405 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [26]#011train-rmse:1.71541#011validation-rmse:2.94461 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 6 pruned nodes, max_depth=5 [27]#011train-rmse:1.64815#011validation-rmse:2.88185 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [28]#011train-rmse:1.60276#011validation-rmse:2.8879 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [29]#011train-rmse:1.58157#011validation-rmse:2.86942 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [30]#011train-rmse:1.51058#011validation-rmse:2.90442 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [31]#011train-rmse:1.47774#011validation-rmse:2.90363 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [32]#011train-rmse:1.42755#011validation-rmse:2.8976 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [33]#011train-rmse:1.40553#011validation-rmse:2.90635 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 14 pruned nodes, max_depth=5 [34]#011train-rmse:1.36441#011validation-rmse:2.90152 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [35]#011train-rmse:1.34732#011validation-rmse:2.88096 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 12 pruned nodes, max_depth=5 [36]#011train-rmse:1.33218#011validation-rmse:2.88864 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [37]#011train-rmse:1.30739#011validation-rmse:2.88929 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [38]#011train-rmse:1.29095#011validation-rmse:2.88719 [06:55:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=4 [39]#011train-rmse:1.25852#011validation-rmse:2.89391 Stopping. Best iteration: [29]#011train-rmse:1.58157#011validation-rmse:2.86942 ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output .....................................................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 3.0 KiB/3.0 KiB (36.9 KiB/s) with 1 file(s) remaining download: s3://sagemaker-us-east-1-801008216402/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output _____no_output_____ ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. ###Code # Make sure that we use SageMaker 1.x !pip install sagemaker==1.72.0 ###Output _____no_output_____ ###Markdown Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output _____no_output_____ ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output _____no_output_____ ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output _____no_output_____ ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output _____no_output_____ ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost', "0.90-1") # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:squarederror", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output _____no_output_____ ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-06-23 21:42:03 Starting - Starting the training job... 2020-06-23 21:42:04 Starting - Launching requested ML instances...... 2020-06-23 21:43:08 Starting - Preparing the instances for training... 2020-06-23 21:43:53 Downloading - Downloading input data... 2020-06-23 21:44:10 Training - Downloading the training image..INFO:sagemaker-containers:Imported framework sagemaker_xgboost_container.training INFO:sagemaker-containers:Failed to parse hyperparameter objective value reg:squarederror to Json. Returning the value itself INFO:sagemaker-containers:No GPUs detected (normal if no gpus installed) INFO:sagemaker_xgboost_container.training:Running XGBoost Sagemaker in algorithm mode INFO:root:Determined delimiter of CSV input is ',' INFO:root:Determined delimiter of CSV input is ',' INFO:root:Determined delimiter of CSV input is ',' [21:44:44] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, INFO:root:Determined delimiter of CSV input is ',' [21:44:44] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, INFO:root:Single node training. INFO:root:Train matrix has 227 rows INFO:root:Validation matrix has 112 rows [0]#011train-rmse:19.4169#011validation-rmse:19.641 [1]#011train-rmse:15.8529#011validation-rmse:16.1373 [2]#011train-rmse:13.0029#011validation-rmse:13.4451 [3]#011train-rmse:10.7222#011validation-rmse:11.2891 [4]#011train-rmse:8.87763#011validation-rmse:9.57846 [5]#011train-rmse:7.39233#011validation-rmse:8.18051 [6]#011train-rmse:6.24306#011validation-rmse:7.16369 [7]#011train-rmse:5.31481#011validation-rmse:6.32078 [8]#011train-rmse:4.63824#011validation-rmse:5.7511 [9]#011train-rmse:4.09938#011validation-rmse:5.35858 [10]#011train-rmse:3.65126#011validation-rmse:4.96591 [11]#011train-rmse:3.27765#011validation-rmse:4.73338 [12]#011train-rmse:3.01432#011validation-rmse:4.56817 [13]#011train-rmse:2.78907#011validation-rmse:4.44538 [14]#011train-rmse:2.5708#011validation-rmse:4.28684 [15]#011train-rmse:2.39371#011validation-rmse:4.20217 [16]#011train-rmse:2.30082#011validation-rmse:4.14013 [17]#011train-rmse:2.23106#011validation-rmse:4.1129 [18]#011train-rmse:2.17922#011validation-rmse:4.09605 [19]#011train-rmse:2.10528#011validation-rmse:4.07187 [20]#011train-rmse:2.05327#011validation-rmse:4.07175 [21]#011train-rmse:1.93385#011validation-rmse:3.99626 [22]#011train-rmse:1.90321#011validation-rmse:3.99341 [23]#011train-rmse:1.8683#011validation-rmse:4.00524 [24]#011train-rmse:1.83214#011validation-rmse:4.00157 [25]#011train-rmse:1.82661#011validation-rmse:4.00195 [26]#011train-rmse:1.81126#011validation-rmse:3.99474 [27]#011train-rmse:1.78626#011validation-rmse:3.99312 [28]#011train-rmse:1.72696#011validation-rmse:3.95843 [29]#011train-rmse:1.67332#011validation-rmse:3.93007 [30]#011train-rmse:1.66607#011validation-rmse:3.91736 [31]#011train-rmse:1.64282#011validation-rmse:3.92085 [32]#011train-rmse:1.61#011validation-rmse:3.90635 [33]#011train-rmse:1.56002#011validation-rmse:3.91086 [34]#011train-rmse:1.53761#011validation-rmse:3.89514 [35]#011train-rmse:1.52241#011validation-rmse:3.90529 [36]#011train-rmse:1.4775#011validation-rmse:3.89349 [37]#011train-rmse:1.44391#011validation-rmse:3.88407 [38]#011train-rmse:1.42582#011validation-rmse:3.89022 [39]#011train-rmse:1.38144#011validation-rmse:3.89282 [40]#011train-rmse:1.34165#011validation-rmse:3.83096 [41]#011train-rmse:1.33244#011validation-rmse:3.8405 [42]#011train-rmse:1.29051#011validation-rmse:3.83612 [43]#011train-rmse:1.2678#011validation-rmse:3.83449 [44]#011train-rmse:1.23916#011validation-rmse:3.84452 [45]#011train-rmse:1.22828#011validation-rmse:3.84376 [46]#011train-rmse:1.21423#011validation-rmse:3.85553 [47]#011train-rmse:1.18594#011validation-rmse:3.82262 [48]#011train-rmse:1.17491#011validation-rmse:3.80016 [49]#011train-rmse:1.14187#011validation-rmse:3.78906 [50]#011train-rmse:1.12692#011validation-rmse:3.78793 [51]#011train-rmse:1.11183#011validation-rmse:3.77611 [52]#011train-rmse:1.10696#011validation-rmse:3.77152 [53]#011train-rmse:1.10739#011validation-rmse:3.77851 [54]#011train-rmse:1.09932#011validation-rmse:3.78683 [55]#011train-rmse:1.08263#011validation-rmse:3.79381 [56]#011train-rmse:1.07078#011validation-rmse:3.78421 [57]#011train-rmse:1.04803#011validation-rmse:3.76428 [58]#011train-rmse:1.0479#011validation-rmse:3.76285 [59]#011train-rmse:1.03638#011validation-rmse:3.76034 [60]#011train-rmse:1.02579#011validation-rmse:3.76296 [61]#011train-rmse:1.01148#011validation-rmse:3.77006 [62]#011train-rmse:0.995093#011validation-rmse:3.76368 [63]#011train-rmse:0.967382#011validation-rmse:3.75709 [64]#011train-rmse:0.948549#011validation-rmse:3.74857 [65]#011train-rmse:0.937186#011validation-rmse:3.75786 [66]#011train-rmse:0.937267#011validation-rmse:3.75906 [67]#011train-rmse:0.926992#011validation-rmse:3.75133 [68]#011train-rmse:0.924526#011validation-rmse:3.74623 [69]#011train-rmse:0.910455#011validation-rmse:3.74442 [70]#011train-rmse:0.904081#011validation-rmse:3.73933 [71]#011train-rmse:0.904084#011validation-rmse:3.73955 [72]#011train-rmse:0.895776#011validation-rmse:3.73751 [73]#011train-rmse:0.893845#011validation-rmse:3.73983 [74]#011train-rmse:0.893857#011validation-rmse:3.74017 [75]#011train-rmse:0.885109#011validation-rmse:3.72714 [76]#011train-rmse:0.875395#011validation-rmse:3.74106 [77]#011train-rmse:0.87532#011validation-rmse:3.74396 [78]#011train-rmse:0.863468#011validation-rmse:3.74125 [79]#011train-rmse:0.863484#011validation-rmse:3.74083 [80]#011train-rmse:0.863489#011validation-rmse:3.74075 [81]#011train-rmse:0.863543#011validation-rmse:3.7402 [82]#011train-rmse:0.858926#011validation-rmse:3.74235 [83]#011train-rmse:0.858965#011validation-rmse:3.74322 [84]#011train-rmse:0.858954#011validation-rmse:3.74307 [85]#011train-rmse:0.858978#011validation-rmse:3.74335 2020-06-23 21:44:55 Uploading - Uploading generated training model 2020-06-23 21:44:55 Completed - Training job completed Training seconds: 62 Billable seconds: 62 ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output .............................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 3.0 KiB/3.0 KiB (68.2 KiB/s) with 1 file(s) remaining download: s3://sagemaker-eu-central-1-648654006923/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_csv_location = os.path.join(data_dir, 'test.csv') validation_csv_location = os.path.join(data_dir, 'validation.csv') train_csv_location = os.path.join(data_dir, 'train.csv') test_location = session.upload_data(test_csv_location, key_prefix=prefix) val_location = session.upload_data(validation_csv_location, key_prefix=prefix) train_location = session.upload_data(train_csv_location, key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output 'get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2. There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='1.0-1'. For example: get_image_uri(region, 'xgboost', '1.0-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output _____no_output_____ ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output _____no_output_____ ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output _____no_output_____ ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output WARNING:root:There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='0.90-1'. For example: get_image_uri(region, 'xgboost', '0.90-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2019-12-09 01:42:48 Starting - Launching requested ML instances...... 2019-12-09 01:43:50 Starting - Preparing the instances for training...... 2019-12-09 01:44:47 Downloading - Downloading input data 2019-12-09 01:44:47 Training - Downloading the training image..Arguments: train [2019-12-09:01:45:08:INFO] Running standalone xgboost training. [2019-12-09:01:45:08:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8529.59mb [2019-12-09:01:45:08:INFO] Determined delimiter of CSV input is ',' [01:45:08] S3DistributionType set as FullyReplicated [01:45:08] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2019-12-09:01:45:08:INFO] Determined delimiter of CSV input is ',' [01:45:08] S3DistributionType set as FullyReplicated [01:45:08] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [0]#011train-rmse:19.918#011validation-rmse:19.085 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=4 [1]#011train-rmse:16.2724#011validation-rmse:15.6833 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [2]#011train-rmse:13.3269#011validation-rmse:13.0549 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=3 [3]#011train-rmse:10.9492#011validation-rmse:10.9054 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [4]#011train-rmse:9.03109#011validation-rmse:9.16564 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=4 [5]#011train-rmse:7.52404#011validation-rmse:7.87403 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [6]#011train-rmse:6.32094#011validation-rmse:6.86839 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [7]#011train-rmse:5.39129#011validation-rmse:6.0848 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [8]#011train-rmse:4.61563#011validation-rmse:5.40755 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [9]#011train-rmse:3.99771#011validation-rmse:4.96312 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [10]#011train-rmse:3.50892#011validation-rmse:4.57958 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [11]#011train-rmse:3.16067#011validation-rmse:4.35067 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [12]#011train-rmse:2.91093#011validation-rmse:4.22765 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 0 pruned nodes, max_depth=5 [13]#011train-rmse:2.66168#011validation-rmse:4.07318 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [14]#011train-rmse:2.49617#011validation-rmse:3.91084 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.32599#011validation-rmse:3.83972 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [16]#011train-rmse:2.24373#011validation-rmse:3.80865 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [17]#011train-rmse:2.15963#011validation-rmse:3.71221 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [18]#011train-rmse:2.0735#011validation-rmse:3.61791 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [19]#011train-rmse:2.02978#011validation-rmse:3.59335 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:1.96399#011validation-rmse:3.50442 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [21]#011train-rmse:1.92345#011validation-rmse:3.47942 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [22]#011train-rmse:1.87782#011validation-rmse:3.4293 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=5 [23]#011train-rmse:1.85929#011validation-rmse:3.44877 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [24]#011train-rmse:1.80316#011validation-rmse:3.38878 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [25]#011train-rmse:1.77382#011validation-rmse:3.37492 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [26]#011train-rmse:1.73347#011validation-rmse:3.33693 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [27]#011train-rmse:1.7104#011validation-rmse:3.35204 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [28]#011train-rmse:1.67814#011validation-rmse:3.34028 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [29]#011train-rmse:1.65713#011validation-rmse:3.31881 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [30]#011train-rmse:1.61047#011validation-rmse:3.30195 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 4 pruned nodes, max_depth=5 [31]#011train-rmse:1.58015#011validation-rmse:3.27458 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [32]#011train-rmse:1.55832#011validation-rmse:3.26881 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [33]#011train-rmse:1.53436#011validation-rmse:3.28241 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [34]#011train-rmse:1.50867#011validation-rmse:3.2759 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [35]#011train-rmse:1.4766#011validation-rmse:3.27634 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 4 pruned nodes, max_depth=5 [36]#011train-rmse:1.46194#011validation-rmse:3.27298 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [37]#011train-rmse:1.45128#011validation-rmse:3.29083 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [38]#011train-rmse:1.41516#011validation-rmse:3.27968 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 8 pruned nodes, max_depth=4 [39]#011train-rmse:1.39942#011validation-rmse:3.29905 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [40]#011train-rmse:1.37304#011validation-rmse:3.28036 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 6 pruned nodes, max_depth=3 [41]#011train-rmse:1.36478#011validation-rmse:3.27736 [01:45:08] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 4 pruned nodes, max_depth=5 [42]#011train-rmse:1.3442#011validation-rmse:3.29244 Stopping. Best iteration: [32]#011train-rmse:1.55832#011validation-rmse:3.26881  ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ......................... ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output _____no_output_____ ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. ###Code # Make sure that we use SageMaker 1.x !pip install sagemaker==1.72.0 ###Output Requirement already satisfied: sagemaker==1.72.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (1.72.0) Requirement already satisfied: importlib-metadata>=1.4.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (3.7.0) Requirement already satisfied: boto3>=1.14.12 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.17.22) Requirement already satisfied: numpy>=1.9.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.19.5) Requirement already satisfied: protobuf3-to-dict>=0.1.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (0.1.5) Requirement already satisfied: packaging>=20.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (20.9) Requirement already satisfied: protobuf>=3.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (3.15.2) Requirement already satisfied: scipy>=0.19.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.5.3) Requirement already satisfied: smdebug-rulesconfig==0.1.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (0.1.4) Requirement already satisfied: botocore<1.21.0,>=1.20.22 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (1.20.22) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.10.0) Requirement already satisfied: s3transfer<0.4.0,>=0.3.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.3.4) Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.21.0,>=1.20.22->boto3>=1.14.12->sagemaker==1.72.0) (2.8.1) Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.21.0,>=1.20.22->boto3>=1.14.12->sagemaker==1.72.0) (1.26.3) Requirement already satisfied: typing-extensions>=3.6.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from importlib-metadata>=1.4.0->sagemaker==1.72.0) (3.7.4.3) Requirement already satisfied: zipp>=0.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from importlib-metadata>=1.4.0->sagemaker==1.72.0) (3.4.0) Requirement already satisfied: pyparsing>=2.0.2 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from packaging>=20.0->sagemaker==1.72.0) (2.4.7) Requirement already satisfied: six>=1.9 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from protobuf>=3.1->sagemaker==1.72.0) (1.15.0) ###Markdown Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output 'get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2. There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='1.0-1'. For example: get_image_uri(region, 'xgboost', '1.0-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2021-03-16 03:47:23 Starting - Starting the training job... 2021-03-16 03:47:25 Starting - Launching requested ML instances...... 2021-03-16 03:48:35 Starting - Preparing the instances for training...... 2021-03-16 03:49:42 Downloading - Downloading input data... 2021-03-16 03:50:16 Training - Downloading the training image... 2021-03-16 03:50:51 Uploading - Uploading generated training model 2021-03-16 03:50:51 Completed - Training job completed Arguments: train [2021-03-16:03:50:38:INFO] Running standalone xgboost training. [2021-03-16:03:50:38:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8451.11mb [2021-03-16:03:50:38:INFO] Determined delimiter of CSV input is ',' [03:50:38] S3DistributionType set as FullyReplicated [03:50:38] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2021-03-16:03:50:38:INFO] Determined delimiter of CSV input is ',' [03:50:38] S3DistributionType set as FullyReplicated [03:50:38] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:19.9053#011validation-rmse:19.3787 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [1]#011train-rmse:16.2943#011validation-rmse:15.6473 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [2]#011train-rmse:13.3378#011validation-rmse:12.653 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [3]#011train-rmse:11.0154#011validation-rmse:10.2807 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [4]#011train-rmse:9.18868#011validation-rmse:8.45517 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [5]#011train-rmse:7.66405#011validation-rmse:7.04446 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [6]#011train-rmse:6.45584#011validation-rmse:5.88588 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [7]#011train-rmse:5.52834#011validation-rmse:5.11887 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [8]#011train-rmse:4.78533#011validation-rmse:4.49746 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [9]#011train-rmse:4.21295#011validation-rmse:4.0189 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 4 pruned nodes, max_depth=5 [10]#011train-rmse:3.66583#011validation-rmse:3.66532 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 2 pruned nodes, max_depth=5 [11]#011train-rmse:3.32003#011validation-rmse:3.46826 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [12]#011train-rmse:3.03777#011validation-rmse:3.36642 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [13]#011train-rmse:2.82398#011validation-rmse:3.24594 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [14]#011train-rmse:2.58092#011validation-rmse:3.21125 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.44857#011validation-rmse:3.20577 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [16]#011train-rmse:2.35242#011validation-rmse:3.19318 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [17]#011train-rmse:2.27612#011validation-rmse:3.17992 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [18]#011train-rmse:2.16207#011validation-rmse:3.17642 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [19]#011train-rmse:2.11067#011validation-rmse:3.17344 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:2.0635#011validation-rmse:3.19217 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [21]#011train-rmse:2.02635#011validation-rmse:3.20497 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [22]#011train-rmse:1.98223#011validation-rmse:3.25316 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [23]#011train-rmse:1.95131#011validation-rmse:3.28258 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [24]#011train-rmse:1.86463#011validation-rmse:3.2873 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [25]#011train-rmse:1.82788#011validation-rmse:3.28926 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [26]#011train-rmse:1.73945#011validation-rmse:3.24255 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [27]#011train-rmse:1.70105#011validation-rmse:3.24983 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=5 [28]#011train-rmse:1.69244#011validation-rmse:3.23787 [03:50:38] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [29]#011train-rmse:1.64765#011validation-rmse:3.24789 Stopping. Best iteration: [19]#011train-rmse:2.11067#011validation-rmse:3.17344  Training seconds: 69 Billable seconds: 69 ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output download: s3://sagemaker-us-east-1-399684875495/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output WARNING:root:There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='0.90-1'. For example: get_image_uri(region, 'xgboost', '0.90-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-02-28 13:04:30 Starting - Launching requested ML instances...... 2020-02-28 13:05:31 Starting - Preparing the instances for training...... 2020-02-28 13:06:19 Downloading - Downloading input data... 2020-02-28 13:06:41 Training - Downloading the training image............................Arguments: train [2020-02-28:13:11:37:INFO] Running standalone xgboost training. [2020-02-28:13:11:37:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8512.81mb [2020-02-28:13:11:37:INFO] Determined delimiter of CSV input is ',' [13:11:37] S3DistributionType set as FullyReplicated [13:11:37] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2020-02-28:13:11:37:INFO] Determined delimiter of CSV input is ',' [13:11:37] S3DistributionType set as FullyReplicated [13:11:37] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:19.1282#011validation-rmse:19.651 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [1]#011train-rmse:15.66#011validation-rmse:16.0924 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=4 [2]#011train-rmse:12.9098#011validation-rmse:13.416 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=4 [3]#011train-rmse:10.6262#011validation-rmse:11.3257 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [4]#011train-rmse:8.87761#011validation-rmse:9.5755 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.40904#011validation-rmse:8.20498 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [6]#011train-rmse:6.27466#011validation-rmse:7.18218 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [7]#011train-rmse:5.4164#011validation-rmse:6.54497 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [8]#011train-rmse:4.67322#011validation-rmse:5.96538 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 30 extra nodes, 2 pruned nodes, max_depth=5 [9]#011train-rmse:4.02861#011validation-rmse:5.5919 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 4 pruned nodes, max_depth=5 [10]#011train-rmse:3.53993#011validation-rmse:5.34213 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [11]#011train-rmse:3.17367#011validation-rmse:5.16933 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [12]#011train-rmse:2.87655#011validation-rmse:5.09892 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [13]#011train-rmse:2.65167#011validation-rmse:5.04437 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [14]#011train-rmse:2.49887#011validation-rmse:5.02001 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.39266#011validation-rmse:4.9158 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [16]#011train-rmse:2.27847#011validation-rmse:4.94848 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [17]#011train-rmse:2.20804#011validation-rmse:4.95132 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [18]#011train-rmse:2.13496#011validation-rmse:4.97691 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [19]#011train-rmse:2.07476#011validation-rmse:4.97078 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:1.97475#011validation-rmse:4.90105 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [21]#011train-rmse:1.93538#011validation-rmse:4.90521 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [22]#011train-rmse:1.89927#011validation-rmse:4.85133 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [23]#011train-rmse:1.82637#011validation-rmse:4.81944 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [24]#011train-rmse:1.74334#011validation-rmse:4.75641 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 6 pruned nodes, max_depth=5 [25]#011train-rmse:1.6813#011validation-rmse:4.75552 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [26]#011train-rmse:1.6645#011validation-rmse:4.72802 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [27]#011train-rmse:1.64268#011validation-rmse:4.76211 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=4 [28]#011train-rmse:1.58309#011validation-rmse:4.75592 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [29]#011train-rmse:1.56005#011validation-rmse:4.77664 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [30]#011train-rmse:1.51122#011validation-rmse:4.77406 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [31]#011train-rmse:1.47957#011validation-rmse:4.78212 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=4 [32]#011train-rmse:1.46421#011validation-rmse:4.80585 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=4 [33]#011train-rmse:1.42197#011validation-rmse:4.84643 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 4 pruned nodes, max_depth=3 [34]#011train-rmse:1.39716#011validation-rmse:4.83965 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 8 pruned nodes, max_depth=5 [35]#011train-rmse:1.35511#011validation-rmse:4.81569 [13:11:37] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [36]#011train-rmse:1.31459#011validation-rmse:4.78686 Stopping. Best iteration: [26]#011train-rmse:1.6645#011validation-rmse:4.72802  2020-02-28 13:12:08 Uploading - Uploading generated training model 2020-02-28 13:12:08 Completed - Training job completed Training seconds: 349 Billable seconds: 349 ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output .....................................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output download: s3://sagemaker-us-east-1-788544388985/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # same as high level # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output 'get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2. There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='1.0-1'. For example: get_image_uri(region, 'xgboost', '1.0-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) # similar to the wait function in high level api ###Output 2020-07-31 11:54:32 Starting - Launching requested ML instances......... 2020-07-31 11:55:35 Starting - Preparing the instances for training... 2020-07-31 11:56:27 Downloading - Downloading input data... 2020-07-31 11:56:51 Training - Downloading the training image..Arguments: train [2020-07-31:11:57:11:INFO] Running standalone xgboost training. [2020-07-31:11:57:11:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8487.35mb [2020-07-31:11:57:11:INFO] Determined delimiter of CSV input is ',' [11:57:11] S3DistributionType set as FullyReplicated [11:57:11] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2020-07-31:11:57:11:INFO] Determined delimiter of CSV input is ',' [11:57:11] S3DistributionType set as FullyReplicated [11:57:11] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:19.2997#011validation-rmse:20.0503 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [1]#011train-rmse:15.7879#011validation-rmse:16.4663 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [2]#011train-rmse:12.9531#011validation-rmse:13.7761 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [3]#011train-rmse:10.6873#011validation-rmse:11.6875 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [4]#011train-rmse:8.86059#011validation-rmse:9.8643 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.46068#011validation-rmse:8.50082 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [6]#011train-rmse:6.28992#011validation-rmse:7.51623 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [7]#011train-rmse:5.35259#011validation-rmse:6.6466 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [8]#011train-rmse:4.62512#011validation-rmse:6.14 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 6 pruned nodes, max_depth=5 [9]#011train-rmse:3.99746#011validation-rmse:5.70948 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [10]#011train-rmse:3.53057#011validation-rmse:5.40394 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [11]#011train-rmse:3.17656#011validation-rmse:5.22955 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 2 pruned nodes, max_depth=5 [12]#011train-rmse:2.84818#011validation-rmse:5.01507 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [13]#011train-rmse:2.64728#011validation-rmse:4.88723 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 4 pruned nodes, max_depth=5 [14]#011train-rmse:2.39939#011validation-rmse:4.77311 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.22143#011validation-rmse:4.69811 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [16]#011train-rmse:2.10293#011validation-rmse:4.64162 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [17]#011train-rmse:2.04096#011validation-rmse:4.62858 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [18]#011train-rmse:1.96032#011validation-rmse:4.57165 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [19]#011train-rmse:1.89459#011validation-rmse:4.5496 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 4 pruned nodes, max_depth=5 [20]#011train-rmse:1.79997#011validation-rmse:4.50526 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 8 pruned nodes, max_depth=5 [21]#011train-rmse:1.73866#011validation-rmse:4.46751 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [22]#011train-rmse:1.6879#011validation-rmse:4.45311 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 2 pruned nodes, max_depth=5 [23]#011train-rmse:1.6197#011validation-rmse:4.44003 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [24]#011train-rmse:1.57024#011validation-rmse:4.40152 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [25]#011train-rmse:1.52113#011validation-rmse:4.3828 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [26]#011train-rmse:1.45982#011validation-rmse:4.37184 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 6 pruned nodes, max_depth=5 [27]#011train-rmse:1.42523#011validation-rmse:4.35548 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [28]#011train-rmse:1.40538#011validation-rmse:4.34959 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [29]#011train-rmse:1.36773#011validation-rmse:4.35187 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [30]#011train-rmse:1.33362#011validation-rmse:4.35291 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [31]#011train-rmse:1.29462#011validation-rmse:4.33206 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 4 pruned nodes, max_depth=3 [32]#011train-rmse:1.27391#011validation-rmse:4.32171 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 6 pruned nodes, max_depth=5 [33]#011train-rmse:1.24919#011validation-rmse:4.31084 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [34]#011train-rmse:1.22695#011validation-rmse:4.30208 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [35]#011train-rmse:1.199#011validation-rmse:4.28338 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 10 pruned nodes, max_depth=3 [36]#011train-rmse:1.18535#011validation-rmse:4.2761 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [37]#011train-rmse:1.14829#011validation-rmse:4.27898 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 12 pruned nodes, max_depth=5 [38]#011train-rmse:1.11373#011validation-rmse:4.26382 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 8 pruned nodes, max_depth=3 [39]#011train-rmse:1.10394#011validation-rmse:4.25782 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 6 pruned nodes, max_depth=5 [40]#011train-rmse:1.07422#011validation-rmse:4.23094 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [41]#011train-rmse:1.05978#011validation-rmse:4.24631 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 6 pruned nodes, max_depth=5 [42]#011train-rmse:1.04665#011validation-rmse:4.24319 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 6 pruned nodes, max_depth=5 [43]#011train-rmse:1.0113#011validation-rmse:4.23246 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 10 pruned nodes, max_depth=5 [44]#011train-rmse:0.989098#011validation-rmse:4.22268 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 18 pruned nodes, max_depth=5 [45]#011train-rmse:0.965392#011validation-rmse:4.21767 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 10 pruned nodes, max_depth=5 [46]#011train-rmse:0.951218#011validation-rmse:4.21404 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 14 pruned nodes, max_depth=4 [47]#011train-rmse:0.928882#011validation-rmse:4.21859 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 12 pruned nodes, max_depth=3 [48]#011train-rmse:0.923306#011validation-rmse:4.21352 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=5 [49]#011train-rmse:0.916149#011validation-rmse:4.20913 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [50]#011train-rmse:0.916142#011validation-rmse:4.20884 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [51]#011train-rmse:0.904529#011validation-rmse:4.20993 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 26 pruned nodes, max_depth=1 [52]#011train-rmse:0.903784#011validation-rmse:4.21303 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 16 pruned nodes, max_depth=0 [53]#011train-rmse:0.903675#011validation-rmse:4.2133 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=5 [54]#011train-rmse:0.891688#011validation-rmse:4.21372 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 10 pruned nodes, max_depth=0 [55]#011train-rmse:0.89169#011validation-rmse:4.21366 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 14 pruned nodes, max_depth=1 [56]#011train-rmse:0.888734#011validation-rmse:4.21405 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [57]#011train-rmse:0.877721#011validation-rmse:4.20517 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [58]#011train-rmse:0.877744#011validation-rmse:4.20487 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 20 pruned nodes, max_depth=3 [59]#011train-rmse:0.861891#011validation-rmse:4.2055 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 20 pruned nodes, max_depth=0 [60]#011train-rmse:0.861925#011validation-rmse:4.20523 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 18 pruned nodes, max_depth=4 [61]#011train-rmse:0.854775#011validation-rmse:4.2069 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 20 pruned nodes, max_depth=0 [62]#011train-rmse:0.854818#011validation-rmse:4.20662 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 18 pruned nodes, max_depth=4 [63]#011train-rmse:0.842786#011validation-rmse:4.20357 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [64]#011train-rmse:0.842738#011validation-rmse:4.20379 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 22 pruned nodes, max_depth=4 [65]#011train-rmse:0.822452#011validation-rmse:4.19721 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [66]#011train-rmse:0.822457#011validation-rmse:4.19759 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 28 pruned nodes, max_depth=0 [67]#011train-rmse:0.822461#011validation-rmse:4.19761 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 16 pruned nodes, max_depth=0 [68]#011train-rmse:0.822514#011validation-rmse:4.19784 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 12 pruned nodes, max_depth=4 [69]#011train-rmse:0.814201#011validation-rmse:4.20046 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 20 pruned nodes, max_depth=2 [70]#011train-rmse:0.809872#011validation-rmse:4.19646 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [71]#011train-rmse:0.80988#011validation-rmse:4.1964 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 30 pruned nodes, max_depth=2 [72]#011train-rmse:0.80706#011validation-rmse:4.19296 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 16 pruned nodes, max_depth=0 [73]#011train-rmse:0.807068#011validation-rmse:4.19322 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 14 pruned nodes, max_depth=3 [74]#011train-rmse:0.802694#011validation-rmse:4.19477 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [75]#011train-rmse:0.802715#011validation-rmse:4.19498 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 20 pruned nodes, max_depth=0 [76]#011train-rmse:0.802694#011validation-rmse:4.19474 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 14 pruned nodes, max_depth=0 [77]#011train-rmse:0.802705#011validation-rmse:4.1949 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 24 pruned nodes, max_depth=0 [78]#011train-rmse:0.802697#011validation-rmse:4.19482 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 18 pruned nodes, max_depth=2 [79]#011train-rmse:0.798512#011validation-rmse:4.18983 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 20 pruned nodes, max_depth=3 [80]#011train-rmse:0.791222#011validation-rmse:4.18476 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [81]#011train-rmse:0.791208#011validation-rmse:4.18471 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 14 pruned nodes, max_depth=0 [82]#011train-rmse:0.791209#011validation-rmse:4.18471 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [83]#011train-rmse:0.791248#011validation-rmse:4.18483 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 26 pruned nodes, max_depth=0 [84]#011train-rmse:0.791158#011validation-rmse:4.18451 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 24 pruned nodes, max_depth=0 [85]#011train-rmse:0.791185#011validation-rmse:4.18463 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 20 pruned nodes, max_depth=4 [86]#011train-rmse:0.787312#011validation-rmse:4.17944 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 26 pruned nodes, max_depth=0 [87]#011train-rmse:0.787266#011validation-rmse:4.17922 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 16 pruned nodes, max_depth=0 [88]#011train-rmse:0.787312#011validation-rmse:4.17945 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 20 pruned nodes, max_depth=0 [89]#011train-rmse:0.787304#011validation-rmse:4.17941 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 12 pruned nodes, max_depth=0 [90]#011train-rmse:0.787493#011validation-rmse:4.17992 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 8 pruned nodes, max_depth=4 [91]#011train-rmse:0.781909#011validation-rmse:4.18006 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 18 pruned nodes, max_depth=4 [92]#011train-rmse:0.772241#011validation-rmse:4.17979 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [93]#011train-rmse:0.7719#011validation-rmse:4.17904 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [94]#011train-rmse:0.771884#011validation-rmse:4.17896 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 18 pruned nodes, max_depth=3 [95]#011train-rmse:0.767925#011validation-rmse:4.17605 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 16 pruned nodes, max_depth=0 [96]#011train-rmse:0.767904#011validation-rmse:4.17592 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 16 pruned nodes, max_depth=5 [97]#011train-rmse:0.758586#011validation-rmse:4.17219 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 30 pruned nodes, max_depth=0 [98]#011train-rmse:0.758628#011validation-rmse:4.17184 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [99]#011train-rmse:0.758675#011validation-rmse:4.1717 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 26 pruned nodes, max_depth=0 [100]#011train-rmse:0.758591#011validation-rmse:4.17206 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 30 pruned nodes, max_depth=0 [101]#011train-rmse:0.758783#011validation-rmse:4.17148 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [102]#011train-rmse:0.758742#011validation-rmse:4.17155 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [103]#011train-rmse:0.75866#011validation-rmse:4.17174 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [104]#011train-rmse:0.758732#011validation-rmse:4.17157 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [105]#011train-rmse:0.758738#011validation-rmse:4.17156 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 28 pruned nodes, max_depth=0 [106]#011train-rmse:0.758688#011validation-rmse:4.17167 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 12 pruned nodes, max_depth=0 [107]#011train-rmse:0.758651#011validation-rmse:4.17177 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 20 pruned nodes, max_depth=0 [108]#011train-rmse:0.758617#011validation-rmse:4.17189 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [109]#011train-rmse:0.758656#011validation-rmse:4.17175 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 20 pruned nodes, max_depth=0 [110]#011train-rmse:0.758608#011validation-rmse:4.17193 [11:57:11] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 14 pruned nodes, max_depth=0 [111]#011train-rmse:0.758597#011validation-rmse:4.17201 Stopping. Best iteration: [101]#011train-rmse:0.758783#011validation-rmse:4.17148  ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) model_info ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ...........................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output _____no_output_____ ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output WARNING:root:There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='0.90-1'. For example: get_image_uri(region, 'xgboost', '0.90-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-05-02 22:08:08 Starting - Starting the training job... 2020-05-02 22:08:09 Starting - Launching requested ML instances... 2020-05-02 22:09:08 Starting - Preparing the instances for training...... 2020-05-02 22:10:04 Downloading - Downloading input data... 2020-05-02 22:10:39 Training - Downloading the training image... 2020-05-02 22:11:04 Uploading - Uploading generated training modelArguments: train [2020-05-02:22:10:59:INFO] Running standalone xgboost training. [2020-05-02:22:10:59:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8497.86mb [2020-05-02:22:10:59:INFO] Determined delimiter of CSV input is ',' [22:10:59] S3DistributionType set as FullyReplicated [22:10:59] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2020-05-02:22:10:59:INFO] Determined delimiter of CSV input is ',' [22:10:59] S3DistributionType set as FullyReplicated [22:10:59] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:19.2307#011validation-rmse:19.2798 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 2 pruned nodes, max_depth=2 [1]#011train-rmse:15.6953#011validation-rmse:15.7478 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [2]#011train-rmse:12.854#011validation-rmse:12.9049 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [3]#011train-rmse:10.6507#011validation-rmse:10.7388 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=3 [4]#011train-rmse:8.8049#011validation-rmse:8.7754 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.37861#011validation-rmse:7.39511 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [6]#011train-rmse:6.21183#011validation-rmse:6.2564 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [7]#011train-rmse:5.25736#011validation-rmse:5.3666 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [8]#011train-rmse:4.50871#011validation-rmse:4.73579 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [9]#011train-rmse:3.93617#011validation-rmse:4.2545 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [10]#011train-rmse:3.52263#011validation-rmse:3.90233 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [11]#011train-rmse:3.18702#011validation-rmse:3.58303 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [12]#011train-rmse:2.91629#011validation-rmse:3.33631 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [13]#011train-rmse:2.72921#011validation-rmse:3.20549 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [14]#011train-rmse:2.53822#011validation-rmse:3.08466 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [15]#011train-rmse:2.3536#011validation-rmse:3.074 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [16]#011train-rmse:2.25115#011validation-rmse:2.97297 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [17]#011train-rmse:2.185#011validation-rmse:2.92042 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [18]#011train-rmse:2.09413#011validation-rmse:2.9258 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [19]#011train-rmse:2.0184#011validation-rmse:2.91563 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:1.95454#011validation-rmse:2.9026 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [21]#011train-rmse:1.8989#011validation-rmse:2.91316 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [22]#011train-rmse:1.8452#011validation-rmse:2.89332 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [23]#011train-rmse:1.81458#011validation-rmse:2.90113 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [24]#011train-rmse:1.76526#011validation-rmse:2.88366 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [25]#011train-rmse:1.71932#011validation-rmse:2.85001 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 10 pruned nodes, max_depth=5 [26]#011train-rmse:1.66739#011validation-rmse:2.86277 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [27]#011train-rmse:1.62065#011validation-rmse:2.84214 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [28]#011train-rmse:1.59716#011validation-rmse:2.84697 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [29]#011train-rmse:1.56404#011validation-rmse:2.82948 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [30]#011train-rmse:1.53829#011validation-rmse:2.81254 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 6 pruned nodes, max_depth=5 [31]#011train-rmse:1.50763#011validation-rmse:2.79211 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [32]#011train-rmse:1.47836#011validation-rmse:2.79809 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 8 pruned nodes, max_depth=5 [33]#011train-rmse:1.43734#011validation-rmse:2.78985 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 4 pruned nodes, max_depth=5 [34]#011train-rmse:1.39943#011validation-rmse:2.78091 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [35]#011train-rmse:1.37801#011validation-rmse:2.77396 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 4 pruned nodes, max_depth=5 [36]#011train-rmse:1.32741#011validation-rmse:2.76484 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [37]#011train-rmse:1.27486#011validation-rmse:2.75847 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 4 pruned nodes, max_depth=5 [38]#011train-rmse:1.22905#011validation-rmse:2.75127 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [39]#011train-rmse:1.21517#011validation-rmse:2.75664 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 12 pruned nodes, max_depth=5 [40]#011train-rmse:1.18651#011validation-rmse:2.75255 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [41]#011train-rmse:1.16582#011validation-rmse:2.76559 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 4 pruned nodes, max_depth=5 [42]#011train-rmse:1.1563#011validation-rmse:2.75285 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [43]#011train-rmse:1.13127#011validation-rmse:2.76029 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 8 pruned nodes, max_depth=4 [44]#011train-rmse:1.11477#011validation-rmse:2.76951 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [45]#011train-rmse:1.09016#011validation-rmse:2.7656 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 10 pruned nodes, max_depth=5 [46]#011train-rmse:1.08164#011validation-rmse:2.77088 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [47]#011train-rmse:1.05196#011validation-rmse:2.77749 [22:10:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [48]#011train-rmse:1.03439#011validation-rmse:2.78186 Stopping. Best iteration: [38]#011train-rmse:1.22905#011validation-rmse:2.75127  ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ..............................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 2.3 KiB/2.3 KiB (36.0 KiB/s) with 1 file(s) remaining download: s3://sagemaker-us-west-2-202593872157/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown 预测波士顿房价 在 SageMaker 中使用 XGBoost(批转换)_机器学习工程师纳米学位课程 | 开发_---为了介绍 SageMaker 的低阶 Python API,我们将查看一个相对简单的问题。我们将使用[波士顿房价数据集](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html)预测波士顿地区的房价中位数。此 notebook 中使用的 API 的参考文档位于 [SageMaker 开发人员指南](https://docs.aws.amazon.com/sagemaker/latest/dg/)页面 一般步骤通常,在 notebook 实例中使用 SageMaker 时,你需要完成以下步骤。当然,并非每个项目都要完成每一步。此外,有很多步骤有很大的变化余地,你将在这些课程中发现这一点。1. 下载或检索数据。2. 处理/准备数据。3. 将处理的数据上传到 S3。4. 训练所选的模型。5. 测试训练的模型(通常使用批转换作业)。6. 部署训练的模型。7. 使用部署的模型。在此 notebook 中,我们将仅介绍第 1-5 步,因为只是大致了解如何使用 SageMaker。在后面的 notebook 中,我们将详细介绍如何部署训练的模型。 第 0 步:设置 notebook先进行必要的设置以运行 notebook。首先,加载所需的所有 Python 模块。 ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown 除了上面的模块之外,我们还需要导入将使用的各种 SageMaker 模块。 ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown 第 1 步:下载数据幸运的是,我们可以使用 sklearn 检索数据集,所以这一步相对比较简单。 ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown 第 2 步:准备和拆分数据因为使用的是整洁的表格数据,所以不需要进行任何处理。但是,我们需要将数据集中的各行拆分成训练集、测试集和验证集。 ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown 第 3 步:将数据文件上传到 S3使用 SageMaker 创建训练作业后,进行训练操作的容器会执行。此容器可以访问存储在 S3 上的数据。所以我们需要将用来训练的数据上传到 S3。此外,在执行批转换作业时,SageMaker 要求输入数据存储在 S3 上。我们可以使用 SageMaker API 完成这一步,它会在后台自动处理完一些步骤。 将数据保存到本地首先,我们需要创建测试、训练和验证 csv 文件,并将这些文件上传到 S3。 ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown 上传到 S3因为目前正在 SageMaker 会话中运行,所以可以使用代表此会话的对象将数据上传到默认的 S3 存储桶中。注意,建议提供自定义 prefix(即 S3 文件夹),以防意外地破坏了其他 notebook 或项目上传的数据。 ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown 第 4 步:训练和构建 XGBoost 模型将训练和验证数据上传到 S3 后,我们可以为 XGBoost 模型创建训练作业并构建模型本身了。 设置训练作业首先,我们将为模型设置和执行训练作业。我们需要指定一些信息,供 SageMaker 设置和正确地执行计算过程。要查看构建训练作业的其他文档,请参阅 [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) 参考文档。 ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output WARNING:root:There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='0.90-1'. For example: get_image_uri(region, 'xgboost', '0.90-1'). ###Markdown 执行训练作业构建了包含训练作业参数的字典对象后,我们可以要求 SageMaker 执行训练作业了。 ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown SageMaker 已经创建了训练作业,并且训练作业现在正在运行中。因为我们需要获得训练作业的输出,所以需要等待运行完毕。我们可以要求 SageMaker 输出训练作业生成的日志,并继续要求输出日志,直到训练作业运行完毕。 ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-03-25 12:01:56 Starting - Starting the training job... 2020-03-25 12:01:58 Starting - Launching requested ML instances...... 2020-03-25 12:02:57 Starting - Preparing the instances for training... 2020-03-25 12:03:56 Downloading - Downloading input data... 2020-03-25 12:04:12 Training - Downloading the training image.Arguments: train [2020-03-25:12:04:32:INFO] Running standalone xgboost training. [2020-03-25:12:04:32:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8512.15mb [2020-03-25:12:04:32:INFO] Determined delimiter of CSV input is ',' [12:04:32] S3DistributionType set as FullyReplicated [12:04:32] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2020-03-25:12:04:32:INFO] Determined delimiter of CSV input is ',' [12:04:32] S3DistributionType set as FullyReplicated [12:04:32] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:19.7599#011validation-rmse:19.4162 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [1]#011train-rmse:16.1442#011validation-rmse:15.6447 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=4 [2]#011train-rmse:13.2498#011validation-rmse:12.7063 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [3]#011train-rmse:10.8703#011validation-rmse:10.3862 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [4]#011train-rmse:9.02165#011validation-rmse:8.54403 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.4914#011validation-rmse:7.11418 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [6]#011train-rmse:6.2757#011validation-rmse:5.95186 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [7]#011train-rmse:5.39218#011validation-rmse:5.16752 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [8]#011train-rmse:4.62014#011validation-rmse:4.5354 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [9]#011train-rmse:4.04346#011validation-rmse:4.10085 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 0 pruned nodes, max_depth=5 [10]#011train-rmse:3.54176#011validation-rmse:3.82729 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 4 pruned nodes, max_depth=5 [11]#011train-rmse:3.14758#011validation-rmse:3.61492 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [12]#011train-rmse:2.85772#011validation-rmse:3.44182 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [13]#011train-rmse:2.69096#011validation-rmse:3.39702 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [14]#011train-rmse:2.52231#011validation-rmse:3.35583 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.37769#011validation-rmse:3.32126 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [16]#011train-rmse:2.27773#011validation-rmse:3.29283 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [17]#011train-rmse:2.19906#011validation-rmse:3.26808 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 4 pruned nodes, max_depth=5 [18]#011train-rmse:2.09917#011validation-rmse:3.28341 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [19]#011train-rmse:2.03807#011validation-rmse:3.29325 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:1.97834#011validation-rmse:3.31877 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [21]#011train-rmse:1.93743#011validation-rmse:3.3262 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [22]#011train-rmse:1.88159#011validation-rmse:3.33861 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [23]#011train-rmse:1.85367#011validation-rmse:3.35458 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [24]#011train-rmse:1.81234#011validation-rmse:3.38529 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [25]#011train-rmse:1.77337#011validation-rmse:3.40064 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [26]#011train-rmse:1.70221#011validation-rmse:3.37277 [12:04:32] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [27]#011train-rmse:1.65329#011validation-rmse:3.36636 Stopping. Best iteration: [17]#011train-rmse:2.19906#011validation-rmse:3.26808  2020-03-25 12:04:44 Uploading - Uploading generated training model 2020-03-25 12:04:44 Completed - Training job completed Training seconds: 48 Billable seconds: 48 ###Markdown 构建模型训练作业运行完毕后,我们可以使用一些模型工件构建模型。注意,我们说的模型是 SageMaker 所定义的模型,即关于特定算法及其训练作业生成的工件的信息集合。 ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown 第 5 步:测试模型将模型拟合训练数据并使用验证数据避免过拟合后,我们可以测试模型了。我们将使用 SageMaker 的批转换功能。也就是说,我们需要设置和执行批转换作业,与之前构建训练作业的方式相似。 设置批转换作业就像训练模型一样,我们首先需要提供一些信息,并且所采用的数据结构描述了我们要执行的批转换作业。我们将仅使用这里可用的某些选项,如果你想了解其他选项,请参阅[创建批转换作业](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html) SageMaker 文档。 ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown 执行批转换作业创建了请求数据结构后,下面要求 SageMaker 设置和运行批转换作业。与之前的步骤一样,SageMaker 会在后台执行这些任务,如果你想等待转换作业运行完毕(并查看作业的进度),可以调用 wait() 方法来等待转换作业运行完毕。 ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ................................................! ###Markdown 分析结果现在转换作业已经运行完毕,结果按照我们的要求存储到了 S3 上。因为我们想要在 notebook 中分析输出结果,所以将使用一个 notebook 功能将输出文件从 S3 复制到本地。 ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 2.3 KiB/2.3 KiB (36.4 KiB/s) with 1 file(s) remaining download: s3://sagemaker-us-west-1-270372225889/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown 为了查看模型的运行效果,我们可以绘制一个简单的预测值与真实值散点图。如果模型的预测完全准确的话,那么散点图将是一条直线 $x=y$。可以看出,我们的模型表现不错,但是还有改进的余地。 ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown 可选步骤:清理数据SageMaker 上的默认 notebook 实例没有太多的可用磁盘空间。当你继续完成和执行 notebook 时,最终会耗尽磁盘空间,导致难以诊断的错误。完全使用完 notebook 后,建议删除创建的文件。你可以从终端或 notebook hub 删除文件。以下单元格中包含了从 notebook 内清理文件的命令。 ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output WARNING:root:There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='0.90-1'. For example: get_image_uri(region, 'xgboost', '0.90-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-02-21 20:04:35 Starting - Launching requested ML instances......... 2020-02-21 20:05:40 Starting - Preparing the instances for training...... 2020-02-21 20:07:06 Downloading - Downloading input data 2020-02-21 20:07:06 Training - Downloading the training image... 2020-02-21 20:07:31 Uploading - Uploading generated training modelArguments: train [2020-02-21:20:07:26:INFO] Running standalone xgboost training. [2020-02-21:20:07:26:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8516.32mb [2020-02-21:20:07:26:INFO] Determined delimiter of CSV input is ',' [20:07:26] S3DistributionType set as FullyReplicated [20:07:26] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2020-02-21:20:07:26:INFO] Determined delimiter of CSV input is ',' [20:07:26] S3DistributionType set as FullyReplicated [20:07:26] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:19.3407#011validation-rmse:19.0174 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=4 [1]#011train-rmse:15.883#011validation-rmse:15.4946 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [2]#011train-rmse:13.1174#011validation-rmse:12.7599 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 4 pruned nodes, max_depth=4 [3]#011train-rmse:10.8384#011validation-rmse:10.4784 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [4]#011train-rmse:8.99606#011validation-rmse:8.68877 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.50964#011validation-rmse:7.34865 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [6]#011train-rmse:6.34091#011validation-rmse:6.29398 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [7]#011train-rmse:5.39534#011validation-rmse:5.5726 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [8]#011train-rmse:4.65919#011validation-rmse:5.00838 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [9]#011train-rmse:4.08165#011validation-rmse:4.69255 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [10]#011train-rmse:3.68269#011validation-rmse:4.48584 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [11]#011train-rmse:3.23848#011validation-rmse:4.3016 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [12]#011train-rmse:2.97158#011validation-rmse:4.17103 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [13]#011train-rmse:2.75171#011validation-rmse:4.10891 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [14]#011train-rmse:2.588#011validation-rmse:4.08587 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [15]#011train-rmse:2.42966#011validation-rmse:4.04782 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [16]#011train-rmse:2.31604#011validation-rmse:4.02502 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [17]#011train-rmse:2.23288#011validation-rmse:4.03895 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [18]#011train-rmse:2.09658#011validation-rmse:3.95389 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [19]#011train-rmse:2.03049#011validation-rmse:3.99598 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 32 extra nodes, 2 pruned nodes, max_depth=5 [20]#011train-rmse:1.9004#011validation-rmse:4.01009 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [21]#011train-rmse:1.84787#011validation-rmse:3.97603 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [22]#011train-rmse:1.7834#011validation-rmse:3.93685 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [23]#011train-rmse:1.74515#011validation-rmse:3.94556 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [24]#011train-rmse:1.69396#011validation-rmse:3.94697 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=5 [25]#011train-rmse:1.67724#011validation-rmse:3.9326 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [26]#011train-rmse:1.64085#011validation-rmse:3.93988 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [27]#011train-rmse:1.60315#011validation-rmse:3.95097 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [28]#011train-rmse:1.55462#011validation-rmse:3.94253 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 4 pruned nodes, max_depth=5 [29]#011train-rmse:1.52629#011validation-rmse:3.91638 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [30]#011train-rmse:1.50959#011validation-rmse:3.90042 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [31]#011train-rmse:1.48269#011validation-rmse:3.87452 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [32]#011train-rmse:1.46514#011validation-rmse:3.86291 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [33]#011train-rmse:1.45076#011validation-rmse:3.84581 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [34]#011train-rmse:1.429#011validation-rmse:3.85521 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [35]#011train-rmse:1.40798#011validation-rmse:3.86043 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 6 pruned nodes, max_depth=5 [36]#011train-rmse:1.38405#011validation-rmse:3.84193 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=4 [37]#011train-rmse:1.36396#011validation-rmse:3.82321 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 8 pruned nodes, max_depth=5 [38]#011train-rmse:1.32706#011validation-rmse:3.83098 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 6 pruned nodes, max_depth=4 [39]#011train-rmse:1.30123#011validation-rmse:3.83136 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 6 pruned nodes, max_depth=5 [40]#011train-rmse:1.25246#011validation-rmse:3.82641 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 8 pruned nodes, max_depth=5 [41]#011train-rmse:1.2314#011validation-rmse:3.82373 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=5 [42]#011train-rmse:1.21903#011validation-rmse:3.81523 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 22 pruned nodes, max_depth=5 [43]#011train-rmse:1.18143#011validation-rmse:3.81824 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 4 pruned nodes, max_depth=5 [44]#011train-rmse:1.13423#011validation-rmse:3.82986 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [45]#011train-rmse:1.1084#011validation-rmse:3.8285 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 10 pruned nodes, max_depth=1 [46]#011train-rmse:1.10604#011validation-rmse:3.82867 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 14 pruned nodes, max_depth=5 [47]#011train-rmse:1.08667#011validation-rmse:3.81605 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [48]#011train-rmse:1.06894#011validation-rmse:3.82093 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 10 pruned nodes, max_depth=1 [49]#011train-rmse:1.06713#011validation-rmse:3.81823 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 18 pruned nodes, max_depth=4 [50]#011train-rmse:1.05705#011validation-rmse:3.8196 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 18 pruned nodes, max_depth=5 [51]#011train-rmse:1.03008#011validation-rmse:3.80318 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 8 pruned nodes, max_depth=5 [52]#011train-rmse:1.00352#011validation-rmse:3.81009 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 14 pruned nodes, max_depth=3 [53]#011train-rmse:1.00117#011validation-rmse:3.80896 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 10 pruned nodes, max_depth=4 [54]#011train-rmse:0.994164#011validation-rmse:3.79694 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 10 pruned nodes, max_depth=0 [55]#011train-rmse:0.993903#011validation-rmse:3.79872 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 4 pruned nodes, max_depth=5 [56]#011train-rmse:0.985012#011validation-rmse:3.80578 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [57]#011train-rmse:0.972531#011validation-rmse:3.82378 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 24 pruned nodes, max_depth=3 [58]#011train-rmse:0.962757#011validation-rmse:3.81847 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 18 pruned nodes, max_depth=2 [59]#011train-rmse:0.957632#011validation-rmse:3.81004 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [60]#011train-rmse:0.957404#011validation-rmse:3.81169 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 10 pruned nodes, max_depth=5 [61]#011train-rmse:0.940639#011validation-rmse:3.8268 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 20 pruned nodes, max_depth=3 [62]#011train-rmse:0.933149#011validation-rmse:3.82682 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 22 pruned nodes, max_depth=1 [63]#011train-rmse:0.934859#011validation-rmse:3.82732 [20:07:26] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [64]#011train-rmse:0.934834#011validation-rmse:3.82763 Stopping. Best iteration: [54]#011train-rmse:0.994164#011validation-rmse:3.79694  ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ..................................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 2.3 KiB/2.3 KiB (35.9 KiB/s) with 1 file(s) remaining download: s3://sagemaker-us-east-1-064263160711/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. ###Code # Make sure that we use SageMaker 1.x !pip install sagemaker==1.72.0 ###Output _____no_output_____ ###Markdown Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output _____no_output_____ ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output _____no_output_____ ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output _____no_output_____ ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output _____no_output_____ ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output WARNING:root:There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='0.90-1'. For example: get_image_uri(region, 'xgboost', '0.90-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-05-10 08:43:05 Starting - Launching requested ML instances...... 2020-05-10 08:44:02 Starting - Preparing the instances for training...... 2020-05-10 08:44:56 Downloading - Downloading input data... 2020-05-10 08:45:38 Training - Training image download completed. Training in progress. 2020-05-10 08:45:38 Uploading - Uploading generated training modelArguments: train [2020-05-10:08:45:33:INFO] Running standalone xgboost training. [2020-05-10:08:45:33:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8500.7mb [2020-05-10:08:45:33:INFO] Determined delimiter of CSV input is ',' [08:45:33] S3DistributionType set as FullyReplicated [08:45:33] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2020-05-10:08:45:33:INFO] Determined delimiter of CSV input is ',' [08:45:33] S3DistributionType set as FullyReplicated [08:45:33] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:18.8353#011validation-rmse:19.893 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [1]#011train-rmse:15.3286#011validation-rmse:16.3259 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=4 [2]#011train-rmse:12.5915#011validation-rmse:13.5732 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 4 pruned nodes, max_depth=4 [3]#011train-rmse:10.3672#011validation-rmse:11.2539 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [4]#011train-rmse:8.60857#011validation-rmse:9.45408 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [5]#011train-rmse:7.23136#011validation-rmse:8.00584 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [6]#011train-rmse:6.10573#011validation-rmse:6.78982 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [7]#011train-rmse:5.16556#011validation-rmse:5.8742 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [8]#011train-rmse:4.5043#011validation-rmse:5.31191 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [9]#011train-rmse:3.96361#011validation-rmse:4.84653 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [10]#011train-rmse:3.54639#011validation-rmse:4.4979 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 0 pruned nodes, max_depth=5 [11]#011train-rmse:3.22889#011validation-rmse:4.18169 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [12]#011train-rmse:2.93492#011validation-rmse:3.91551 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 0 pruned nodes, max_depth=5 [13]#011train-rmse:2.70601#011validation-rmse:3.79073 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [14]#011train-rmse:2.54076#011validation-rmse:3.68977 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.42893#011validation-rmse:3.67625 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [16]#011train-rmse:2.29577#011validation-rmse:3.62804 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [17]#011train-rmse:2.16038#011validation-rmse:3.58688 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [18]#011train-rmse:2.10757#011validation-rmse:3.54799 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [19]#011train-rmse:2.03586#011validation-rmse:3.45832 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [20]#011train-rmse:1.97603#011validation-rmse:3.46212 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [21]#011train-rmse:1.92038#011validation-rmse:3.44023 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [22]#011train-rmse:1.89338#011validation-rmse:3.41632 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [23]#011train-rmse:1.8722#011validation-rmse:3.43454 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [24]#011train-rmse:1.84618#011validation-rmse:3.4244 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [25]#011train-rmse:1.82605#011validation-rmse:3.41896 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [26]#011train-rmse:1.75489#011validation-rmse:3.42088 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [27]#011train-rmse:1.69134#011validation-rmse:3.45165 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [28]#011train-rmse:1.64876#011validation-rmse:3.41681 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [29]#011train-rmse:1.61615#011validation-rmse:3.4216 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [30]#011train-rmse:1.59873#011validation-rmse:3.41558 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [31]#011train-rmse:1.57653#011validation-rmse:3.45118 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [32]#011train-rmse:1.53619#011validation-rmse:3.46866 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [33]#011train-rmse:1.50389#011validation-rmse:3.44585 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [34]#011train-rmse:1.48033#011validation-rmse:3.4396 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 8 pruned nodes, max_depth=5 [35]#011train-rmse:1.43009#011validation-rmse:3.41167 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [36]#011train-rmse:1.42053#011validation-rmse:3.41057 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 6 pruned nodes, max_depth=5 [37]#011train-rmse:1.37781#011validation-rmse:3.40161 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 4 pruned nodes, max_depth=4 [38]#011train-rmse:1.36834#011validation-rmse:3.41873 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 8 pruned nodes, max_depth=5 [39]#011train-rmse:1.34344#011validation-rmse:3.42947 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 18 pruned nodes, max_depth=5 [40]#011train-rmse:1.30015#011validation-rmse:3.44921 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 10 pruned nodes, max_depth=5 [41]#011train-rmse:1.25636#011validation-rmse:3.43298 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 6 pruned nodes, max_depth=3 [42]#011train-rmse:1.23585#011validation-rmse:3.43149 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 6 pruned nodes, max_depth=3 [43]#011train-rmse:1.23102#011validation-rmse:3.43525 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 10 pruned nodes, max_depth=1 [44]#011train-rmse:1.22764#011validation-rmse:3.44878 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 2 pruned nodes, max_depth=4 [45]#011train-rmse:1.21648#011validation-rmse:3.44402 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [46]#011train-rmse:1.20086#011validation-rmse:3.47402 [08:45:33] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [47]#011train-rmse:1.19296#011validation-rmse:3.4979 Stopping. Best iteration: [37]#011train-rmse:1.37781#011validation-rmse:3.40161  ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ...............................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 2.3 KiB/2.3 KiB (39.9 KiB/s) with 1 file(s) remaining download: s3://sagemaker-eu-central-1-293973958717/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output WARNING:root:There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='0.90-2'. For example: get_image_uri(region, 'xgboost', '0.90-2'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-05-07 21:26:31 Starting - Launching requested ML instances... 2020-05-07 21:27:25 Starting - Preparing the instances for training...... 2020-05-07 21:28:27 Downloading - Downloading input data... 2020-05-07 21:28:46 Training - Downloading the training image..Arguments: train [2020-05-07:21:29:07:INFO] Running standalone xgboost training. [2020-05-07:21:29:07:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8472.79mb [2020-05-07:21:29:07:INFO] Determined delimiter of CSV input is ',' [21:29:07] S3DistributionType set as FullyReplicated [21:29:07] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2020-05-07:21:29:07:INFO] Determined delimiter of CSV input is ',' [21:29:07] S3DistributionType set as FullyReplicated [21:29:07] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:19.7177#011validation-rmse:20.3302 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [1]#011train-rmse:16.0914#011validation-rmse:16.5966 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=4 [2]#011train-rmse:13.208#011validation-rmse:13.6444 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [3]#011train-rmse:10.8735#011validation-rmse:11.3928 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=4 [4]#011train-rmse:9.04472#011validation-rmse:9.53416 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [5]#011train-rmse:7.5921#011validation-rmse:8.17102 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [6]#011train-rmse:6.44351#011validation-rmse:7.05853 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [7]#011train-rmse:5.52157#011validation-rmse:6.13293 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [8]#011train-rmse:4.86507#011validation-rmse:5.43614 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [9]#011train-rmse:4.36879#011validation-rmse:4.92825 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [10]#011train-rmse:3.88967#011validation-rmse:4.44923 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [11]#011train-rmse:3.5256#011validation-rmse:4.10511 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [12]#011train-rmse:3.24128#011validation-rmse:3.85509 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [13]#011train-rmse:3.04639#011validation-rmse:3.67319 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [14]#011train-rmse:2.88315#011validation-rmse:3.55872 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.75257#011validation-rmse:3.46787 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [16]#011train-rmse:2.63261#011validation-rmse:3.40862 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [17]#011train-rmse:2.52412#011validation-rmse:3.35635 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [18]#011train-rmse:2.43228#011validation-rmse:3.30461 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [19]#011train-rmse:2.3286#011validation-rmse:3.23218 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:2.23289#011validation-rmse:3.20258 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [21]#011train-rmse:2.14962#011validation-rmse:3.23724 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [22]#011train-rmse:2.06265#011validation-rmse:3.22705 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [23]#011train-rmse:2.01332#011validation-rmse:3.26336 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [24]#011train-rmse:1.97914#011validation-rmse:3.20899 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [25]#011train-rmse:1.91775#011validation-rmse:3.15669 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [26]#011train-rmse:1.86409#011validation-rmse:3.13054 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [27]#011train-rmse:1.83825#011validation-rmse:3.12363 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [28]#011train-rmse:1.78549#011validation-rmse:3.17488 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [29]#011train-rmse:1.73854#011validation-rmse:3.11752 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [30]#011train-rmse:1.72038#011validation-rmse:3.1153 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [31]#011train-rmse:1.68445#011validation-rmse:3.13002 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [32]#011train-rmse:1.65387#011validation-rmse:3.12716 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [33]#011train-rmse:1.63642#011validation-rmse:3.13113 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [34]#011train-rmse:1.5675#011validation-rmse:3.07785 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [35]#011train-rmse:1.53601#011validation-rmse:3.09608 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 4 pruned nodes, max_depth=5 [36]#011train-rmse:1.51381#011validation-rmse:3.06614 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [37]#011train-rmse:1.47165#011validation-rmse:3.05955 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [38]#011train-rmse:1.44324#011validation-rmse:3.01629 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 4 pruned nodes, max_depth=5 [39]#011train-rmse:1.39828#011validation-rmse:2.99487 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [40]#011train-rmse:1.36604#011validation-rmse:2.97142 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 8 pruned nodes, max_depth=5 [41]#011train-rmse:1.34434#011validation-rmse:2.9581 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [42]#011train-rmse:1.30995#011validation-rmse:2.96513 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 6 pruned nodes, max_depth=5 [43]#011train-rmse:1.29653#011validation-rmse:2.95673 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [44]#011train-rmse:1.25615#011validation-rmse:2.93075 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [45]#011train-rmse:1.22642#011validation-rmse:2.93421 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 8 pruned nodes, max_depth=5 [46]#011train-rmse:1.1864#011validation-rmse:2.92098 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 6 pruned nodes, max_depth=3 [47]#011train-rmse:1.17828#011validation-rmse:2.92156 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 8 pruned nodes, max_depth=5 [48]#011train-rmse:1.1507#011validation-rmse:2.93359 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [49]#011train-rmse:1.11163#011validation-rmse:2.91388 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [50]#011train-rmse:1.09579#011validation-rmse:2.89824 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 10 pruned nodes, max_depth=5 [51]#011train-rmse:1.0805#011validation-rmse:2.90241 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 20 pruned nodes, max_depth=2 [52]#011train-rmse:1.077#011validation-rmse:2.90275 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 10 pruned nodes, max_depth=2 [53]#011train-rmse:1.05924#011validation-rmse:2.92355 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 10 pruned nodes, max_depth=2 [54]#011train-rmse:1.05497#011validation-rmse:2.9359 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 10 pruned nodes, max_depth=0 [55]#011train-rmse:1.05498#011validation-rmse:2.93598 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=5 [56]#011train-rmse:1.04614#011validation-rmse:2.93489 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 12 pruned nodes, max_depth=2 [57]#011train-rmse:1.03536#011validation-rmse:2.92588 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 8 pruned nodes, max_depth=5 [58]#011train-rmse:1.01421#011validation-rmse:2.89811 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 16 pruned nodes, max_depth=1 [59]#011train-rmse:1.01264#011validation-rmse:2.89536 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 6 pruned nodes, max_depth=5 [60]#011train-rmse:1.00028#011validation-rmse:2.89557 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 14 pruned nodes, max_depth=2 [61]#011train-rmse:0.994839#011validation-rmse:2.88563 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 6 pruned nodes, max_depth=3 [62]#011train-rmse:0.988257#011validation-rmse:2.89104 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 6 pruned nodes, max_depth=5 [63]#011train-rmse:0.977341#011validation-rmse:2.8886 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 22 pruned nodes, max_depth=4 [64]#011train-rmse:0.970646#011validation-rmse:2.8903 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 10 pruned nodes, max_depth=3 [65]#011train-rmse:0.957126#011validation-rmse:2.89566 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 14 pruned nodes, max_depth=4 [66]#011train-rmse:0.950286#011validation-rmse:2.89285 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 20 pruned nodes, max_depth=3 [67]#011train-rmse:0.943306#011validation-rmse:2.89401 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 20 pruned nodes, max_depth=1 [68]#011train-rmse:0.942712#011validation-rmse:2.89585 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 10 pruned nodes, max_depth=1 [69]#011train-rmse:0.940752#011validation-rmse:2.89171 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 12 pruned nodes, max_depth=0 [70]#011train-rmse:0.94076#011validation-rmse:2.89183 [21:29:07] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 6 pruned nodes, max_depth=5 [71]#011train-rmse:0.933921#011validation-rmse:2.90102 Stopping. Best iteration: [61]#011train-rmse:0.994839#011validation-rmse:2.88563  ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ........................................ ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output _____no_output_____ ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output 'get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2. WARNING:root:There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='1.0-1'. For example: get_image_uri(region, 'xgboost', '1.0-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-07-19 21:53:30 Starting - Starting the training job... 2020-07-19 21:53:33 Starting - Launching requested ML instances...... 2020-07-19 21:54:47 Starting - Preparing the instances for training...... 2020-07-19 21:55:49 Downloading - Downloading input data 2020-07-19 21:55:49 Training - Downloading the training image..Arguments: train [2020-07-19:21:56:10:INFO] Running standalone xgboost training. [2020-07-19:21:56:10:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8480.23mb [2020-07-19:21:56:10:INFO] Determined delimiter of CSV input is ',' [21:56:10] S3DistributionType set as FullyReplicated [21:56:10] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2020-07-19:21:56:10:INFO] Determined delimiter of CSV input is ',' [21:56:10] S3DistributionType set as FullyReplicated [21:56:10] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:19.3467#011validation-rmse:17.7594 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=4 [1]#011train-rmse:15.6883#011validation-rmse:14.3884 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=4 [2]#011train-rmse:12.8311#011validation-rmse:11.8712 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [3]#011train-rmse:10.4892#011validation-rmse:9.8473 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=4 [4]#011train-rmse:8.72349#011validation-rmse:8.38292 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=4 [5]#011train-rmse:7.21805#011validation-rmse:7.22144 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [6]#011train-rmse:6.02614#011validation-rmse:6.40139 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [7]#011train-rmse:5.09863#011validation-rmse:5.79526 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [8]#011train-rmse:4.35667#011validation-rmse:5.34028 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [9]#011train-rmse:3.74467#011validation-rmse:5.05733 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 4 pruned nodes, max_depth=5 [10]#011train-rmse:3.2672#011validation-rmse:4.90879 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [11]#011train-rmse:2.91745#011validation-rmse:4.79682 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [12]#011train-rmse:2.63003#011validation-rmse:4.7102 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 4 pruned nodes, max_depth=5 [13]#011train-rmse:2.41156#011validation-rmse:4.66747 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 2 pruned nodes, max_depth=5 [14]#011train-rmse:2.20116#011validation-rmse:4.62003 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.06944#011validation-rmse:4.59941 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 8 pruned nodes, max_depth=5 [16]#011train-rmse:1.93426#011validation-rmse:4.58421 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [17]#011train-rmse:1.84549#011validation-rmse:4.55751 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [18]#011train-rmse:1.76262#011validation-rmse:4.56733 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [19]#011train-rmse:1.70266#011validation-rmse:4.56357 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:1.6513#011validation-rmse:4.55152 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [21]#011train-rmse:1.6143#011validation-rmse:4.53833 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 2 pruned nodes, max_depth=5 [22]#011train-rmse:1.53083#011validation-rmse:4.58605 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 26 extra nodes, 2 pruned nodes, max_depth=5 [23]#011train-rmse:1.46451#011validation-rmse:4.58929 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [24]#011train-rmse:1.42364#011validation-rmse:4.58461 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [25]#011train-rmse:1.39706#011validation-rmse:4.5792 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [26]#011train-rmse:1.36797#011validation-rmse:4.56942 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [27]#011train-rmse:1.34671#011validation-rmse:4.56818 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 6 pruned nodes, max_depth=5 [28]#011train-rmse:1.30489#011validation-rmse:4.55476 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 8 pruned nodes, max_depth=5 [29]#011train-rmse:1.2652#011validation-rmse:4.58462 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 6 pruned nodes, max_depth=5 [30]#011train-rmse:1.24059#011validation-rmse:4.57373 [21:56:10] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 4 pruned nodes, max_depth=5 [31]#011train-rmse:1.19904#011validation-rmse:4.57499 Stopping. Best iteration: [21]#011train-rmse:1.6143#011validation-rmse:4.53833  2020-07-19 21:56:22 Uploading - Uploading generated training model 2020-07-19 21:56:22 Completed - Training job completed Training seconds: 46 Billable seconds: 46 ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ...........................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 2.3 KiB/2.3 KiB (32.5 KiB/s) with 1 file(s) remaining download: s3://sagemaker-us-west-1-002178010120/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output 'get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2. There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='1.0-1'. For example: get_image_uri(region, 'xgboost', '1.0-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-09-11 20:17:00 Starting - Launching requested ML instances...... 2020-09-11 20:18:06 Starting - Preparing the instances for training...... 2020-09-11 20:19:10 Downloading - Downloading input data 2020-09-11 20:19:10 Training - Downloading the training image...Arguments: train [2020-09-11:20:19:29:INFO] Running standalone xgboost training. [2020-09-11:20:19:29:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8474.43mb [2020-09-11:20:19:29:INFO] Determined delimiter of CSV input is ',' [20:19:29] S3DistributionType set as FullyReplicated [20:19:30] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2020-09-11:20:19:30:INFO] Determined delimiter of CSV input is ',' [20:19:30] S3DistributionType set as FullyReplicated [20:19:30] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:19.9202#011validation-rmse:18.2153 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=3 [1]#011train-rmse:16.2601#011validation-rmse:14.7372 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=4 [2]#011train-rmse:13.2722#011validation-rmse:11.9922 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=4 [3]#011train-rmse:10.9729#011validation-rmse:9.77459 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=4 [4]#011train-rmse:9.03913#011validation-rmse:8.03612 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [5]#011train-rmse:7.58958#011validation-rmse:6.71947 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [6]#011train-rmse:6.38707#011validation-rmse:5.68509 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [7]#011train-rmse:5.40916#011validation-rmse:4.89422 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [8]#011train-rmse:4.643#011validation-rmse:4.29884 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [9]#011train-rmse:4.0599#011validation-rmse:3.88442 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [10]#011train-rmse:3.59246#011validation-rmse:3.58347 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [11]#011train-rmse:3.2686#011validation-rmse:3.41187 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 4 pruned nodes, max_depth=5 [12]#011train-rmse:2.94417#011validation-rmse:3.28721 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [13]#011train-rmse:2.73047#011validation-rmse:3.216 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [14]#011train-rmse:2.55338#011validation-rmse:3.16941 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [15]#011train-rmse:2.40462#011validation-rmse:3.17964 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [16]#011train-rmse:2.2998#011validation-rmse:3.15351 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [17]#011train-rmse:2.21249#011validation-rmse:3.17482 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [18]#011train-rmse:2.06855#011validation-rmse:3.13618 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [19]#011train-rmse:2.01064#011validation-rmse:3.17999 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:1.95868#011validation-rmse:3.23042 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [21]#011train-rmse:1.89637#011validation-rmse:3.28951 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [22]#011train-rmse:1.86407#011validation-rmse:3.3486 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [23]#011train-rmse:1.81664#011validation-rmse:3.37921 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [24]#011train-rmse:1.77335#011validation-rmse:3.39714 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [25]#011train-rmse:1.7608#011validation-rmse:3.43526 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [26]#011train-rmse:1.74057#011validation-rmse:3.4712 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [27]#011train-rmse:1.71539#011validation-rmse:3.5301 [20:19:30] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [28]#011train-rmse:1.66715#011validation-rmse:3.56762 Stopping. Best iteration: [18]#011train-rmse:2.06855#011validation-rmse:3.13618  2020-09-11 20:19:59 Uploading - Uploading generated training model 2020-09-11 20:19:59 Completed - Training job completed Training seconds: 64 Billable seconds: 64 ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output .........................................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 2.3 KiB/2.3 KiB (37.3 KiB/s) with 1 file(s) remaining download: s3://sagemaker-us-east-2-444100773610/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____ ###Markdown Predicting Boston Housing Prices Using XGBoost in SageMaker (Batch Transform)_Deep Learning Nanodegree Program | Deployment_---As an introduction to using SageMaker's Low Level Python API we will look at a relatively simple problem. Namely, we will use the [Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the median value of a home in the area of Boston Mass.The documentation reference for the API used in this notebook is the [SageMaker Developer's Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/) General OutlineTypically, when using a notebook instance with SageMaker, you will proceed through the following steps. Of course, not every step will need to be done with each project. Also, there is quite a lot of room for variation in many of the steps, as you will see throughout these lessons.1. Download or otherwise retrieve the data.2. Process / Prepare the data.3. Upload the processed data to S3.4. Train a chosen model.5. Test the trained model (typically using a batch transform job).6. Deploy the trained model.7. Use the deployed model.In this notebook we will only be covering steps 1 through 5 as we just want to get a feel for using SageMaker. In later notebooks we will talk about deploying a trained model in much more detail. ###Code # Make sure that we use SageMaker 1.x !pip install sagemaker==1.72.0 ###Output Requirement already satisfied: sagemaker==1.72.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (1.72.0) Requirement already satisfied: scipy>=0.19.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.4.1) Requirement already satisfied: boto3>=1.14.12 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.16.37) Requirement already satisfied: packaging>=20.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (20.7) Requirement already satisfied: protobuf>=3.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (3.14.0) Requirement already satisfied: numpy>=1.9.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.19.4) Requirement already satisfied: smdebug-rulesconfig==0.1.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (0.1.4) Requirement already satisfied: protobuf3-to-dict>=0.1.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (0.1.5) Requirement already satisfied: importlib-metadata>=1.4.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (3.1.0) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.10.0) Requirement already satisfied: s3transfer<0.4.0,>=0.3.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.3.3) Requirement already satisfied: botocore<1.20.0,>=1.19.37 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (1.19.37) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (0.10.0) Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.20.0,>=1.19.37->boto3>=1.14.12->sagemaker==1.72.0) (1.25.11) Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from botocore<1.20.0,>=1.19.37->boto3>=1.14.12->sagemaker==1.72.0) (2.8.1) Requirement already satisfied: zipp>=0.5 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from importlib-metadata>=1.4.0->sagemaker==1.72.0) (3.4.0) Requirement already satisfied: pyparsing>=2.0.2 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from packaging>=20.0->sagemaker==1.72.0) (2.4.7) Requirement already satisfied: six>=1.9 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from protobuf>=3.1->sagemaker==1.72.0) (1.15.0) Requirement already satisfied: six>=1.9 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from protobuf>=3.1->sagemaker==1.72.0) (1.15.0) Requirement already satisfied: protobuf>=3.1 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (3.14.0) Requirement already satisfied: six>=1.9 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from protobuf>=3.1->sagemaker==1.72.0) (1.15.0) Requirement already satisfied: botocore<1.20.0,>=1.19.37 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from boto3>=1.14.12->sagemaker==1.72.0) (1.19.37) Requirement already satisfied: numpy>=1.9.0 in /home/ec2-user/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages (from sagemaker==1.72.0) (1.19.4) WARNING: You are using pip version 20.3; however, version 20.3.3 is available. You should consider upgrading via the '/home/ec2-user/anaconda3/envs/pytorch_p36/bin/python -m pip install --upgrade pip' command. ###Markdown Step 0: Setting up the notebookWe begin by setting up all of the necessary bits required to run our notebook. To start that means loading all of the Python modules we will need. ###Code %matplotlib inline import os import time from time import gmtime, strftime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston import sklearn.model_selection ###Output _____no_output_____ ###Markdown In addition to the modules above, we need to import the various bits of SageMaker that we will be using. ###Code import sagemaker from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri # This is an object that represents the SageMaker session that we are currently operating in. This # object contains some useful information that we will need to access later such as our region. session = sagemaker.Session() # This is an object that represents the IAM role that we are currently assigned. When we construct # and launch the training job later we will need to tell it what IAM role it should have. Since our # use case is relatively simple we will simply assign the training job the role we currently have. role = get_execution_role() ###Output _____no_output_____ ###Markdown Step 1: Downloading the dataFortunately, this dataset can be retrieved using sklearn and so this step is relatively straightforward. ###Code boston = load_boston() ###Output _____no_output_____ ###Markdown Step 2: Preparing and splitting the dataGiven that this is clean tabular data, we don't need to do any processing. However, we do need to split the rows in the dataset up into train, test and validation sets. ###Code # First we package up the input data and the target variable (the median value) as pandas dataframes. This # will make saving the data to a file a little easier later on. X_bos_pd = pd.DataFrame(boston.data, columns=boston.feature_names) Y_bos_pd = pd.DataFrame(boston.target) # We split the dataset into 2/3 training and 1/3 testing sets. X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_bos_pd, Y_bos_pd, test_size=0.33) # Then we split the training set further into 2/3 training and 1/3 validation sets. X_train, X_val, Y_train, Y_val = sklearn.model_selection.train_test_split(X_train, Y_train, test_size=0.33) ###Output _____no_output_____ ###Markdown Step 3: Uploading the data files to S3When a training job is constructed using SageMaker, a container is executed which performs the training operation. This container is given access to data that is stored in S3. This means that we need to upload the data we want to use for training to S3. In addition, when we perform a batch transform job, SageMaker expects the input data to be stored on S3. We can use the SageMaker API to do this and hide some of the details. Save the data locallyFirst we need to create the test, train and validation csv files which we will then upload to S3. ###Code # This is our local data directory. We need to make sure that it exists. data_dir = '../data/boston' if not os.path.exists(data_dir): os.makedirs(data_dir) # We use pandas to save our test, train and validation data to csv files. Note that we make sure not to include header # information or an index as this is required by the built in algorithms provided by Amazon. Also, for the train and # validation data, it is assumed that the first entry in each row is the target variable. X_test.to_csv(os.path.join(data_dir, 'test.csv'), header=False, index=False) pd.concat([Y_val, X_val], axis=1).to_csv(os.path.join(data_dir, 'validation.csv'), header=False, index=False) pd.concat([Y_train, X_train], axis=1).to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False) ###Output _____no_output_____ ###Markdown Upload to S3Since we are currently running inside of a SageMaker session, we can use the object which represents this session to upload our data to the 'default' S3 bucket. Note that it is good practice to provide a custom prefix (essentially an S3 folder) to make sure that you don't accidentally interfere with data uploaded from some other notebook or project. ###Code prefix = 'boston-xgboost-LL' test_location = session.upload_data(os.path.join(data_dir, 'test.csv'), key_prefix=prefix) val_location = session.upload_data(os.path.join(data_dir, 'validation.csv'), key_prefix=prefix) train_location = session.upload_data(os.path.join(data_dir, 'train.csv'), key_prefix=prefix) ###Output _____no_output_____ ###Markdown Step 4: Train and construct the XGBoost modelNow that we have the training and validation data uploaded to S3, we can construct a training job for our XGBoost model and build the model itself. Set up the training jobFirst, we will set up and execute a training job for our model. To do this we need to specify some information that SageMaker will use to set up and properly execute the computation. For additional documentation on constructing a training job, see the [CreateTrainingJob API](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html) reference. ###Code # We will need to know the name of the container that we want to use for training. SageMaker provides # a nice utility method to construct this for us. container = get_image_uri(session.boto_region_name, 'xgboost') # We now specify the parameters we wish to use for our training job training_params = {} # We need to specify the permissions that this training job will have. For our purposes we can use # the same permissions that our current SageMaker session has. training_params['RoleArn'] = role # Here we describe the algorithm we wish to use. The most important part is the container which # contains the training code. training_params['AlgorithmSpecification'] = { "TrainingImage": container, "TrainingInputMode": "File" } # We also need to say where we would like the resulting model artifacts stored. training_params['OutputDataConfig'] = { "S3OutputPath": "s3://" + session.default_bucket() + "/" + prefix + "/output" } # We also need to set some parameters for the training job itself. Namely we need to describe what sort of # compute instance we wish to use along with a stopping condition to handle the case that there is # some sort of error and the training script doesn't terminate. training_params['ResourceConfig'] = { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge", "VolumeSizeInGB": 5 } training_params['StoppingCondition'] = { "MaxRuntimeInSeconds": 86400 } # Next we set the algorithm specific hyperparameters. You may wish to change these to see what effect # there is on the resulting model. training_params['HyperParameters'] = { "max_depth": "5", "eta": "0.2", "gamma": "4", "min_child_weight": "6", "subsample": "0.8", "objective": "reg:linear", "early_stopping_rounds": "10", "num_round": "200" } # Now we need to tell SageMaker where the data should be retrieved from. training_params['InputDataConfig'] = [ { "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": train_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" }, { "ChannelName": "validation", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": val_location, "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "csv", "CompressionType": "None" } ] ###Output 'get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2. There is a more up to date SageMaker XGBoost image. To use the newer image, please set 'repo_version'='1.0-1'. For example: get_image_uri(region, 'xgboost', '1.0-1'). ###Markdown Execute the training jobNow that we've built the dictionary object containing the training job parameters, we can ask SageMaker to execute the job. ###Code # First we need to choose a training job name. This is useful for if we want to recall information about our # training job at a later date. Note that SageMaker requires a training job name and that the name needs to # be unique, which we accomplish by appending the current timestamp. training_job_name = "boston-xgboost-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) training_params['TrainingJobName'] = training_job_name # And now we ask SageMaker to create (and execute) the training job training_job = session.sagemaker_client.create_training_job(**training_params) print(training_job_name) ###Output _____no_output_____ ###Markdown The training job has now been created by SageMaker and is currently running. Since we need the output of the training job, we may wish to wait until it has finished. We can do so by asking SageMaker to output the logs generated by the training job and continue doing so until the training job terminates. ###Code session.logs_for_job(training_job_name, wait=True) ###Output 2020-12-25 20:24:54 Starting - Launching requested ML instances...... 2020-12-25 20:26:06 Starting - Preparing the instances for training...... 2020-12-25 20:27:06 Downloading - Downloading input data... 2020-12-25 20:27:36 Training - Downloading the training image..Arguments: train [2020-12-25:20:27:56:INFO] Running standalone xgboost training. [2020-12-25:20:27:56:INFO] File size need to be processed in the node: 0.02mb. Available memory size in the node: 8446.43mb [2020-12-25:20:27:57:INFO] Determined delimiter of CSV input is ',' [20:27:56] S3DistributionType set as FullyReplicated [20:27:57] 227x13 matrix with 2951 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=, [2020-12-25:20:27:57:INFO] Determined delimiter of CSV input is ',' [20:27:57] S3DistributionType set as FullyReplicated [20:27:57] 112x13 matrix with 1456 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=, [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [0]#011train-rmse:19.6838#011validation-rmse:19.6938 Multiple eval metrics have been passed: 'validation-rmse' will be used for early stopping.  Will train until validation-rmse hasn't improved in 10 rounds. [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 0 pruned nodes, max_depth=3 [1]#011train-rmse:16.0449#011validation-rmse:16.276 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=4 [2]#011train-rmse:13.1728#011validation-rmse:13.6727 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [3]#011train-rmse:10.8237#011validation-rmse:11.5327 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [4]#011train-rmse:8.90937#011validation-rmse:9.93265 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [5]#011train-rmse:7.40679#011validation-rmse:8.68047 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 0 pruned nodes, max_depth=5 [6]#011train-rmse:6.18892#011validation-rmse:7.67515 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [7]#011train-rmse:5.23222#011validation-rmse:6.96975 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 10 pruned nodes, max_depth=5 [8]#011train-rmse:4.52048#011validation-rmse:6.46143 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 30 extra nodes, 0 pruned nodes, max_depth=5 [9]#011train-rmse:3.93401#011validation-rmse:6.06267 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 4 pruned nodes, max_depth=5 [10]#011train-rmse:3.46515#011validation-rmse:5.73353 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 28 extra nodes, 2 pruned nodes, max_depth=5 [11]#011train-rmse:3.06799#011validation-rmse:5.49811 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [12]#011train-rmse:2.79937#011validation-rmse:5.32683 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [13]#011train-rmse:2.58865#011validation-rmse:5.18217 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 2 pruned nodes, max_depth=5 [14]#011train-rmse:2.44436#011validation-rmse:5.07863 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 0 pruned nodes, max_depth=5 [15]#011train-rmse:2.30881#011validation-rmse:4.99296 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 24 extra nodes, 0 pruned nodes, max_depth=5 [16]#011train-rmse:2.15163#011validation-rmse:4.85158 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [17]#011train-rmse:2.06106#011validation-rmse:4.80259 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [18]#011train-rmse:1.97267#011validation-rmse:4.77777 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [19]#011train-rmse:1.89669#011validation-rmse:4.73542 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 0 pruned nodes, max_depth=5 [20]#011train-rmse:1.83086#011validation-rmse:4.66811 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 0 pruned nodes, max_depth=5 [21]#011train-rmse:1.77446#011validation-rmse:4.6577 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [22]#011train-rmse:1.7519#011validation-rmse:4.6556 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=5 [23]#011train-rmse:1.71544#011validation-rmse:4.63806 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [24]#011train-rmse:1.69065#011validation-rmse:4.63754 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 2 pruned nodes, max_depth=5 [25]#011train-rmse:1.61093#011validation-rmse:4.56899 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 4 pruned nodes, max_depth=4 [26]#011train-rmse:1.59047#011validation-rmse:4.55545 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 0 pruned nodes, max_depth=5 [27]#011train-rmse:1.51519#011validation-rmse:4.50797 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 0 pruned nodes, max_depth=5 [28]#011train-rmse:1.48725#011validation-rmse:4.49324 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 4 pruned nodes, max_depth=5 [29]#011train-rmse:1.44659#011validation-rmse:4.4695 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 6 pruned nodes, max_depth=5 [30]#011train-rmse:1.41757#011validation-rmse:4.46789 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, 2 pruned nodes, max_depth=5 [31]#011train-rmse:1.3801#011validation-rmse:4.44741 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=5 [32]#011train-rmse:1.34695#011validation-rmse:4.43577 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [33]#011train-rmse:1.32131#011validation-rmse:4.44525 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 0 pruned nodes, max_depth=5 [34]#011train-rmse:1.30369#011validation-rmse:4.41602 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 6 pruned nodes, max_depth=5 [35]#011train-rmse:1.28286#011validation-rmse:4.40856 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [36]#011train-rmse:1.25579#011validation-rmse:4.41625 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 12 pruned nodes, max_depth=4 [37]#011train-rmse:1.25347#011validation-rmse:4.42223 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 8 pruned nodes, max_depth=5 [38]#011train-rmse:1.22902#011validation-rmse:4.44247 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [39]#011train-rmse:1.19195#011validation-rmse:4.41454 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [40]#011train-rmse:1.17548#011validation-rmse:4.41808 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 4 pruned nodes, max_depth=4 [41]#011train-rmse:1.16082#011validation-rmse:4.39869 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [42]#011train-rmse:1.15541#011validation-rmse:4.40806 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 16 extra nodes, 2 pruned nodes, max_depth=5 [43]#011train-rmse:1.13267#011validation-rmse:4.39782 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 14 pruned nodes, max_depth=1 [44]#011train-rmse:1.12865#011validation-rmse:4.39664 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 4 pruned nodes, max_depth=3 [45]#011train-rmse:1.10817#011validation-rmse:4.3879 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 8 pruned nodes, max_depth=3 [46]#011train-rmse:1.09963#011validation-rmse:4.38376 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 8 pruned nodes, max_depth=2 [47]#011train-rmse:1.08521#011validation-rmse:4.35795 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 4 pruned nodes, max_depth=5 [48]#011train-rmse:1.07524#011validation-rmse:4.35804 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 18 pruned nodes, max_depth=3 [49]#011train-rmse:1.06213#011validation-rmse:4.34826 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 16 pruned nodes, max_depth=3 [50]#011train-rmse:1.05476#011validation-rmse:4.33446 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 4 pruned nodes, max_depth=5 [51]#011train-rmse:1.04316#011validation-rmse:4.34995 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [52]#011train-rmse:1.01916#011validation-rmse:4.34363 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 12 pruned nodes, max_depth=1 [53]#011train-rmse:1.01599#011validation-rmse:4.33211 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 10 pruned nodes, max_depth=4 [54]#011train-rmse:1.01221#011validation-rmse:4.32679 [55]#011train-rmse:0.99631#011validation-rmse:4.32346 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 2 pruned nodes, max_depth=5 [56]#011train-rmse:0.994212#011validation-rmse:4.3248 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 10 pruned nodes, max_depth=1 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 22 pruned nodes, max_depth=2 [57]#011train-rmse:0.989076#011validation-rmse:4.32656 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 12 pruned nodes, max_depth=5 [58]#011train-rmse:0.976712#011validation-rmse:4.32343 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [59]#011train-rmse:0.97671#011validation-rmse:4.32308 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [60]#011train-rmse:0.976714#011validation-rmse:4.32354 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=5 [61]#011train-rmse:0.966755#011validation-rmse:4.32494 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 10 pruned nodes, max_depth=2 [62]#011train-rmse:0.960617#011validation-rmse:4.32266 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 12 pruned nodes, max_depth=3 [63]#011train-rmse:0.947992#011validation-rmse:4.32936 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 14 pruned nodes, max_depth=4 [64]#011train-rmse:0.940161#011validation-rmse:4.31711 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 10 pruned nodes, max_depth=4 [65]#011train-rmse:0.926912#011validation-rmse:4.31693 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, 4 pruned nodes, max_depth=5 [66]#011train-rmse:0.909815#011validation-rmse:4.32625 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 10 pruned nodes, max_depth=0 [67]#011train-rmse:0.909833#011validation-rmse:4.3259 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 16 pruned nodes, max_depth=2 [68]#011train-rmse:0.902328#011validation-rmse:4.31678 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 18 pruned nodes, max_depth=3 [69]#011train-rmse:0.898375#011validation-rmse:4.31658 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 14 pruned nodes, max_depth=0 [70]#011train-rmse:0.898377#011validation-rmse:4.31656 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 12 pruned nodes, max_depth=0 [71]#011train-rmse:0.898661#011validation-rmse:4.31466 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6 extra nodes, 14 pruned nodes, max_depth=2 [72]#011train-rmse:0.892166#011validation-rmse:4.32099 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 10 pruned nodes, max_depth=1 [73]#011train-rmse:0.891775#011validation-rmse:4.32175 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 26 pruned nodes, max_depth=1 [74]#011train-rmse:0.890513#011validation-rmse:4.3195 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [75]#011train-rmse:0.890605#011validation-rmse:4.31906 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 8 extra nodes, 20 pruned nodes, max_depth=3 [76]#011train-rmse:0.875779#011validation-rmse:4.30263 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 14 extra nodes, 6 pruned nodes, max_depth=5 [77]#011train-rmse:0.849814#011validation-rmse:4.3018 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 8 pruned nodes, max_depth=4 [78]#011train-rmse:0.836957#011validation-rmse:4.29829 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 20 pruned nodes, max_depth=2 [79]#011train-rmse:0.828574#011validation-rmse:4.29612 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 12 pruned nodes, max_depth=0 [80]#011train-rmse:0.828605#011validation-rmse:4.29577 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [81]#011train-rmse:0.828521#011validation-rmse:4.29722 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 24 pruned nodes, max_depth=2 [82]#011train-rmse:0.825051#011validation-rmse:4.29514 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 16 pruned nodes, max_depth=0 [83]#011train-rmse:0.825053#011validation-rmse:4.29523 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 16 pruned nodes, max_depth=0 [84]#011train-rmse:0.825083#011validation-rmse:4.29594 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 16 pruned nodes, max_depth=0 [85]#011train-rmse:0.825155#011validation-rmse:4.29679 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 20 pruned nodes, max_depth=0 [86]#011train-rmse:0.825175#011validation-rmse:4.29697 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 32 pruned nodes, max_depth=0 [87]#011train-rmse:0.825154#011validation-rmse:4.29678 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 14 pruned nodes, max_depth=0 [88]#011train-rmse:0.82515#011validation-rmse:4.29675 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 22 pruned nodes, max_depth=2 [89]#011train-rmse:0.821079#011validation-rmse:4.29573 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 16 pruned nodes, max_depth=0 [90]#011train-rmse:0.82107#011validation-rmse:4.29564 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 18 pruned nodes, max_depth=0 [91]#011train-rmse:0.821028#011validation-rmse:4.29509 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 12 pruned nodes, max_depth=0 [92]#011train-rmse:0.820996#011validation-rmse:4.29426 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 16 pruned nodes, max_depth=4 [93]#011train-rmse:0.806356#011validation-rmse:4.29676 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 10 pruned nodes, max_depth=0 [94]#011train-rmse:0.806358#011validation-rmse:4.29682 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [95]#011train-rmse:0.806366#011validation-rmse:4.29702 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 12 pruned nodes, max_depth=0 [96]#011train-rmse:0.806352#011validation-rmse:4.29663 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [97]#011train-rmse:0.806419#011validation-rmse:4.29779 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 10 extra nodes, 2 pruned nodes, max_depth=5 [98]#011train-rmse:0.797875#011validation-rmse:4.30083 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 20 pruned nodes, max_depth=0 [99]#011train-rmse:0.797833#011validation-rmse:4.30047 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 22 pruned nodes, max_depth=0 [100]#011train-rmse:0.797821#011validation-rmse:4.30035 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 0 extra nodes, 20 pruned nodes, max_depth=0 [101]#011train-rmse:0.797764#011validation-rmse:4.29964 [20:27:57] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4 extra nodes, 18 pruned nodes, max_depth=2 [102]#011train-rmse:0.793491#011validation-rmse:4.30222 Stopping. Best iteration: [92]#011train-rmse:0.820996#011validation-rmse:4.29426  ###Markdown Build the modelNow that the training job has completed, we have some model artifacts which we can use to build a model. Note that here we mean SageMaker's definition of a model, which is a collection of information about a specific algorithm along with the artifacts which result from a training job. ###Code # We begin by asking SageMaker to describe for us the results of the training job. The data structure # returned contains a lot more information than we currently need, try checking it out yourself in # more detail. training_job_info = session.sagemaker_client.describe_training_job(TrainingJobName=training_job_name) model_artifacts = training_job_info['ModelArtifacts']['S3ModelArtifacts'] # Just like when we created a training job, the model name must be unique model_name = training_job_name + "-model" # We also need to tell SageMaker which container should be used for inference and where it should # retrieve the model artifacts from. In our case, the xgboost container that we used for training # can also be used for inference. primary_container = { "Image": container, "ModelDataUrl": model_artifacts } # And lastly we construct the SageMaker model model_info = session.sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = role, PrimaryContainer = primary_container) ###Output _____no_output_____ ###Markdown Step 5: Testing the modelNow that we have fit our model to the training data, using the validation data to avoid overfitting, we can test our model. To do this we will make use of SageMaker's Batch Transform functionality. In other words, we need to set up and execute a batch transform job, similar to the way that we constructed the training job earlier. Set up the batch transform jobJust like when we were training our model, we first need to provide some information in the form of a data structure that describes the batch transform job which we wish to execute.We will only be using some of the options available here but to see some of the additional options please see the SageMaker documentation for [creating a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html). ###Code # Just like in each of the previous steps, we need to make sure to name our job and the name should be unique. transform_job_name = 'boston-xgboost-batch-transform-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Now we construct the data structure which will describe the batch transform job. transform_request = \ { "TransformJobName": transform_job_name, # This is the name of the model that we created earlier. "ModelName": model_name, # This describes how many compute instances should be used at once. If you happen to be doing a very large # batch transform job it may be worth running multiple compute instances at once. "MaxConcurrentTransforms": 1, # This says how big each individual request sent to the model should be, at most. One of the things that # SageMaker does in the background is to split our data up into chunks so that each chunks stays under # this size limit. "MaxPayloadInMB": 6, # Sometimes we may want to send only a single sample to our endpoint at a time, however in this case each of # the chunks that we send should contain multiple samples of our input data. "BatchStrategy": "MultiRecord", # This next object describes where the output data should be stored. Some of the more advanced options which # we don't cover here also describe how SageMaker should collect output from various batches. "TransformOutput": { "S3OutputPath": "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) }, # Here we describe our input data. Of course, we need to tell SageMaker where on S3 our input data is stored, in # addition we need to detail the characteristics of our input data. In particular, since SageMaker may need to # split our data up into chunks, it needs to know how the individual samples in our data file appear. In our # case each line is its own sample and so we set the split type to 'line'. We also need to tell SageMaker what # type of data is being sent, in this case csv, so that it can properly serialize the data. "TransformInput": { "ContentType": "text/csv", "SplitType": "Line", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": test_location, } } }, # And lastly we tell SageMaker what sort of compute instance we would like it to use. "TransformResources": { "InstanceType": "ml.m4.xlarge", "InstanceCount": 1 } } ###Output _____no_output_____ ###Markdown Execute the batch transform jobNow that we have created the request data structure, it is time to ask SageMaker to set up and run our batch transform job. Just like in the previous steps, SageMaker performs these tasks in the background so that if we want to wait for the transform job to terminate (and ensure the job is progressing) we can ask SageMaker to wait of the transform job to complete. ###Code transform_response = session.sagemaker_client.create_transform_job(**transform_request) transform_desc = session.wait_for_transform_job(transform_job_name) ###Output ..........................................................! ###Markdown Analyze the resultsNow that the transform job has completed, the results are stored on S3 as we requested. Since we'd like to do a bit of analysis in the notebook we can use some notebook magic to copy the resulting output from S3 and save it locally. ###Code transform_output = "s3://{}/{}/batch-bransform/".format(session.default_bucket(),prefix) !aws s3 cp --recursive $transform_output $data_dir ###Output Completed 2.3 KiB/2.3 KiB (30.6 KiB/s) with 1 file(s) remaining download: s3://sagemaker-us-east-1-542531091761/boston-xgboost-LL/batch-bransform/test.csv.out to ../data/boston/test.csv.out ###Markdown To see how well our model works we can create a simple scatter plot between the predicted and actual values. If the model was completely accurate the resulting scatter plot would look like the line $x=y$. As we can see, our model seems to have done okay but there is room for improvement. ###Code Y_pred = pd.read_csv(os.path.join(data_dir, 'test.csv.out'), header=None) plt.scatter(Y_test, Y_pred) plt.xlabel("Median Price") plt.ylabel("Predicted Price") plt.title("Median Price vs Predicted Price") ###Output _____no_output_____ ###Markdown Optional: Clean upThe default notebook instance on SageMaker doesn't have a lot of excess disk space available. As you continue to complete and execute notebooks you will eventually fill up this disk space, leading to errors which can be difficult to diagnose. Once you are completely finished using a notebook it is a good idea to remove the files that you created along the way. Of course, you can do this from the terminal or from the notebook hub if you would like. The cell below contains some commands to clean up the created files from within the notebook. ###Code # First we will remove all of the files contained in the data_dir directory !rm $data_dir/* # And then we delete the directory itself !rmdir $data_dir ###Output _____no_output_____
examples/notebooks/EODC_Forum_2019/VITO.ipynb
###Markdown OpenEO Connection to VITO Backend ###Code import openeo import logging from openeo.auth.auth_bearer import BearerAuth logging.basicConfig(level=logging.INFO) # Define constants # Connection VITO_DRIVER_URL = "http://openeo.vgt.vito.be/openeo/0.4.0" OUTPUT_FILE = "/tmp/openeo_vito_output.tiff" OUTFORMAT = "tiff" # Data PRODUCT_ID = "BIOPAR_FAPAR_V1_GLOBAL" DATE_START = "2016-01-01T00:00:00Z" DATE_END = "2016-03-10T23:59:59Z" IMAGE_WEST = 16.138916 IMAGE_EAST = 16.524124 IMAGE_NORTH = 48.320647 IMAGE_SOUTH = 48.138600 IMAGE_SRS = "EPSG:4326" # Processes NDVI_RED = "B4" NDVI_NIR = "B8A" STRECH_COLORS_MIN = -1 STRECH_COLORS_MAX = 1 # Connect with VITO backend connection = openeo.connect(VITO_DRIVER_URL) connection # Get available processes from the backend. processes = connection.list_processes() processes # Retrieve the list of available collections collections = connection.list_collections() list(collections)[:2] # Get detailed information about a collection process = connection.describe_collection(PRODUCT_ID) process # Select collection product datacube = connection.imagecollection(PRODUCT_ID) print(datacube.to_json()) # Specifying the date range and the bounding box datacube = datacube.filter_bbox(west=IMAGE_WEST, east=IMAGE_EAST, north=IMAGE_NORTH, south=IMAGE_SOUTH, crs=IMAGE_SRS) datacube = datacube.filter_daterange(extent=[DATE_START, DATE_END]) print(datacube.to_json()) # Applying some operations on the data datacube = datacube.ndvi(red=NDVI_RED, nir=NDVI_NIR) datacube = datacube.min_time() print(datacube.to_json()) # Sending the job to the backend job = datacube.create_job() job.start_job() job # Describe Job job.describe_job() # Download job result job.download_results(OUTPUT_FILE) job # Showing the result from IPython.display import Image result = Image(filename=OUTPUT_FILE) result #from PIL import Image #resp2 = req.get(OUTPUT_FILE) #resp2.raw.decode_content = True #im = Image.open(resp2.raw) #im ###Output _____no_output_____ ###Markdown OpenEO Connection to VITO Backend ###Code import openeo import logging from openeo.auth.auth_bearer import BearerAuth logging.basicConfig(level=logging.INFO) # Define constants # Connection VITO_DRIVER_URL = "http://openeo.vgt.vito.be/openeo/0.4.0" OUTPUT_FILE = "/tmp/openeo_vito_output.tiff" OUTFORMAT = "tiff" # Data PRODUCT_ID = "BIOPAR_FAPAR_V1_GLOBAL" DATE_START = "2016-01-01T00:00:00Z" DATE_END = "2016-03-10T23:59:59Z" IMAGE_WEST = 16.138916 IMAGE_EAST = 16.524124 IMAGE_NORTH = 48.320647 IMAGE_SOUTH = 48.138600 IMAGE_SRS = "EPSG:4326" # Processes NDVI_RED = "B4" NDVI_NIR = "B8A" STRECH_COLORS_MIN = -1 STRECH_COLORS_MAX = 1 # Connect with VITO backend connection = openeo.connect(VITO_DRIVER_URL) connection # Get available processes from the backend. processes = connection.list_processes() processes # Retrieve the list of available collections collections = connection.list_collections() list(collections)[:2] # Get detailed information about a collection process = connection.describe_collection(PRODUCT_ID) process # Select collection product datacube = connection.imagecollection(PRODUCT_ID) print(datacube.to_json()) # Specifying the date range and the bounding box datacube = datacube.filter_bbox(west=IMAGE_WEST, east=IMAGE_EAST, north=IMAGE_NORTH, south=IMAGE_SOUTH, crs=IMAGE_SRS) datacube = datacube.filter_daterange(extent=[DATE_START, DATE_END]) print(datacube.to_json()) # Applying some operations on the data datacube = datacube.ndvi(red=NDVI_RED, nir=NDVI_NIR) datacube = datacube.min_time() print(datacube.to_json()) # Sending the job to the backend job = datacube.send_job() job.start_job() job # Describe Job job.describe_job() # Download job result job.download_results(OUTPUT_FILE) job # Showing the result from IPython.display import Image result = Image(filename=OUTPUT_FILE) result #from PIL import Image #resp2 = req.get(OUTPUT_FILE) #resp2.raw.decode_content = True #im = Image.open(resp2.raw) #im ###Output _____no_output_____
Neural network using numpy.ipynb
###Markdown Testing on diabetes dataset ###Code import pandas as pd data = pd.read_csv('diabetes.csv') X = data.iloc[:,:-1] X = np.array(X) y = data.iloc[:,-1] y = np.array(y) y[y=='positive']=1. y[y=='negative']=0. y = np.array(y,dtype=np.float64) y = y.reshape(len(y),1) print(X.shape) print(y.shape) layer_dims = [X.shape[1],10,10,y.shape[1]] parameters,grads = NN_model(X,y,1000,layer_dims,learning_rate=0.001) ###Output _____no_output_____
docs/T697871_Black_box_Attack_API.ipynb
###Markdown Black-box Attack API ###Code !git clone https://github.com/Yueeeeeeee/RecSys-Extraction-Attack.git %cd RecSys-Extraction-Attack/ !apt-get install libarchive-dev !pip install faiss-cpu --no-cache !apt-get install libomp-dev !pip install wget !pip install libarchive def zero_gradients(x): if isinstance(x, torch.Tensor): if x.grad is not None: x.grad.detach_() x.grad.zero_() elif isinstance(x, collections.abc.Iterable): for elem in x: zero_gradients(elem) ###Output _____no_output_____ ###Markdown Black-Box Model Training **NARM model trained on ML-1M dataset.** Given a user sequence 𝒙 with length 𝑇 , we use $𝒙_{[:𝑇−2]}$ as training data and use the last two items for validation and testing respectively. We use hyper-parameters from grid-search. Additionally, all models are trained using Adam optimizer with weight decay 0.01, learning rate 0.001, batch size 128 and 100 linear warmup steps, allowed sequence length as 200. We accelerate evaluation by uniformly sampling 100 negative items for each user. Then we rank them with the positive item and report the average performance on these 101 testing items. Our Evaluation focuses on two aspects:- Ranking Performance: We to use truncated Recall@K that is equivalent to Hit Rate (HR@K) in our evaluation, and Normalized Discounted Cumulative Gain (NDCG@K) to measure the ranking quality.- Agreement Measure: We define Agreement@K (Agr@K) to evaluate the output similarity between the black-box model and our extracted white-box model. Official results: ###Code !python train.py # !zip -r bb_model_narm_ml1m.zip ./experiments # !cp bb_model_narm_ml1m.zip /content/drive/MyDrive/TempData # !ls /content/drive/MyDrive/TempData ###Output _____no_output_____ ###Markdown White-Box Model Distillation ###Code !cp /content/drive/MyDrive/TempData/bb_model_narm_ml1m.zip . !unzip bb_model_narm_ml1m.zip !python distill.py !zip -r wb_model_narm_ml1m.zip ./experiments !cp wb_model_narm_ml1m.zip /content/drive/MyDrive/TempData !ls /content/drive/MyDrive/TempData ###Output _____no_output_____ ###Markdown Attack ###Code !python attack.py !zip -r wb_model_narm_ml1m.zip ./experiments !cp wb_model_narm_ml1m.zip /content/drive/MyDrive/TempData !ls /content/drive/MyDrive/TempData ###Output _____no_output_____ ###Markdown Retrain ###Code !python retrain.py ###Output Input 1 / 20 for movielens, b for beauty, bd for dense beauty, g for games, s for steam and y for yoochoose: 1 Input model code, b for BERT, s for SASRec and n for NARM: n Input GPU ID: 0 Already preprocessed. Skip preprocessing Negatives samples exist. Loading. Negatives samples exist. Loading. Input white box model code, b for BERT, s for SASRec and n for NARM: n {1: 'narm2narm_autoregressive4', 2: 'narm_black_box'} Input index of desired white box model: 1 Already preprocessed. Skip preprocessing ## Generate Biased Data with Target [2459, 1009, 2135, 918, 3233, 1226, 498, 2917, 1332, 3184, 264, 2490, 1696, 1448, 144, 365, 1368, 2714, 1874, 3285, 2235, 3406, 3155, 1322, 2928] ## Generating poisoned dataset... 100% 2/2 [00:04<00:00, 2.24s/it] Already preprocessed. Skip preprocessing Negative samples don't exist. Generating. Sampling negative items randomly... 100% 6100/6100 [00:01<00:00, 6058.91it/s] Negative samples don't exist. Generating. Sampling negative items randomly... 100% 6100/6100 [00:01<00:00, 5976.19it/s] ## Biased Retrain on Item [2459, 1009, 2135, 918, 3233, 1226, 498, 2917, 1332, 3184, 264, 2490, 1696, 1448, 144, 365, 1368, 2714, 1874, 3285, 2235, 3406, 3155, 1322, 2928] ## Epoch 1, loss 5.217 : 100% 7761/7761 [11:15<00:00, 11.49it/s] Eval: N@1 0.474, N@5 0.629, N@10 0.657, R@1 0.474, R@5 0.760, R@10 0.847: 100% 48/48 [00:01<00:00, 29.43it/s] Update Best NDCG@10 Model at 1 Epoch 2, loss 5.196 : 100% 7761/7761 [11:15<00:00, 11.48it/s] Eval: N@1 0.477, N@5 0.632, N@10 0.658, R@1 0.477, R@5 0.764, R@10 0.845: 100% 48/48 [00:01<00:00, 29.73it/s] Update Best NDCG@10 Model at 2 Epoch 3, loss 5.186 : 100% 7761/7761 [11:15<00:00, 11.48it/s] Eval: N@1 0.476, N@5 0.634, N@10 0.661, R@1 0.476, R@5 0.766, R@10 0.847: 100% 48/48 [00:01<00:00, 29.53it/s] Update Best NDCG@10 Model at 3 Epoch 4, loss 5.178 : 100% 7761/7761 [11:16<00:00, 11.47it/s] Eval: N@1 0.474, N@5 0.632, N@10 0.659, R@1 0.474, R@5 0.763, R@10 0.846: 100% 48/48 [00:01<00:00, 29.71it/s] Epoch 5, loss 5.171 : 100% 7761/7761 [11:16<00:00, 11.47it/s] Eval: N@1 0.468, N@5 0.629, N@10 0.655, R@1 0.468, R@5 0.764, R@10 0.845: 100% 48/48 [00:01<00:00, 29.76it/s] Epoch 6, loss 5.165 : 100% 7761/7761 [11:17<00:00, 11.45it/s] Eval: N@1 0.475, N@5 0.635, N@10 0.660, R@1 0.475, R@5 0.769, R@10 0.848: 100% 48/48 [00:01<00:00, 29.76it/s] Epoch 7, loss 5.139 : 37% 2903/7761 [04:13<07:03, 11.46it/s]
src/JSON-to-CSV.ipynb
###Markdown Import all necessary libraries ###Code import os import re from pyarrow import json import pyarrow.parquet as pq ###Output _____no_output_____ ###Markdown Define our global variables.`TEMPORAL_DIR` is the temporary landing zone where raw files will be placed that need to be processed`PERSISTANT_DIR` will be the location of files converted to the selected file format ###Code TEMPORAL_DIR = '../data/raw' PERSISTENT_DIR = '../data/processed' ###Output _____no_output_____ ###Markdown Here we create a simple function that will convert a JSON file into a parquet file, and place the converted file into the appropriate location ###Code def convert_json_to_parquet(input_filename, input_dir, output_filename, output_dir): ''' This function will take an input file in the form of JSON from a given directory, convert the file to a parquet, and place the file in a directory specified in parameters. :param input_filename: filename (including extension) that will be converted into parquet file :param input_dir: directory where the JSON file exists :param output_dir: directory where the parquet file should be placed after conversion :param output_filename: filename that will be given to converted parquet file :return: None ''' table = json.read_json(f'{input_dir}/{input_filename}') pq.write_table(table, f'{output_dir}/{output_filename}') ###Output _____no_output_____ ###Markdown First we can strip primary metadata information from the filename as received from the website. ###Code for filename in os.listdir(TEMPORAL_DIR): # iterate over all files in directory DIR if not filename.startswith('.'): # do not process hidden files that start with "." metadata = re.split('[-.]',filename) # splits the filename on '-' and '.' -> creates a list file_directory = f"{PERSISTENT_DIR}/{metadata[0]}/{metadata[1]}" # uses YYYY/MM as the name of the sub-directory new_filename = f"{metadata[3]}-{metadata[4]}" # new file name will be userID-taskID if not os.path.exists(file_directory): # creates the directory if it doesn't exist os.makedirs(file_directory) if metadata[5] == "json": convert_json_to_parquet(filename, TEMPORAL_DIR, new_filename, file_directory) elif metadata[5] == "csv": print("This is where Vlada's function will be placed") # TODO: Replace with Vlada's function to convert from CSV to parquet ###Output _____no_output_____
Jupyter Notebook/Jupyter Notebok/Mutation - Statement/math.ipynb
###Markdown Difference - Classes not covered in jacoco or PIT ###Code df = merged_inner df.columns merged_inner.head() merged_inner.count() df.plot(x='Mutation_Score', y='Statement_Percentage', style='o') df[['Mutation_Score','Statement_Percentage']].corr(method ='spearman') df.plot(x='Mutation_Score', y='Branch_Percentage', style='o') df[['Mutation_Score','Branch_Percentage']].corr(method ='spearman') df.to_csv('math-mu-st-branch.csv') from google.colab import files files.download("math-mu-st-branch.csv") ###Output _____no_output_____
CRE_Marketing_Data/HotelTaxPayerData.ipynb
###Markdown Grabing Public Hotel Occupancy Tax Data, then storing it into a database, crossreferencing if data is repeating Prerequisites: requirements for mysql-python communication:* pip install mysqlclient* pip install mysql-connector-python * if recieving wheel error: pip install wheel ###Code # Imports import time import sys from zipfile import ZipFile import pandas as pd import pandas.io.sql as pdsql import glob, os import numpy as np # Datetime for new column import datetime # Imports for mySQL from sqlalchemy import create_engine, event, DateTime from db_setup import mysql_user, mysql_password, db_name import mysql.connector ###Output _____no_output_____ ###Markdown File path defined ###Code mydir = os.path.abspath('./HotelOccupancyTaxData') mydir ###Output _____no_output_____ ###Markdown Defining headers for data ###Code # Defining header for marketing data. Marketing data comes with no header # Franchise tax permit ftact_date_head = ['Taxpayer_Number', 'Taxpayer_Name', 'Taxpayer_Address', 'Taxpayer_City', 'Taxpayer_State', 'Taxpayer_Zip_Code', 'Taxpayer_County_Code', 'Taxpayer_Organizational_Type', 'Taxpayer_Phone_Number', 'Record_Type_Code', 'Responsibility_Beginning_Date', 'Secretary_of_State_File_Number', 'SOS_Charter_Date', 'SOS_Status_Date', 'Current_Exempt_Reason_Code', 'Agent_Name', 'Agent_Address', 'Agent_City', 'Agent_State', 'Agent_Zip_Code'] # Franchise tax permit date ftact_head = ['Taxpayer_Number', 'Taxpayer_Name', 'Taxpayer_Address', 'Taxpayer_City', 'Taxpayer_State', 'Taxpayer_Zip_Code', 'Taxpayer_County_Code', 'Taxpayer_Organizational_Type', 'Taxpayer_Phone_Number', 'Record_Type_Code', 'Responsibility_Beginning_Date', 'Responsibility_End_Date', 'Responsibility_End_Reason_Code', 'Secretary_of_State_File_Number', 'SOS_Charter_Date', 'SOS_Status_Date', 'SOS_Status_Code', 'Rigth_to_Tansact_Business_Code', 'Current_Exempt_Reason_Code', 'Exempt_Begin_Date', 'NAICS_Code'] ###Output _____no_output_____ ###Markdown Extract files from zipped folder ###Code # extract all files i = 0 for file in glob.glob(mydir + '/*.zip'): i += 1 zip = ZipFile(file, 'r') print(f'Extracting file {i}') zip.extractall(mydir) zip.close() print('Done!') print(f"File {i}, extracted: {file}\n") time.sleep(1) os.remove(file) ###Output Extracting file 1 Done! File 1, extracted: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\FTACT.zip Extracting file 2 Done! File 2, extracted: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\PP_files.zip Extracting file 3 Done! File 3, extracted: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\Real_building_land.zip Extracting file 4 Done! File 4, extracted: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\STACT.zip ###Markdown Add csv files to a data frame ( fran and stp) ###Code # Searches for a csv file df_fran = pd.DataFrame() for file in glob.glob(mydir + '/*.csv'): if 'fran' in file: df = pd.read_csv(file, header=None, index_col=False, names=ftact_date_head, engine ='python') df_fran = df_fran.append(df) os.remove(file) print('Added the ' + file + " into the DF df_fran") print("deleted the file " + str(file)) else: print('we do not know what to do with this file: ' + str(file)) ###Output _____no_output_____ ###Markdown FRAN DF created ###Code df_fran.head() ###Output _____no_output_____ ###Markdown Adding the Taxpayer County Name and Record Type Name Column ###Code # Taxpayer Organization Type: df_fran.loc[(df_fran.Taxpayer_Organizational_Type == 'CF'),'Taxpayer_Organizational_Name']='Foreign Profit' # CF - Foreign Profit df_fran.loc[(df_fran.Taxpayer_Organizational_Type == 'CI'),'Taxpayer_Organizational_Name']='Limited Liability Company - Foreign'# CI - Limited Liability Company - Foreign df_fran.loc[(df_fran.Taxpayer_Organizational_Type == 'CL'),'Taxpayer_Organizational_Name']='Limited Liability Company - Texas' # CL - Limited Liability Company - Texas df_fran.loc[(df_fran.Taxpayer_Organizational_Type == 'CM'),'Taxpayer_Organizational_Name']='Foreign Non-Profit' # CM - Foreign Non-Profit df_fran.loc[(df_fran.Taxpayer_Organizational_Type == 'CN'),'Taxpayer_Organizational_Name']='Texas Non-Profit' # CN - Texas Non-Profit df_fran.loc[(df_fran.Taxpayer_Organizational_Type == 'CP'),'Taxpayer_Organizational_Name']='Professional' # CP - Professional df_fran.loc[(df_fran.Taxpayer_Organizational_Type == 'CR'),'Taxpayer_Organizational_Name']='Texas Insurance' # CR - Texas Insurance df_fran.loc[(df_fran.Taxpayer_Organizational_Type == 'CS'),'Taxpayer_Organizational_Name']='Foreign Insurance - OOS' # CS - Foreign Insurance - OOS df_fran.loc[(df_fran.Taxpayer_Organizational_Type == 'CT'),'Taxpayer_Organizational_Name']='Texas Profit' # CT - Texas Profit df_fran.loc[(df_fran.Taxpayer_Organizational_Type == 'CW'),'Taxpayer_Organizational_Name']='Texas Railroad Corporation' # CW - Texas Railroad Corporation df_fran.loc[(df_fran.Taxpayer_Organizational_Type == 'CX'),'Taxpayer_Organizational_Name']='Foreign Railroad Corporation - OOS' # CX - Foreign Railroad Corporation - OOS # Record Type Code: df_fran.loc[(df_fran.Record_Type_Code == 'U'),'Record_Type_Name']='Secretary of State (SOS) File Number' # U = Secretary of State (SOS) File Number df_fran.loc[(df_fran.Record_Type_Code == 'V'),'Record_Type_Name']='SOS Certificate of Authority (COA) File Number' # V = SOS Certificate of Authority (COA) File Number df_fran.loc[(df_fran.Record_Type_Code == 'X'),'Record_Type_Name']='Comptroller Assigned File Number' # X = Comptroller Assigned File Number df_fran.head() ###Output _____no_output_____ ###Markdown Date format ###Code # df_fran['SOS_Charter_Date'] = df_fran['SOS_Charter_Date'].str.strip() df_fran['SOS_Charter_Date'] = df_fran['SOS_Charter_Date'].fillna(0) df_fran['SOS_Status_Date'] = df_fran['SOS_Status_Date'].fillna(0) # df_fran['SOS_Charter_Date'] = df_fran['SOS_Charter_Date'].astype(np.int64) # df_fran['SOS_Status_Date'] = df_fran['SOS_Status_Date'].astype(np.int64) df_fran['Responsibility_Beginning_Date'] = df_fran['Responsibility_Beginning_Date'].astype(np.int64) df_fran['SOS_Charter_Date'] = pd.to_datetime(df_fran["SOS_Charter_Date"], format='%Y%m%d', errors='coerce') df_fran['SOS_Status_Date'] = pd.to_datetime(df_fran["SOS_Status_Date"], format='%Y%m%d', errors='coerce') df_fran['Responsibility_Beginning_Date'] = pd.to_datetime(df_fran["Responsibility_Beginning_Date"], format='%Y%m%d', errors='coerce') df_fran['SOS_Charter_Date'] =df_fran['SOS_Charter_Date'].dt.normalize() df_fran['SOS_Status_Date'] = df_fran['SOS_Status_Date'].dt.normalize() df_fran['Responsibility_Beginning_Date'] = df_fran['Responsibility_Beginning_Date'].dt.normalize() df_fran = df_fran[df_fran['Taxpayer_Zip_Code']!=0] df_fran.head() ###Output _____no_output_____ ###Markdown Checking column count ###Code df_fran.count() ###Output _____no_output_____ ###Markdown Extracting textfile and storing into DF (FTOFFDIR, FTACT, STACT) ###Code for file in glob.glob(mydir + '/*.txt'): if 'FTACT' in file: df_ftact = pd.read_fwf(file, widths=[11, 50, 40, 20, 2, 5, 3, 2, 10, 1, 8, 8, 2, 10, 8, 8, 2, 1, 3, 8, 6], header=None, names=ftact_head, index_col=False, engine= 'python') # FTOOB, FTACT df_ftact = df_ftact.append(df_ftact) os.remove(file) print('Added the ' + file + ' into df_ftact') print('deleted the file ' + str(file)) else: os.remove(file) print('File not being used: ' + str(file)) ###Output File not being used: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\building_other.txt File not being used: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\building_res.txt File not being used: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\exterior.txt File not being used: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\extra_features.txt File not being used: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\extra_features_detail1.txt File not being used: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\extra_features_detail2.txt File not being used: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\fixtures.txt Added the C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\FTACT.txt into df_ftact deleted the file C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\FTACT.txt File not being used: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\land.txt File not being used: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\land_ag.txt File not being used: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\STACT Layout.txt Added the C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\STACT.txt into df_stact deleted the file C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\STACT.txt File not being used: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\structural_elem1.txt File not being used: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\structural_elem2.txt File not being used: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\t_business_acct.txt File not being used: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\t_business_detail.txt File not being used: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\t_jur_exempt.txt File not being used: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\t_jur_tax_dist_exempt_value.txt File not being used: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\t_jur_tax_dist_percent_rate.txt File not being used: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\t_jur_value.txt File not being used: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\t_pp_c.txt File not being used: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\t_pp_e.txt File not being used: C:\DataAnalyticsBootCamp\WEEK_23 - Project 3\Project_3_Potential_Marketing\CRE_Marketing_Data\HotelOccupancyTaxData\t_pp_l.txt ###Markdown FTACT DF created ###Code df_ftact.head() ###Output _____no_output_____ ###Markdown Taxpayer_Organizational_Name and Record_Type_Name Column ###Code # Taxpayer Organization Type: df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'AB'),'Taxpayer_Organizational_Name']='Texas Business Association' # AB – Texas Business Association df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'AC'),'Taxpayer_Organizational_Name']='Foreign Business Association' # AC – Foreign Business Association df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'AF'),'Taxpayer_Organizational_Name']='Foreign Professional Association' # AF – Foreign Professional Association df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'AP'),'Taxpayer_Organizational_Name']='Texas Professional Association' # AP – Texas Professional Association df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'AR'),'Taxpayer_Organizational_Name']='Other Association' # AR – Other Association df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'CF'),'Taxpayer_Organizational_Name']='Foreign Profit' # CF - Foreign Profit df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'CI'),'Taxpayer_Organizational_Name']='Limited Liability Company - Foreign' # CI - Limited Liability Company - Foreign df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'CL'),'Taxpayer_Organizational_Name']='Limited Liability Company - Texas' # CL - Limited Liability Company - Texas df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'CM'),'Taxpayer_Organizational_Name']='Foreign Non-Profit' # CM - Foreign Non-Profit df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'CN'),'Taxpayer_Organizational_Name']='Texas Non-Profit' # CN - Texas Non-Profit df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'CP'),'Taxpayer_Organizational_Name']='Professional' # CP - Professional df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'CR'),'Taxpayer_Organizational_Name']='Texas Insurance' # CR - Texas Insurance df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'CS'),'Taxpayer_Organizational_Name']='Foreign Insurance - OOS' # CS - Foreign Insurance - OOS df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'CT'),'Taxpayer_Organizational_Name']='Texas Profit' # CT - Texas Profit df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'CU'),'Taxpayer_Organizational_Name']='Foreign Professional Corporation' # CU – Foreign Professional Corporation df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'CW'),'Taxpayer_Organizational_Name']='Texas Railroad Corporation' # CW - Texas Railroad Corporation df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'CX'),'Taxpayer_Organizational_Name']='Foreign Railroad Corporation - OOS' # CX - Foreign Railroad Corporation – OOS df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'HF'),'Taxpayer_Organizational_Name']='Foreign Holding Company' # HF – Foreign Holding Company df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'PB'),'Taxpayer_Organizational_Name']='Business General Partnership' # PB – Business General Partnership df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'PF'),'Taxpayer_Organizational_Name']='Foreign Limited Partnership' # PF – Foreign Limited Partnership df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'PI'),'Taxpayer_Organizational_Name']='Individual General Partnership' # PI – Individual General Partnership df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'PL'),'Taxpayer_Organizational_Name']='Texas Limited Partnership' # PL – Texas Limited Partnership df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'PV'),'Taxpayer_Organizational_Name']='Texas Joint Venture' # PV – Texas Joint Venture df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'PW'),'Taxpayer_Organizational_Name']='Foreign Joint Venture' # PW – Foreign Joint Venture df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'PX'),'Taxpayer_Organizational_Name']='Texas Limited Liability Partnership' # PX – Texas Limited Liability Partnership df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'PY'),'Taxpayer_Organizational_Name']='Foreign Limited Liability Partnerhsip' # PY – Foreign Limited Liability Partnerhsip df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'SF'),'Taxpayer_Organizational_Name']='Foreign Joint Stock Company' # SF – Foreign Joint Stock Company df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'ST'),'Taxpayer_Organizational_Name']='Texas Joint Stock Company' # ST – Texas Joint Stock Company df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'TF'),'Taxpayer_Organizational_Name']='Foreign Business Trust' # TF – Foreign Business Trust df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'TH'),'Taxpayer_Organizational_Name']='Texas Real Estate Investment Trust' # TH – Texas Real Estate Investment Trust df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'TI'),'Taxpayer_Organizational_Name']='Foreign Real Estate Investment Trust' # TI – Foreign Real Estate Investment Trust df_ftact.loc[(df_ftact.Taxpayer_Organizational_Type == 'TR'),'Taxpayer_Organizational_Name']='Texas Business Trust' # TR – Texas Business Trust # Record Type Code: df_ftact.loc[(df_ftact.Record_Type_Code == 'U'),'Record_Type_Name']='Secretary of State (SOS) File Number' # U = Secretary of State (SOS) File Number df_ftact.loc[(df_ftact.Record_Type_Code == 'V'),'Record_Type_Name']='SOS Certificate of Authority (COA) File Number' # V = SOS Certificate of Authority (COA) File Number df_ftact.loc[(df_ftact.Record_Type_Code == 'X'),'Record_Type_Name']='Comptroller Assigned File Number' # X = Comptroller Assigned File Number df_ftact.head() # (Description for context) SOS Charter/COA: # Depending on the Record Type Code value, this number # is the SOS, COA or Comptroller Assigned File Number. # If the Record Type Code is an 'X', this field will be # blank. They do not have a current SOS Charter/COA. ###Output _____no_output_____ ###Markdown Responsibility_End_Reason_Name column ###Code # Responsibility End Reason Code: # This is for mostly for Record Type Code value 'X'. df_ftact.loc[(df_ftact.Responsibility_End_Reason_Code == 0),'Responsibility_End_Reason_Name']='Active or Inactive with no Reason Code' # 00 = Active or Inactive with no Reason Code df_ftact.loc[(df_ftact.Responsibility_End_Reason_Code == 1),'Responsibility_End_Reason_Name']='Discountinued Doing Business' # 01 = Discountinued Doing Business df_ftact.loc[(df_ftact.Responsibility_End_Reason_Code == 2),'Responsibility_End_Reason_Name']='Dissolved in Home State' # 02 = Dissolved in Home State df_ftact.loc[(df_ftact.Responsibility_End_Reason_Code == 3),'Responsibility_End_Reason_Name']='Merged Out of Existence' # 03 = Merged Out of Existence df_ftact.loc[(df_ftact.Responsibility_End_Reason_Code == 4),'Responsibility_End_Reason_Name']='Converted' # 04 = Converted df_ftact.loc[(df_ftact.Responsibility_End_Reason_Code == 5),'Responsibility_End_Reason_Name']='Consolidated' # 05 = Consolidated df_ftact.loc[(df_ftact.Responsibility_End_Reason_Code == 6),'Responsibility_End_Reason_Name']='Forfeited in Home State' # 06 = Forfeited in Home State df_ftact.loc[(df_ftact.Responsibility_End_Reason_Code == 8),'Responsibility_End_Reason_Name']='No Nexus' # 08 = No Nexus df_ftact.loc[(df_ftact.Responsibility_End_Reason_Code == 9),'Responsibility_End_Reason_Name']='No Nexus – Dates not the same' # 09 = No Nexus – Dates not the same df_ftact.loc[(df_ftact.Responsibility_End_Reason_Code == 11),'Responsibility_End_Reason_Name']='Special Information Report' # 11 = Special Information Report df_ftact.head() ###Output _____no_output_____ ###Markdown SOS_Status_Name Column ###Code # (Context description) SOS Charter/COA: # Depending on the Record Type Code value, this number # is the SOS, COA or Comptroller Assigned File Number. # If the Record Type Code is an 'X', this field will be # blank. They do not have a current SOS Charter/COA. # SOS Status Code: # For Charter/COA Numbers: df_ftact.loc[(df_ftact.SOS_Status_Code == 'A'),'SOS_Status_Name']='Active' # A = Active df_ftact.loc[(df_ftact.SOS_Status_Code == 'B'),'SOS_Status_Name']='Consolidated' # B = Consolidated df_ftact.loc[(df_ftact.SOS_Status_Code == 'C'),'SOS_Status_Name']='Converted' # C = Converted df_ftact.loc[(df_ftact.SOS_Status_Code == 'D'),'SOS_Status_Name']='Dissolved' # D = Dissolved df_ftact.loc[(df_ftact.SOS_Status_Code == 'E'),'SOS_Status_Name']='Expired' # E = Expired df_ftact.loc[(df_ftact.SOS_Status_Code == 'F'),'SOS_Status_Name']='Forfeited Franchise Tax' # F = Forfeited Franchise Tax df_ftact.loc[(df_ftact.SOS_Status_Code == 'G'),'SOS_Status_Name']='Miscellaneous' # G = Miscellaneous df_ftact.loc[(df_ftact.SOS_Status_Code == 'I'),'SOS_Status_Name']='Closed by FDIC' # I = Closed by FDIC df_ftact.loc[(df_ftact.SOS_Status_Code == 'J'),'SOS_Status_Name']='State Charter Pulled' # J = State Charter Pulled df_ftact.loc[(df_ftact.SOS_Status_Code == 'K'),'SOS_Status_Name']='Forfeited Registered Agent' # K = Forfeited Registered Agent df_ftact.loc[(df_ftact.SOS_Status_Code == 'L'),'SOS_Status_Name']='Forfeited Registered Office' # L = Forfeited Registered Office df_ftact.loc[(df_ftact.SOS_Status_Code == 'M'),'SOS_Status_Name']='Merger' # M = Merger df_ftact.loc[(df_ftact.SOS_Status_Code == 'N'),'SOS_Status_Name']='Forfeited Hot Check' # N = Forfeited Hot Check df_ftact.loc[(df_ftact.SOS_Status_Code == 'P'),'SOS_Status_Name']='Forfeited Court Order' # P = Forfeited Court Order df_ftact.loc[(df_ftact.SOS_Status_Code == 'R'),'SOS_Status_Name']='Reinstated' # R = Reinstated df_ftact.loc[(df_ftact.SOS_Status_Code == 'T'),'SOS_Status_Name']='Terminated' # T = Terminated df_ftact.loc[(df_ftact.SOS_Status_Code == 'W'),'SOS_Status_Name']='Withdrawn' # W = Withdrawn df_ftact.loc[(df_ftact.SOS_Status_Code == 'Y'),'SOS_Status_Name']='Dead at Conversion 69' # Y = Dead at Conversion 69 df_ftact.loc[(df_ftact.SOS_Status_Code == 'Z'),'SOS_Status_Name']='Dead at Conversion 83' # Z = Dead at Conversion 83 df_ftact.head() ###Output _____no_output_____ ###Markdown Rigth_to_Tansact_Business_Name Column ###Code # Exempt Reason Code: # blank = Not Exempt # rest = Exempt for various reasons. A list of value descriptions # may be requested separately. # Right to Transact Business Code: # blank = Franchise Tax Ended df_ftact.loc[(df_ftact.Rigth_to_Tansact_Business_Code == 'A'),'Rigth_to_Tansact_Business_Name']='Active' # A = Active df_ftact.loc[(df_ftact.Rigth_to_Tansact_Business_Code == 'D'),'Rigth_to_Tansact_Business_Name']='Active – Eligible for Termination/Withdrawl' # D = Active – Eligible for Termination/Withdrawl df_ftact.loc[(df_ftact.Rigth_to_Tansact_Business_Code == 'N'),'Rigth_to_Tansact_Business_Name']='Forfeited' # N = Forfeited df_ftact.loc[(df_ftact.Rigth_to_Tansact_Business_Code == 'I'),'Rigth_to_Tansact_Business_Name']='Franchise Tax Involuntarily Ended' # I = Franchise Tax Involuntarily Ended df_ftact.loc[(df_ftact.Rigth_to_Tansact_Business_Code == 'U'),'Rigth_to_Tansact_Business_Name']='Franchise Tax Not Established' # U = Franchise Tax Not Established df_ftact.head() ###Output _____no_output_____ ###Markdown Formating data* changing float to int* adding datetime format ###Code df_ftact['Taxpayer_Zip_Code'] = df_ftact['Taxpayer_Zip_Code'].fillna(0) df_ftact['SOS_Charter_Date'] = df_ftact['SOS_Charter_Date'].fillna(0) df_ftact['SOS_Status_Date'] = df_ftact['SOS_Status_Date'].fillna(0) df_ftact['Secretary_of_State_File_Number'] = df_ftact['Secretary_of_State_File_Number'].fillna(0) df_ftact['NAICS_Code'] = df_ftact['NAICS_Code'].fillna(0) df_ftact['Current_Exempt_Reason_Code'] = df_ftact['Current_Exempt_Reason_Code'].fillna(0) df_ftact['Taxpayer_Zip_Code'] = df_ftact['Taxpayer_Zip_Code'].astype(np.int64) df_ftact['SOS_Charter_Date'] = df_ftact['SOS_Charter_Date'].astype(np.int64) df_ftact['SOS_Status_Date'] = df_ftact['SOS_Status_Date'].astype(np.int64) df_ftact['Responsibility_Beginning_Date'] = df_ftact['Responsibility_Beginning_Date'].astype(np.int64) df_ftact['Secretary_of_State_File_Number'] = df_ftact['Secretary_of_State_File_Number'].astype(np.int64) df_ftact['NAICS_Code'] = df_ftact['NAICS_Code'].astype(np.int64) df_ftact['Current_Exempt_Reason_Code'] = df_ftact['Current_Exempt_Reason_Code'].astype(np.int64) df_ftact['SOS_Charter_Date'] = pd.to_datetime(df_ftact["SOS_Charter_Date"], format='%Y%m%d', errors='coerce') df_ftact['SOS_Status_Date'] = pd.to_datetime(df_ftact["SOS_Status_Date"], format='%Y%m%d', errors='coerce') df_ftact['Responsibility_Beginning_Date'] = pd.to_datetime(df_ftact["Responsibility_Beginning_Date"], format='%Y%m%d', errors='coerce') df_ftact['SOS_Charter_Date'] = df_ftact['SOS_Charter_Date'].dt.normalize() df_ftact['SOS_Status_Date'] = df_ftact['SOS_Status_Date'].dt.normalize() df_ftact['Responsibility_Beginning_Date'] = df_ftact['Responsibility_Beginning_Date'].dt.normalize() df_ftact = df_ftact[df_ftact['Taxpayer_Zip_Code']!=0] df_ftact.head() ###Output _____no_output_____ ###Markdown Upload DF's to Database* Adding database connection* Defining the Engine** I was getting charmap error when attempting to drop the data to the database. I defined encoding = utf-8, yet it still did not work. Only when I hardcoded charset within the engine string is when the error finally went away. ###Code connection_string = f"{mysql_user}:{mysql_password}@localhost:3306/{db_name}?charset=utf8" engine = create_engine(f'mysql://{connection_string}') engine.table_names() ###Output _____no_output_____ ###Markdown Creating two variables for today's date and today's datetime ###Code currentDT = datetime.datetime.now() DateTimeSent = currentDT.strftime("%Y-%m-%d %H:%M:%S") dateCSV = currentDT.strftime("%Y-%m-%d") print(dateCSV) print(DateTimeSent) ###Output 2020-03-25 2020-03-25 02:13:35 ###Markdown Calling Database tables for crosreferencing df data, to have non-duplicated data* Grabing data from the database and storing the tax number column into a dataframe ###Code ftact_in_db = pdsql.read_sql("SELECT Taxpayer_Number FROM franchise_tax_info",engine) print(f"Data count for ftact from the database : {len(ftact_in_db)}\n) try: if df_fran.size != 0: print(f"\nData count from the new df data for df_fran: {len(df_fran)}") except Exception as e: print("df_fran does not exist. Check your data source if it is available") try: if df_ftact.size != 0: print(f"Data count from the new df data for df_ftact: {len(df_ftact)}") except Exception as e: print("df_ftact does not exist. Check your data source if it is available") ###Output Data count for ftact from the database : 0 Data count for stact from the Database: 0 Data count for ftoffdir from the Database: 0 Data count from the new df data for df_ftact: 4236082 Data count from the new df data for df_stact: 1554488 df_ftoffdir does not exist. Check your data source if it is available ###Markdown FTACT aka df_ftact Checking table df with df data to make sure their are not duplicate tax paying numbers* filtering new ftact with data from the database* Checking data for ftact and also adding a new column of today's date and time* Appending new companies (df_ftact) to csv and Database ###Code try: df_ftact = df_ftact[~df_ftact['Taxpayer_Number'].astype(int).isin(ftact_in_db['Taxpayer_Number'].astype(int))] if df_ftact.size != 0: df_ftact['DateTime'] = DateTimeSent print(f"There are {len(ftact_in_db)} data attributes in ftact table from the database\n{len(df_ftact)} new companies, based on tax payer number from filtered data df_tact") df_ftact.to_sql(name='franchise_tax_info', con=engine, if_exists='append', index=False, chunksize=1000) print(f"ftact to database append, completed") f = open('HotelOccupancyTaxData/formattedData/DBUploadRecord.txt','a+') f.write(f'{DateTimeSent}\nftact_{dateCSV}.csv, {len(df_ftact)}, franchise_tax_info table, {len(ftact_in_db)}\n') f.close() else: print("No new data") f = open('HotelOccupancyTaxData/formattedData/DBUploadRecord.txt','a+') f.write(f'{DateTimeSent}\nftact_{dateCSV}.csv, {len(df_ftact)}, franchise_tax_info table, {len(ftact_in_db)}\n') f.close() except Exception as e: print(f"Something went wrong, df_ftact was not able to append to database or no new data: {e}") ###Output There are 0 data attributes in ftact table from the database 4236082 new companies, based on tax payer number from filtered data df_tact ftact to database append, completed ###Markdown Call the tables within the database and store into a variable* Going to compare new data from database with the df_fran ###Code ftact_date_in_db = pdsql.read_sql("SELECT Taxpayer_Number FROM franchise_tax_info_date",engine) print(f"There are {len(ftact_date_in_db)} records in frachise tax permit date table.\n") ###Output There are 0 records in frachise tax permit date table. There are 0 records in sales tax permit date table. ###Markdown fran aka df_fran Checking table df with df data to make sure their are not duplicate tax paying numbers* filtering new df_fran with data from the database* Checking data for df_fran and also adding a new column of today's date and time* Appending new companies (fran) to csv and Database ###Code try: df_fran = df_fran[~df_fran['Taxpayer_Number'].astype(int).isin(ftact_date_in_db['Taxpayer_Number'].astype(int))] if df_fran.size != 0: df_fran['DateTime'] = DateTimeSent print(f"There are {len(ftact_date_in_db)} data attributes in df_fran table from the database\n{len(df_fran)} new companies, based on tax payer number from filtered data df_fran") df_fran.to_sql(name='franchise_tax_info_date', con=engine, if_exists='append', index=False, chunksize=1000) print(f"df_fran to database append, completed") f = open('HotelOccupancyTaxData/formattedData/DBUploadRecord.txt','a+') f.write(f'fran_{dateCSV}.csv, {len(df_fran)}, franchise_tax_info_date table, {len(ftact_date_in_db)}\n') f.close() else: print("No new data") f = open('HotelOccupancyTaxData/formattedData/DBUploadRecord.txt','a+') f.write(f'fran_{dateCSV}.csv, {len(df_fran)}, franchise_tax_info_date table, {len(ftact_date_in_db)}\n') f.close() except Exception as e: print(f"Something went wrong, df_fran was not able to append to database: {e}") ###Output There are 0 data attributes in df_fran table from the database 111888 new companies, based on tax payer number from filtered data df_fran df_fran to database append, completed
biobb_wf_md_setup_remote/notebooks/biobb_MDsetupRemote_tutorial.ipynb
###Markdown Protein MD Setup tutorial using BioExcel Building Blocks (biobb) with remote GROMACS execution**Based on the official GROMACS tutorial:** [http://www.mdtutorials.com/gmx/lysozyme/index.html](http://www.mdtutorials.com/gmx/lysozyme/index.html)***This tutorial aims to illustrate the process of **setting up a simulation system** containing a **protein**, step by step, using the **BioExcel Building Blocks library (biobb)** and connecting remotely to a **super computer** in order to run some jobs. The particular example used is the **Lysozyme** protein (PDB code 1AKI). *** Settings Biobb modules used - [biobb_io](https://github.com/bioexcel/biobb_io): Tools to fetch biomolecular data from public databases. - [biobb_model](https://github.com/bioexcel/biobb_model): Tools to model macromolecular structures. - [biobb_md](https://github.com/bioexcel/biobb_md): Tools to setup and run Molecular Dynamics simulations. - [biobb_analysis](https://github.com/bioexcel/biobb_analysis): Tools to analyse Molecular Dynamics trajectories. - [biobb_remote](https://github.com/bioexcel/biobb_remote): Biobb_remote is a package to allow biobb's to be executed on remote sites through sshs. Auxiliar libraries used - [nb_conda_kernels](https://github.com/Anaconda-Platform/nb_conda_kernels): Enables a Jupyter Notebook or JupyterLab application in one conda environment to access kernels for Python, R, and other languages found in other environments. - [nglview](http://nglviewer.org/nglview): Jupyter/IPython widget to interactively view molecular structures and trajectories in notebooks. - [ipywidgets](https://github.com/jupyter-widgets/ipywidgets): Interactive HTML widgets for Jupyter notebooks and the IPython kernel. - [plotly](https://plot.ly/python/offline/): Python interactive graphing library integrated in Jupyter notebooks. - [simpletraj](https://github.com/arose/simpletraj): Lightweight coordinate-only trajectory reader based on code from GROMACS, MDAnalysis and VMD. Conda Installation and Launch```consolegit clone https://github.com/bioexcel/biobb_wf_md_setup_remote.gitcd biobb_wf_md_setup_remoteconda env create -f conda_env/environment.ymlconda activate biobb_MDsetupRemote_tutorialjupyter-nbextension enable --py --user widgetsnbextensionjupyter-nbextension enable --py --user nglviewjupyter-notebook biobb_wf_md_setup/notebooks/biobb_MDsetupRemote_tutorial.ipynb ``` *** Pipeline steps 1. [Setting up remote access](Setting-up-remote-access) * [Getting new credentials](Generate-SSH-keys-and-store-locally) * Installing credentials on host * Setting host queue 2. [Input Parameters](input) 3. [Fetching PDB Structure](fetch) 4. [Fix Protein Structure](fix) 5. [Create Protein System Topology](top) 6. [Create Solvent Box](box) 7. [Fill the Box with Water Molecules](water) 8. [Adding Ions](ions) 9. [Energetically Minimize the System](min) (local) 10. [Equilibrate the System (NVT)](nvt) (remote) 11. [Equilibrate the System (NPT)](npt) (remote) 12. [Free Molecular Dynamics Simulation](free) (remote) 13. [Post-processing and Visualizing Resulting 3D Trajectory](post) 14. [Output Files](output) 15. [Questions & Comments](questions) ***<img src="https://bioexcel.eu/wp-content/uploads/2019/04/Bioexcell_logo_1080px_transp.png" alt="Bioexcel2 logo" title="Bioexcel2 logo" width="400" />*** Setting up remote accessRemote access uses standard ssh/sftp sessions. A specific public/private key pair will be generated (optional) ###Code host = 'mn1.bsc.es' userid = 'bscXXXXX' host_config_path = '../conf/BSC_MN4.json' ###Output _____no_output_____ ###Markdown Generate SSH keys and store locallySkip to use user's credentials ###Code keys_file = '[email protected]' from biobb_remote.ssh_credentials import SSHCredentials credentials = SSHCredentials( host=host, userid=userid, generate_key=True, look_for_keys=False ) credentials.save(keys_file) ###Output _____no_output_____ ###Markdown Get generated keys ###Code credentials.get_private_key() credentials.get_public_key() credentials.sftp=None ###Output _____no_output_____ ###Markdown Public key should to included in .ssh/authorized_keys, either manually or using install_host_auth (requires user's own ssh credentials) ###Code backup_file_ext = 'bck' credentials.install_host_auth(backup_file_ext) ###Output _____no_output_____ ###Markdown Let's recover the keys from the local file. Useful to reuse previous sessions. ###Code new_credentials = SSHCredentials() new_credentials.load_from_file(keys_file) new_credentials.check_host_auth() ###Output _____no_output_____ ###Markdown Setting the connection to host queueing system (SLURM). local_path is a local working directory, should be created already. remote_path is a base path in the remote computer, will be created when necessary. remote_path will contain a different directory for each instance of the task manager createdtask_data_path keeps a local copy of task manager status allowing to recover interrupted sessions ###Code #from os.path import join as opj local_path = 'test_wdir' remote_path = 'scratch/test_biobb' task_data_path = 'task_data.json' # queue settings are bundled in Slurm class according to the options # on the remote computer # modules are predefined bundles of HPC modules to be loaded. queue_settings = 'default' modules = ['biobb'] conda_env = None from biobb_remote.slurm import Slurm ##Option 1: Adding Biobb credentials set previously #slurm = Slurm() #slurm.set_credentials(credentials) #slurm.load_host_config(host_config_path) #slurm.save(task_data_path) ##Option 2: Using user's own credentials slurm = Slurm(host=host, userid=userid, look_for_keys=True) slurm.load_host_config(host_config_path) slurm.save(task_data_path) #print(slurm.get_queue_info()) # NOT WORKING ###Output _____no_output_____ ###Markdown Input parameters**Input parameters** needed: - **pdbCode**: PDB code of the protein structure (e.g. 1AKI) ###Code import nglview import ipywidgets pdbCode = "1AKI" ###Output _____no_output_____ ###Markdown *** Fetching PDB structureDownloading **PDB structure** with the **protein molecule** from the RCSB PDB database.Alternatively, a **PDB file** can be used as starting structure. *****Building Blocks** used: - [Pdb](https://biobb-io.readthedocs.io/en/latest/api.htmlmodule-api.pdb) from **biobb_io.api.pdb***** ###Code # Downloading desired PDB file # Import module from biobb_io.api.pdb import Pdb # Create properties dict and inputs/outputs downloaded_pdb = opj(local_path, pdbCode+'.pdb') prop = { 'pdb_code': pdbCode } #Create and launch bb Pdb(output_pdb_path=downloaded_pdb, properties=prop).launch() ###Output _____no_output_____ ###Markdown Visualizing 3D structureVisualizing the downloaded/given **PDB structure** using **NGL**: ###Code # Show protein view = nglview.show_structure_file(downloaded_pdb) view.add_representation(repr_type='ball+stick', selection='all') view._remote_call('setSize', target='Widget', args=['','600px']) view ###Output _____no_output_____ ###Markdown *** Fix protein structure**Checking** and **fixing** (if needed) the protein structure:- **Modeling** **missing side-chain atoms**, modifying incorrect **amide assignments**, choosing **alternative locations**.- **Checking** for missing **backbone atoms**, **heteroatoms**, **modified residues** and possible **atomic clashes**.*****Building Blocks** used: - [FixSideChain](https://biobb-model.readthedocs.io/en/latest/model.htmlmodule-model.fix_side_chain) from **biobb_model.model.fix_side_chain***** ###Code # Check & Fix PDB # Import module from biobb_model.model.fix_side_chain import FixSideChain # Create prop dict and inputs/outputs fixed_pdb = opj(local_path, pdbCode + '_fixed.pdb') # Create and launch bb FixSideChain(input_pdb_path=downloaded_pdb, output_pdb_path=fixed_pdb).launch() ###Output _____no_output_____ ###Markdown Visualizing 3D structureVisualizing the fixed **PDB structure** using **NGL**. In this particular example, the checking step didn't find any issue to be solved, so there is no difference between the original structure and the fixed one. ###Code # Show protein view = nglview.show_structure_file(fixed_pdb) view.add_representation(repr_type='ball+stick', selection='all') view._remote_call('setSize', target='Widget', args=['','600px']) view.camera='orthographic' view ###Output _____no_output_____ ###Markdown *** Create protein system topology**Building GROMACS topology** corresponding to the protein structure.Force field used in this tutorial is [**amber99sb-ildn**](https://dx.doi.org/10.1002%2Fprot.22711): AMBER **parm99** force field with **corrections on backbone** (sb) and **side-chain torsion potentials** (ildn). Water molecules type used in this tutorial is [**spc/e**](https://pubs.acs.org/doi/abs/10.1021/j100308a038).Adding **hydrogen atoms** if missing. Automatically identifying **disulfide bridges**. Generating two output files: - **GROMACS structure** (gro file)- **GROMACS topology** ZIP compressed file containing: - *GROMACS topology top file* (top file) - *GROMACS position restraint file/s* (itp file/s)*****Building Blocks** used: - [Pdb2gmx](https://biobb-md.readthedocs.io/en/latest/gromacs.htmlmodule-gromacs.pdb2gmx) from **biobb_md.gromacs.pdb2gmx***** ###Code # Create system topology # Import module from biobb_md.gromacs.pdb2gmx import Pdb2gmx # Create inputs/outputs output_pdb2gmx_gro = opj(local_path, pdbCode+'_pdb2gmx.gro') output_pdb2gmx_top_zip = opj(local_path, pdbCode+'_pdb2gmx_top.zip') # Create and launch bb Pdb2gmx(input_pdb_path=fixed_pdb, output_gro_path=output_pdb2gmx_gro, output_top_zip_path=output_pdb2gmx_top_zip).launch() ###Output _____no_output_____ ###Markdown Visualizing 3D structureVisualizing the generated **GRO structure** using **NGL**. Note that **hydrogen atoms** were added to the structure by the **pdb2gmx GROMACS tool** when generating the **topology**. ###Code # Show protein view = nglview.show_structure_file(output_pdb2gmx_gro) view.add_representation(repr_type='ball+stick', selection='all') view._remote_call('setSize', target='Widget', args=['','600px']) view.camera='orthographic' view ###Output _____no_output_____ ###Markdown *** Create solvent boxDefine the unit cell for the **protein structure MD system** to fill it with water molecules.A **cubic box** is used to define the unit cell, with a **distance from the protein to the box edge of 1.0 nm**. The protein is **centered in the box**. *****Building Blocks** used: - [Editconf](https://biobb-md.readthedocs.io/en/latest/gromacs.htmlmodule-gromacs.editconf) from **biobb_md.gromacs.editconf** *** ###Code # Editconf: Create solvent box # Import module from biobb_md.gromacs.editconf import Editconf # Create prop dict and inputs/outputs output_editconf_gro = opj(local_path, pdbCode+'_editconf.gro') prop = { 'box_type': 'cubic', 'distance_to_molecule': 1.0 } #Create and launch bb Editconf(input_gro_path=output_pdb2gmx_gro, output_gro_path=output_editconf_gro, properties=prop).launch() ###Output _____no_output_____ ###Markdown *** Fill the box with water moleculesFill the unit cell for the **protein structure system** with water molecules.The solvent type used is the default **Simple Point Charge water (SPC)**, a generic equilibrated 3-point solvent model. *****Building Blocks** used: - [Solvate](https://biobb-md.readthedocs.io/en/latest/gromacs.htmlmodule-gromacs.solvate) from **biobb_md.gromacs.solvate** *** ###Code # Solvate: Fill the box with water molecules from biobb_md.gromacs.solvate import Solvate # Create prop dict and inputs/outputs output_solvate_gro = opj(local_path, pdbCode+'_solvate.gro') output_solvate_top_zip = opj(local_path, pdbCode+'_solvate_top.zip') # Create and launch bb Solvate(input_solute_gro_path=output_editconf_gro, output_gro_path=output_solvate_gro, input_top_zip_path=output_pdb2gmx_top_zip, output_top_zip_path=output_solvate_top_zip).launch() ###Output _____no_output_____ ###Markdown Visualizing 3D structureVisualizing the **protein system** with the newly added **solvent box** using **NGL**. Note the **cubic box** filled with **water molecules** surrounding the **protein structure**, which is **centered** right in the middle of the cube. ###Code # Show protein view = nglview.show_structure_file(output_solvate_gro) view.clear_representations() view.add_representation(repr_type='cartoon', selection='solute', color='green') view.add_representation(repr_type='ball+stick', selection='SOL') view._remote_call('setSize', target='Widget', args=['','600px']) view.camera='orthographic' view ###Output _____no_output_____ ###Markdown *** Adding ionsAdd ions to neutralize the **protein structure** charge- [Step 1](ionsStep1): Creating portable binary run file for ion generation- [Step 2](ionsStep2): Adding ions to **neutralize** the system*****Building Blocks** used: - [Grompp](https://biobb-md.readthedocs.io/en/latest/gromacs.htmlmodule-gromacs.grompp) from **biobb_md.gromacs.grompp** - [Genion](https://biobb-md.readthedocs.io/en/latest/gromacs.htmlmodule-gromacs.genion) from **biobb_md.gromacs.genion** *** Step 1: Creating portable binary run file for ion generationA simple **energy minimization** molecular dynamics parameters (mdp) properties will be used to generate the portable binary run file for **ion generation**, although **any legitimate combination of parameters** could be used in this step. ###Code # Grompp: Creating portable binary run file for ion generation from biobb_md.gromacs.grompp import Grompp # Create prop dict and inputs/outputs output_gppion_tpr = opj(local_path, pdbCode+'_gppion.tpr') prop = { 'simulation_type':'minimization' } # Create and launch bb Grompp(input_gro_path=output_solvate_gro, input_top_zip_path=output_solvate_top_zip, output_tpr_path=output_gppion_tpr, properties=prop).launch() ###Output _____no_output_____ ###Markdown Step 2: Adding ions to neutralize the systemReplace **solvent molecules** with **ions** to **neutralize** the system. ###Code # Genion: Adding ions to neutralize the system from biobb_md.gromacs.genion import Genion # Create prop dict and inputs/outputs output_genion_gro = opj(local_path, pdbCode+'_genion.gro') output_genion_top_zip = opj(local_path, pdbCode+'_genion_top.zip') prop={ 'neutral':True } # Create and launch bb Genion(input_tpr_path=output_gppion_tpr, output_gro_path=output_genion_gro, input_top_zip_path=output_solvate_top_zip, output_top_zip_path=output_genion_top_zip, properties=prop).launch() ###Output _____no_output_____ ###Markdown Visualizing 3D structureVisualizing the **neutralized protein system** with the newly added **ions** using **NGL** ###Code # Show protein view = nglview.show_structure_file(output_genion_gro) view.clear_representations() view.add_representation(repr_type='cartoon', selection='solute', color='sstruc') view.add_representation(repr_type='ball+stick', selection='NA') view.add_representation(repr_type='ball+stick', selection='CL') view._remote_call('setSize', target='Widget', args=['','600px']) view.camera='orthographic' view ###Output _____no_output_____ ###Markdown *** Energetically minimize the systemEnergetically minimize the **protein system** till reaching a desired potential energy.- [Step 1](emStep1): Creating portable binary run file for energy minimization- [Step 2](emStep2): Energetically minimize the **system** till reaching a force of 500 kJ mol-1 nm-1.- [Step 3](emStep3): Checking **energy minimization** results. Plotting energy by time during the **minimization** process.*****Building Blocks** used: - [Grompp](https://biobb-md.readthedocs.io/en/latest/gromacs.htmlmodule-gromacs.grompp) from **biobb_md.gromacs.grompp** - [Mdrun](https://biobb-md.readthedocs.io/en/latest/gromacs.htmlmodule-gromacs.mdrun) from **biobb_md.gromacs.mdrun** - [GMXEnergy](https://biobb-analysis.readthedocs.io/en/latest/gromacs.htmlmodule-gromacs.gmx_energy) from **biobb_analysis.gromacs.gmx_energy** *** Step 1: Creating portable binary run file for energy minimizationThe **minimization** type of the **molecular dynamics parameters (mdp) property** contains the main default parameters to run an **energy minimization**:- integrator = steep ; Algorithm (steep = steepest descent minimization)- emtol = 1000.0 ; Stop minimization when the maximum force < 1000.0 kJ/mol/nm- emstep = 0.01 ; Minimization step size (nm)- nsteps = 50000 ; Maximum number of (minimization) steps to performIn this particular example, the method used to run the **energy minimization** is the default **steepest descent**, but the **maximum force** is placed at **500 KJ/mol\*nm^2**, and the **maximum number of steps** to perform (if the maximum force is not reached) to **5,000 steps**. ###Code # Grompp: Creating portable binary run file for mdrun from biobb_md.gromacs.grompp import Grompp # Create prop dict and inputs/outputs output_gppmin_tpr = opj(local_path, pdbCode+'_gppmin.tpr') prop = { 'mdp':{ 'emtol':'500', 'nsteps':'5000' }, 'simulation_type': 'minimization' } # Create and launch bb Grompp(input_gro_path=output_genion_gro, input_top_zip_path=output_genion_top_zip, output_tpr_path=output_gppmin_tpr, properties=prop).launch() ###Output _____no_output_____ ###Markdown Step 2: Running Energy Minimization (remote)Running **energy minimization** using the **tpr file** generated in the previous step. Setting local data and uploading files to remote. ###Code slurm.set_local_data_bundle(local_path, add_files=False) slurm.task_data['local_data_bundle'].add_file(output_gppmin_tpr) slurm.send_input_data(remote_path, overwrite=True) # slurm.task_data['local_data_bundle'].file_stats['../test/test_wdir/1AKI_gppmin.tpr'].st_size # NOT WORKING slurm.load_host_config(host_config_path) slurm.save(task_data_path) ###Output _____no_output_____ ###Markdown Loading pre-defined host configuration ###Code slurm.load_host_config(host_config_path) slurm.host_config # Mdrun: Running minimization python_import = 'from biobb_md.gromacs.mdrun import Mdrun' # Create prop dict and inputs/outputs output_min_trr = pdbCode+'_min.trr' output_min_gro = pdbCode+'_min.gro' output_min_edr = pdbCode+'_min.edr' output_min_log = pdbCode+'_min.log' files = { 'input_tpr_path' : pdbCode + '_gppmin.tpr', 'output_trr_path' : output_min_trr, 'output_gro_path' : output_min_gro, 'output_edr_path' : output_min_edr, 'output_log_path' : output_min_log } # properties # Python dict prop = { 'gmx_path': 'gmx_mpi' } # YAML file # prop = 'properties_path.yaml' # Json string # prop = '{"gmx_path": "gmx_mpi"}' # Galaxy escaped Json string # prop = '__oc____dq__gmx_path__dq__:__dq__gmx_mpi__dq____cc__' # patching queue settings patch={'qos':'debug', 'nodes':2, 'ntasks': 2, 'ntasks-per-node': 2, 'cpus-per-task': 24, 'time':'2:00:00' } #patch={'qos':'debug', 't':'24:00:00', 'nodes':2, 'ntasks-per-node': 2, 'cpus-per-task': 48, 'ntasks': 2} slurm.set_custom_settings(patch=patch) # get_remote_py_script generates one-line python script appropriate # for a single biobb execution on a slurm job # Alternatively, a file containing a more complex script can be loaded from disk slurm.submit( queue_settings='custom', modules=modules, conda_env=conda_env, local_run_script=slurm.get_remote_py_script(python_import, files, 'Mdrun', properties=prop) ) slurm.save(task_data_path) ###Output _____no_output_____ ###Markdown Task progression is maintained in a local file ###Code slurm.save(task_data_path) ###Output _____no_output_____ ###Markdown Waiting for job completion and saving status. Poll time is in seconds. ###Code slurm.check_job(poll_time=5) slurm.save(task_data_path) ###Output _____no_output_____ ###Markdown Getting logs ###Code #slurm.get_remote_file_stats() # NOT WORKING print('\n'.join(slurm.get_logs())) ###Output _____no_output_____ ###Markdown Recovering output files to local_path ###Code slurm.get_output_data(overwrite=False) slurm.task_data['output_data_bundle'].files ###Output _____no_output_____ ###Markdown Step 3: Checking Energy Minimization resultsChecking **energy minimization** results. Plotting **potential energy** by time during the minimization process. ###Code # GMXEnergy: Getting system energy by time from biobb_analysis.gromacs.gmx_energy import GMXEnergy # Create prop dict and inputs/outputs output_min_edr = local_path + "/" + pdbCode + "_min.edr" output_min_ene_xvg = local_path + "/" + pdbCode+'_min_ene.xvg' prop = { 'terms': ["Potential"] } # Create and launch bb GMXEnergy(input_energy_path=output_min_edr, output_xvg_path=output_min_ene_xvg, properties=prop).launch() import plotly import plotly.graph_objs as go #Read data from file and filter energy values higher than 1000 Kj/mol^-1 with open(output_min_ene_xvg,'r') as energy_file: x,y = map( list, zip(*[ (float(line.split()[0]),float(line.split()[1])) for line in energy_file if not line.startswith(("#","@")) if float(line.split()[1]) < 1000 ]) ) plotly.offline.init_notebook_mode(connected=True) fig = { "data": [go.Scatter(x=x, y=y)], "layout": go.Layout(title="Energy Minimization", xaxis=dict(title = "Energy Minimization Step"), yaxis=dict(title = "Potential Energy KJ/mol-1") ) } plotly.offline.iplot(fig) ###Output _____no_output_____ ###Markdown *** Equilibrate the system (NVT)Equilibrate the **protein system** in **NVT ensemble** (constant Number of particles, Volume and Temperature). Protein **heavy atoms** will be restrained using position restraining forces: movement is permitted, but only after overcoming a substantial energy penalty. The utility of position restraints is that they allow us to equilibrate our solvent around our protein, without the added variable of structural changes in the protein.- [Step 1](eqNVTStep1): Creating portable binary run file for system equilibration- [Step 2](eqNVTStep2): Equilibrate the **protein system** with **NVT** ensemble.- [Step 3](eqNVTStep3): Checking **NVT Equilibration** results. Plotting **system temperature** by time during the **NVT equilibration** process. *****Building Blocks** used:- [Grompp](https://biobb-md.readthedocs.io/en/latest/gromacs.htmlmodule-gromacs.grompp) from **biobb_md.gromacs.grompp** - [Mdrun](https://biobb-md.readthedocs.io/en/latest/gromacs.htmlmodule-gromacs.mdrun) from **biobb_md.gromacs.mdrun** - [GMXEnergy](https://biobb-analysis.readthedocs.io/en/latest/gromacs.htmlmodule-gromacs.gmx_energy) from **biobb_analysis.gromacs.gmx_energy** *** Step 1: Creating portable binary run file for system equilibration (NVT)The **nvt** type of the **molecular dynamics parameters (mdp) property** contains the main default parameters to run an **NVT equilibration** with **protein restraints** (see [GROMACS mdp options](http://manual.gromacs.org/documentation/2018/user-guide/mdp-options.html)):- Define = -DPOSRES- integrator = md- dt = 0.002- nsteps = 5000- pcoupl = no- gen_vel = yes- gen_temp = 300- gen_seed = -1In this particular example, the default parameters will be used: **md** integrator algorithm, a **step size** of **2fs**, **5,000 equilibration steps** with the protein **heavy atoms restrained**, and a temperature of **300K**.*Please note that for the sake of time this tutorial is only running 10ps of NVT equilibration, whereas in the [original example](http://www.mdtutorials.com/gmx/lysozyme/06_equil.html) the simulated time was 100ps.* ###Code # Grompp: Creating portable binary run file for NVT Equilibration from biobb_md.gromacs.grompp import Grompp # Create prop dict and inputs/outputs input_min_gro = opj(local_path, pdbCode + '_min.gro') input_genion_top_zip = opj(local_path, pdbCode + '_genion_top.zip') output_gppnvt_tpr = opj(local_path, pdbCode+'_gppnvt.tpr') prop = { 'mdp':{ 'nsteps': 5000, 'dt': 0.002, 'Define': '-DPOSRES', #'tc_grps': "DNA Water_and_ions" # NOTE: uncomment this line if working with DNA }, 'simulation_type': 'nvt' } # Create and launch bb Grompp(input_gro_path=input_min_gro, input_top_zip_path=input_genion_top_zip, output_tpr_path=output_gppnvt_tpr, properties=prop).launch() ###Output _____no_output_____ ###Markdown Uploading new tpr file to remote ###Code slurm.task_data['local_data_bundle'].add_file(output_gppnvt_tpr) slurm.send_input_data(remote_path, overwrite= False) ###Output _____no_output_____ ###Markdown Step 2: Running NVT equilibration (remote) Preparing custom queue settings for Slurm ###Code """patch = slurm.prep_auto_settings(nodes=1, cpus_per_task=40) slurm.set_custom_settings(patch=patch, clean=True) # Settings changes can be accumulated patch = {'time':'1:00:00'} slurm.set_custom_settings(ref_setting='custom', patch=patch) print(slurm.host_config['qsettings']['custom'])""" # NOT WORKING # Mdrun: Running Equilibration NVT # Mdrun: Running Equilibration NVT python_import = 'from biobb_md.gromacs.mdrun import Mdrun' # Create prop dict and inputs/outputs input_gppnvt_tpr = pdbCode + '_gppnvt.tpr' output_nvt_trr = pdbCode+'_nvt.trr' output_nvt_gro = pdbCode+'_nvt.gro' output_nvt_edr = pdbCode+'_nvt.edr' output_nvt_log = pdbCode+'_nvt.log' output_nvt_cpt = pdbCode+'_nvt.cpt' files = { 'input_tpr_path' : input_gppnvt_tpr, 'output_trr_path' : output_nvt_trr, 'output_gro_path' : output_nvt_gro, 'output_edr_path' : output_nvt_edr, 'output_log_path' : output_nvt_log, 'output_cpt_path' : output_nvt_cpt } # get_remote_py_script generates one-line python script appropriate for a # single biobb execution # Alternatively, a file containing a more complex script can be loaded prop={'gmx_path':'gmx_mpi'} slurm.submit( 'custom', modules, slurm.get_remote_py_script(python_import, files, 'Mdrun', properties=prop) ) slurm.check_job(poll_time=5) slurm.save(task_data_path) slurm.get_output_data(overwrite=False) print('\n'.join(slurm.get_logs())) ###Output _____no_output_____ ###Markdown Step 3: Checking NVT Equilibration resultsChecking **NVT Equilibration** results. Plotting **system temperature** by time during the NVT equilibration process. ###Code # GMXEnergy: Getting system temperature by time during NVT Equilibration from biobb_analysis.gromacs.gmx_energy import GMXEnergy # Create prop dict and inputs/outputs input_nvt_edr = local_path + '/' + pdbCode + '_nvt.edr' output_nvt_temp_xvg = local_path + '/' + pdbCode+'_nvt_temp.xvg' prop = { 'terms': ["Temperature"] } # Create and launch bb GMXEnergy(input_energy_path=input_nvt_edr, output_xvg_path=output_nvt_temp_xvg, properties=prop).launch() import plotly import plotly.graph_objs as go # Read temperature data from file with open(output_nvt_temp_xvg,'r') as temperature_file: x,y = map( list, zip(*[ (float(line.split()[0]),float(line.split()[1])) for line in temperature_file if not line.startswith(("#","@")) ]) ) plotly.offline.init_notebook_mode(connected=True) fig = { "data": [go.Scatter(x=x, y=y)], "layout": go.Layout(title="Temperature during NVT Equilibration", xaxis=dict(title = "Time (ps)"), yaxis=dict(title = "Temperature (K)") ) } plotly.offline.iplot(fig) ###Output _____no_output_____ ###Markdown *** Equilibrate the system (NPT)Equilibrate the **protein system** in **NPT** ensemble (constant Number of particles, Pressure and Temperature).- [Step 1](eqNPTStep1): Creating portable binary run file for system equilibration- [Step 2](eqNPTStep2): Equilibrate the **protein system** with **NPT** ensemble.- [Step 3](eqNPTStep3): Checking **NPT Equilibration** results. Plotting **system pressure and density** by time during the **NPT equilibration** process.*****Building Blocks** used: - [Grompp](https://biobb-md.readthedocs.io/en/latest/gromacs.htmlmodule-gromacs.grompp) from **biobb_md.gromacs.grompp** - [Mdrun](https://biobb-md.readthedocs.io/en/latest/gromacs.htmlmodule-gromacs.mdrun) from **biobb_md.gromacs.mdrun** - [GMXEnergy](https://biobb-analysis.readthedocs.io/en/latest/gromacs.htmlmodule-gromacs.gmx_energy) from **biobb_analysis.gromacs.gmx_energy** *** Step 1: Creating portable binary run file for system equilibration (NPT)The **npt** type of the **molecular dynamics parameters (mdp) property** contains the main default parameters to run an **NPT equilibration** with **protein restraints** (see [GROMACS mdp options](http://manual.gromacs.org/documentation/2018/user-guide/mdp-options.html)):- Define = -DPOSRES- integrator = md- dt = 0.002- nsteps = 5000- pcoupl = Parrinello-Rahman- pcoupltype = isotropic- tau_p = 1.0- ref_p = 1.0- compressibility = 4.5e-5- refcoord_scaling = com- gen_vel = noIn this particular example, the default parameters will be used: **md** integrator algorithm, a **time step** of **2fs**, **5,000 equilibration steps** with the protein **heavy atoms restrained**, and a Parrinello-Rahman **pressure coupling** algorithm.*Please note that for the sake of time this tutorial is only running 10ps of NPT equilibration, whereas in the [original example](http://www.mdtutorials.com/gmx/lysozyme/07_equil2.html) the simulated time was 100ps.* ###Code # Grompp: Creating portable binary run file for NPT System Equilibration from biobb_md.gromacs.grompp import Grompp # Create prop dict and inputs/outputs input_nvt_gro = local_path + "/" + pdbCode + '_nvt.gro' output_gppnpt_tpr = local_path + "/" + pdbCode+'_gppnpt.tpr' prop = { 'mdp':{ 'nsteps':'5000', #'tc_grps': "DNA Water_and_ions" # NOTE: uncomment this line if working with DNA }, 'simulation_type': 'npt' } # Create and launch bb Grompp(input_gro_path=input_nvt_gro, input_top_zip_path=input_genion_top_zip, output_tpr_path=output_gppnpt_tpr, input_cpt_path=output_nvt_cpt, properties=prop).launch() slurm.task_data['local_data_bundle'].add_file(output_gppnpt_tpr) slurm.send_input_data(remote_path, overwrite= False) ###Output _____no_output_____ ###Markdown Step 2: Running NPT equilibration ###Code # Mdrun: Running NPT System Equilibration python_import = 'from biobb_md.gromacs.mdrun import Mdrun' # Create prop dict and inputs/outputs input_nvt_tpr = pdbCode+'_gppnpt.tpr' output_npt_trr = pdbCode+'_npt.trr' output_npt_gro = pdbCode+'_npt.gro' output_npt_edr = pdbCode+'_npt.edr' output_npt_log = pdbCode+'_npt.log' output_npt_cpt = pdbCode+'_npt.cpt' files = { 'input_tpr_path' : input_nvt_tpr, 'output_trr_path' :output_npt_trr, 'output_gro_path' :output_npt_gro, 'output_edr_path' :output_npt_edr, 'output_log_path' :output_npt_log, 'output_cpt_path' :output_npt_cpt } # get_remote_py_script generates one-line python script appropriate for a # single biobb execution # Alternatively, a file containing a more complex script can be loaded prop={'gmx_path':'gmx_mpi'} slurm.submit( 'custom', modules, slurm.get_remote_py_script(python_import, files, 'Mdrun', properties=prop) ) slurm.check_job(poll_time=5) slurm.save(task_data_path) #slurm.task_data['output_data_bundle'].file_stats # NOT WORKING print('\n'.join(slurm.get_logs())) slurm.get_output_data(overwrite=False) slurm.save(task_data_path) ###Output _____no_output_____ ###Markdown Step 3: Checking NPT Equilibration resultsChecking **NPT Equilibration** results. Plotting **system pressure and density** by time during the **NPT equilibration** process. ###Code # GMXEnergy: Getting system pressure and density by time during NPT Equilibration from biobb_analysis.gromacs.gmx_energy import GMXEnergy # Create prop dict and inputs/outputs input_npt_edr = local_path + "/" + pdbCode + '_npt.edr' output_npt_pd_xvg = pdbCode+'_npt_PD.xvg' prop = { 'terms': ["Pressure","Density"] } # Create and launch bb GMXEnergy(input_energy_path=input_npt_edr, output_xvg_path=output_npt_pd_xvg, properties=prop).launch() import plotly from plotly import subplots import plotly.graph_objs as go # Read pressure and density data from file with open(output_npt_pd_xvg,'r') as pd_file: x,y,z = map( list, zip(*[ (float(line.split()[0]),float(line.split()[1]),float(line.split()[2])) for line in pd_file if not line.startswith(("#","@")) ]) ) plotly.offline.init_notebook_mode(connected=True) trace1 = go.Scatter( x=x,y=y ) trace2 = go.Scatter( x=x,y=z ) fig = subplots.make_subplots(rows=1, cols=2, print_grid=False) fig.append_trace(trace1, 1, 1) fig.append_trace(trace2, 1, 2) fig['layout']['xaxis1'].update(title='Time (ps)') fig['layout']['xaxis2'].update(title='Time (ps)') fig['layout']['yaxis1'].update(title='Pressure (bar)') fig['layout']['yaxis2'].update(title='Density (Kg*m^-3)') fig['layout'].update(title='Pressure and Density during NPT Equilibration') fig['layout'].update(showlegend=False) plotly.offline.iplot(fig) ###Output _____no_output_____ ###Markdown *** Free Molecular Dynamics SimulationUpon completion of the **two equilibration phases (NVT and NPT)**, the system is now well-equilibrated at the desired temperature and pressure. The **position restraints** can now be released. The last step of the **protein** MD setup is a short, **free MD simulation**, to ensure the robustness of the system. - [Step 1](mdStep1): Creating portable binary run file to run a **free MD simulation**.- [Step 2](mdStep2): Run short MD simulation of the **protein system**.- [Step 3](mdStep3): Checking results for the final step of the setup process, the **free MD run**. Plotting **Root Mean Square deviation (RMSd)** and **Radius of Gyration (Rgyr)** by time during the **free MD run** step. *****Building Blocks** used: - [Grompp](https://biobb-md.readthedocs.io/en/latest/gromacs.htmlmodule-gromacs.grompp) from **biobb_md.gromacs.grompp** - [Mdrun](https://biobb-md.readthedocs.io/en/latest/gromacs.htmlmodule-gromacs.mdrun) from **biobb_md.gromacs.mdrun** - [GMXRms](https://biobb-analysis.readthedocs.io/en/latest/gromacs.htmlmodule-gromacs.gmx_rms) from **biobb_analysis.gromacs.gmx_rms** - [GMXRgyr](https://biobb-analysis.readthedocs.io/en/latest/gromacs.htmlmodule-gromacs.gmx_rgyr) from **biobb_analysis.gromacs.gmx_rgyr** *** Step 1: Creating portable binary run file to run a free MD simulationThe **free** type of the **molecular dynamics parameters (mdp) property** contains the main default parameters to run an **free MD simulation** (see [GROMACS mdp options](http://manual.gromacs.org/documentation/2018/user-guide/mdp-options.html)):- integrator = md- dt = 0.002 (ps)- nsteps = 500000In this particular example, the default parameters will be used: **md** integrator algorithm, a **time step** of **2fs**, and a total of **50,000 md steps** (100ps).*Please note that for the sake of time this tutorial is only running 100ps of free MD, whereas in the [original example](http://www.mdtutorials.com/gmx/lysozyme/08_MD.html) the simulated time was 1ns (1000ps).* ###Code # Grompp: Creating portable binary run file for mdrun from biobb_md.gromacs.grompp import Grompp # Create prop dict and inputs/outputs input_npt_gro = local_path + '/' + pdbCode + '_npt.gro' output_gppmd_tpr = local_path + '/' + pdbCode+'_gppmd.tpr' prop = { 'mdp':{ 'nsteps':'50000', #'tc_grps': "DNA Water_and_ions" # NOTE: uncomment this line if working with DNA }, 'simulation_type': 'free' } # Create and launch bb Grompp(input_gro_path=input_npt_gro, input_top_zip_path=input_genion_top_zip, output_tpr_path=output_gppmd_tpr, input_cpt_path=output_npt_cpt, properties=prop).launch() slurm.task_data['local_data_bundle'].add_file(output_gppmd_tpr) slurm.send_input_data(remote_path, overwrite= False) ###Output _____no_output_____ ###Markdown Step 2: Running short free MD simulation ###Code # Mdrun: Running NPT System Equilibration python_import = 'from biobb_md.gromacs.mdrun import Mdrun' # Create prop dict and inputs/outputs input_npt_tpr = pdbCode+'_gppmd.tpr' output_md_trr = pdbCode+'_md.trr' output_md_gro = pdbCode+'_md.gro' output_md_edr = pdbCode+'_md.edr' output_md_log = pdbCode+'_md.log' output_md_cpt = pdbCode+'_md.cpt' files = { 'input_tpr_path' : input_npt_tpr, 'output_trr_path' :output_md_trr, 'output_gro_path' :output_md_gro, 'output_edr_path' :output_md_edr, 'output_log_path' :output_md_log, 'output_cpt_path' :output_md_cpt } # get_remote_py_script generates one-line python script appropriate for a # single biobb execution # Alternatively, a file containing a more complex script can be loaded prop={'gmx_path':'gmx_mpi'} slurm.submit( 'custom', modules, slurm.get_remote_py_script(python_import, files, 'Mdrun', properties=prop) ) slurm.check_job(poll_time=50) slurm.save(task_data_path) slurm.get_output_data(overwrite=False) ###Output _____no_output_____ ###Markdown Step 3: Checking free MD simulation resultsChecking results for the final step of the setup process, the **free MD run**. Plotting **Root Mean Square deviation (RMSd)** and **Radius of Gyration (Rgyr)** by time during the **free MD run** step. **RMSd** against the **experimental structure** (input structure of the pipeline) and against the **minimized and equilibrated structure** (output structure of the NPT equilibration step). ###Code # GMXRms: Computing Root Mean Square deviation to analyse structural stability # RMSd against minimized and equilibrated snapshot (backbone atoms) from biobb_analysis.gromacs.gmx_rms import GMXRms # Create prop dict and inputs/outputs input_gppmd_tpr = opj(local_path, pdbCode + '_gppmd.tpr') input_md_trr = opj(local_path, pdbCode + '_md.trr') output_rms_first = opj(local_path, pdbCode+'_rms_first.xvg') prop = { 'selection': 'Backbone', #'selection': 'non-Water' } # Create and launch bb GMXRms(input_structure_path=input_gppmd_tpr, input_traj_path=input_md_trr, output_xvg_path=output_rms_first, properties=prop).launch() # GMXRms: Computing Root Mean Square deviation to analyse structural stability # RMSd against experimental structure (backbone atoms) from biobb_analysis.gromacs.gmx_rms import GMXRms # Create prop dict and inputs/outputs input_gppmin_tpr = opj(local_path, pdbCode + '_gppmin.tpr') input_traj_tpr = opj(local_path, pdbCode + '_md.trr') output_rms_exp = pdbCode+'_rms_exp.xvg' prop = { 'selection': 'Backbone', #'selection': 'non-Water' } # Create and launch bb GMXRms(input_structure_path=input_gppmin_tpr, input_traj_path=input_md_trr, output_xvg_path=output_rms_exp, properties=prop).launch() import plotly import plotly.graph_objs as go # Read RMS vs first snapshot data from file with open(output_rms_first,'r') as rms_first_file: x,y = map( list, zip(*[ (float(line.split()[0]),float(line.split()[1])) for line in rms_first_file if not line.startswith(("#","@")) ]) ) # Read RMS vs experimental structure data from file with open(output_rms_exp,'r') as rms_exp_file: x2,y2 = map( list, zip(*[ (float(line.split()[0]),float(line.split()[1])) for line in rms_exp_file if not line.startswith(("#","@")) ]) ) trace1 = go.Scatter( x = x, y = y, name = 'RMSd vs first' ) trace2 = go.Scatter( x = x, y = y2, name = 'RMSd vs exp' ) data = [trace1, trace2] plotly.offline.init_notebook_mode(connected=True) fig = { "data": data, "layout": go.Layout(title="RMSd during free MD Simulation", xaxis=dict(title = "Time (ps)"), yaxis=dict(title = "RMSd (nm)") ) } plotly.offline.iplot(fig) # GMXRgyr: Computing Radius of Gyration to measure the protein compactness during the free MD simulation from biobb_analysis.gromacs.gmx_rgyr import GMXRgyr # Create prop dict and inputs/outputs output_rgyr = opj(local_path, pdbCode+'_rgyr.xvg') prop = { 'selection': 'Backbone' } # Create and launch bb GMXRgyr(input_structure_path=input_gppmin_tpr, input_traj_path=input_md_trr, output_xvg_path=output_rgyr, properties=prop).launch() import plotly import plotly.graph_objs as go # Read Rgyr data from file with open(output_rgyr,'r') as rgyr_file: x,y = map( list, zip(*[ (float(line.split()[0]),float(line.split()[1])) for line in rgyr_file if not line.startswith(("#","@")) ]) ) plotly.offline.init_notebook_mode(connected=True) fig = { "data": [go.Scatter(x=x, y=y)], "layout": go.Layout(title="Radius of Gyration", xaxis=dict(title = "Time (ps)"), yaxis=dict(title = "Rgyr (nm)") ) } plotly.offline.iplot(fig) ###Output _____no_output_____ ###Markdown *** Post-processing and Visualizing resulting 3D trajectoryPost-processing and Visualizing the **protein system** MD setup **resulting trajectory** using **NGL**- [Step 1](ppStep1): *Imaging* the resulting trajectory, **stripping out water molecules and ions** and **correcting periodicity issues**.- [Step 2](ppStep2): Generating a *dry* structure, **removing water molecules and ions** from the final snapshot of the MD setup pipeline.- [Step 3](ppStep3): Visualizing the *imaged* trajectory using the *dry* structure as a **topology**. *****Building Blocks** used: - [GMXImage](https://biobb-analysis.readthedocs.io/en/latest/gromacs.htmlmodule-gromacs.gmx_image) from **biobb_analysis.gromacs.gmx_image** - [GMXTrjConvStr](https://biobb-analysis.readthedocs.io/en/latest/gromacs.htmlmodule-gromacs.gmx_trjconv_str) from **biobb_analysis.gromacs.gmx_trjconv_str** *** Step 1: *Imaging* the resulting trajectory.Stripping out **water molecules and ions** and **correcting periodicity issues** ###Code # GMXImage: "Imaging" the resulting trajectory # Removing water molecules and ions from the resulting structure from biobb_analysis.gromacs.gmx_image import GMXImage # Create prop dict and inputs/outputs output_imaged_traj = opj(local_path, pdbCode+'_imaged_traj.trr') prop = { 'center_selection': 'Protein', 'output_selection': 'Protein', 'pbc' : 'mol', 'center' : True } # Create and launch bb GMXImage(input_traj_path=input_md_trr, input_top_path=input_gppmd_tpr, output_traj_path=output_imaged_traj, properties=prop).launch() ###Output _____no_output_____ ###Markdown Step 2: Generating the output *dry* structure.**Removing water molecules and ions** from the resulting structure ###Code # GMXTrjConvStr: Converting and/or manipulating a structure # Removing water molecules and ions from the resulting structure # The "dry" structure will be used as a topology to visualize # the "imaged dry" trajectory generated in the previous step. from biobb_analysis.gromacs.gmx_trjconv_str import GMXTrjConvStr # Create prop dict and inputs/outputs input_md_gro = opj(local_path, pdbCode + '_md.gro') output_dry_gro = opj(local_path, pdbCode+'_md_dry.gro') prop = { 'selection': 'Protein' } # Create and launch bb GMXTrjConvStr(input_structure_path=input_md_gro, input_top_path=input_gppmd_tpr, output_str_path=output_dry_gro, properties=prop).launch() ###Output _____no_output_____ ###Markdown Step 3: Visualizing the generated dehydrated trajectory.Using the **imaged trajectory** (output of the [Post-processing step 1](ppStep1)) with the **dry structure** (output of the [Post-processing step 2](ppStep2)) as a topology. ###Code # Show trajectory view = nglview.show_simpletraj(nglview.SimpletrajTrajectory(output_imaged_traj, output_dry_gro), gui=True) view ###Output _____no_output_____ ###Markdown Clean remote files amd remove credentials ###Code slurm.clean_remote() #credentials.remove_host_auth() ###Output _____no_output_____
books/Python-for-Data-Analysis/06.ipynb
###Markdown 将数据写出到文本格式 ###Code !cat pydata-book/ch06/ex5.csv data = pd.read_csv('pydata-book/ch06/ex5.csv') data data.to_csv('test_out.csv') !cat test_out.csv !rm test_out.csv import sys data.to_csv(sys.stdout, sep='|') data.to_csv(sys.stdout, na_rep='NULL') data.to_csv(sys.stdout, index=False, header=False, na_rep='NULL') data.to_csv(sys.stdout, index=False, columns=list('abc'), na_rep='NULL') dates = pd.date_range('1/1/2000', periods=7) dates ts = Series(np.arange(7), index=dates) ts.to_csv('test_out.csv') !cat test_out.csv !rm test_out.csv Series.from_csv('pydata-book/ch06/tseries.csv', parse_dates=True) ###Output _____no_output_____ ###Markdown 手工处理分隔符格式 ###Code !cat pydata-book/ch06/ex7.csv import csv f = open('pydata-book/ch06/ex7.csv') reader = csv.reader(f) for line in reader: print line lines = list(csv.reader(open('pydata-book/ch06/ex7.csv'))) header, values = lines[0], lines[1:] data_dict = {h: v for h, v in zip(header, zip(*values))} data_dict ###Output _____no_output_____ ###Markdown JSON数据 XML和HTML:Web信息收集 ###Code from lxml import html parsed = html.parse(open('pydata-book/ch06/fdic_failed_bank_list.html')) doc = parsed.getroot() links = doc.findall('.//a') links[15:20] links[0].get('href') links[0].text_content() urls = [lnk.get('href') for lnk in doc.findall('.//a')] urls[-10:] from lxml import objectify path = 'pydata-book/ch06/mta_perf/Performance_MNR.xml' parsed = objectify.parse(open(path)) root = parsed.getroot() data = [] skip_fields = ['PARENT_SEQ', 'INDICATOR_SEQ', 'DESIRED_CHANGE', 'DECIMAL_PLACES'] for elt in root.INDICATOR: el_data = {} for child in elt.getchildren(): if child.tag in skip_fields: continue el_data[child.tag] = child.pyval data.append(el_data) perf = DataFrame(data) perf ###Output _____no_output_____ ###Markdown 二进制数据格式 ###Code frame = pd.read_csv('pydata-book/ch06/ex1.csv') frame ###Output _____no_output_____ ###Markdown 使用HDF5格式 ###Code store = pd.HDFStore('mydata.h5') store['obj1'] = frame store['obj1_col'] = frame['a'] store ###Output _____no_output_____ ###Markdown 读取Excel文件 ###Code xls_file = pd.ExcelFile('pydata-book/ch06/ex1.xlsx') table = xls_file.parse('Sheet1') ###Output _____no_output_____ ###Markdown 使用HTML和Web API 使用数据库 ###Code import sqlite3 query = """ CREATE TABLE test (a VARCHAR(20), b VARCHAR(20), c REAL, d INTEGER); """ con = sqlite3.connect(':memory:') con.execute(query) con.commit() data = [('Atlanta', 'Georgia', 1.25, 5), ('Tallahassee', 'Florida', 2.6, 3), ('Sacramento', 'California', 1.7, 5)] stmt = 'INSERT INTO test VALUES (?, ?, ?, ?)' con.executemany(stmt, data) con.commit() cursor = con.execute('select * from test') rows = cursor.fetchall() rows cursor.description zip(*cursor.description) DataFrame(rows, columns=zip(*cursor.description)[0]) import pandas.io.sql as sql sql.read_frame('select * from test', con) ###Output _____no_output_____ ###Markdown 读写文本格式的数据 ###Code !cat pydata-book/ch06/ex1.csv df = pd.read_csv('pydata-book/ch06/ex1.csv') df pd.read_table('pydata-book/ch06/ex1.csv', sep=',') !cat pydata-book/ch06/ex2.csv pd.read_csv('pydata-book/ch06/ex2.csv', header=None) pd.read_csv('pydata-book/ch06/ex2.csv', names=['a', 'b', 'c', 'd', 'message']) names = ['a', 'b', 'c', 'd', 'message'] pd.read_csv('pydata-book/ch06/ex2.csv', names=names, index_col='message') !cat pydata-book/ch06/csv_mindex.csv parsed = pd.read_csv('pydata-book/ch06/csv_mindex.csv', index_col=['key1', 'key2']) parsed list(open('pydata-book/ch06/ex3.txt')) result = pd.read_table('pydata-book/ch06/ex3.txt', sep='\s+') result # 列名比数据行少,推断第一列应该是index !cat pydata-book/ch06/ex4.csv pd.read_csv('pydata-book/ch06/ex4.csv', skiprows=[0, 2, 3]) !cat pydata-book/ch06/ex5.csv result = pd.read_csv('pydata-book/ch06/ex5.csv') result pd.isnull(result) result = pd.read_csv('pydata-book/ch06/ex5.csv', na_values=['NULL']) result sentinels = {'message': ['foo', 'NA'], 'something': ['two']} pd.read_csv('pydata-book/ch06/ex5.csv', na_values=sentinels) ###Output _____no_output_____ ###Markdown 逐块读取文本文件 ###Code result = pd.read_csv('pydata-book/ch06/ex6.csv') result pd.read_csv('pydata-book/ch06/ex6.csv', nrows=5) chunker = pd.read_csv('pydata-book/ch06/ex6.csv', chunksize=1000) chunker from pandas import Series, DataFrame tot = Series([]) for piece in chunker: tot = tot.add(piece['key'].value_counts(), fill_value=0) # tot = tot.sort_values(ascending=False) # tot[:10] ###Output _____no_output_____
class-solved/MODULE_1-python_introduction-solved/10.02_CondicionesBucles-solved.ipynb
###Markdown 2- Condiciones y BuclesCurso Introducción a Python - Tecnun, Universidad de Navarra En este documento nos centraremos en la creación de condiciones y bucles. A diferencia de otros lenguajes de programación no se utilizan llaves o sentencias *end* para determinar lo que está incluido dentro de la condición o el bucle. En Python, todo esto se hace mediante indentación. A continuación veremos unos ejemplos. Condiciones La sintaxis general de las condiciones es la siguiente: ###Code a = 1 if a == 1: print('La variable "a" vale 1.') elif a == 2: print('La variable "a" no vale 1, sino 2.') else: print('La variable "a" no vale 1 ni 2.') ###Output La variable "a" vale 1. ###Markdown Los comandos que se emplean para comparar son los siguientes:- **==** y **!=** para comprobar igualdad o desigualdad, respectivamente.- **\>** y **<** para comprobar si un elemento es estrictamente mayor o estrictamente menor que otro, respectivamente.- **>=** y **<=** para comprobar si un elemento es mayor o igual, o menor o igual que otro, respectivamente.En el caso de cumplir la condición, la comprobación devolverá una variable booleana *True* y ejecutará las líneas correspondientes a dicha condición. Si, por el contrario, la condición no se satisface, obtendremos una variable booleana *False* y no se ejecutaran las lineas correspondientes a la condición.En el caso de que fuera necesario comprobar si se cumplen varias condiciones a la vez se pueden utilizar los operadores booleanos **and** y **or**. ###Code a = 2 b = 5 if a == 2 and b == 5: print('Las variables "a" y "b" valen 2 y 5, respectivamente.\n') else: print('La variable "a" no vale 2 o la variable "b" no vale 5.\n') if a == 2 or b == 5: print('La variable "a" vale 2 o la variable "b" vale 5.') else: print('La variable "a" no vale 2 y la variable "b" no vale 5.') ###Output Las variables "a" y "b" valen 2 y 5, respectivamente. La variable "a" vale 2 o la variable "b" vale 5. ###Markdown Aparte de este tipo de comprobaciones, se puede mirar si una lista contiene un elemento empleando el comando **in**. ###Code lista = ['a', 'b', 'd'] if 'b' in lista: print('El elemento "b" está contenido en "lista".') else: print('El elemento "b" no está contenido en "lista".') ###Output El elemento "b" está contenido en "lista". ###Markdown En el caso de querer negar condiciones, se puede emplear el operador booleano **not**. ###Code a = 2 if not a == 2: print('La variable "a" no vale 2.') else: print('La variable "a" vale 2.') ###Output La variable "a" vale 2. ###Markdown Siempre y cuando tenga sentido, estos operadores se pueden emplear con cualquier tipo de variables. ###Code a = "casa" b = [1, 2, 3] if a != 'coche': print('La variable no contiene un coche.') else: print('La variable contiene un coche.') if b == [1, 2, 3]: print('La variable contiene la lista [1, 2, 3]') else: print('La variable no contiene la lista [1, 2, 3]') ###Output La variable no contiene un coche. La variable contiene la lista [1, 2, 3] ###Markdown Range ###Code help(range) range(10) list(range(10)) list(range(2,10)) ###Output _____no_output_____ ###Markdown Bucles *for* La sintaxis general de los bucles *for* es la siguiente: ###Code for i in [1,2,3]: print(i) for i in range(0, 3): print(i) ###Output 0 1 2 ###Markdown Es importante darse cuenta de que el comando *range(0, 3)* crea una **sucesión de números entre 0 y 2**. Los comandos *break* y *continue* pueden resultar muy útiles. El primero termina el bucle en el instante de su ejecución, y el segundo termina la iteración actual del bucle y pasa a la siguiente. ###Code for i in range(0, 10): if i == 2: continue if i == 7: break print(i) ###Output 0 1 3 4 5 6 ###Markdown De la misma manera que ocurre con las condiones, las variables que empleamos como contador en los bucles no tienen por qué ser numéricas. ###Code a = ['a', 'b', 'c', 'd', 'e', 'f', 'g'] for i in a: print(i) ###Output a b c d e f g ###Markdown Bucles *while* La sintaxis general de los bucles *while* es la siguiente: ###Code i = 1 while i <= 10: print(i) i += 1 ###Output 1 2 3 4 5 6 7 8 9 10 ###Markdown El operador **+=** aumenta el valor de la variable i en el valor que escribamos a su derecha en cada iteración. Por el contrario, el operador **-=** lo disminuye. ###Code i = 10 while i >= 0: print(i) i -= 2 ###Output 10 8 6 4 2 0 ###Markdown Al igual que con los bucles *for*, los operadores *break* y *continue* son válidos en estos bucles. ###Code i = -1 while i <= 10: i += 1 if i == 2: continue if i == 7: break print(i) ###Output 0 1 3 4 5 6
7_image_classification_using_keras.ipynb
###Markdown Image Classification with Keras *David B. Blumenthal*, *Suryadipto Sarkar* What is Tensorflow?Tensorflow is an open-source end-to-end platform that facilitates designing and deploying Machine Learning models using Python. What is Keras?Keras is an API built on top of TensorFlow, that supports deep learning. ###Code !unzip PET-IMAGES.zip # IMPORT REQUIRED LIBRARIES: # -------------------------- import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D import pickle import numpy as np from numpy import genfromtxt import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg import os import cv2 from PIL import Image import imageio import pandas as pd import random import pickle import pandas as pd from sklearn.preprocessing import LabelBinarizer from skimage.io import imread_collection import glob ###Output _____no_output_____ ###Markdown **Note:*** This is the way to mount drive and read images directly from Google Drive. However, since we have 24,000 images, this will take a while. Therefore, I will show you just this first step on Spyder as I can access the files locally.* Then, we can just upload the numpy arrays here and work on those. * Anyway, you only need to do this the very first time that you read in the data. * .py script can be accessed over this link: Classification DatasetWe will make use of the popular 'Cats vs Dogs' classification dataset.Dataset download link: https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.zip Exercise-1:* Read all of the .jpeg and .png images from a folder.* Save all of the images in a single list (i.e., a list of image arrays). Note that this is the most common way of working with data in python. We often save all of the data into numpy lists or dataframes or similar structures.There are many ways of doing this. I have made use of **opencv** as it is one of the most popular Computer Vision libraries in python. Read more at: https://github.com/opencv/opencv Solution for Exercise 1 Handling pickle (or npy) data:* We often need to run ML algorithms many times with little tweaks in the model.* How do we achieve this? Of course, we could read the data every time and save it as a list as shown above.* However, this is a very time-consuming approach.* What is a better approach? Saving the data as a list of image arrays once, and save that for later use.Read about the **`.pickle`** and **`.npy`** file types. (Here, we will use pickle - don't forget to import the **** library.) Writing data to pickle file: ###Code # # SYNTAX: # # ------- # pickle_out=open("data.pickle","wb") # pickle.dump(data,pickle_out) # pickle_out.close() ###Output _____no_output_____ ###Markdown Reading data from pickle file: ###Code # # SYNTAX: # # ------- # data=pickle.load(open("data.pickle","rb")) ###Output _____no_output_____ ###Markdown Exercise-2:* Read in the training data(X) and corresponding labels(y). Solution for Exercise 2 Randomizing the data: Exercise-3:* Randomize the data while preserving the sample-wise label information. Solution for Exercise 3 Exercise-4:* Save shuffled data as pickle file for later use. Solution for Exercise 4 **CONVOLUTIONAL NEURAL NETWORKS (CNNs):** Why CNNs?* Convert data to embeddings/ features* Example: Converting images from pixel space to feature space* Enhances learning, reduces dimensionality, represents the data better![](https://drive.google.com/uc?export=view&id=1imb0ZgzQ6sK02SniXUf4VebiLL7A14xa) Components/ Layers: **Question**: Looking at the kernel matrix provided above, what kind of pattern do you think it is meant to detect? * Answer: Vertical edges I. Convolutional Layer:* Helps extract local patterns in the data (here, image).* Also helps reduce the number of features. But that is a byproduct of the convolution operation, it is not the main objective. The main objective is to extract meaningful local patterns.+ **Note: If the image is an RGB (3-channel image), the convolved image is also 3-channel. If the input image is a gray (1-channel) image, the convolved image is also single-channeled.** + This is because the kernel is applied on each channel separately for convolution. **An oversimplified example of convolution:**(Note: Kernel size 4*4, padding 0, stride length=1)![](https://drive.google.com/uc?export=view&id=1QngPcDB6pwkIz5Yhftr-3Rj8WEgD5h0Z) II. Pooling Layer:* The main function of the pooling layer is to reduce dimensionality.* Two popular types of pooling: MaxPooling, and AveragePooling.* AveragePooling also helps in noise reduction. **A simple example of Pooling:**(Note: Pooling window size 3*3)![](https://drive.google.com/uc?export=view&id=17FzHhVdWnI0nrQDkOKiw-JlLqt0mJ9_p) III. Feedforward Layer:* Standard Neural Network architecture used for classification **A simple fully-connected, feed forward neural network:**![](https://drive.google.com/uc?export=view&id=1bdz0dUNBzt7Ovo5m57-U_-qiBsq846sE) Note on the 'Flatten' layer:* This is really not a layer in the conventional sense, although it is defined in the tensorflow.keras.layers.* This is a function used to convert the features (or weights) after pooling, to be fed into the aforementioned feedforward neural network for classification. * We will see this a little later when we design the model. **For interested readers:** Basic ideas behind machine learning and AI:* What do we mean by 'learning' and 'intelligent' systems?* What are the three main types of machine learning, and what are the differences? Artificial neural networks:* NN-related terms: Neurons, layers, activation functions, fully connected networks, multi-layer perceptron* Hyperparameter tuning and model improvement basics: Learning rate, no. of neurons oer layer, how to set model size (i.e., no. and type of layers)* Learning-related: Learning rate, backpropagation, gradient descent Optional reading (slightly more advanced):* What is transfer learning? What are pre-trained models, and how to use them? Why pre-trained models?* What is overfitting? How to 1. detect 2. tackle overfitting? * Regularization, Dropout, resampling, oversampling (read about 'SMOTE') and undersampling, data augmentation techniques. **Designing the model:** A schematic representation of our model:![](https://drive.google.com/uc?export=view&id=1bDTsN4kiXvC1gh2vlPeVtbAhgmiu_dBn) ###Code X=pickle.load(open("X.pickle","rb")) y=pickle.load(open("y.pickle","rb")) # Normalize data X=np.asarray(X)/255.0 # X=X.tolist() y = np.array(y) model=Sequential() model.add( Conv2D(64,(3,3),input_shape=X.shape[1:]) ) model.add(Activation("relu")) model.add(MaxPooling2D(pool_size=(2,2))) model.add( Conv2D(32,(2,2)) ) model.add(Activation("relu")) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Flatten()) model.add(Dense(128)) model.add(Activation('sigmoid')) # model.add(Dense(64)) # model.add(Activation('sigmoid')) model.add(Dense(1)) model.add(Activation("sigmoid")) model.compile(loss="binary_crossentropy", optimizer="adam", metrics=['accuracy']) # callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=3) # history=model.fit(X, y, batch_size=32, shuffle=True, sample_weight=None, epochs=50,validation_split=0.1, verbose = 1, callbacks=[callback]) # seed=100, history=model.fit(X, y, batch_size=32, shuffle=True, sample_weight=None, epochs=50,validation_split=0.1, verbose = 1) # seed=100, # model.fit(X,y,batch_size=32,epochs=25,validation_split=0.1) # list all data in history print(history.history.keys()) # summarize history for accuracy plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') plt.show() # summarize history for loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') plt.show() ###Output _____no_output_____ ###Markdown Exercise-5:* How many neurons are there in each of the aforementioned layers? Solution for Exercise 5 Exercise-6:* Why have we not used a Softmax layer? Solution for Exercise 6 Solution for Exercise 1 ###Code # Simple way to read in all of the data: # -------------------------------------- #################################################################################### CATS_folder='PET-IMAGES/Cat' # CATS_folder='Cat_folder_path' | # If reading from Drive: CATS_folder='/content/drive/MyDrive/PetImages/Cat' DOGS_folder='PET-IMAGES/Dog' # DOGS_folder='Dog_folder_path' | # If reading from Drive: DOGS_folder='/content/drive/MyDrive/PetImages/Dog' imdir = CATS_folder # or, DOGS_folder ext = ['png', 'jpg'] # add other image formats for other datasets files = [] [files.extend(glob.glob(imdir + '*.' + e)) for e in ext] images = [cv2.imread(file) for file in files] #################################################################################### ###Output _____no_output_____ ###Markdown Back to Exercise 1 Solution for Exercise 2 ###Code X=pickle.load(open("X.pickle","rb")) y=pickle.load(open("y.pickle","rb")) ###Output _____no_output_____ ###Markdown Back to Exercise 2 Solution for Exercise 3 ###Code def Shuffle(X, y): X_shuffled=[] y_shuffled=[] length=len(y) index=list(range(length)) random.Random(12).shuffle(index) for i in range(length): X_shuffled.append(X[index[i]]) y_shuffled.append(y[index[i]]) return X_shuffled, y_shuffled X, y=Shuffle(X, y) ###Output _____no_output_____ ###Markdown Back to Exercise 3 Solution for Exercise 4 ###Code # Save the training data pickle_out=open("X_save.pickle","wb") pickle.dump(X,pickle_out) pickle_out.close() # Save the training labels pickle_out=open("y_save.pickle","wb") pickle.dump(y,pickle_out) pickle_out.close() ###Output _____no_output_____
tasks/solution_03_titanic.ipynb
###Markdown TitanicУ рамках цього завдання я виконаю аналіз даних та певну їх підготовку, а саме: - вилучення даних: завантажити набір даних та привести дані у зручний табличний формат (Pandas DataFrame) - зробити перше ознайомче дослідження даниx: поглянути на описову статистику та на розподіл деяких ознак- очищення: заповнити деякі пропущені значення- візуальний аналіз: створити кілька діаграм, які (сподіваюсь) допоможуть визначити кореляцію та іншу інформацію- після аналізу даних виконати проектування ознак: видалити непотрібні ознаки, конвертувати категоріальні ознаки в числові, об'єднати деякі ознаки в одну тощоКоли дані будуть готові, я застосую метод логістичної регресії для прогнозування цільової категоріальної змінної, тобто для класифікації. Мета класифікації визначити, чи виживе пасажир на Титаніку.Набір даних та додаткову інформацію щодо цього набору даних, включаючи більше навчальних прикладів, можна знайти на [Kaggle](https://www.kaggle.com/c/titanic) Import modulsПочнемо з завантаження необхідних модулів, щоб розпочати наш експеримент. Я буду використовувати numpy, pandas, seaborn and matplotlib. ###Code # Imports # Data analysis and math import numpy as np import pandas as pd # Plotting import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline sns.set_style("whitegrid") sns.set_context({"figure.figsize": (4, 4)}) # Preprocessing from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler # Machine learning from sklearn.linear_model import LogisticRegression from sklearn.model_selection import KFold from sklearn.metrics import confusion_matrix from sklearn.model_selection import learning_curve import warnings warnings.filterwarnings("ignore") ###Output _____no_output_____ ###Markdown Data FetchingЗавантажимо набір даних Titanic.Цей набір даних можна знайти на [kaggle](https://www.kaggle.com/c/titanic/data) або на [GitHub](https://github.com/egoliuk/hlll_course/tree/master/tasks/data/titanic) ###Code test_y = pd.read_csv('https://raw.githubusercontent.com/egoliuk/hlll_course/master/tasks/data/titanic/gender_submission.csv') test_X = pd.read_csv('https://raw.githubusercontent.com/egoliuk/hlll_course/master/tasks/data/titanic/test.csv') train = pd.read_csv('https://raw.githubusercontent.com/egoliuk/hlll_course/master/tasks/data/titanic/train.csv') ###Output _____no_output_____ ###Markdown Об'єднаємо тренувальну і тестувальну вибірки в один набір даних. ###Code test = pd.merge(test_X, test_y, on='PassengerId', how='inner') test = test[train.columns] dataset = pd.concat([train, test]) print('Довжина всього набору даних: {:.0f}'.format(dataset.shape[0])) ###Output Довжина всього набору даних: 1309 ###Markdown Data ExplorationПоглянемо на набір даних, та подивимось на ознаки, які описують наші спостереження. ###Code dataset.sample(3) ###Output _____no_output_____ ###Markdown Маємо 12 характеристик:- **PassengerId** - ідентифікатор, присвоєний мандрівнику на човні- **Survival** - цільова ознака, врятувався пасажир, чи ні. 0 = No, 1 = Yes- **Pclass** - соціально економічний статус пасажира. 1 = Upper, 2 = Middle, 3 = Lower- **Name** - ім'я пасажира- **Sex** - стать пасажира. male, female- **Age** - вік пасажира в роках. Вік є дробовим, якщо менше 1. Якщо вік оцінюється, він виглядає у вигляді xx.5- **SibSp** - кількість братів і сестер чи подружжя, які подорожують із пасажиром. Sibling = брат, сестра, зведений брат чи сестра; Spouse = чоловік, дружина (коханки та наречені були проігноровані).- **Parch** - кількість батьків чи дітей, які подорожують із пасажиром. Parent = мати, батько; Child = дочка, син, падчера, пасинок. Деякі діти подорожували лише з нянею, отже, для них Parch = 0.- **Ticket** - номер квитка пасажира- **Fare** - вартість квитка пасажира- **Cabin** - номер кабіни пасажира- **Embarked** - порт посадки. C = Cherbourg, Q = Queenstown, S = SouthamptonПодивимось на описову статистику кількісних ознак так категоріальних ознак виражених числами: ###Code dataset[['Survived', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare']].describe() ###Output _____no_output_____ ###Markdown З описової статистики видно, що узагальнений портрет пасажира Титаніка - це 30 річна людина, без родичів на борту, яка подорожує середнім та нижчим класом. При цьому шанс вижити склав 37.7% ###Code sns.countplot(x='Survived', data=dataset) ###Output _____no_output_____ ###Markdown Більшість людей не вижили.Давайте розглянемо кількість людей, які вижили за статтю. ###Code sns.set_context({"figure.figsize": (8, 4)}) sns.countplot(x='Survived', hue='Sex', data=dataset) ###Output _____no_output_____ ###Markdown Тут ми можемо побачити, що загинуло більше чоловіків, ніж жінок, і що більшість жінок вижили.Тепер давайте порівняємо кількість виживших за класом. ###Code sns.countplot(x='Survived',hue='Pclass', data=dataset) ###Output _____no_output_____ ###Markdown Тут ми можемо побачити, що у 1-го класу було більше виживших ніж загинувших. У 2-го класу навпаки, і більшість 3-го класу загинула.Давайте подивимось на розподіл вартості квитка. ###Code # plt.hist(x='Fare', data=dataset, bins=40) dataset['Fare'].hist(bins=40) ###Output _____no_output_____ ###Markdown Here we can see that most people paid under 50, but there are some outliers like the people at the $500 range. This is explained by the difference in the number of people in each class. The lowest class, 3, has the most people and the highest class has the least. The lowest class paid the lowest fare so there are more people in this category.Очевидно, що більшість людей сплатили за квитки меньше 50 доларів, в цій категорії людей майже весь 2-й та 3-й класи та й більшість 1-го класу. Але є такі пасажири, які сплатили 500 доларів. Вони виглядають певним викидом навіть для 1-го класа і поки не зрозуміло, що обумовило високу вартість квитка. ###Code dataset[dataset['Pclass'] == 1]['Fare'].hist(bins=40) ###Output _____no_output_____ ###Markdown Data Preprocessing Data Cleaning Missing DataНарешті, давайте переглянемо кількість відсутніх даних. ###Code dataset.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 1309 entries, 0 to 417 Data columns (total 12 columns): PassengerId 1309 non-null int64 Survived 1309 non-null int64 Pclass 1309 non-null int64 Name 1309 non-null object Sex 1309 non-null object Age 1046 non-null float64 SibSp 1309 non-null int64 Parch 1309 non-null int64 Ticket 1309 non-null object Fare 1308 non-null float64 Cabin 295 non-null object Embarked 1307 non-null object dtypes: float64(2), int64(5), object(5) memory usage: 172.9+ KB ###Markdown І за допомогою теплової карти. ###Code fig, ax = plt.subplots(figsize=(12,8)) sns.heatmap(dataset.isnull(), cmap='coolwarm', yticklabels=False, cbar=False, ax=ax) ###Output _____no_output_____ ###Markdown Схоже, що ознаки Fare, Embarked, Age та Cabin мают пропущені значення. Нам треба підготувати дані до використання моделлю, а тому треба очистити дані від пропущених значень. Поглянемо що ми можемо з цим зробити. Embarked nullsСпочатку почнемо на NaNs у змінній Embarked. У нас двоє пасажирів без місця посадки. Обидва пасажири вижили і мають однаковий номер квитка. Вони також належали до першого класу. ###Code dataset[dataset['Embarked'].isnull()] ###Output _____no_output_____ ###Markdown Давайте спробуємо зрозуміти в якому порту сіли ці пасажирки. Спочатку розглянемо шанси на виживання залежно від порту посадки. ###Code fig, (ax1, ax2, ax3) = plt.subplots(1,3, figsize=(15,5)) # Plot the number of occurances for each embarked location sns.countplot(x='Embarked', data=dataset, ax=ax1) # Plot the number of people that survived by embarked location sns.countplot(x='Survived', hue = 'Embarked', data=dataset, ax=ax2, order=[1,0]) # Group by Embarked, and get the mean for survived passengers for each # embarked location embark_pct = dataset[['Embarked','Survived']].groupby(['Embarked'],as_index=False).mean() # Plot the above mean sns.barplot(x='Embarked',y='Survived', data=embark_pct, order=['S','C','Q'], ax=ax3) ###Output _____no_output_____ ###Markdown Тут ми можемо побачити, що більшість пасажирів сіли на Титанік в порту S, і через це більшість пасажирів, які вижили, були з порту S. Однак, коли ми дивимось на середню кількість людей, що вижили, порівняно із загальною кількістю людей, які сіли в певному порті, S мав найнижчий рівень виживання.Цього не достатньо, щоб зробити висновок, в якому порту зайшли на борт вище зазначені люди: miss. Amelie та mrs. George Nelson. Давайте розглянемо інші змінні, які можуть вказувати, де пасажири сіли на корабель.Давайте подивимось, чи хтось ще має той самий номер квитка. ###Code dataset[dataset['Ticket'] == '113572'] ###Output _____no_output_____ ###Markdown Немає інших користувачів, які мають такий самий номер квитка. Давайте шукатимемо людей того ж класу, які сплатили аналогічну вартість квитка. ###Code dataset[(dataset['Pclass'] == 1) & (dataset['Fare'] > 75) & (dataset['Fare'] < 85)].groupby('Embarked')['PassengerId'].count() ###Output _____no_output_____ ###Markdown З людей, які мають той самий клас і платили подібний тариф, 25 людей приїхали з C, а 18 людей приїхали з S.Тепер, враховуючи, що більшість людей того ж класу, квитки яких мають подібну вартість, зайшли на борт в порту С, і що люди, які виїхали з С, мають найвищий коефіцієнт виживання, ми припустимо, що ці пасажири, ймовірно, сіли на борт в порту C. Змінимо їх NaN значення на C. ###Code # Set Value dataset.at[dataset['Embarked'].isnull(), 'Embarked'] = 'C' # Verify dataset[dataset['Embarked'].isnull()] ###Output _____no_output_____ ###Markdown Fare nullsТепер давайте розберемося з пропущеними значеннями у стовпці Fare. ###Code dataset[dataset['Fare'].isnull()] ###Output _____no_output_____ ###Markdown Візуалізуємо гістограму тарифів, сплачених пасажирами 3-го класу, які сіли з Southampton. ###Code fig,ax = plt.subplots(figsize=(8,5)) dataset[(dataset['Pclass'] == 3) & (dataset['Embarked'] == 'S')]['Fare'].hist(bins=100, ax=ax) plt.xlabel('Fare') plt.ylabel('Frequency') plt.title('Histogram of Fare for Pclass = 3, Embarke = S') plt.show() print ("The top 5 most common fares:") dataset[(dataset['Pclass'] == 3) & (dataset['Embarked'] == 'S')]['Fare'].value_counts().head() ###Output The top 5 most common fares: ###Markdown Заповнимо пропущене значення найпоширенішим тарифом - 8,05 дол. ###Code # Fill value dataset.at[dataset['Fare'].isnull(), 'Fare'] = 8.05 # Verify dataset[dataset['Fare'].isnull()] ###Output _____no_output_____ ###Markdown Age nullsТепер давайте заповнимо пропущені дані про вік. Один із способів заповнення - заповнити NaN середнім значенням по колонці. Можна вдосконалити цей підхід, наприклад, заповнити середнім значенням віку для певного класу пасажирів, оскільки пасажири мають різний розподіл їх віку, залежно від їх класу. ###Code plt.figure(figsize=(12,7)) sns.boxplot(x='Pclass', y='Age', data=dataset) facet = sns.FacetGrid(dataset, hue='Pclass', aspect=4) facet.map(sns.kdeplot, 'Age', shade=True) facet.set(xlim=(0, dataset['Age'].max())) facet.add_legend() dataset.groupby('Pclass')['Age'].mean() ###Output _____no_output_____ ###Markdown Ми бачимо, що чим вище клас, тим вище середній вік, що має сенс. Отже, ми можемо заповнити вікові значення NaN, використовуючи вищезазначені середні значення. ###Code def fixNaNAge(age, pclass): if age == age: return age if pclass == 1: return 39 elif pclass == 2: return 30 else: return 25 # Fill value dataset['Age'] = dataset.apply(lambda row: fixNaNAge(row['Age'], row['Pclass']), axis=1) # Verify dataset[dataset['Age'].isnull()] facet = sns.FacetGrid(dataset, hue='Pclass', aspect=4) facet.map(sns.kdeplot, 'Age', shade=True) facet.set(xlim=(0, dataset['Age'].max())) facet.add_legend() facet = sns.FacetGrid(dataset, hue='Survived', aspect=4) facet.map(sns.kdeplot, 'Age', shade=True) facet.set(xlim=(0, dataset['Age'].max())) facet.add_legend() fig, ax = plt.subplots(1,1,figsize=(18,4)) age_mean = dataset[['Age','Survived']].groupby(['Age'],as_index=False).mean() sns.barplot(x='Age', y='Survived', data=age_mean) ###Output _____no_output_____ ###Markdown Cabin nullsНарешті, для стовпчика Cabin нам не вистачає занадто багато інформації, щоб правильно її заповнити. ###Code print(f"Значення Cabin пропущено для {dataset[dataset['Cabin'].isnull()].shape[0]} пасажирів") ###Output Значення Cabin пропущено для 1014 пасажирів ###Markdown У такому разі ми можемо повністю видалити цей стовпчик: ###Code dataset.drop('Cabin', axis=1, inplace=True) dataset.sample(3) ###Output _____no_output_____ ###Markdown Отже ми почистили/заповнили всі пропущені дані. ###Code dataset.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 1309 entries, 0 to 417 Data columns (total 11 columns): PassengerId 1309 non-null int64 Survived 1309 non-null int64 Pclass 1309 non-null int64 Name 1309 non-null object Sex 1309 non-null object Age 1309 non-null float64 SibSp 1309 non-null int64 Parch 1309 non-null int64 Ticket 1309 non-null object Fare 1309 non-null float64 Embarked 1309 non-null object dtypes: float64(2), int64(5), object(4) memory usage: 162.7+ KB ###Markdown Data RelationshipsТепер, коли ми провели перший аналіз та почистили наші дані від пропусків, давайте подивимось на взаємозв’язок між різними стовпцями.Для дослідження взаємозв'язків між різними ознаками ми можемо використовувати діаграму розсіювання(scatter plots) та теплові карти кореляції(correlation heatmaps) між різними атрибутами. Ми розглянемо кореляційну теплову карту різних ознак, виключаючи цільову змінну Survived. Можемо побудувати карту кореляції лише для числових атрибутів. ###Code corrmat = dataset.corr() f, ax = plt.subplots(figsize=(12, 9)) sns.heatmap(corrmat, vmax=.8, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10}) plt.title('Pearson Correlation of Features', y=1.05, size=15) plt.show() ###Output _____no_output_____ ###Markdown Ми можемо побачити, що:- є помітна від'ємна кореляція між цільовою ознакою та класом пасажира Pclass- є певна кореляція між цільовою ознакою та вартістю квитка Fare- Pclass та Fare мають помітну від'ємну кореляцію, що пояснюється тим, що квитки на перший клас дорожче квитків на середній і нижчий класи- Pclass та Age мають помітну від'ємну кореляцію, схоже що літні заможні люди можуть частіше дозволити собі подорожувати першим класом- SibSp та Parch мають певну кореляцію, схоже певні пасажири подорожували цілими родинами- PassengerId не корелює з іншими ознаками взагалі, можна буде позбутись цієї ознакиПобудуємо графік розсіювання для наших ознак: ###Code #scatterplot sns.set() sns_plot = sns.pairplot(dataset, height = 2) plt.show() ###Output _____no_output_____ ###Markdown Видно певні тенденції. Так, наприклад, пасажири нижчого класу частіше мали на борту Титаніка велику кількість своїх братів, сестер, дітей, батьків та подружжя. При цьому старші пасажири рідше подорожували з братами, сестрами чи подружжям. Але жодної цікавої тенденції, яка б свідчила про очевидний зв'язок з цільовою змінною я не бачу. Для категориальних атрибутів ми можемо використовувати те, що називається перехресною таблицею(cross-tabulation). ###Code pd.crosstab(dataset['Pclass'], dataset['Sex'], margins=True) pd.crosstab(dataset['Pclass'], dataset['Embarked'], margins=True) pd.crosstab(dataset['Survived'], dataset['Embarked'], margins=True) pd.crosstab(dataset['Embarked'], dataset['Sex'], margins=True) pd.crosstab(dataset['Survived'], dataset['Pclass'], margins=True) pd.crosstab(dataset['Survived'], dataset['Sex'], margins=True) ###Output _____no_output_____ ###Markdown Отже ми бачимо, що:- В кожному класі було більше чоловіків, ніж жінок. При цьому в нижчому класі чоловіків більше ніж в двічі- В порті S зайшло найбільше пасажирів, а саме більшість преставників 2-го класу, більше половини представників 1-го класу та 2/3 представників 3-го класу. Якщо ми порівняємо це з кореляцією між портом та кількістю загиблих, бачимо, що 2/3 пасажирів з порту S загинули. При цьому пасажири з інших портів C та Q мали рівні шанси вижити чи загинути. Сумнівно, щоб існував причинно-наслідковий зв'язок між самим портом та шансом вижити, скоріше високий відсоток загинувших пасажирів з порту S обумовлений високим відсотком пасажирів низького та середнього класу. А може, тим що більшість пасажирів з цього порту були чоловіками. Так ми бачимо, що майже всі пасажири з порту Q були нижчого класу. Але співвідношення виживших і загинувших пасажирів з цього порту майже рівне. Якщо ми подивимось на перехресну таблицю кореляції статі та порту, то побачимо, що співвідношення чоловіків та жінок з порту Q теж майже рівне- Співвідношення загиблих та виживших до статі та класу пасажирів, демонструє можливу залежністьПорівнювати дані представлені в таблиці не завжди зручно, візуалізуємо це: ###Code sns.countplot(x="Survived", hue="Sex", data=dataset) sns.countplot(x="Survived", hue="Pclass", data=dataset) ###Output _____no_output_____ ###Markdown Отже, ми проаналізували набір даних і побачили певні взаємозв'язки між атрибутами, також видно, що деякі ознаки не впливають на цільову змінну. Настав час для проектування ознак. Feature Engineering Adding featuresІмена пасажирів містять приставки та титули (такі як Mr, Miss, Dona, Master тощо), які у деяких випадках вказують на соціальний статус особи, який, можливо, був важливим фактором виживання під час аварії. Наприклад, ім'я *Braund, Mr. Owen Harris Heikkinen* містить префікс *Mr.*Створимо додаткову колонку Title, де будемо зберігати ці титули пасажирів. ###Code Title_Dictionary = { "Capt": "Officer", "Col": "Officer", "Major": "Officer", "Jonkheer": "Nobel", "Don": "Nobel", "Sir" : "Nobel", "Dr": "Officer", "Rev": "Officer", "the Countess": "Nobel", "Dona": "Nobel", "Mme": "Mrs", "Mlle": "Miss", "Ms": "Mrs", "Mr" : "Mr", "Mrs" : "Mrs", "Miss" : "Miss", "Master" : "Master", "Lady" : "Nobel" } dataset['Title'] = dataset['Name'].apply(lambda x: Title_Dictionary[x.split(',')[1].split('.')[0].strip()]) dataset.sample(3) dataset[dataset['Title'].isnull()] ###Output _____no_output_____ ###Markdown Поглянемо, чи є залежність між титулом та шансом вижити: ###Code sns.countplot(x="Survived", hue="Title", data=dataset) ###Output _____no_output_____ ###Markdown Як бачимо у міс та місіс було більше шансів вижити, в той час як містери та офіцери мали низькі шанси на виживання. Aggregating FeaturesДодамо поле FamilySize, яке агрегує інформацію в полях, що вказують на наявність партнера (Parch) або родича (Sibsp) на борту Титаніка. ###Code dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] dataset.sample(3) ###Output _____no_output_____ ###Markdown Як ми вже бачили під час візуального аналізу вище, стать пасажира була важливим фактором виживання під час аварії на Титаніку. Так само як і вік пасажира. Це можна пояснити, наприклад, пільговим ставленням до жінок та дітей. Давайте додамо нову ознаку для врахування статі та віку пасажирів. ###Code def getPerson(passenger): age, sex = passenger return 'child' if age < 16 else sex dataset['Person'] = dataset[['Age', 'Sex']].apply(getPerson, axis=1) dataset.sample(10) ###Output _____no_output_____ ###Markdown Подивимось, які шанси на виживання були у дітей: ###Code sns.countplot(x="Pclass", hue="Person", data=dataset) sns.countplot(x="Survived", hue="Person", data=dataset) ###Output _____no_output_____ ###Markdown Попри те, що більшість дітей були з середнього та нижчого класів, пасажири яких мали не високі шанси вижити, шанси дітей вижити були трохи більші ніж загинути. Dropping Useless FeaturesТепер позбудимось ознак, які були об'єднані в іншу ознаку або не мають помітного впливу на цільову ознаку.Ознаки, які ми видалемо - це Name, Sex, Ticket, SibSp, Parch.Ознаку PassengerID я видалю пізніше, перед самим тренуванням, після того як розіб'ю вибірку на тренувальну і тестову по PassengerID, так само як вони були розбиті з самого початку, перед тим як я поєднав початкові тестову і тренувальну вибірки в один набір даних. ###Code features_to_drop = ['Name', 'Sex', 'Ticket', 'SibSp', 'Parch'] dataset.drop(labels=features_to_drop, axis=1, inplace=True) dataset.sample(3) # corrmat = dataset.corr() # f, ax = plt.subplots(figsize=(12, 9)) # sns.heatmap(corrmat, vmax=.8, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10}) # plt.title('Pearson Correlation of Features', y=1.05, size=15) # plt.show() #scatterplot # sns.set() # sns_plot = sns.pairplot(dataset, height = 2) # plt.show() ###Output _____no_output_____ ###Markdown Convert Categorical VariablesКатегоріальні дані потрібно перетворити в числові значення, оскільки scikit-learn приймає лише числові значення як вхідні дані.Ми могли б представляти категоріальні значення за допомогою чисел, але це кодування передбачає впорядковану залежність між значеннями в категорії, наприклад, як в якійсь рейтинговій системі оцінювання. До таких впорядкованих категоріальних ознак можна віднести Pclass. Якщо наші категоріальні дані не мають порядку, тоді ми можемо кодувати категоричні значення, замінивши категоріальну змінну на декілька [фіктивних змінних](https://en.wikipedia.org/wiki/Dummy_variable_(statistics)). Для перетворення категоріальної змінної на фіктивні скористуємось методом [one-hot-encoding](https://en.wikipedia.org/wiki/One-hot). В залежності від того, чи є категорії взаємовиключні, чи одне спостереження може належати декільком категоріям одночасно, кількість нових фіктивних змінних буде на 1 меньша кількості категорій, або дорівнювати кількості категорій відповідно. Отже, у нас є чотири категоричні ознаки: Pclass, Embarked, Title та Person. Ми можемо конвертувати їх методом one-hot-encoding, так кожна категорія для кожної функції стає новим стовпцем. Стовпець категорії отримає значення 1, якщо оригінальна функція належала цій категорії. Решта стовпців отримає значення 0. ###Code # Create dummy features for each categorical feature dummies_person = pd.get_dummies(dataset['Person'], prefix='Person') dummies_embarked = pd.get_dummies(dataset['Embarked'], prefix='Embarked') dummies_title = pd.get_dummies(dataset['Title'], prefix='Title') # Add the new features to the dataframe via concating temp_dataset = pd.concat([dataset, dummies_person, dummies_embarked, dummies_title], axis=1) # Drop the original categorical feature columns temp_dataset = temp_dataset.drop(['Person', 'Embarked', 'Title'], axis=1) # Drop one of each of the dummy variables because its value is implied # by the other dummy variable columns # E.g. if Person_male = 0, and Person_female = 0, then the person # is a child dataset = temp_dataset.drop(['Person_child', 'Embarked_C', 'Title_Master'], axis=1) dataset.head() ###Output _____no_output_____ ###Markdown Тепер наші дані готові для тренування та тестування моделі. Building a Logistic Regression ModelОтже, ми проаналізували наш набір даних, очистили дані від пропусків, виконали трансформацію ознак, щоб отримати з них корисну нам інформацію. Все це було підготовкой, необхідною для того, щоб на основі наших даних навчити модель, здатну визначити в кого з пасажирів Титаніка більше шансів вижити. Split the data and the labelsПо-перше, давайте розділимо набір даних на тренувальний та тестовий набори: ###Code ds_train = dataset.loc[dataset['PassengerId'].isin(train['PassengerId'].values)] ds_train = ds_train.drop(['PassengerId'], axis=1) print('Довжина тренувального набору даних: {:.0f}'.format(ds_train.shape[0])) ds_test = dataset.loc[dataset['PassengerId'].isin(test_X['PassengerId'].values)] ds_test = ds_test.drop(['PassengerId'], axis=1) print('Довжина тестового набору даних: {:.0f}'.format(ds_test.shape[0])) ###Output Довжина тренувального набору даних: 891 Довжина тестового набору даних: 418 ###Markdown Тепер, давайте розділимо навчальний та тестовий нобори на цільову ознаку та характеризуючі ознаки: ###Code X_train = ds_train.drop(['Survived'], axis=1) y_train = ds_train['Survived'] X_test = ds_test.drop(['Survived'], axis=1) y_test = ds_test['Survived'] ###Output _____no_output_____ ###Markdown Rescaling valuesНаявність ознак, що мають різні масштаби (min та max значення), може спричинити проблеми в деяких моделях машинного навчання, оскільки багато моделей базуються на концепції евклідової відстані. Це означає, що особливості з більшими масштабами мали б більший вплив на рішення, ніж ті, що мають менші значення.Ми можемо виправити цю ситуацію, змінивши незалежні змінні. Це можна зробити за допомогою функції масштабування. ###Code scaler = StandardScaler() # scaler = MinMaxScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) ###Output _____no_output_____ ###Markdown Create and fit a modelТепер ми можемо створити та навчити модель на тренувальному наборі даних. ###Code model = LogisticRegression() model.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Validate modelОтримати точність моделі на тестовому наборі: ###Code predictions = model.predict(X_test) TN = confusion_matrix(y_test, predictions)[0][0] FP = confusion_matrix(y_test, predictions)[0][1] FN = confusion_matrix(y_test, predictions)[1][0] TP = confusion_matrix(y_test, predictions)[1][1] total = TN + FP + FN + TP ACC = (TP + TN) / float(total) print ("Ця модель має точність {}% на тестовому наборі даних".format(round(ACC * 100, 2))) print ("TN {}. Це {}% від загальної кількості прогнозів".format(TN, round((TN) / float(total) * 100, 2))) print ("TP {}. Це {}% від загальної кількості прогнозів".format(TP, round((TP) / float(total) * 100, 2))) print ("FN {}. Це {}% від загальної кількості прогнозів".format(FN, round((FN) / float(total) * 100, 2))) print ("FP {}. Це {}% від загальної кількості прогнозів".format(FP, round((FP) / float(total) * 100, 2))) ###Output Ця модель має точність 92.11% на тестовому наборі даних TN 242. Це 57.89% від загальної кількості прогнозів TP 143. Це 34.21% від загальної кількості прогнозів FN 9. Це 2.15% від загальної кількості прогнозів FP 24. Це 5.74% від загальної кількості прогнозів ###Markdown Evaluation: Cross ValidationНаведений вище метод навчання та тестування моделі насправді не показує, наскільки добре працює модель. Створюючи модель, ми хочемо, щоб вона могла узагальнити (малий bias) і мати подібні точності в тестових наборах (низька дисперсія(variance)). Однак нам бракує навчання та тестування даних.Кращий метод для перевірки моделі - використовувати перехресну перевірку (cross-validation). Під час перехресної перевірки ми розбиваємо набір на різні навчальні та тестувальні набори, і ми використовуємо ці набори для тренування та тестування моделі кілька разів (кілька тренувальних і тестувальних ітерацій), постійно змінюючи тренувальні та тестувальні набори на кожній ітерації.Варіанти включають Leave One Out Cross Validation, KFold Cross Validation тощо.KFold Cross Validation - це поширений метод, коли навчальний набір ділиться на k рівних вибірок. Тоді з цих k вибірок одна вибірка використовується для тестування, а решта k-1 вибірок використовуються для навчання. Цей процес повторюється k разів, і кожен раз для тестування використовується інша вибірка. Це призводить до того, що кожен зразок тестується один раз. В кінці цього ми отримуємо k точностей для моделі, з яких ми можемо отримати середню точність та стандартне відхилення точності. Чим вище середня точність, тим менше bias. Чим нижче стандартне відхилення, тим менша дисперсія (variance). Це краще відображає справжню ефективність моделі на навчальному наборі. ###Code y = dataset['Survived'] X = dataset.drop(['Survived'], axis=1) X = X.drop(['PassengerId'], axis=1) model = LogisticRegression() scaler = StandardScaler() kfold = KFold(n_splits=10) kfold.get_n_splits(X) accuracy = np.zeros(10) np_idx = 0 for train_idx, test_idx in kfold.split(X): X_train, X_test = X.values[train_idx], X.values[test_idx] y_train, y_test = y.values[train_idx], y.values[test_idx] X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) model.fit(X_train, y_train) predictions = model.predict(X_test) TN = confusion_matrix(y_test, predictions)[0][0] FP = confusion_matrix(y_test, predictions)[0][1] FN = confusion_matrix(y_test, predictions)[1][0] TP = confusion_matrix(y_test, predictions)[1][1] total = TN + FP + FN + TP ACC = (TP + TN) / float(total) accuracy[np_idx] = ACC*100 np_idx += 1 print ("Fold {}: Accuracy: {}%".format(np_idx, round(ACC,3))) print ("Average Score: {}%({}%)".format(round(np.mean(accuracy),3),round(np.std(accuracy),3))) ###Output Fold 1: Accuracy: 0.802% Fold 2: Accuracy: 0.817% Fold 3: Accuracy: 0.847% Fold 4: Accuracy: 0.771% Fold 5: Accuracy: 0.779% Fold 6: Accuracy: 0.817% Fold 7: Accuracy: 0.847% Fold 8: Accuracy: 0.962% Fold 9: Accuracy: 0.947% Fold 10: Accuracy: 0.985% Average Score: 85.724%(7.439%) ###Markdown Створимо функцію, яка візуалізує точність моделей, які ми будуємо. Вона будує безперервну лінію середніх значень (mean) балів вибраного оцінювача (estimator) для двох наборів даних, і кольорову смугу навколо середньої лінії, тобто інтервал (mean - стандартне відхилення (standard deviation), mean + стандартне відхилення).`plot_learning_curve()` використовує функцію `sklearn.learning_curve.learning_curve()`, яка обчислює тренувальні та тестові бали при перехресній перевірці(ross-validated) для різних розмірів навчальних наборів. Оцінки усереднюються для всіх k ітерацій в залежності від розміру тренувальної вибірки. ###Code def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=1,\ train_sizes=np.linspace(.1, 1.0, 5), scoring='accuracy'): plt.figure(figsize=(10,6)) plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel(scoring) train_sizes, train_scores, test_scores = learning_curve(estimator, X, y, cv=cv, scoring=scoring, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std,\ train_scores_mean + train_scores_std, alpha=0.1, \ color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std,\ test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r",label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.legend(loc="best") return plt ###Output _____no_output_____ ###Markdown Накреслимо "криву навчання" класифікатора як на навчальному, так і на тестовому наборі даних. ###Code X_scaled = scaler.fit_transform(X) plot_learning_curve(model,'Logistic Regression', X_scaled, y, cv=10) ###Output _____no_output_____ ###Markdown Optimize Model: Grid SearchGrid searching - це добре відомий метод підбору гіперпараметрів, які оптимізують вашу модель.Grid search просто будує декілька моделей із усіма вказаними комбінаціями параметрів та запускає перехресну перевірку, щоб повернути набір параметрів, що мали найвищий бал cv на тестовій вибірці. ###Code model = LogisticRegression() scaler = StandardScaler() kfold = KFold(n_splits=10) kfold.get_n_splits(X) best_model = model best_params = {} best_accuracy = 0 best_std = 0 for C in [0.001,0.01,0.05,0.1,0.5,1,5,10, 100]: for solver in ['newton-cg','lbfgs','liblinear','sag']: model = LogisticRegression(C=C, solver=solver) accuracy = np.zeros(10) np_idx = 0 for train_idx, test_idx in kfold.split(X): X_train, X_test = X.values[train_idx], X.values[test_idx] y_train, y_test = y.values[train_idx], y.values[test_idx] X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) model.fit(X_train, y_train) predictions = model.predict(X_test) TN = confusion_matrix(y_test, predictions)[0][0] FP = confusion_matrix(y_test, predictions)[0][1] FN = confusion_matrix(y_test, predictions)[1][0] TP = confusion_matrix(y_test, predictions)[1][1] total = TN + FP + FN + TP ACC = (TP + TN) / float(total) accuracy[np_idx] = ACC*100 np_idx += 1 if np.mean(accuracy) > best_accuracy: best_model = model best_params = {'C':C, 'solver':solver} best_accuracy = np.mean(accuracy) best_std = np.std(accuracy) print (best_params) print ("Найкращій бал: {}%({}%)".format(round(best_accuracy, 2),round(best_std, 2))) print ("\nОптимальна модель логістичної регресії використовує C={}, та {} solver, та має бал під час перехресної перевірки на тестовій виборці {}% зі стандартним відхиленням {}%".format(best_params['C'],best_params['solver'],round(best_accuracy, 2),round(best_std, 2))) ###Output {'C': 0.05, 'solver': 'newton-cg'} Найкращій бал: 86.49%(7.88%) Оптимальна модель логістичної регресії використовує C=0.05, та newton-cg solver, та має бал під час перехресної перевірки на тестовій виборці 86.49% зі стандартним відхиленням 7.88%
Assignments/A1-SamplingTimeSeries.ipynb
###Markdown - Name- PID- COGS118C - Assignment 1 This notebook has [30 + 3 bonus] points in total The number of points for each question is denoted by []. Make sure you've answered all the questions and that the point total add up. --- Lab 1 - Time Series, Sampling, and Epoched Analysis (ERPs)In this lab, we will cover the first stages of signal processing: sampling data. This includes digitization and sampling theorem. We will generate and plot some signals. Then, we'll perform our first kind of neural signal analysis: event-related potentials.Key concepts:- visualizing time-series- digitization/quantization- sampling- (more) indexing arrays- epoching- event-related potentials (ERPs): noise and averaging**Answers for questions requiring written responses can be entered in the cell immediately below the question, so that when you write your response, it doesn't screw up the formatting of the question.** Analog signalsReal world signals are continuous in time and amplitude (up to quantum-level limits, anyway). These are referred to as **"analog"** signals (Google it). Soundwaves that we produce when we speak or when we play a violin, for example, are analog signals. Equivalently, there are "analog devices" that produce, receive, and/or operate on analog signals. These often involve "analog" circuits. [1] Q1:[1] 1.1: Give 3 examples of analog devices. **Response for 1.1:** joystick, clock, keyboard Digital signalsPeople used to analyze signals using analog circuits. This is pretty hardcore, and requires extensive hands-on knowledge about circuitry. Once you want to analyze the signal on a "digital" computer, however, you have to "digitize" the signal. This requires an **"analog-to-digital converter"** or ADC for short. ---A tangent (without delving too much into how a computer works): all modern computers operate with binary transistors, which use a combination of "bits" to represent all other types of information. In the analog world, there are an infinite number of number between 0 and 1, so there is a limit to how accurately we can represent small decimals (or really big numbers). Python uses [floating point](https://0.30000000000000004.com/). Everything you see on your screen, at the lowest level, is converted into a numerical **binary** representation, even strings (see [ASCII](https://www.cs.cmu.edu/~pattis/15-1XX/common/handouts/ascii.html) table, for example).---Anyway, to digitize an analog signal, you have to discretely sample, both in value (voltage, brightness, etc) and in time. The former is usually called **digitization or quantization**, while **sampling** usually refers to the latter. It's like drawing a grid over your continuous signals and interpolating its values only at where the grid crosses.![sampling](img/WvD_fig1_6.png) Let's get into itWithout further ado: let's load up some EEG signals and explore. But first, make the necessary python module imports. ###Code import numpy as np import matplotlib.pyplot as plt from scipy import io # this submodule let's us load the signal we want %matplotlib inline # scipy loads .mat file into a dictionary # the details are not crucial, we just have to unpack them into python variables EEG_data = io.loadmat('data/EEG_exp.mat', squeeze_me = True) # print all the variables that exist in the dictionary print(EEG_data.keys()) # this contains the EEG data EEG = EEG_data['EEG'] # this contains the sampling rate, in Hz (or samples/second) fs = EEG_data['fs'] # let's plot the signal plt.figure(figsize=(15,3)) plt.plot(EEG) # ALWAYS label your plot axes in this course (and ever) plt.xlabel('Sample Number') plt.ylabel('Voltage (uV)') # now let's zoom in to see more detail plt.figure(figsize=(15,3)) plt.plot(EEG, '.') # '.' means plot the data points as individual dots without linking them plt.xlim([0,1000]) # this limits the x-axis shown plt.xlabel('Sample Number') plt.ylabel('Voltage (uV)') ###Output dict_keys(['__header__', '__version__', '__globals__', 'EEG', 'fs', 'trial_info']) ###Markdown [3] Q2: DigitizationAs you can see above, the signal we loaded is already a digitally sampled time series (a little over 70,000 samples), represented by discrete points in the second plot. To study the effect of quantization, let's simulate what would happen if we further quantized the signal, with a (prehistoric) 4-bit ADC.[1] 2.1: How many possible values can a 4-bit ADC represent? Remember, this means that the ADC has 4 binary 'bits' that it can use, thus giving you a total of how many levels? Compute this number in code and store that value in the variable `num_levels` below.[1] 2.2: Let's say our ADC has a total range between -32uV to 32uV. What is the voltage resolution of our ADC then? In other words, what is the finest voltage difference our ADC can distinguish between two samples? Compute this number in code and store that value in the variable `delta_v` below.[1] 2.3: Run the next two cells, they should produce a graph where the orange trace looks very quantized (kind of square). This is not good, because then we cannot distinguish small fluctuations in our signals, which, as we will see later in the course, are very important. **Re-run** the next two cells, but experiment with different values for `num_bits`. Just based on visual inspection of the plot, what is the minimum number of bits that you would want your ADC to have in this case, assuming the blue trace is a faithful representation of your signal? There's no one right answer, but justify your response. **Response for 2.3:** 16 bits or as many bits as possible. The more bits, the smaller the voltage difference that can be distinguished. As the number of bits increased, the difference between ground truth and quantized signal approaches zero. ###Code num_bits = 16 min_v, max_v = -32,32 num_levels = 2**num_bits delta_v = (max_v-min_v)/num_levels # create the quantization vector, these are the new possible values that your signal can take ADC_levels = np.arange(min_v,max_v,delta_v)+delta_v/2 # quantize the EEG signal with our crappy ADC with the function np.digitize # note that we have to scale the redigitized signal to its original units EEG_quant = np.digitize(EEG,bins=ADC_levels)*delta_v+min_v plt.figure(figsize=(15,4)) plt.plot(EEG, label='Original EEG') plt.plot(EEG_quant, label='Quantized EEG', alpha=0.8) plt.xlim([0,1000]); plt.ylim([-15, 15]); plt.legend() plt.xlabel('Sample Number') plt.ylabel('Voltage (uV)') ###Output _____no_output_____ ###Markdown --- Sample Number vs. TimeNotice that in all the plots above, the x-axis is "sample number", which simply correponds to the position each value is in the array `EEG`. We want to create a corresponding time vector, which marks at what clock time each value is sampled at. Sometimes your data will include a time vector. But for the sake of this exercise, you are asked to create the time vector based on the information/variables you have. [6] Q3: Sampling in Time[1] 3.1: Given the sampling rate, what is the sampling **period**? In other words, how much time elapses between each consecutive sample? Compute this number as a function of `fs` and store it in the variable `dt` below.[1] 3.2: How long in total is this signal, in absolute time? Compute and store this in the variable `T_exp` below.[1] 3.3: Construct the corresponding time vector for the EEG data, assuming that the first sample came at t=0 and evenly spaced samples at `dt`. Store that in the variable `t_EEG` below. Hint: check out the function `np.arange()`.[2] 3.4: Re-plot the signal as a line chart, but with the x-axis as time (using the time vector you created above), and zoom into the first 1 second of the data. **Take note to label your plots carefully, with units!**[1] 3.5: To simulate **downsampling** in time, plot every **10th** value of the EEG data by indexing the array (check Google/StackExchange for how to do this). Remember, this applies both to the time vector and your EEG data. **Make sure to label your data and display the legend as Q2 above.**[BONUS: 1] 3.6: Sometimes it's useful to downsample your signal in time to conserve memory. As we did above, by taking every 10th value in our data, we essentially reduce the data size 10-fold. However, this is **NOT** the entirely right way to downsample your data. What issue do we introduce when we simply do that? (Hint: the answer can be as short as one word, and Google is your friend here.) **Response for 3.6:** Aliasing ###Code dt = 1/fs T_exp = len(EEG)*dt t_EEG = np.arange(0, T_exp, dt) # Plotting the signal and its downsampled version plt.figure(figsize=(15,3)) plt.plot(t_EEG, EEG, label='EEG') plt.plot(t_EEG[::10], EEG[:-1:10], '.-', label='Downsampled') plt.xlim([0,1]); plt.ylim([-15, 15]); plt.xlabel('Time (s)') plt.ylabel('Voltage (uV)') ###Output _____no_output_____ ###Markdown Event-Related AnalysisThe above data actually comes from an event-style EEG experiment. The participant is shown visual stimuli at regular intervals, aimed to trigger a reliable brain response for each type of stimuli (cat vs. dog pics, for example). This is a very common type of study design in neuroscience (and psychology). In this case, we will need to know when a stimulus was presented, and what type of stimulus it was. This information is stored in the variable `trial_info`, where the **first column has the stimulus onset time (in seconds), and the second column has the type of stimulus shown (1,2, or 3).** These are often extra streams of data sent through the "trigger channel" by the stimulus-presenting computer directly to the recording equipment, in order to synchronize with the EEG data. ###Code trial_info = EEG_data['trial_info'] # print the first 10 events print(trial_info[:10,:]) ###Output [[ 1. 3. ] [ 3.375 3. ] [ 5.87 1. ] [ 8.183 2. ] [10.419 1. ] [12.588 1. ] [14.87 2. ] [17.086 2. ] [19.164 3. ] [21.237 2. ]] ###Markdown --- Process for Analyzing Event-Related DataThese types of experiments follow a pretty standard analysis process. 1. Import and pre-process your data (already done; we'll skip the pre-processing for now)2. Given the stimulus presentation timestamps (first column of `trial_info` above), find the corresponding indices in your EEG data by matching to the `t_EEG` time vector.3. Cut out an **epoch** (window of data) around the stimulus presentation time, which usually includes: - pre-stimulus baseline (~0.5 seconds before stimulus presentation) - stimulus presentation (t = 0) - stimulus-driven response (or event-related response, 0-1 second after stimulus presentation)4. Baseline subtraction: subtract each epoch by its mean pre-stimulus value to account for any slow drifts over time.5. Group epochs based on stimulus type, and average epochs of the same type.6. Plot the average response (s). [4] Q4: Step 2 - Find Matching Timestamps in EEG DataGiven the event times in `trial_info`, which we will assume to be the stimulus onset time for this experiment, we have to find the corresponding timestamp in the EEG data. Note that the timestamps may not always match exactly, as they could have different sampling rates. In those cases, you will have to settle for finding the **closest** timestamps. Currently, however, life was made easy for us by virtue of the fact that the EEG data (and timestamps) and the stimulus event timestamps are synchronously sampled at 1000Hz.In this case, we can directly convert the event timestamp into an integer index, since we know the sampling frequency and starting time. [1] 4.1: If the EEG timestamp starts at `t=0`, which is indexed by `i=0`, and is sampled at `fs=1000`, at which index will the EEG timestamp be equal to **3.050 seconds**? Compute and store this in the variable `trial_index` below. Note that to index an array, the number has to be an integer, which I've converted for you. (You will notice that the value is *a LITTLE* off. That's a precision issue and We can ignore that for now.)[3] 4.2: Following this logic, write a function that will find the corresponding index in the EEG data/timestamp for every event timestamp. Return that as an array of integers (`my_arr.astype(int)` will convert an array to all integers). You may use a for loop, list comprehension, or a simple (one-line) array calculation for this. Confirm that the timestamps match what you expect by printing the first 10 events (I've done this for you). ###Code trial_index = (3.050*fs) print(t_EEG[np.array(trial_index).astype(int)]) # access the value at the corresponding index def compute_EEG_indices(event_timestamps, fs): return np.multiply(event_timestamps, fs).astype(int) # call your function to compute the corresponding indices EEG_indices = compute_EEG_indices(trial_info[:, 0], fs) # print your solution and the actual event times to compare, they should be identical print(t_EEG[EEG_indices[:10]]) print(trial_info[:10,0]) EEG[:10] ###Output _____no_output_____ ###Markdown [6] Q5: Step 3 - Grabbing EpochsNow that we have the corresponding indices in the EEG data, we know exactly where the **onset** of each stimulus is. The next thing we have to do is to grab a chunk of data surrounding the onset time, which we define to be `t=0` for every trial. That means you will want to grab a little bit of data before and after that time. [3] 5.1: Write a function that will, given an array of `data`, the sampling rate `fs`, and an `index`, grab a window of data surrounding that index, defined by `len_pre` and `len_post` in **seconds**. Note that `len_pre` should be negative to reflect that it's before the stimulus onset time. I've started this function for you below. Again, there are multiple ways to accomplish this, but the simplest solution can accomplish this in a single line.[1] 5.2: Use this function to grab an epoch for the **10th trial** (remember that's stored in `EEG_indices` already), with a pre-stimulus window of 0.5 seconds and a post-stimulus window of 1 second.[1] 5.3: Create a time vector `t_epoch` that corresponds to the timestamps for that epoch, relative to the stimulus onset time as zero. In other words, this time vector should start at `len_pre` and end at `len_post`, and has the same sampling frequency.[1] 5.4: Plot the epoch of data you grabbed. Note that the x-axis should be time. **Label your axes!** ###Code def grab_epoch(data, index, fs, len_pre, len_post): return data[int(index+len_pre*fs):int(index+len_post*fs)] # _FILL_IN_YOUR_CODE_HERE len_pre = -0.5 #second len_post = 1 #second epoch = grab_epoch(EEG, EEG_indices[9], fs, len_pre, len_post) print(epoch[:5]) t_epoch = np.arange(len_pre, len_post, 1/fs) # plotting plt.figure(figsize=(6,4)) plt.plot(t_epoch, epoch, label='Epoch: 10th Trial') plt.xlabel('Time (s)') plt.ylabel('Voltage (uV)') ###Output [-8.62576252 -8.63914269 -7.59542043 -7.38226366 -6.82182491] ###Markdown [4] Q6: Step 4 - Grab All & Baseline Correct (Bonus)[2] 6.1: If you grab an epoch for every trial and store that in a 2D numpy matrix, what should the dimensions of that matrix be, i.e., how many rows and how many columns? What do those numbers correspond to? Hint: you should organize your data such that there are more columns than rows in this particular case.[2] 6.2: Write a function that grabs **all** epochs (every trial) and store that in a 2D numpy matrix. There are a few ways to do this, but they will likely all use `grab_epoch()` somehow. Confirm that it has the same shape that you expect from above. Hint: you can append your epochs indefinitely to a python list using `list.append()`, and use `np.array()` to automatically convert that into a 2D matrix.[BONUS: 2] 6.3: Baseline all your epochs by subtracting the pre-stimulus epoch mean (-0.5 to 0 seconds) of each epoch from itself. **Response for 6.1:** (300, 1500) = (trials, samples in epoch) ###Code def get_all_epochs(data, indices, fs, len_pre, len_post): # get all epochs all_epochs = [grab_epoch(data, idx, fs, len_pre, len_post) for idx in indices] all_epochs = np.array(all_epochs) # baselining (if you want, it can also be a separate function) trial_means = np.mean(all_epochs[:, 0:int(abs(len_pre)*fs)], axis=1) trial_means = trial_means.reshape(len(trial_means), 1) all_epochs = all_epochs - trial_means return all_epochs epoched_EEG = get_all_epochs(EEG, EEG_indices, fs, len_pre, len_post) print(epoched_EEG.shape) # plot all the epochs and average plt.plot(t_epoch, epoched_EEG.T, '-k', alpha=0.01) plt.plot(t_epoch, np.mean(epoched_EEG,axis=0), label='Average Response') plt.xlabel('Time (s)') plt.ylabel('Voltage (uV)') plt.legend() ###Output (300, 1500) ###Markdown [6] Q7: Step 5 & 6 - Group Based on Trial TypeIn the plot above, I simply averaged over all the epochs to produce the average response (blue). However, as you will recall, there are several different types of trials (second column in `trial_info`). We should group epochs of the same trial type, and average over those. [5] 7.1: You have full flexibility for this part, with the only requirement being to produce a plot with 3 average responses corresponding to the 3 different trial types. Remember to label your plot axes and include a legend for which trace corresponds to which stimulus type. You will be evaluated on 3 things: whether you have successfully separated the epochs into their respective groupings, how well your code is commented to explain what you're doing, and whether you plot is correct and labeled. Since I have not given you a template for making a function, it may be useful to plan out what you want to do beforehand by writing pseudo code (i.e., plain English). Decide what strategy you will take (loops vs. list comprehension vs. others), and whether you want to separate the averaging and the plotting. You already know all the concepts required to tackle this problem (indexing, averaging, plotting), the challenge is putting them together. [1] 7.2: Briefly describe your results, e.g., what's similar and what's different between the conditions? Which stimulus produced the largest response.---Your plot should look something like:![example_erp](img/example_erp.jpg) **Response for 7.2:** ANSWER 14 & -14 ###Code def split_trials(eeg, onsets, trial_types, fs, len_pre, len_post): ''' Split trials by type. Parameters ---------- eeg : np.array or list-like contains eeg data in uV. onsets : np.array or list-like contains onsets of all trials in seconds trial_type : np.array or list-like specifies trial type, one per onset, either 1, 2, or 3. fs : int sampling frequency len_pre : int or float length prior to cue onset (seconds) len_post : int or float length after cue onsets (seconds) Returns ------- epochs_a : np.array epochs for trials == 1 epochs_b : np.array epochs for trials == 2 epochs_c : np.array epochs for trials == 3 ''' # Split onsets by trial type, then convert seconds to indices idx_a = onsets[np.where(trial_types == 1)[0]] * fs idx_a = idx_a.astype(int) idx_b = onsets[np.where(trial_types == 2)[0]] * fs idx_b = idx_b.astype(int) idx_c = onsets[np.where(trial_types == 3)[0]] * fs idx_c = idx_c.astype(int) # Get epochs for each trial type epochs_a = get_all_epochs(eeg, idx_a, fs, len_pre, len_post) epochs_b = get_all_epochs(eeg, idx_b, fs, len_pre, len_post) epochs_c = get_all_epochs(eeg, idx_c, fs, len_pre, len_post) return epochs_a, epochs_b, epochs_c epochs_a, epochs_b, epochs_c = split_trials(EEG, trial_info[:, 0], trial_info[:, 1], fs, len_pre, len_post) # plot t_epoch = np.arange(len_pre, len_post, 1/fs) plt.figure(figsize=(16,9)) plt.plot(t_epoch, np.mean(epochs_a, axis=0), label="Average Response: Type 1") plt.plot(t_epoch, np.mean(epochs_b, axis=0), label="Average Response: Type 2") plt.plot(t_epoch, np.mean(epochs_c, axis=0), label="Average Response: Type 3") plt.xlabel('Time (s)') plt.ylabel('Voltage (uV)') #plt.xlim([-10, 600]) plt.legend() ###Output _____no_output_____ ###Markdown - Name- PID- COGS118C - Assignment 1 This notebook has [30 + 3 bonus] points in total The number of points for each question is denoted by []. Make sure you've answered all the questions and that the point total add up. --- Lab 1 - Time Series, Sampling, and Epoched Analysis (ERPs)In this lab, we will cover the first stages of signal processing: sampling data. This includes digitization and sampling theorem. We will generate and plot some signals. Then, we'll perform our first kind of neural signal analysis: event-related potentials.Key concepts:- visualizing time-series- digitization/quantization- sampling- (more) indexing arrays- epoching- event-related potentials (ERPs): noise and averaging**Answers for questions requiring written responses can be entered in the cell immediately below the question, so that when you write your response, it doesn't screw up the formatting of the question.** Analog signalsReal world signals are continuous in time and amplitude (up to quantum-level limits, anyway). These are referred to as **"analog"** signals (Google it). Soundwaves that we produce when we speak or when we play a violin, for example, are analog signals. Equivalently, there are "analog devices" that produce, receive, and/or operate on analog signals. These often involve "analog" circuits. [1] Q1:[1] 1.1: Give 3 examples of analog devices. **Response for 1.1:** Digital signalsPeople used to analyze signals using analog circuits. This is pretty hardcore, and requires extensive hands-on knowledge about circuitry. Once you want to analyze the signal on a "digital" computer, however, you have to "digitize" the signal. This requires an **"analog-to-digital converter"** or ADC for short. ---A tangent (without delving too much into how a computer works): all modern computers operate with binary transistors, which use a combination of "bits" to represent all other types of information. In the analog world, there are an infinite number of number between 0 and 1, so there is a limit to how accurately we can represent small decimals (or really big numbers). Python uses [floating point](https://0.30000000000000004.com/). Everything you see on your screen, at the lowest level, is converted into a numerical **binary** representation, even strings (see [ASCII](https://www.cs.cmu.edu/~pattis/15-1XX/common/handouts/ascii.html) table, for example).---Anyway, to digitize an analog signal, you have to discretely sample, both in value (voltage, brightness, etc) and in time. The former is usually called **digitization or quantization**, while **sampling** usually refers to the latter. It's like drawing a grid over your continuous signals and interpolating its values only at where the grid crosses.![sampling](img/WvD_fig1_6.png) Let's get into itWithout further ado: let's load up some EEG signals and explore. But first, make the necessary python module imports. ###Code import numpy as np import matplotlib.pyplot as plt from scipy import io # this submodule let's us load the signal we want %matplotlib inline # scipy loads .mat file into a dictionary # the details are not crucial, we just have to unpack them into python variables EEG_data = io.loadmat('data/EEG_exp.mat', squeeze_me = True) # print all the variables that exist in the dictionary print(EEG_data.keys()) # this contains the EEG data EEG = EEG_data['EEG'] # this contains the sampling rate, in Hz (or samples/second) fs = EEG_data['fs'] # let's plot the signal plt.figure(figsize=(15,3)) plt.plot(EEG) # ALWAYS label your plot axes in this course (and ever) plt.xlabel('Sample Number') plt.ylabel('Voltage (uV)') # now let's zoom in to see more detail plt.figure(figsize=(15,3)) plt.plot(EEG, '.') # '.' means plot the data points as individual dots without linking them plt.xlim([0,1000]) # this limits the x-axis shown plt.xlabel('Sample Number') plt.ylabel('Voltage (uV)') ###Output dict_keys(['__header__', '__version__', '__globals__', 'EEG', 'fs', 'trial_info']) ###Markdown [3] Q2: DigitizationAs you can see above, the signal we loaded is already a digitally sampled time series (a little over 70,000 samples), represented by discrete points in the second plot. To study the effect of quantization, let's simulate what would happen if we further quantized the signal, with a (prehistoric) 4-bit ADC.[1] 2.1: How many possible values can a 4-bit ADC represent? Remember, this means that the ADC has 4 binary 'bits' that it can use, thus giving you a total of how many levels? Compute this number in code and store that value in the variable `num_levels` below.[1] 2.2: Let's say our ADC has a total range between -32uV to 32uV. What is the voltage resolution of our ADC then? In other words, what is the finest voltage difference our ADC can distinguish between two samples? Compute this number in code and store that value in the variable `delta_v` below.[1] 2.3: Run the next two cells, they should produce a graph where the orange trace looks very quantized (kind of square). This is not good, because then we cannot distinguish small fluctuations in our signals, which, as we will see later in the course, are very important. **Re-run** the next two cells, but experiment with different values for `num_bits`. Just based on visual inspection of the plot, what is the minimum number of bits that you would want your ADC to have in this case, assuming the blue trace is a faithful representation of your signal? There's no one right answer, but justify your response. **Response for 2.3:** ###Code num_bits = 4 min_v, max_v = -32,32 num_levels = 2**num_bits# _FILL_IN_YOUR_CODE_HERE print(f'With {num_bits}bits there are {num_levels} levels') delta_v = (max_v-min_v)/num_levels# _FILL_IN_YOUR_CODE_HERE print(f'Voltage resolution is of {delta_v}uV') # create the quantization vector, these are the new possible values that your signal can take ADC_levels = np.arange(min_v,max_v,delta_v)+delta_v/2 # quantize the EEG signal with our crappy ADC with the function np.digitize # note that we have to scale the redigitized signal to its original units EEG_quant = np.digitize(EEG,bins=ADC_levels)*delta_v+min_v plt.figure(figsize=(15,4)) plt.plot(EEG, label='Original EEG') plt.plot(EEG_quant, label='Quantized EEG', alpha=0.8) plt.xlim([0,1000]); plt.ylim([-15, 15]); plt.legend() plt.xlabel('Sample Number') plt.ylabel('Voltage (uV)') num_bits = 8 min_v, max_v = -32,32 num_levels = 2**num_bits# _FILL_IN_YOUR_CODE_HERE print(f'With {num_bits}bits there are {num_levels} levels') delta_v = (max_v-min_v)/num_levels# _FILL_IN_YOUR_CODE_HERE print(f'Voltage resolution is of {delta_v}uV') # create the quantization vector, these are the new possible values that your signal can take ADC_levels = np.arange(min_v,max_v,delta_v)+delta_v/2 # quantize the EEG signal with our crappy ADC with the function np.digitize # note that we have to scale the redigitized signal to its original units EEG_quant = np.digitize(EEG,bins=ADC_levels)*delta_v+min_v plt.figure(figsize=(15,4)) plt.plot(EEG, label='Original EEG') plt.plot(EEG_quant, label='Quantized EEG', alpha=0.8) plt.xlim([0,1000]); plt.ylim([-15, 15]); plt.legend() plt.xlabel('Sample Number') plt.ylabel('Voltage (uV)') ###Output _____no_output_____ ###Markdown --- Sample Number vs. TimeNotice that in all the plots above, the x-axis is "sample number", which simply correponds to the position each value is in the array `EEG`. We want to create a corresponding time vector, which marks at what clock time each value is sampled at. Sometimes your data will include a time vector. But for the sake of this exercise, you are asked to create the time vector based on the information/variables you have. [6] Q3: Sampling in Time[1] 3.1: Given the sampling rate, what is the sampling **period**? In other words, how much time elapses between each consecutive sample? Compute this number as a function of `fs` and store it in the variable `dt` below.[1] 3.2: How long in total is this signal, in absolute time? Compute and store this in the variable `T_exp` below.[1] 3.3: Construct the corresponding time vector for the EEG data, assuming that the first sample came at t=0 and evenly spaced samples at `dt`. Store that in the variable `t_EEG` below. Hint: check out the function `np.arange()`.[2] 3.4: Re-plot the signal as a line chart, but with the x-axis as time (using the time vector you created above), and zoom into the first 1 second of the data. **Take note to label your plots carefully, with units!**[1] 3.5: To simulate **downsampling** in time, plot every **10th** value of the EEG data by indexing the array (check Google/StackExchange for how to do this). Remember, this applies both to the time vector and your EEG data. **Make sure to label your data and display the legend as Q2 above.**[BONUS: 1] 3.6: Sometimes it's useful to downsample your signal in time to conserve memory. As we did above, by taking every 10th value in our data, we essentially reduce the data size 10-fold. However, this is **NOT** the entirely right way to downsample your data. What issue do we introduce when we simply do that? (Hint: the answer can be as short as one word, and Google is your friend here.) **Response for 3.6:** ###Code dt = 1/fs# _FILL_IN_YOUR_CODE_HERE T_exp = len(EEG) * dt# _FILL_IN_YOUR_CODE_HERE t_EEG = np.arange(0, T_exp, dt) # _FILL_IN_YOUR_CODE_HERE # Plotting the signal and its downsampled version plt.figure(figsize=(15,3)) plt.plot(t_EEG, EEG, label='Original EEG') plt.plot(t_EEG[::10], EEG[::10], '.-', label='Downsampled EEG') plt.xlim([0,1]); plt.ylim([-15, 15]); plt.legend() plt.xlabel('Time (s)') plt.ylabel('Voltage (uV)')# _FILL_IN_YOUR_CODE_HERE ###Output _____no_output_____ ###Markdown Event-Related AnalysisThe above data actually comes from an event-style EEG experiment. The participant is shown visual stimuli at regular intervals, aimed to trigger a reliable brain response for each type of stimuli (cat vs. dog pics, for example). This is a very common type of study design in neuroscience (and psychology). In this case, we will need to know when a stimulus was presented, and what type of stimulus it was. This information is stored in the variable `trial_info`, where the **first column has the stimulus onset time (in seconds), and the second column has the type of stimulus shown (1,2, or 3).** These are often extra streams of data sent through the "trigger channel" by the stimulus-presenting computer directly to the recording equipment, in order to synchronize with the EEG data. ###Code trial_info = EEG_data['trial_info'] # print the first 10 events print(trial_info[:10,:]) trial_info.shape ###Output _____no_output_____ ###Markdown --- Process for Analyzing Event-Related DataThese types of experiments follow a pretty standard analysis process. 1. Import and pre-process your data (already done; we'll skip the pre-processing for now)2. Given the stimulus presentation timestamps (first column of `trial_info` above), find the corresponding indices in your EEG data by matching to the `t_EEG` time vector.3. Cut out an **epoch** (window of data) around the stimulus presentation time, which usually includes: - pre-stimulus baseline (~0.5 seconds before stimulus presentation) - stimulus presentation (t = 0) - stimulus-driven response (or event-related response, 0-1 second after stimulus presentation)4. Baseline subtraction: subtract each epoch by its mean pre-stimulus value to account for any slow drifts over time.5. Group epochs based on stimulus type, and average epochs of the same type.6. Plot the average response (s). [4] Q4: Step 2 - Find Matching Timestamps in EEG DataGiven the event times in `trial_info`, which we will assume to be the stimulus onset time for this experiment, we have to find the corresponding timestamp in the EEG data. Note that the timestamps may not always match exactly, as they could have different sampling rates. In those cases, you will have to settle for finding the **closest** timestamps. Currently, however, life was made easy for us by virtue of the fact that the EEG data (and timestamps) and the stimulus event timestamps are synchronously sampled at 1000Hz.In this case, we can directly convert the event timestamp into an integer index, since we know the sampling frequency and starting time. [1] 4.1: If the EEG timestamp starts at `t=0`, which is indexed by `i=0`, and is sampled at `fs=1000`, at which index will the EEG timestamp be equal to **3.050 seconds**? Compute and store this in the variable `trial_index` below. Note that to index an array, the number has to be an integer, which I've converted for you. (You will notice that the value is *a LITTLE* off. That's a precision issue and We can ignore that for now.)[3] 4.2: Following this logic, write a function that will find the corresponding index in the EEG data/timestamp for every event timestamp. Return that as an array of integers (`my_arr.astype(int)` will convert an array to all integers). You may use a for loop, list comprehension, or a simple (one-line) array calculation for this. Confirm that the timestamps match what you expect by printing the first 10 events (I've done this for you). ###Code fs = 1000#units/sec t = 3.050#sec trial_index = t*(fs)#_FILL_IN_YOUR_CODE_HERE print(t_EEG[np.array(trial_index).astype(int)]) # access the value at the corresponding index def compute_EEG_indices(event_timestamps, fs): index_array = np.array([i[0] for i in (event_timestamps*fs).astype(int)])# _FILL_IN_YOUR_CODE_HERE return index_array # call your function to compute the corresponding indices EEG_indices = compute_EEG_indices(trial_info,fs) # print your solution and the actual event times to compare, they should be identical print(t_EEG[EEG_indices[:10]]) print(trial_info[:10,0]) #do the same using a for loop ###Output _____no_output_____ ###Markdown [6] Q5: Step 3 - Grabbing EpochsNow that we have the corresponding indices in the EEG data, we know exactly where the **onset** of each stimulus is. The next thing we have to do is to grab a chunk of data surrounding the onset time, which we define to be `t=0` for every trial. That means you will want to grab a little bit of data before and after that time. [3] 5.1: Write a function that will, given an array of `data`, the sampling rate `fs`, and an `index`, grab a window of data surrounding that index, defined by `len_pre` and `len_post` in **seconds**. Note that `len_pre` should be negative to reflect that it's before the stimulus onset time. I've started this function for you below. Again, there are multiple ways to accomplish this, but the simplest solution can accomplish this in a single line.[1] 5.2: Use this function to grab an epoch for the **10th trial** (remember that's stored in `EEG_indices` already), with a pre-stimulus window of 0.5 seconds and a post-stimulus window of 1 second.[1] 5.3: Create a time vector `t_epoch` that corresponds to the timestamps for that epoch, relative to the stimulus onset time as zero. In other words, this time vector should start at `len_pre` and end at `len_post`, and has the same sampling frequency.[1] 5.4: Plot the epoch of data you grabbed. Note that the x-axis should be time. **Label your axes!** ###Code def grab_epoch(data, index, fs, len_pre, len_post): # _FILL_IN_YOUR_CODE_HERE return data[(index+(int(len_pre*fs))) : (index+(len_post*fs))] # _FILL_IN_YOUR_CODE_HERE len_pre = -0.5 #second len_post = 1 #second epoch = grab_epoch(EEG, EEG_indices[9], 1000, len_pre, len_post) print(epoch[:5]) t_epoch = np.arange(len_pre,len_post,dt)# _FILL_IN_YOUR_CODE_HERE # plotting plt.figure(figsize=(6,4)) # _FILL_IN_YOUR_CODE_HERE plt.plot(t_epoch, epoch) plt.xlabel('Time Value') plt.ylabel('Voltage (uV)') plt.title('10th trial') epoch.shape ###Output _____no_output_____ ###Markdown [4] Q6: Step 4 - Grab All & Baseline Correct (Bonus)[2] 6.1: If you grab an epoch for every trial and store that in a 2D numpy matrix, what should the dimensions of that matrix be, i.e., how many rows and how many columns? What do those numbers correspond to? Hint: you should organize your data such that there are more columns than rows in this particular case.[2] 6.2: Write a function that grabs **all** epochs (every trial) and store that in a 2D numpy matrix. There are a few ways to do this, but they will likely all use `grab_epoch()` somehow. Confirm that it has the same shape that you expect from above. Hint: you can append your epochs indefinitely to a python list using `list.append()`, and use `np.array()` to automatically convert that into a 2D matrix.[BONUS: 2] 6.3: Baseline all your epochs by subtracting the pre-stimulus epoch mean (-0.5 to 0 seconds) of each epoch from itself. **Response for 6.1:** ###Code epoch.shape trial_info.shape print(len(EEG_indices)) print(len(epoch)) def get_baseline(epoch): #get baseline by substracting epoch mean return [itself - np.mean(epoch[:int(0.5 * fs)].astype(int)) for itself in epoch] #note that 0.5*fs corrresponds to the first 500 points up to time=0 def get_all_epochs(data, indices, fs, len_pre, len_post): #create list of epochs list_epochs = [] #loop through indices in epoch for i in indices: #add epochs to list by using prev create function #convert to baseline list_epochs.append(get_baseline(grab_epoch(data, i, fs, len_pre, len_post))) #convert to array return np.array(list_epochs) epoched_EEG = get_all_epochs(EEG, EEG_indices, fs, len_pre, len_post) print(epoched_EEG.shape) # plot all the epochs and average plt.figure(figsize=(16,9)) plt.plot(t_epoch, epoched_EEG.T, '-k', alpha=0.01) plt.plot(t_epoch, np.mean(epoched_EEG,axis=0), label='Average Response') plt.xlabel('Time (s)') plt.ylabel('Voltage (uV)') plt.legend() def baseline_epoch(epoch): epoch_mean = np.mean(epoch[:500]) for i in range(len(epoch[:500])): epoch[i] = epoch[i] - epoch_mean baselined_epoch = epoch return baselined_epoch def get_all_epochs(data, indices, len_pre, len_post, fs=1000): epoch_list = [] for i in range(len(indices)): temp_epoch = grab_epoch(data, indices[i], len_pre, len_post) temp_epoch = baseline_epoch(temp_epoch) epoch_list.append(temp_epoch) all_epochs = np.array(epoch_list) return all_epochs epoched_EEG = get_all_epochs(EEG, EEG_indices, len_pre, len_post) print(epoched_EEG.shape) # plot all the epochs and average plt.plot(t_epoch, epoched_EEG.T, '-k', alpha=0.01) plt.plot(t_epoch, np.mean(epoched_EEG,axis=0), label='Average Response') plt.xlabel('Time (s)') plt.ylabel('Voltage (uV)') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown [6] Q7: Step 5 & 6 - Group Based on Trial TypeIn the plot above, I simply averaged over all the epochs to produce the average response (blue). However, as you will recall, there are several different types of trials (second column in `trial_info`). We should group epochs of the same trial type, and average over those. [5] 7.1: You have full flexibility for this part, with the only requirement being to produce a plot with 3 average responses corresponding to the 3 different trial types. Remember to label your plot axes and include a legend for which trace corresponds to which stimulus type. You will be evaluated on 3 things: whether you have successfully separated the epochs into their respective groupings, how well your code is commented to explain what you're doing, and whether you plot is correct and labeled. Since I have not given you a template for making a function, it may be useful to plan out what you want to do beforehand by writing pseudo code (i.e., plain English). Decide what strategy you will take (loops vs. list comprehension vs. others), and whether you want to separate the averaging and the plotting. You already know all the concepts required to tackle this problem (indexing, averaging, plotting), the challenge is putting them together. [1] 7.2: Briefly describe your results, e.g., what's similar and what's different between the conditions? Which stimulus produced the largest response.---Your plot should look something like:![example_erp](img/example_erp.jpg) **Response for 7.2:** ANSWER 14 & -14 ###Code #Step 1: Groupby by type of stimuli # create function for simplicity type1, type2, type3 = [], [], [] for i in trial_info: #creating a list of all type 1 data if i[1] == 1.: type1.append(i) #creating a list of all type 2 data elif i[1] == 2.: type2.append(i) #creating a list of all type 3 data else: type3.append(i) #Step 2 get indices type1_indices = compute_EEG_indices(np.array(type1), fs) type2_indices = compute_EEG_indices(np.array(type2), fs) type3_indices = compute_EEG_indices(np.array(type3), fs) #get epochs from indices for all 3 trials type1_epochs = get_all_epochs(EEG, type1_indices, fs, len_pre, len_post) type2_epochs = get_all_epochs(EEG, type2_indices, fs, len_pre, len_post) type3_epochs = get_all_epochs(EEG, type3_indices, fs, len_pre, len_post) #check #type1_epochs #type2_epochs #type3_epochs # multiply by 1000 to convert to millisecond plt.plot(t_epoch *1000, np.mean(type1_epochs,axis=0), label = 'Type 1') plt.plot(t_epoch*1000, np.mean(type2_epochs,axis=0), label = 'Type 2') plt.plot(t_epoch *1000, np.mean(type3_epochs,axis=0), label = 'Type 3') # get lines like in example graph plt.axhline(0, color='black') plt.axvline(0, color='black') # zoom in on specific parts of graph were interested in plt.xlim([-50,700]); plt.ylim([-5, 10]); # labels of x and y plt.xlabel('Latency(ms)') plt.ylabel('Potential(uV)') #get legend plt.legend() ###Output _____no_output_____ ###Markdown - Name- PID- COGS118C - Assignment 1 This notebook has [30 + 3 bonus] points in total The number of points for each question is denoted by []. Make sure you've answered all the questions and that the point total add up. --- Lab 1 - Time Series, Sampling, and Epoched Analysis (ERPs)In this lab, we will cover the first stages of signal processing: sampling data. This includes digitization and sampling theorem. We will generate and plot some signals. Then, we'll perform our first kind of neural signal analysis: event-related potentials.Key concepts:- visualizing time-series- digitization/quantization- sampling- (more) indexing arrays- epoching- event-related potentials (ERPs): noise and averaging**Answers for questions requiring written responses can be entered in the cell immediately below the question, so that when you write your response, it doesn't screw up the formatting of the question.** Analog signalsReal world signals are continuous in time and amplitude (up to quantum-level limits, anyway). These are referred to as **"analog"** signals (Google it). Soundwaves that we produce when we speak or when we play a violin, for example, are analog signals. Equivalently, there are "analog devices" that produce, receive, and/or operate on analog signals. These often involve "analog" circuits. [1] Q1:[1] 1.1: Give 3 examples of analog devices. **Response for 1.1:** Digital signalsPeople used to analyze signals using analog circuits. This is pretty hardcore, and requires extensive hands-on knowledge about circuitry. Once you want to analyze the signal on a "digital" computer, however, you have to "digitize" the signal. This requires an **"analog-to-digital converter"** or ADC for short. ---A tangent (without delving too much into how a computer works): all modern computers operate with binary transistors, which use a combination of "bits" to represent all other types of information. In the analog world, there are an infinite number of number between 0 and 1, so there is a limit to how accurately we can represent small decimals (or really big numbers). Python uses [floating point](https://0.30000000000000004.com/). Everything you see on your screen, at the lowest level, is converted into a numerical **binary** representation, even strings (see [ASCII](https://www.cs.cmu.edu/~pattis/15-1XX/common/handouts/ascii.html) table, for example).---Anyway, to digitize an analog signal, you have to discretely sample, both in value (voltage, brightness, etc) and in time. The former is usually called **digitization or quantization**, while **sampling** usually refers to the latter. It's like drawing a grid over your continuous signals and interpolating its values only at where the grid crosses.![sampling](img/WvD_fig1_6.png) Let's get into itWithout further ado: let's load up some EEG signals and explore. But first, make the necessary python module imports. ###Code import numpy as np import matplotlib.pyplot as plt from scipy import io # this submodule let's us load the signal we want %matplotlib inline # scipy loads .mat file into a dictionary # the details are not crucial, we just have to unpack them into python variables EEG_data = io.loadmat('data/EEG_exp.mat', squeeze_me = True) # print all the variables that exist in the dictionary print(EEG_data.keys()) # this contains the EEG data EEG = EEG_data['EEG'] # this contains the sampling rate, in Hz (or samples/second) fs = EEG_data['fs'] # let's plot the signal plt.figure(figsize=(15,3)) plt.plot(EEG) # ALWAYS label your plot axes in this course (and ever) plt.xlabel('Sample Number') plt.ylabel('Voltage (uV)') # now let's zoom in to see more detail plt.figure(figsize=(15,3)) plt.plot(EEG, '.') # '.' means plot the data points as individual dots without linking them plt.xlim([0,1000]) # this limits the x-axis shown plt.xlabel('Sample Number') plt.ylabel('Voltage (uV)') ###Output dict_keys(['__header__', '__version__', '__globals__', 'EEG', 'fs', 'trial_info']) ###Markdown [3] Q2: DigitizationAs you can see above, the signal we loaded is already a digitally sampled time series (a little over 70,000 samples), represented by discrete points in the second plot. To study the effect of quantization, let's simulate what would happen if we further quantized the signal, with a (prehistoric) 4-bit ADC.[1] 2.1: How many possible values can a 4-bit ADC represent? Remember, this means that the ADC has 4 binary 'bits' that it can use, thus giving you a total of how many levels? Compute this number in code and store that value in the variable `num_levels` below.[1] 2.2: Let's say our ADC has a total range between -32uV to 32uV. What is the voltage resolution of our ADC then? In other words, what is the finest voltage difference our ADC can distinguish between two samples? Compute this number in code and store that value in the variable `delta_v` below.[1] 2.3: Run the next two cells, they should produce a graph where the orange trace looks very quantized (kind of square). This is not good, because then we cannot distinguish small fluctuations in our signals, which, as we will see later in the course, are very important. **Re-run** the next two cells, but experiment with different values for `num_bits`. Just based on visual inspection of the plot, what is the minimum number of bits that you would want your ADC to have in this case, assuming the blue trace is a faithful representation of your signal? There's no one right answer, but justify your response. **Response for 2.3:** ###Code num_bits = 4 min_v, max_v = -32,32 num_levels = 2**num_bits delta_v = (abs(min_v) + abs(max_v)) /num_levels # create the quantization vector, these are the new possible values that your signal can take ADC_levels = np.arange(min_v,max_v,delta_v)+delta_v/2 # quantize the EEG signal with our crappy ADC with the function np.digitize # note that we have to scale the redigitized signal to its original units EEG_quant = np.digitize(EEG,bins=ADC_levels)*delta_v+min_v plt.figure(figsize=(15,4)) plt.plot(EEG, label='Original EEG') plt.plot(EEG_quant, label='Quantized EEG', alpha=0.8) plt.xlim([0,1000]); plt.ylim([-15, 15]); plt.legend() plt.xlabel('Sample Number') plt.ylabel('Voltage (uV)') ###Output _____no_output_____ ###Markdown --- Sample Number vs. TimeNotice that in all the plots above, the x-axis is "sample number", which simply correponds to the position each value is in the array `EEG`. We want to create a corresponding time vector, which marks at what clock time each value is sampled at. Sometimes your data will include a time vector. But for the sake of this exercise, you are asked to create the time vector based on the information/variables you have. [6] Q3: Sampling in Time[1] 3.1: Given the sampling rate, what is the sampling **period**? In other words, how much time elapses between each consecutive sample? Compute this number as a function of `fs` and store it in the variable `dt` below.[1] 3.2: How long in total is this signal, in absolute time? Compute and store this in the variable `T_exp` below.[1] 3.3: Construct the corresponding time vector for the EEG data, assuming that the first sample came at t=0 and evenly spaced samples at `dt`. Store that in the variable `t_EEG` below. Hint: check out the function `np.arange()`.[2] 3.4: Re-plot the signal as a line chart, but with the x-axis as time (using the time vector you created above), and zoom into the first 1 second of the data. **Take note to label your plots carefully, with units!**[1] 3.5: To simulate **downsampling** in time, plot every **10th** value of the EEG data by indexing the array (check Google/StackExchange for how to do this). Remember, this applies both to the time vector and your EEG data. **Make sure to label your data and display the legend as Q2 above.**[BONUS: 1] 3.6: Sometimes it's useful to downsample your signal in time to conserve memory. As we did above, by taking every 10th value in our data, we essentially reduce the data size 10-fold. However, this is **NOT** the entirely right way to downsample your data. What issue do we introduce when we simply do that? (Hint: the answer can be as short as one word, and Google is your friend here.) **Response for 3.6:** ###Code dt = 1/fs T_exp = EEG_quant.shape[0] * dt t_EEG = np.arange(0 , T_exp , dt) # Plotting the signal and its downsampled version plt.figure(figsize=(15,3)) plt.plot(t_EEG, EEG, label='EEG') plt.plot(t_EEG[::10] , EEG[::10] , '.-', label= 'Downsampled') plt.xlim([0,1]); plt.ylim([-15, 15]); plt.legend() # Issue with downsampling by time : Aliasing? Varying / different signals become indistinguishable. ###Output _____no_output_____ ###Markdown Event-Related AnalysisThe above data actually comes from an event-style EEG experiment. The participant is shown visual stimuli at regular intervals, aimed to trigger a reliable brain response for each type of stimuli (cat vs. dog pics, for example). This is a very common type of study design in neuroscience (and psychology). In this case, we will need to know when a stimulus was presented, and what type of stimulus it was. This information is stored in the variable `trial_info`, where the **first column has the stimulus onset time (in seconds), and the second column has the type of stimulus shown (1,2, or 3).** These are often extra streams of data sent through the "trigger channel" by the stimulus-presenting computer directly to the recording equipment, in order to synchronize with the EEG data. ###Code trial_info = EEG_data['trial_info'] # print the first 10 events print(trial_info[:10,:]) ###Output [[ 1. 3. ] [ 3.375 3. ] [ 5.87 1. ] [ 8.183 2. ] [10.419 1. ] [12.588 1. ] [14.87 2. ] [17.086 2. ] [19.164 3. ] [21.237 2. ]] ###Markdown --- Process for Analyzing Event-Related DataThese types of experiments follow a pretty standard analysis process. 1. Import and pre-process your data (already done; we'll skip the pre-processing for now)2. Given the stimulus presentation timestamps (first column of `trial_info` above), find the corresponding indices in your EEG data by matching to the `t_EEG` time vector.3. Cut out an **epoch** (window of data) around the stimulus presentation time, which usually includes: - pre-stimulus baseline (~0.5 seconds before stimulus presentation) - stimulus presentation (t = 0) - stimulus-driven response (or event-related response, 0-1 second after stimulus presentation)4. Baseline subtraction: subtract each epoch by its mean pre-stimulus value to account for any slow drifts over time.5. Group epochs based on stimulus type, and average epochs of the same type.6. Plot the average response (s). [4] Q4: Step 2 - Find Matching Timestamps in EEG DataGiven the event times in `trial_info`, which we will assume to be the stimulus onset time for this experiment, we have to find the corresponding timestamp in the EEG data. Note that the timestamps may not always match exactly, as they could have different sampling rates. In those cases, you will have to settle for finding the **closest** timestamps. Currently, however, life was made easy for us by virtue of the fact that the EEG data (and timestamps) and the stimulus event timestamps are synchronously sampled at 1000Hz.In this case, we can directly convert the event timestamp into an integer index, since we know the sampling frequency and starting time. [1] 4.1: If the EEG timestamp starts at `t=0`, which is indexed by `i=0`, and is sampled at `fs=1000`, at which index will the EEG timestamp be equal to **3.050 seconds**? Compute and store this in the variable `trial_index` below. Note that to index an array, the number has to be an integer, which I've converted for you. (You will notice that the value is *a LITTLE* off. That's a precision issue and We can ignore that for now.)[3] 4.2: Following this logic, write a function that will find the corresponding index in the EEG data/timestamp for every event timestamp. Return that as an array of integers (`my_arr.astype(int)` will convert an array to all integers). You may use a for loop, list comprehension, or a simple (one-line) array calculation for this. Confirm that the timestamps match what you expect by printing the first 10 events (I've done this for you). ###Code trial_index = 3.050*1000 print(t_EEG[np.array(trial_index).astype(int)]) # access the value at the corresponding index def compute_EEG_indices(event_timestamps, fs): trial_indices = np.array(event_timestamps*fs).astype(int) return trial_indices # call your function to compute the corresponding indices EEG_indices = compute_EEG_indices(trial_info[:10,0], fs) # print your solution and the actual event times to compare, they should be identical print(t_EEG[EEG_indices[:10]]) print(trial_info[:10,0]) ###Output [ 1. 3.375 5.87 8.183 10.419 12.588 14.87 17.086 19.164 21.237] [ 1. 3.375 5.87 8.183 10.419 12.588 14.87 17.086 19.164 21.237] ###Markdown [6] Q5: Step 3 - Grabbing EpochsNow that we have the corresponding indices in the EEG data, we know exactly where the **onset** of each stimulus is. The next thing we have to do is to grab a chunk of data surrounding the onset time, which we define to be `t=0` for every trial. That means you will want to grab a little bit of data before and after that time. [3] 5.1: Write a function that will, given an array of `data`, the sampling rate `fs`, and an `index`, grab a window of data surrounding that index, defined by `len_pre` and `len_post` in **seconds**. Note that `len_pre` should be negative to reflect that it's before the stimulus onset time. I've started this function for you below. Again, there are multiple ways to accomplish this, but the simplest solution can accomplish this in a single line.[1] 5.2: Use this function to grab an epoch for the **10th trial** (remember that's stored in `EEG_indices` already), with a pre-stimulus window of 0.5 seconds and a post-stimulus window of 1 second.[1] 5.3: Create a time vector `t_epoch` that corresponds to the timestamps for that epoch, relative to the stimulus onset time as zero. In other words, this time vector should start at `len_pre` and end at `len_post`, and has the same sampling frequency.[1] 5.4: Plot the epoch of data you grabbed. Note that the x-axis should be time. **Label your axes!** ###Code def grab_epoch(data, index, fs, len_pre, len_post): epoch = data[index+(int(len_pre*fs)) : index+(int(len_post*fs))+1] # should +1 be added return epoch # _FILL_IN_YOUR_CODE_HERE len_pre = -0.5 #second len_post = 1 #second epoch = grab_epoch(EEG , EEG_indices[9] ,fs , len_pre , len_post ) #index 9 coz 10th trial? print(epoch[:5]) t_epoch = grab_epoch(t_EEG , EEG_indices[9] , fs , len_pre , len_post) # plotting plt.figure(figsize=(6,4)) plt.plot(t_epoch , epoch , label = 'One epoch') plt.xlabel('Epoch timestamps') plt.ylabel('Epoch values') # _FILL_IN_YOUR_CODE_HERE ###Output [-8.62576252 -8.63914269 -7.59542043 -7.38226366 -6.82182491] ###Markdown [4] Q6: Step 4 - Grab All & Baseline Correct (Bonus)[2] 6.1: If you grab an epoch for every trial and store that in a 2D numpy matrix, what should the dimensions of that matrix be, i.e., how many rows and how many columns? What do those numbers correspond to? Hint: you should organize your data such that there are more columns than rows in this particular case.[2] 6.2: Write a function that grabs **all** epochs (every trial) and store that in a 2D numpy matrix. There are a few ways to do this, but they will likely all use `grab_epoch()` somehow. Confirm that it has the same shape that you expect from above. Hint: you can append your epochs indefinitely to a python list using `list.append()`, and use `np.array()` to automatically convert that into a 2D matrix.[BONUS: 2] 6.3: Baseline all your epochs by subtracting the pre-stimulus epoch mean (-0.5 to 0 seconds) of each epoch from itself. **Response for 6.1:** ###Code def get_all_epochs(data, indices, fs, len_pre, len_post): # _FILL_IN_YOUR_CODE_HERE # get all epochs with baseline all_epochs = np.array([grab_epoch(data , ind , fs , len_pre , len_post)- np.mean(grab_epoch(data, ind , fs , len_pre , 0)) for ind in indices]) # baselining (if you want, it can also be a separate function) return all_epochs epoched_EEG = get_all_epochs(EEG, EEG_indices, fs, len_pre, len_post) print(epoched_EEG.shape) # plot all the epochs and average plt.plot(t_epoch, epoched_EEG.T, '-k', alpha=0.01) plt.plot(t_epoch, np.mean(epoched_EEG,axis=0), label='Average Response') plt.xlabel('Time (s)') plt.ylabel('Voltage (uV)') plt.legend() ###Output (10, 1501) ###Markdown [6] Q7: Step 5 & 6 - Group Based on Trial TypeIn the plot above, I simply averaged over all the epochs to produce the average response (blue) at each timepoint. However, as you will recall, there are several different types of trials (second column in `trial_info`). We should group epochs of the same trial type, and average over those. [5] 7.1: You have full flexibility for this part, with the only requirement being to produce a plot with 3 average responses corresponding to the 3 different trial types. Remember to label your plot axes and include a legend for which trace corresponds to which stimulus type. You will be evaluated on 3 things: whether you have successfully separated the epochs into their respective groupings, how well your code is commented to explain what you're doing, and whether you plot is correct and labeled. Since I have not given you a template for making a function, it may be useful to plan out what you want to do beforehand by writing pseudo code (i.e., plain English). Decide what strategy you will take (loops vs. list comprehension vs. others), and whether you want to separate the averaging and the plotting. You already know all the concepts required to tackle this problem (indexing, averaging, plotting), the challenge is putting them together. [1] 7.2: Briefly describe your results, e.g., what's similar and what's different between the conditions? Which stimulus produced the largest response.---Your plot should look something like:![example_erp](img/example_erp.jpg) **Response for 7.2:** ANSWER 14 & -14 ###Code # _FILL_IN_YOUR_CODE_HERE #Seprate by trials and get corresponding index trial_1_indices =[ int(i[0]*fs) for i in EEG_data['trial_info'] if i[1]==1] trial_2_indices =[int(i[0]*fs) for i in EEG_data['trial_info'] if i[1]==2] trial_3_indices =[int(i[0]*fs) for i in EEG_data['trial_info'] if i[1]==3] #Get all epochs for each trial after baselining; then average it across trials avg_trial_1_epochs = np.mean(get_all_epochs(EEG, trial_1_indices, fs, len_pre, len_post), 0) avg_trial_2_epochs = np.mean(get_all_epochs(EEG, trial_2_indices, fs, len_pre, len_post), 0) avg_trial_3_epochs = np.mean(get_all_epochs(EEG, trial_3_indices, fs, len_pre, len_post),0) # Time axis based on the pre and post lengths latency = np.linspace(-500 , 1000 , 1501) #Plot averaged data plt.plot(latency, avg_trial_1_epochs, '-m', alpha=1 , label = 'Trial 1') plt.plot(latency, avg_trial_2_epochs, '-b', alpha=1 , label = 'Trial 2') plt.plot(latency, avg_trial_3_epochs, '-r', alpha=1 , label = 'Trial 3') plt.xlim([-10, 650]) plt.xlabel('Latency (ms)') plt.ylabel('Potential (uV)') plt.legend() t = np.linspace(-500 , 1000 , 1501) t.shape ###Output _____no_output_____ ###Markdown - Name- PID- COGS118C - Assignment 1 This notebook has [30 + 3 bonus] points in total The number of points for each question is denoted by []. Make sure you've answered all the questions and that the point total add up. --- Lab 1 - Time Series, Sampling, and Epoched Analysis (ERPs)In this lab, we will cover the first stages of signal processing: sampling data. This includes digitization and sampling theorem. We will generate and plot some signals. Then, we'll perform our first kind of neural signal analysis: event-related potentials.Key concepts:- visualizing time-series- digitization/quantization- sampling- (more) indexing arrays- epoching- event-related potentials (ERPs): noise and averaging**Answers for questions requiring written responses can be entered in the cell immediately below the question, so that when you write your response, it doesn't screw up the formatting of the question.** Analog signalsReal world signals are continuous in time and amplitude (up to quantum-level limits, anyway). These are referred to as **"analog"** signals (Google it). Soundwaves that we produce when we speak or when we play a violin, for example, are analog signals. Equivalently, there are "analog devices" that produce, receive, and/or operate on analog signals. These often involve "analog" circuits. [1] Q1:[1] 1.1: Give 3 examples of analog devices. **Response for 1.1:** Digital signalsPeople used to analyze signals using analog circuits. This is pretty hardcore, and requires extensive hands-on knowledge about circuitry. Once you want to analyze the signal on a "digital" computer, however, you have to "digitize" the signal. This requires an **"analog-to-digital converter"** or ADC for short. ---A tangent (without delving too much into how a computer works): all modern computers operate with binary transistors, which use a combination of "bits" to represent all other types of information. In the analog world, there are an infinite number of number between 0 and 1, so there is a limit to how accurately we can represent small decimals (or really big numbers). Python uses [floating point](https://0.30000000000000004.com/). Everything you see on your screen, at the lowest level, is converted into a numerical **binary** representation, even strings (see [ASCII](https://www.cs.cmu.edu/~pattis/15-1XX/common/handouts/ascii.html) table, for example).---Anyway, to digitize an analog signal, you have to discretely sample, both in value (voltage, brightness, etc) and in time. The former is usually called **digitization or quantization**, while **sampling** usually refers to the latter. It's like drawing a grid over your continuous signals and interpolating its values only at where the grid crosses.![sampling](img/WvD_fig1_6.png) Let's get into itWithout further ado: let's load up some EEG signals and explore. But first, make the necessary python module imports. ###Code import numpy as np import matplotlib.pyplot as plt from scipy import io # this submodule let's us load the signal we want %matplotlib inline # scipy loads .mat file into a dictionary # the details are not crucial, we just have to unpack them into python variables EEG_data = io.loadmat('data/EEG_exp.mat', squeeze_me = True) # print all the variables that exist in the dictionary print(EEG_data.keys()) # this contains the EEG data EEG = EEG_data['EEG'] # this contains the sampling rate, in Hz (or samples/second) fs = EEG_data['fs'] # let's plot the signal plt.figure(figsize=(15,3)) plt.plot(EEG) # ALWAYS label your plot axes in this course (and ever) plt.xlabel('Sample Number') plt.ylabel('Voltage (uV)') # now let's zoom in to see more detail plt.figure(figsize=(15,3)) plt.plot(EEG, '.') # '.' means plot the data points as individual dots without linking them plt.xlim([0,1000]) # this limits the x-axis shown plt.xlabel('Sample Number') plt.ylabel('Voltage (uV)') ###Output _____no_output_____ ###Markdown [3] Q2: DigitizationAs you can see above, the signal we loaded is already a digitally sampled time series (a little over 70,000 samples), represented by discrete points in the second plot. To study the effect of quantization, let's simulate what would happen if we further quantized the signal, with a (prehistoric) 4-bit ADC.[1] 2.1: How many possible values can a 4-bit ADC represent? Remember, this means that the ADC has 4 binary 'bits' that it can use, thus giving you a total of how many levels? Compute this number in code and store that value in the variable `num_levels` below.[1] 2.2: Let's say our ADC has a total range between -32uV to 32uV. What is the voltage resolution of our ADC then? In other words, what is the finest voltage difference our ADC can distinguish between two samples? Compute this number in code and store that value in the variable `delta_v` below.[1] 2.3: Run the next two cells, they should produce a graph where the orange trace looks very quantized (kind of square). This is not good, because then we cannot distinguish small fluctuations in our signals, which, as we will see later in the course, are very important. **Re-run** the next two cells, but experiment with different values for `num_bits`. Just based on visual inspection of the plot, what is the minimum number of bits that you would want your ADC to have in this case, assuming the blue trace is a faithful representation of your signal? There's no one right answer, but justify your response. **Response for 2.3:** ###Code num_bits = 4 min_v, max_v = -32,32 num_levels = # _FILL_IN_YOUR_CODE_HERE delta_v = # _FILL_IN_YOUR_CODE_HERE # create the quantization vector, these are the new possible values that your signal can take ADC_levels = np.arange(min_v,max_v,delta_v)+delta_v/2 # quantize the EEG signal with our crappy ADC with the function np.digitize # note that we have to scale the redigitized signal to its original units EEG_quant = np.digitize(EEG,bins=ADC_levels)*delta_v+min_v plt.figure(figsize=(15,4)) plt.plot(EEG, label='Original EEG') plt.plot(EEG_quant, label='Quantized EEG', alpha=0.8) plt.xlim([0,1000]); plt.ylim([-15, 15]); plt.legend() plt.xlabel('Sample Number') plt.ylabel('Voltage (uV)') ###Output _____no_output_____ ###Markdown --- Sample Number vs. TimeNotice that in all the plots above, the x-axis is "sample number", which simply correponds to the position each value is in the array `EEG`. We want to create a corresponding time vector, which marks at what clock time each value is sampled at. Sometimes your data will include a time vector. But for the sake of this exercise, you are asked to create the time vector based on the information/variables you have. [6] Q3: Sampling in Time[1] 3.1: Given the sampling rate, what is the sampling **period**? In other words, how much time elapses between each consecutive sample? Compute this number as a function of `fs` and store it in the variable `dt` below.[1] 3.2: How long in total is this signal, in absolute time? Compute and store this in the variable `T_exp` below.[1] 3.3: Construct the corresponding time vector for the EEG data, assuming that the first sample came at t=0 and evenly spaced samples at `dt`. Store that in the variable `t_EEG` below. Hint: check out the function `np.arange()`.[2] 3.4: Re-plot the signal as a line chart, but with the x-axis as time (using the time vector you created above), and zoom into the first 1 second of the data. **Take note to label your plots carefully, with units!**[1] 3.5: To simulate **downsampling** in time, plot every **10th** value of the EEG data by indexing the array (check Google/StackExchange for how to do this). Remember, this applies both to the time vector and your EEG data. **Make sure to label your data and display the legend as Q2 above.**[BONUS: 1] 3.6: Sometimes it's useful to downsample your signal in time to conserve memory. As we did above, by taking every 10th value in our data, we essentially reduce the data size 10-fold. However, this is **NOT** the entirely right way to downsample your data. What issue do we introduce when we simply do that? (Hint: the answer can be as short as one word, and Google is your friend here.) **Response for 3.6:** ###Code dt = # _FILL_IN_YOUR_CODE_HERE T_exp = # _FILL_IN_YOUR_CODE_HERE t_EEG = # _FILL_IN_YOUR_CODE_HERE # Plotting the signal and its downsampled version plt.figure(figsize=(15,3)) plt.plot(t_EEG, EEG, label='EEG') plt.plot(_FILL_IN_YOUR_CODE_HERE, _FILL_IN_YOUR_CODE_HERE, '.-', label=_FILL_IN_YOUR_CODE_HERE) plt.xlim([0,1]); plt.ylim([-15, 15]); plt.legend() # _FILL_IN_YOUR_CODE_HERE ###Output _____no_output_____ ###Markdown Event-Related AnalysisThe above data actually comes from an event-style EEG experiment. The participant is shown visual stimuli at regular intervals, aimed to trigger a reliable brain response for each type of stimuli (cat vs. dog pics, for example). This is a very common type of study design in neuroscience (and psychology). In this case, we will need to know when a stimulus was presented, and what type of stimulus it was. This information is stored in the variable `trial_info`, where the **first column has the stimulus onset time (in seconds), and the second column has the type of stimulus shown (1,2, or 3).** These are often extra streams of data sent through the "trigger channel" by the stimulus-presenting computer directly to the recording equipment, in order to synchronize with the EEG data. ###Code trial_info = EEG_data['trial_info'] # print the first 10 events print(trial_info[:10,:]) ###Output _____no_output_____ ###Markdown --- Process for Analyzing Event-Related DataThese types of experiments follow a pretty standard analysis process. 1. Import and pre-process your data (already done; we'll skip the pre-processing for now)2. Given the stimulus presentation timestamps (first column of `trial_info` above), find the corresponding indices in your EEG data by matching to the `t_EEG` time vector.3. Cut out an **epoch** (window of data) around the stimulus presentation time, which usually includes: - pre-stimulus baseline (~0.5 seconds before stimulus presentation) - stimulus presentation (t = 0) - stimulus-driven response (or event-related response, 0-1 second after stimulus presentation)4. Baseline subtraction: subtract each epoch by its mean pre-stimulus value to account for any slow drifts over time.5. Group epochs based on stimulus type, and average epochs of the same type.6. Plot the average response (s). [4] Q4: Step 2 - Find Matching Timestamps in EEG DataGiven the event times in `trial_info`, which we will assume to be the stimulus onset time for this experiment, we have to find the corresponding timestamp in the EEG data. Note that the timestamps may not always match exactly, as they could have different sampling rates. In those cases, you will have to settle for finding the **closest** timestamps. Currently, however, life was made easy for us by virtue of the fact that the EEG data (and timestamps) and the stimulus event timestamps are synchronously sampled at 1000Hz.In this case, we can directly convert the event timestamp into an integer index, since we know the sampling frequency and starting time. [1] 4.1: If the EEG timestamp starts at `t=0`, which is indexed by `i=0`, and is sampled at `fs=1000`, at which index will the EEG timestamp be equal to **3.050 seconds**? Compute and store this in the variable `trial_index` below. Note that to index an array, the number has to be an integer, which I've converted for you. (You will notice that the value is *a LITTLE* off. That's a precision issue and We can ignore that for now.)[3] 4.2: Following this logic, write a function that will find the corresponding index in the EEG data/timestamp for every event timestamp. Return that as an array of integers (`my_arr.astype(int)` will convert an array to all integers). You may use a for loop, list comprehension, or a simple (one-line) array calculation for this. Confirm that the timestamps match what you expect by printing the first 10 events (I've done this for you). ###Code trial_index = #_FILL_IN_YOUR_CODE_HERE print(t_EEG[np.array(trial_index).astype(int)]) # access the value at the corresponding index def compute_EEG_indices(event_timestamps, fs): # _FILL_IN_YOUR_CODE_HERE return # call your function to compute the corresponding indices EEG_indices = compute_EEG_indices() # print your solution and the actual event times to compare, they should be identical print(t_EEG[EEG_indices[:10]]) print(trial_info[:10,0]) ###Output _____no_output_____ ###Markdown [6] Q5: Step 3 - Grabbing EpochsNow that we have the corresponding indices in the EEG data, we know exactly where the **onset** of each stimulus is. The next thing we have to do is to grab a chunk of data surrounding the onset time, which we define to be `t=0` for every trial. That means you will want to grab a little bit of data before and after that time. [3] 5.1: Write a function that will, given an array of `data`, the sampling rate `fs`, and an `index`, grab a window of data surrounding that index, defined by `len_pre` and `len_post` in **seconds**. Note that `len_pre` should be negative to reflect that it's before the stimulus onset time. I've started this function for you below. Again, there are multiple ways to accomplish this, but the simplest solution can accomplish this in a single line.[1] 5.2: Use this function to grab an epoch for the **10th trial** (remember that's stored in `EEG_indices` already), with a pre-stimulus window of 0.5 seconds and a post-stimulus window of 1 second.[1] 5.3: Create a time vector `t_epoch` that corresponds to the timestamps for that epoch, relative to the stimulus onset time as zero. In other words, this time vector should start at `len_pre` and end at `len_post`, and has the same sampling frequency.[1] 5.4: Plot the epoch of data you grabbed. Note that the x-axis should be time. **Label your axes!** ###Code def grab_epoch(data, index, fs, len_pre, len_post): # _FILL_IN_YOUR_CODE_HERE return # _FILL_IN_YOUR_CODE_HERE len_pre = -0.5 #second len_post = 1 #second epoch = grab_epoch(_FILL_IN_YOUR_CODE_HERE) print(epoch[:5]) t_epoch = # _FILL_IN_YOUR_CODE_HERE # plotting plt.figure(figsize=(6,4)) # _FILL_IN_YOUR_CODE_HERE ###Output _____no_output_____ ###Markdown [4] Q6: Step 4 - Grab All & Baseline Correct (Bonus)[2] 6.1: If you grab an epoch for every trial and store that in a 2D numpy matrix, what should the dimensions of that matrix be, i.e., how many rows and how many columns? What do those numbers correspond to? Hint: you should organize your data such that there are more columns than rows in this particular case.[2] 6.2: Write a function that grabs **all** epochs (every trial) and store that in a 2D numpy matrix. There are a few ways to do this, but they will likely all use `grab_epoch()` somehow. Confirm that it has the same shape that you expect from above. Hint: you can append your epochs indefinitely to a python list using `list.append()`, and use `np.array()` to automatically convert that into a 2D matrix.[BONUS: 2] 6.3: Baseline all your epochs by subtracting the pre-stimulus epoch mean (-0.5 to 0 seconds) of each epoch from itself. **Response for 6.1:** ###Code def get_all_epochs(data, indices, fs, len_pre, len_post): # _FILL_IN_YOUR_CODE_HERE # get all epochs # baselining (if you want, it can also be a separate function) return all_epochs epoched_EEG = get_all_epochs(EEG, EEG_indices, fs, len_pre, len_post) print(epoched_EEG.shape) # plot all the epochs and average plt.plot(t_epoch, epoched_EEG.T, '-k', alpha=0.01) plt.plot(t_epoch, np.mean(epoched_EEG,axis=0), label='Average Response') plt.xlabel('Time (s)') plt.ylabel('Voltage (uV)') plt.legend() ###Output _____no_output_____ ###Markdown [6] Q7: Step 5 & 6 - Group Based on Trial TypeIn the plot above, I simply averaged over all the epochs to produce the average response (blue). However, as you will recall, there are several different types of trials (second column in `trial_info`). We should group epochs of the same trial type, and average over those. [5] 7.1: You have full flexibility for this part, with the only requirement being to produce a plot with 3 average responses corresponding to the 3 different trial types. Remember to label your plot axes and include a legend for which trace corresponds to which stimulus type. You will be evaluated on 3 things: whether you have successfully separated the epochs into their respective groupings, how well your code is commented to explain what you're doing, and whether you plot is correct and labeled. Since I have not given you a template for making a function, it may be useful to plan out what you want to do beforehand by writing pseudo code (i.e., plain English). Decide what strategy you will take (loops vs. list comprehension vs. others), and whether you want to separate the averaging and the plotting. You already know all the concepts required to tackle this problem (indexing, averaging, plotting), the challenge is putting them together. [1] 7.2: Briefly describe your results, e.g., what's similar and what's different between the conditions? Which stimulus produced the largest response.---Your plot should look something like:![example_erp](img/example_erp.jpg) **Response for 7.2:** ANSWER 14 & -14 ###Code # _FILL_IN_YOUR_CODE_HERE ###Output _____no_output_____
notebooks/datasets/data/schools/school_cleaned.ipynb
###Markdown Clean Schools.csv1. Split address column2. Look at length - this displays discrepancies in addresses (looking for lengths 1, 3, 4)3. Create a city and state column - consistency with other data4. Create columns for schools categories - pk, k, elementary, middle, and high school5. Make score column an int ###Code import pandas as pd pd.set_option('display.max_colwidth', None) pd.set_option('display.max_rows', 10) df = pd.read_csv('files/scrape_schools/schools.csv') print(df.shape) df.head() ###Output (58782, 10) ###Markdown Clean Addresses ###Code df['Address'] = df['Address'].str.replace('2100 Morse Road, Suite 4609, Columbus, OH 43229, Columbus, OH, 43211', '2100 Morse Road, Suite 4609, Columbus, OH, 43229') df['Address'] = df['Address'].str.replace('2501 Syracuse Street, Denver, Colorado, 80238, Denver, CO, 80238', '2501 Syracuse Street, Denver, CO, 80238') df['Address'] = df['Address'].str.replace('4450 West Eau Gallie Boulevard, Suite 180, Melbourne, FL 32934, Melbourne, FL, 32934', '4450 West Eau Gallie Boulevard, Suite 180, Melbourne, FL, 32934') df['Address'] = df['Address'].str.replace('4530 MacArthur Blvd, NW, Washington, DC, Washington, DC, 20007', '4530 MacArthur Blvd NW, Washington, DC, 20007') df['Address'] = df['Address'].str.replace('1075 New Scotland Road, Albany NY 12208, Albany, NY, 12208', '1075 New Scotland Road, Albany NY, 12208') df['Address'] = df['Address'].str.replace('216 Shelburne Road Asheville, NC 28806, Asheville, NC, 28806', '216 Shelburne Road, Asheville, NC, 28806') df['Address'] = df['Address'].str.replace('26450 RR 12 Dripping Springs, TX 78620, Austin, TX, 78736', '26450 RR 12, Dripping Springs, TX, 78620') df['Address'] = df['Address'].str.replace('NE Stoneridge Loop, Prineville OR 97754, Bend, OR, 97702', 'NE Stoneridge Loop, Prineville, OR, 97754') df['Address'] = df['Address'].str.replace('5225 - Seventy seven Center Dr, Charlotte NC 28217, Charlotte, NC, 28217', '5225 77 Center Dr, Charlotte, NC, 28217') df['Address'] = df['Address'].str.replace('3375 W. 99th Street Cleveland, OH 44102, Cleveland, OH, 44111', '3375 W. 99th Street, Cleveland, OH, 44102') df['Address'] = df['Address'].str.replace('21 Broadmoor Avenue Colorado Springs, CO 80906, Colorado Springs, CO, 80906', '21 Broadmoor Avenue, Colorado Springs, CO, 80906') df['Address'] = df['Address'].str.replace('220 Stoneridge Drive Suite 403 Columbia, SC 29210 , Columbia, SC, 29210', '220 Stoneridge Drive, Suite 403, Columbia, SC, 29210') df['Address'] = df['Address'].str.replace('2247 South Ridgewood South Daytona, Florida 32119, Daytona Beach, FL, 32117', '2247 South Ridgewood, South Daytona, FL, 32119') df['Address'] = df['Address'].str.replace('7005 Woodbine Ave Sacramento, Ca. 95822, Fairfield, CA, 94534', '7005 Woodbine Ave, Sacramento, CA, 95822') df['Address'] = df['Address'].str.replace('4424 Innovation Drive Fort Collins, Colorado 80525, Fort Collins, CO, 80525', '4424 Innovation Drive, Fort Collins, CO, 80525') df['Address'] = df['Address'].str.replace('5300 El Camino Road Las Vegas, NV 89118, Henderson, NV, 89014', '5300 El Camino Road, Las Vegas, NV, 89118') df['Address'] = df['Address'].str.replace('9039 Beach Blvd Jacksonville, FL 32216, Jacksonville, FL, 32207', '9039 Beach Blvd, Jacksonville, FL, 32216') df['Address'] = df['Address'].str.replace('390 New Holland Pike, Lancaster PA 17601, Lancaster, PA, 17601', '390 New Holland Pike, Lancaster, PA, 17601') df['Address'] = df['Address'].str.replace('4801. S. Sandhill Drive LV, NV 89121, Las Vegas, NV, 89123', '4801. S. Sandhill Drive, Las Vegas, NV, 89123') df['Address'] = df['Address'].str.replace('2727 Stinson Blvd. NE Minneapolis, MN 55418, Minneapolis, MN, 55418', '2727 Stinson Blvd. NE, Minneapolis, MN, 55418') df['Address'] = df['Address'].str.replace('3000 53rd St SW Naples, FL 34116, Naples, FL, 34116', '3000 53rd St SW, Naples, FL, 34116') df['Address'] = df['Address'].str.replace('177 W Klein Rd. New Braunfels, TX 78130, New Braunfels, TX, 78130', '177 W Klein Rd., New Braunfels, TX, 78130') df['Address'] = df['Address'].str.replace('500 Soraparu St. New Orleans, La 70130, New Orleans, LA, 70130', '500 Soraparu St., New Orleans, LA, 70130') df['Address'] = df['Address'].str.replace('2162 Mountain Blvd, Oakland CA 94611, Oakland, CA, 94605', '2162 Mountain Blvd, Oakland, CA, 94611') df['Address'] = df['Address'].str.replace('13231 N. 22nd St. Phoenix, AZ 85022, Phoenix, AZ, 85028', '13231 N. 22nd St., Phoenix, AZ, 85022') df['Address'] = df['Address'].str.replace('14124 SE Mill St, Portland OR 97233, Portland, OR, 97266', '14124 SE Mill St, Portland, OR, 97233') df['Address'] = df['Address'].str.replace('555 Double Eagle Ct. Suite 2000 Reno, NV 89521 , Reno, NV, 89521', '555 Double Eagle Ct., Suite 2000, Reno, NV, 89521') df['Address'] = df['Address'].str.replace('3422 Rustin Ave Riverside, CA 92507, Riverside, CA, 92504', '3422 Rustin Ave, Riverside, CA, 92507') df['Address'] = df['Address'].str.replace('2800 19th Stree NW Rochester, MN 55901, Rochester, MN, 55902', '2800 19th Stree NW, Rochester, MN, 55901') df['Address'] = df['Address'].str.replace('9510 Carmel Mountain Road, San Diego CA 92129, San Diego, CA, 92129', '9510 Carmel Mountain Road, San Diego CA, 92129') df['Address'] = df['Address'].str.replace('6540 Flanders Drive. San Diego, CA 92121, San Diego, CA, 92127', '6540 Flanders Drive., San Diego, CA, 92121') df['Address'] = df['Address'].str.replace('725 Washington St. Santa Clara, Ca 95050, Santa Clara, CA, 95050', '725 Washington St., Santa Clara, CA, 95050') df['Address'] = df['Address'].str.replace('6715 S Boe Lane Sioux Falls, SD 57108, Sioux Falls, SD, 57105', '6715 S Boe Lane, Sioux Falls, SD, 57108') df['Address'] = df['Address'].str.replace('12611 N. Wilson St. Mead, WA 99021, Spokane, WA, 99218', '12611 N. Wilson St., Mead, WA, 99021') df['Address'] = df['Address'].str.replace('1450 Newfield Avenue Stamford, CT 06905, Stamford, CT, 06905', '1450 Newfield Avenue, Stamford, CT, 06905') df['Address'] = df['Address'].str.replace('2525 Gold Brook Dr Stockton, CA 95212, Stockton, CA, 95212', '2525 Gold Brook Dr, Stockton, CA, 95212') df['Address'] = df['Address'].str.replace('1112 North G Street | Tacoma, WA 98403, Tacoma, WA, 98403', '1112 North G Street, Tacoma, WA, 98403') df['Address'] = df['Address'].str.replace('1250 Erbes Rd. Thousand Oaks, CA 91362, Thousand Oaks, CA, 91302', '1250 Erbes Rd., Thousand Oaks, CA, 91362') df['Address'] = df['Address'].str.replace('3201 N. Eastman Rd. Longview, TX 75605, Tyler, TX, 75799', '3201 N. Eastman Rd., Longview, TX, 75605') df['Address'] = df['Address'].str.replace('St. Catherine of Siena School, 3460 Tennessee Street, Vallejo, CA, 94591', '3460 Tennessee Street, Vallejo, CA, 94591') df['Address'] = df['Address'].str.replace('1650 Godfrey Ave. Wyoming,Mi 49509 , Wyoming, MI, 49509', '1650 Godfrey Ave., Wyoming, MI, 49509' ) df['Address'] = df['Address'].str.replace('3422 Rustin Ave Riverside, CA 92507', '3422 Rustin Ave, Riverside, CA, 92507') df['Address'] = df['Address'].str.replace('San Martin De Porres Clinic: Kallumadanda Vinnie MD Mission, TX 78572', 'San Martin De Porres Clinic: Kallumadanda Vinnie MD, Mission, TX, 78572') # 33396 df['Address'] = df['Address'].str.replace('Rockwood Plastic Surgery Center: Gardner Glenn P MD Spokane, WA 99204', 'Rockwood Plastic Surgery Center: Gardner Glenn P MD, Spokane, WA, 99204' ) # 50841 df['Address'] = df['Address'].str.replace('2950 East 29th Street, Long Beach, CA', '2950 E 29th St, Long Beach, CA, 90806') df['Address'] = df['Address'].str.replace('2585 Business Park Drive, Vista, 92081', '2585 Business Park Dr, Vista, CA, 92081') df['Address'] = df['Address'].str.replace('401 E Arrowood Rd, Charlotte, Nc', '401 E Arrowood Rd, Charlotte, NC, 28217') df['Address'] = df['Address'].str.replace('2900 Barberry Avenue, Columbia, Missouri 65202', '2900 Barberry Avenue, Columbia, MO, 65202') df['Address'] = df['Address'].str.replace('2572 John F Kennedy Boulevard, Jersey City, New Jersey 07304', '2572 John F Kennedy Boulevard, Jersey City, NJ, 07304') df['Address'] = df['Address'].str.replace('4656 N. Rancho Drive, Las Vegas, Nevada 89130', '4656 N. Rancho Drive, Las Vegas, NV, 89130') df['Address'] = df['Address'].str.replace('6415 SE Morrison street, Portland, Oregon 97215', '6415 SE Morrison Street, Portland, OR, 97215') df['Address'] = df['Address'].str.replace('2120 21st Avenue South, Seattle, Washington 98144', '2120 21st Avenue South, Seattle, WA, 98144') df['Address'] = df['Address'].str.replace('4025 N. Hartford Ave., Tulsa, OK. 74106', '4025 N. Hartford Ave., Tulsa, OK, 74106') df['Address'] = df['Address'].str.replace('6355 Willowbrook St., Wichita, Ks 67208', '6355 Willowbrook St., Wichita, KS, 67208') df['Address'] = df['Address'].str.replace('4314 clarno dr, austin, TX 78749', '4314 Clarno Dr, Austin, TX 78749') df['Address'] = df['Address'].str.replace('Suite 117', 'Suite 117,') # specific df.at[52126, 'Address'] = '1112 North G Street, Tacoma, WA, 98403' df.at[46311, 'Address'] = '5531 Cancha de Golf Ste 202, Rancho Santa Fe, CA, 92091' df.at[56607, 'Address'] = '4880 MacArthur Blvd. NW, Washington, DC, 20007' df.at[27205, 'Address'] = '1018 Harding Street, Suite 112, Lafayette, LA, 70503' df.at[50525, 'Address'] = '8740 Asheville Hwy, Spartanburg, SC, 29316' df.at[397, 'Address'] = '1075 New Scotland Road, Albany, NY, 12208' df.at[8207, 'Address'] = '3500 Cleveland Avenue NW, Canton, OH, 44709' df.at[8292, 'Address'] = '231 Del Prado Blvd. S, Cape Coral, FL, 33990' df.at[11542, 'Address'] = '1320 South Fairview Road, Columbia MO, 65203' df.at[18372, 'Address'] = '7005 Woodbine Ave, Sacramento, CA, 95822' df.at[19249, 'Address'] = '4424 Innovation Drive, Fort Collins, CO, 80525' df.at[21626, 'Address'] = '1130 Eliza St.,, Green Bay, WI, 54301' df.at[38985, 'Address'] = '2211 Saint Andrews Blvd., Panama City FL, 32405' df.at[42682, 'Address'] = '5510 Munford Road, Raleigh NC, 27612' df.at[46031, 'Address'] = '2850 Logan Ave, San Diego, CA, 92113' df.at[46285, 'Address'] = '9510 Carmel Mountain Road, San Diego, CA, 92129' df.at[54169, 'Address'] = '3535 West Messala Way, Tucson, AZ, 85746' df.at[56231, 'Address'] = '2200 Minnesota Av. SE Washington DC, 20020' df.at[56603, 'Address'] = '3328 Martin Luther King Junior Avenue Southeast, Washington DC, 20032' df.at[10584, 'Address'] = '3375 W. 99th Street, Cleveland, OH, 44102' df.at[11668, 'Address'] = '220 Stoneridge Drive, Suite 403, Columbia, SC, 29210' df.at[23334, 'Address'] = '5300 El Camino Road, Las Vegas, NV, 89118' df.at[34536, 'Address'] = '3000 53rd St SW, Naples, FL, 34116' df.at[36778, 'Address'] = '2162 Mountain Blvd, Oakland, CA, 94611' df.at[41320, 'Address'] = '6415 SE Morrison Street, Portland, OR, 97215' df.at[42400, 'Address'] = '555 Double Eagle Ct., Suite 2000, Reno, NV, 89521' df.at[49117, 'Address'] = '12351 8th Ave NE, Seattle, WA, 98125' df.at[49183 , 'Address'] = '2120 21st Avenue South, Seattle, WA, 98144' df.at[56231, 'Address'] = '2200 Minnesota Av. SE, Washington, DC, 20020' df.at[11542, 'Address'] = '1320 South Fairview Road, Columbia, MO, 65203' df.at[38985, 'Address'] = '2211 Saint Andrews Blvd., Panama City, FL, 32405' df.at[42682, 'Address'] = '5510 Munford Road, Raleigh, NC, 27612' df.at[56603, 'Address'] = '3328 Martin Luther King Junior Avenue Southeast, Washington, DC, 20032' df['Address'] = df['Address'].str.replace('Washington, DC, Washington, DC,', 'Washington, DC,') df['Address'] = df['Address'].str.replace('New Orleans, LA, New Orleans, LA,', 'New Orleans, LA,') df['Address'] = df['Address'].str.replace('Albuquerque, NM, Albuquerque, NM,', 'Albuquerque, NM,' ) df['Address'] = df['Address'].str.replace('Chelsea, MA, Boston, MA,', 'Chelsea, MA,' ) df['Address'] = df['Address'].str.replace('Franklin, TN, Franklin, TN,', 'Franklin, TN,') df['Address'] = df['Address'].str.replace('Hales Corners, WI, Milwaukee, WI', 'Hales Corners, WI,') # 50525 df['Address'] = df['Address'].str.replace('Albany NY', 'Albany, NY,' ) df['Address'] = df['Address'].str.replace('Prineville OR', 'Prineville, OR,') df['Address'] = df['Address'].str.replace('Lancaster PA', 'Lancaster, PA,') df['Address'] = df['Address'].str.replace('Portland OR', 'Portland, OR,') df['Address'] = df['Address'].str.replace('San Diego CA', 'San Diego, CA,') df['Address'] = df['Address'].str.replace('austin', 'Austin') df['Address'] = df['Address'].str.replace('milwaukee', 'Milwaukee') df['Address'] = df['Address'].str.replace('greeley', 'Greeley') df['Address'] = df['Address'].str.replace('Oklahoma city', 'Oklahoma City') df['Address'] = df['Address'].str.replace('CARMEL', 'Carmel') df['Address'] = df['Address'].str.replace('COLORADO SPRINGS', 'Colorado Springs') df['Address'] = df['Address'].str.replace('GREENSBORO', 'Greensboro') df['Address'] = df['Address'].str.replace('SAN DIEGO', 'San Diego') df['Address'] = df['Address'].str.replace('Cherry Hill/Baltimore', 'Cherry Hill') df['Address'] = df['Address'].str.replace('AL ', 'AL, ') df['Address'] = df['Address'].str.replace('AK ', 'AK, ') df['Address'] = df['Address'].str.replace('AR ', 'AR, ') df['Address'] = df['Address'].str.replace('AZ ', 'AZ, ') df['Address'] = df['Address'].str.replace('CA ', 'CA, ') df['Address'] = df['Address'].str.replace('CO ', 'CO, ') df['Address'] = df['Address'].str.replace('CT ', 'CT, ') df['Address'] = df['Address'].str.replace('DE ', 'DE, ') df['Address'] = df['Address'].str.replace('DC ', 'DC, ') df['Address'] = df['Address'].str.replace('FL ', 'FL, ') df['Address'] = df['Address'].str.replace('GA ', 'GA, ') df['Address'] = df['Address'].str.replace('HI ', 'HI, ') df['Address'] = df['Address'].str.replace('IA ', 'IA, ') df['Address'] = df['Address'].str.replace('ID ', 'ID, ') df['Address'] = df['Address'].str.replace('IL ', 'IL, ') df['Address'] = df['Address'].str.replace('IN ', 'IN, ') df['Address'] = df['Address'].str.replace('KS ', 'KS, ') df['Address'] = df['Address'].str.replace('KY ', 'KY, ') df['Address'] = df['Address'].str.replace('LA ', 'LA, ') df['Address'] = df['Address'].str.replace('MA ', 'MA, ') df['Address'] = df['Address'].str.replace('MD ', 'MD, ') df['Address'] = df['Address'].str.replace('ME ', 'ME, ') df['Address'] = df['Address'].str.replace('MI ', 'MI, ') df['Address'] = df['Address'].str.replace('MN ', 'MN, ') df['Address'] = df['Address'].str.replace('MO ', 'MO, ') df['Address'] = df['Address'].str.replace('MS ', 'MS, ') df['Address'] = df['Address'].str.replace('MT ', 'MT, ') df['Address'] = df['Address'].str.replace('NC ', 'NC, ') df['Address'] = df['Address'].str.replace('ND ', 'ND, ') df['Address'] = df['Address'].str.replace('NH ', 'NH, ') df['Address'] = df['Address'].str.replace('NJ ', 'NJ, ') df['Address'] = df['Address'].str.replace('NM ', 'NM, ') df['Address'] = df['Address'].str.replace('NV ', 'NV, ') df['Address'] = df['Address'].str.replace('NY ', 'NY, ') df['Address'] = df['Address'].str.replace('OH ', 'OH, ') df['Address'] = df['Address'].str.replace('OK ', 'OK, ') df['Address'] = df['Address'].str.replace('OR ', 'OR, ') df['Address'] = df['Address'].str.replace('PA ', 'PA, ') df['Address'] = df['Address'].str.replace('RI ', 'RI, ') df['Address'] = df['Address'].str.replace('SC ', 'SC, ') df['Address'] = df['Address'].str.replace('SD ', 'SD, ') df['Address'] = df['Address'].str.replace('TN ', 'TN, ') df['Address'] = df['Address'].str.replace('TX ', 'TX, ') df['Address'] = df['Address'].str.replace('UT ', 'UT, ') df['Address'] = df['Address'].str.replace('VA ', 'VA, ') df['Address'] = df['Address'].str.replace('VT ', 'VT, ') df['Address'] = df['Address'].str.replace('WA ', 'WA, ') df['Address'] = df['Address'].str.replace('WI ', 'WI, ') df['Address'] = df['Address'].str.replace('WV ', 'WV, ') df['Address'] = df['Address'].str.replace('WY ', 'WY, ') ###Output _____no_output_____ ###Markdown Split Address Column- look for more discrepancies Create lengths to find discrepancies in 'Address' column ###Code df['City, State'] = df['Address'].str.split(',') # Finding length because there are anomalies with the information in the address column df['Length'] = df['City, State'].apply(lambda x: len(x) if x != None else 0 ) # 4 is the expected length df['Length'].unique() ###Output _____no_output_____ ###Markdown Create new dataframes for different lengths Length 1 ###Code # No Address - removing from df df = df[df['Length'] != 1] ###Output _____no_output_____ ###Markdown Length 7- https://stackoverflow.com/questions/6266727/python-cut-off-the-last-word-of-a-sentence- https://towardsdatascience.com/a-really-simple-way-to-edit-row-by-row-in-a-pandas-dataframe-75d339cbd313 ###Code df.loc[df['Length'] == 7] for index in df.index: if df.loc[index, 'Length'] == 7: content = df.loc[index, 'Address'] df.loc[index, 'Address'] = ', '.join(content.split(', ')[:-3]) ###Output _____no_output_____ ###Markdown Length 8 ###Code df.loc[df['Length'] == 8] for index in df.index: if df.loc[index, 'Length'] == 8: content = df.loc[index, 'Address'] df.loc[index, 'Address'] = ', '.join(content.split(', ')[:-3]) ###Output _____no_output_____ ###Markdown Check ###Code df = df.drop(columns = ['City, State', 'Length']) df['City, State'] = df['Address'].str.split(',') # Checking string lengths after cleaning df['Length'] = df['City, State'].apply(lambda x: len(x) if x != None else 0 ) df['Length'].unique() ###Output _____no_output_____ ###Markdown Create City, State columns ###Code df['City'] = df['City, State'].str[-3] df['State'] = df['City, State'].str[-2] ###Output _____no_output_____ ###Markdown Check Unique Cities ###Code print(df['City'].nunique()) df['City'].unique() ###Output 396 ###Markdown Check Unique States ###Code print(df['State'].nunique()) df['State'].unique() df.loc[df['State'] == ''] df.at[32718, 'Address'] = '5425 S. 111th Street, Hales Corners, WI, 53222' df.at[32718, 'State'] = 'WI' df.at[32718, 'City'] = 'Hales Corners' ###Output _____no_output_____ ###Markdown Update School Score- change to int so data can be sorted by the value ###Code df['Score'] = df['Score'].str.replace('/10', '') df['Score'] = df['Score'].astype(int) ###Output _____no_output_____ ###Markdown Separating into PK, K, Elementary, Middle, High School- https://stackoverflow.com/questions/61877712/check-if-an-item-in-a-list-is-available-in-a-column-which-is-of-type-list ###Code def parse_grades(grades_string): GRADES = ['PK', 'K', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', 'Ungraded'] # Remove & for grades list grades_string = grades_string.replace(' &', ',') # Grades list - will add to separated grade string to grades grades = [] # split strings based on ',' string_list = grades_string.split(',') # look for sections of list with '-' dash = "-" for i in range(len(string_list)): clean_string = string_list[i].strip() if dash in clean_string: # split using '-', loop and add to grades variable start_grade, end_grade = clean_string.split(dash) grades += GRADES[GRADES.index(start_grade) : GRADES.index(end_grade)+ 1] else: # add string to grades grades.append(clean_string) return grades print(df['Grades'].nunique()) unique_grades_combination = df['Grades'].unique() def test_complete_dataset(unique_grades_combination): # create a loop that goes thru dataset and invoke parse_grades with each element separated_grades_list = [] for i in unique_grades_combination: separated_grades_list.append(parse_grades(i)) dictionary_grade_list = dict(zip(unique_grades_combination, separated_grades_list)) return dictionary_grade_list dictionary = test_complete_dataset(unique_grades_combination) df['Clean_Grades'] = df['Grades'].map(dictionary) high_school = ['9', '10', '11', '12'] middle_school = ['6', '7', '8'] elementary = ['K', '1', '2', '3', '4', '5'] pre_k = ['PK'] set1 = set(high_school) df['High School (9-12)'] = df['Clean_Grades'].apply(lambda x: any([k in x for k in set1])) set2 = set(middle_school) df['Middle School (6-8)'] = df['Clean_Grades'].apply(lambda x: any([k in x for k in set2])) set3 = set(elementary) df['Elementary (K-5)'] = df['Clean_Grades'].apply(lambda x: any([k in x for k in set3])) set4 = set(pre_k) df['Pre-Kindergarten (PK)'] = df['Clean_Grades'].apply(lambda x: any([k in x for k in set4])) df[['High School (9-12)', 'Middle School (6-8)', 'Elementary (K-5)', 'Pre-Kindergarten (PK)']] = df[['High School (9-12)', 'Middle School (6-8)', 'Elementary (K-5)', 'Pre-Kindergarten (PK)']] * 1 df['Grades'] = df['Grades'].str.replace(' & Ungraded', '') ###Output _____no_output_____ ###Markdown Check that parse grades and categorizing schools worked ###Code unique_grades_combination df.loc[df['Grades'] == 'PK-6'] df.loc[df['Grades'] == 'K-1, 4, 7-9, 11'] df.loc[df['Grades'] == 'PK, 3-6, 8, 10, 12'] ###Output _____no_output_____ ###Markdown Filling in NaNs ###Code df.isnull().sum() df[['Total Students Enrolled', 'Students per teacher']] = df[['Total Students Enrolled', 'Students per teacher']].fillna(0) df['District'] = df['District'].fillna('Unavailable') df.isnull().sum() df.loc[df['Students per teacher'] == 'NaN'] df.loc[df['District'] == 'NaN'] df.loc[df['Total Students Enrolled'] == 'NaN'] ###Output _____no_output_____ ###Markdown Cleaning Extra Spaces- drop unneccessary columns ###Code df['City'] = df['City'].str.strip() df['State'] = df['State'].str.strip() df['Address'] = df['Address'].str.strip() df['School'] = df['School'].str.strip() df['Rating'] = df['Rating'].str.strip() df['Address'] = df['Address'].str.strip() df['Type'] = df['Type'].str.strip() df['Grades'] = df['Grades'].str.strip() df['Students per teacher'] = df['Students per teacher'].str.strip() df['District'] = df['District'].str.strip() # Drop df = df.drop(columns = ['City, State', 'Length', 'Clean_Grades']) ###Output _____no_output_____ ###Markdown Save ###Code df.to_csv('files/merge_schools/schools_cleaned.csv', index = False) ###Output _____no_output_____ ###Markdown Part 2- clean csv of cities that did not scrape the first time ###Code import pandas as pd pd.set_option('display.max_colwidth', None) pd.set_option('display.max_rows', 10) missing = pd.read_csv('files/scrape_schools/missing_schools.csv') print(missing.shape) missing.head() # Adresses missing['Address'] = missing['Address'].str.replace('5115 North Mont Clare Avenue Chicago, IL 60656, Chicago, IL, 60656', '5115 North Mont Clare Avenue, Chicago, IL, 60656') missing['Address'] = missing['Address'].str.replace('11000 Scott St, Houston, Houston, TX, 77047', '11000 Scott St, Houston, TX, 77047') missing['Address'] = missing['Address'].str.replace('3911 Campbell Rd., Ho, Houston, TX, 77080', '3911 Campbell Rd., Houston, TX, 77080') missing['Address'] = missing['Address'].str.replace('8805 Ferndale, Houston, Houston, TX, 77017', '8805 Ferndale, Houston, TX, 77017') missing['Address'] = missing['Address'].str.replace('4240 E. Olympic Blvd. Los Angeles, CA 90023, Los Angeles, CA, 90063', '4240 E. Olympic Blvd., Los Angeles, CA, 90023') missing['Address'] = missing['Address'].str.replace('1263 S Soto St Los Angeles, CA 90023 , Los Angeles, CA, 90031', '1263 S Soto St, Los Angeles, CA, 90023') missing['Address'] = missing['Address'].str.replace('95 NW 23rd St Miami, FL 33127, Miami, FL, 33137', '95 NW 23rd St, Miami, FL, 33127') missing['Address'] = missing['Address'].str.replace('12101 SW 34 St. MIAMI, FL. 33175, Miami, FL, 33175', '12101 SW 34 St., Miami, FL, 33175') missing['Address'] = missing['Address'].str.replace('332 West 43rd Street, New York NY 10036, New York, NY, 10025', '332 West 43rd Street, New York, NY, 10025') missing['Address'] = missing['Address'].str.replace('120 Wadsworth Avenue New York, N.Y. 10033, New York, NY, 10033', '120 Wadsworth Avenue, New York, NY, 10033') missing['Address'] = missing['Address'].str.replace('5311 Merlin Dr San Antonio, Texas 78218, San Antonio, TX, 78218', '5311 Merlin Dr, San Antonio, TX, 78218') missing['Address'] = missing['Address'].str.replace('8565 Ewing Halsell Drive San Antonio, Texas 78229, San Antonio, TX, 78229', '8565 Ewing Halsell Drive, San Antonio, TX, 78229') missing['Address'] = missing['Address'].str.replace('4419 S Normandie Ave La, Ca 90037, Los Angeles, CA, 90007', '4419 S Normandie Ave, Los Angeles, CA, 90037') missing['Address'] = missing['Address'].str.replace('2521 Grove Street, Blue Island, IL 60406, Chicago, IL, 60643', '2521 Grove Street, Blue Island, IL, 60406') missing['Address'] = missing['Address'].str.replace('1913 Southwest Fwy #B, Houston, TX 77098, Houston, TX, 77030', '1913 Southwest Fwy #B, Houston, TX, 77098') missing['Address'] = missing['Address'].str.replace('4009 Sherwood Lane, Houston, TX 77092, Houston, TX, 77092', '4009 Sherwood Lane, Houston, TX, 77092') missing['Address'] = missing['Address'].str.replace('1600 W. Imperial Highway, Los Angeles, CA 90047, Los Angeles, CA, 90045', '1600 W. Imperial Highway, Los Angeles, CA, 90047') missing['Address'] = missing['Address'].str.replace('131 E. 50th Street, Los Angles, CA 90011, Los Angeles, CA, 90011', '131 E. 50th Street, Los Angeles, CA, 90011') missing['Address'] = missing['Address'].str.replace('4301 West Martin Luther King Jr. Boulevard, Los Angeles, CA 90008, Los Angeles, CA, 90016', '4301 West Martin Luther King Jr. Boulevard, Los Angeles, CA, 90008') missing['Address'] = missing['Address'].str.replace('8515 Kansas Avenue, Los Angeles, CA 90044, Los Angeles, CA, 90047', '8515 Kansas Avenue, Los Angeles, CA, 90044') missing['Address'] = missing['Address'].str.replace('1989 Westwood Blvd, LA, CA 90025, Los Angeles, CA, 90025', '1989 Westwood Blvd, Los Angeles, CA, 90025') missing['Address'] = missing['Address'].str.replace('6601 NW 167th St, Hialeah, FL 33015, Miami, FL, 33015', '6601 NW 167th St, Hialeah, FL, 33015') missing['Address'] = missing['Address'].str.replace('7412 Sunset Drive, Miami, FL 33143, Miami, FL, 33176', '7412 Sunset Drive, Miami, FL, 33143') missing['Address'] = missing['Address'].str.replace('259 10th Avenue, New York, NY 10001, New York, NY, 10001', '259 10th Avenue, New York, NY, 10001') missing['Address'] = missing['Address'].str.replace('2212 Third Avenue, 2nd Floor, New York, NY 10035, New York, NY, 10065', '2212 Third Avenue, 2nd Floor, New York, NY, 10035') missing['Address'] = missing['Address'].str.replace('10126 South Western, CHICAGO, IL, 60643', '10126 South Western, Chicago, IL, 60643') missing['Address'] = missing['Address'].str.replace('38 delancey st., new york, NY, 10002', '38 Delancey St., New York, NY, 10002') missing['Address'] = missing['Address'].str.replace('40 Rector Street, new york, NY, 10006', '40 Rector Street, New York, NY, 10006') # specific missing.at[3886, 'Address'] = '4240 E. Olympic Blvd., Los Angeles, CA, 90023' ###Output _____no_output_____ ###Markdown Split Address Column ###Code missing['City, State'] = missing['Address'].str.split(',') ###Output _____no_output_____ ###Markdown Create Lengths to find discrepancies in Address column ###Code # Finding length because there are anomalies with the information in the address column missing['Length'] = missing['City, State'].apply(lambda x: len(x) if x != None else 0 ) # 4 is the expected length missing['Length'].unique() ###Output _____no_output_____ ###Markdown Create City, State column ###Code missing['City'] = missing['City, State'].str[-3] missing['State'] = missing['City, State'].str[-2] ###Output _____no_output_____ ###Markdown Check for Unique Citiesshould be about 5 (maybe slightly more after cleaning addresses) ###Code print(missing['City'].nunique()) missing['City'].unique() ###Output 8 ###Markdown Check for Unique States- expecting 5 ###Code print(missing['State'].nunique()) missing['State'].unique() ###Output 5 ###Markdown Update School Scores ###Code missing['Score'] = missing['Score'].str.replace('/10', '') missing['Score'] = missing['Score'].astype(int) ###Output _____no_output_____ ###Markdown Separate into PK, Elementary, Middle, High School ###Code def parse_grades(grades_string): GRADES = ['PK', 'K', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', 'Ungraded'] # Remove & for grades list grades_string = grades_string.replace(' &', ',') # Grades list - will add to separated grade string to grades grades = [] # split strings based on ',' string_list = grades_string.split(',') # look for sections of list with '-' dash = "-" for i in range(len(string_list)): clean_string = string_list[i].strip() if dash in clean_string: # split using '-', loop and add to grades variable start_grade, end_grade = clean_string.split(dash) grades += GRADES[GRADES.index(start_grade) : GRADES.index(end_grade)+ 1] else: # add string to grades grades.append(clean_string) return grades print(missing['Grades'].nunique()) unique_grades_combination = missing['Grades'].unique() def test_complete_dataset(unique_grades_combination): # create a loop that goes thru dataset and invoke parse_grades with each element separated_grades_list = [] for i in unique_grades_combination: separated_grades_list.append(parse_grades(i)) dictionary_grade_list = dict(zip(unique_grades_combination, separated_grades_list)) return dictionary_grade_list dictionary = test_complete_dataset(unique_grades_combination) missing['Clean_Grades'] = missing['Grades'].map(dictionary) # https://stackoverflow.com/questions/53350793/how-to-check-if-pandas-column-has-value-from-list-of-string high_school = ['9', '10', '11', '12'] middle_school = ['6', '7', '8'] elementary = ['K', '1', '2', '3', '4', '5'] pre_k = ['PK'] set1 = set(high_school) missing['High School (9-12)'] = missing['Clean_Grades'].apply(lambda x: any([k in x for k in set1])) set2 = set(middle_school) missing['Middle School (6-8)'] = missing['Clean_Grades'].apply(lambda x: any([k in x for k in set2])) set3 = set(elementary) missing['Elementary (K-5)'] = missing['Clean_Grades'].apply(lambda x: any([k in x for k in set3])) set4 = set(pre_k) missing['Pre-Kindergarten (PK)'] = missing['Clean_Grades'].apply(lambda x: any([k in x for k in set4])) missing[['High School (9-12)', 'Middle School (6-8)', 'Elementary (K-5)', 'Pre-Kindergarten (PK)']] = missing[['High School (9-12)', 'Middle School (6-8)', 'Elementary (K-5)', 'Pre-Kindergarten (PK)']] * 1 missing['Grades'] = missing['Grades'].str.replace(' & Ungraded', '') ###Output _____no_output_____ ###Markdown Check ###Code missing.loc[missing['Grades'] == 'PK-3, 5-8'] ###Output _____no_output_____ ###Markdown Filling NaNs ###Code missing.isna().sum() missing[['Total Students Enrolled', 'Students per teacher']] = missing[['Total Students Enrolled', 'Students per teacher']].fillna(0) missing['District'] = missing['District'].fillna('Unavailable') missing.isna().sum() ###Output _____no_output_____ ###Markdown Clean and Drop columns ###Code missing['City'] = missing['City'].str.strip() missing['State'] = missing['State'].str.strip() missing['Address'] = missing['Address'].str.strip() missing['School'] = missing['School'].str.strip() missing['Rating'] = missing['Rating'].str.strip() missing['Address'] = missing['Address'].str.strip() missing['Type'] = missing['Type'].str.strip() missing['Grades'] = missing['Grades'].str.strip() missing['Students per teacher'] = missing['Students per teacher'].str.strip() missing['District'] = missing['District'].str.strip() # Drop missing = missing.drop(columns = ['City, State', 'Length', 'Clean_Grades']) missing.to_csv('files/merge_schools/missing_schools_cleaned.csv', index = False) ###Output _____no_output_____ ###Markdown Part 3 Merge1. remove cities in missing_cities from df to prevent duplicates - 'Chicago', 'Blue Island', 'Houston', 'Los Angeles', 'Miami', 'Hialeah', 'New York', 'San Antonio'2. Merge3. Clean ###Code import pandas as pd pd.set_option('display.max_colwidth', None) pd.set_option('display.max_rows', 25) df = pd.read_csv('files/merge_schools/schools_cleaned.csv') missing = pd.read_csv('files/merge_schools/missing_schools_cleaned.csv') print(df.shape) df.head() print(missing.shape) missing.head() # Removing cities from schools to prevent duplicate cities df = df[df['City'] != 'Chicago'] df = df[df['City'] != 'Houston'] df = df[df['City'] != 'Los Angeles'] df = df[df['City'] != 'Miami'] df = df[df['City'] != 'New York'] df = df[df['City'] != 'San Antonio'] frames = [df, missing] final = pd.concat(frames) print(final.shape) # 58779 + 8941 - 150(dropped cities) = 67570 final.head() final.isnull().sum() final['Students per teacher'] = final['Students per teacher'].fillna(0) final.isnull().sum() final = final.drop(columns = ['Unnamed: 0']) final.to_csv('csv/final_school.csv', index = False) final.to_csv('../../datasets_to_merge/labs2/files/final_school.csv') ###Output _____no_output_____ ###Markdown Check that parse grades and categorizing schools worked ###Code unique_grades_combination df.loc[df['Grades'] == 'PK-6'] df.loc[df['Grades'] == 'K-1, 4, 7-9, 11'] df.loc[df['Grades'] == 'PK, 3-6, 8, 10, 12'] ###Output _____no_output_____ ###Markdown Filling in NaNs ###Code df.isnull().sum() df[['Total Students Enrolled', 'Students per teacher']] = df[['Total Students Enrolled', 'Students per teacher']].fillna(0) df['District'] = df['District'].fillna('Unavailable') df.isnull().sum() df.loc[df['Students per teacher'] == 'NaN'] df.loc[df['District'] == 'NaN'] df.loc[df['Total Students Enrolled'] == 'NaN'] ###Output _____no_output_____ ###Markdown Cleaning Extra Spaces- drop unneccessary columns ###Code df['City'] = df['City'].str.strip() df['State'] = df['State'].str.strip() df['Address'] = df['Address'].str.strip() df['School'] = df['School'].str.strip() df['Rating'] = df['Rating'].str.strip() df['Address'] = df['Address'].str.strip() df['Type'] = df['Type'].str.strip() df['Grades'] = df['Grades'].str.strip() df['Students per teacher'] = df['Students per teacher'].str.strip() df['District'] = df['District'].str.strip() # Drop df = df.drop(columns = ['City, State', 'Length', 'Clean_Grades']) ###Output _____no_output_____ ###Markdown Save ###Code df.to_csv('files/merge_schools/schools_cleaned.csv', index = False) ###Output _____no_output_____ ###Markdown Part 2- clean csv of cities that did not scrape the first time ###Code import pandas as pd pd.set_option('display.max_colwidth', None) pd.set_option('display.max_rows', 10) missing = pd.read_csv('files/scrape_schools/missing_schools.csv') print(missing.shape) missing.head() # Adresses missing['Address'] = missing['Address'].str.replace('5115 North Mont Clare Avenue Chicago, IL 60656, Chicago, IL, 60656', '5115 North Mont Clare Avenue, Chicago, IL, 60656') missing['Address'] = missing['Address'].str.replace('11000 Scott St, Houston, Houston, TX, 77047', '11000 Scott St, Houston, TX, 77047') missing['Address'] = missing['Address'].str.replace('3911 Campbell Rd., Ho, Houston, TX, 77080', '3911 Campbell Rd., Houston, TX, 77080') missing['Address'] = missing['Address'].str.replace('8805 Ferndale, Houston, Houston, TX, 77017', '8805 Ferndale, Houston, TX, 77017') missing['Address'] = missing['Address'].str.replace('4240 E. Olympic Blvd. Los Angeles, CA 90023, Los Angeles, CA, 90063', '4240 E. Olympic Blvd., Los Angeles, CA, 90023') missing['Address'] = missing['Address'].str.replace('1263 S Soto St Los Angeles, CA 90023 , Los Angeles, CA, 90031', '1263 S Soto St, Los Angeles, CA, 90023') missing['Address'] = missing['Address'].str.replace('95 NW 23rd St Miami, FL 33127, Miami, FL, 33137', '95 NW 23rd St, Miami, FL, 33127') missing['Address'] = missing['Address'].str.replace('12101 SW 34 St. MIAMI, FL. 33175, Miami, FL, 33175', '12101 SW 34 St., Miami, FL, 33175') missing['Address'] = missing['Address'].str.replace('332 West 43rd Street, New York NY 10036, New York, NY, 10025', '332 West 43rd Street, New York, NY, 10025') missing['Address'] = missing['Address'].str.replace('120 Wadsworth Avenue New York, N.Y. 10033, New York, NY, 10033', '120 Wadsworth Avenue, New York, NY, 10033') missing['Address'] = missing['Address'].str.replace('5311 Merlin Dr San Antonio, Texas 78218, San Antonio, TX, 78218', '5311 Merlin Dr, San Antonio, TX, 78218') missing['Address'] = missing['Address'].str.replace('8565 Ewing Halsell Drive San Antonio, Texas 78229, San Antonio, TX, 78229', '8565 Ewing Halsell Drive, San Antonio, TX, 78229') missing['Address'] = missing['Address'].str.replace('4419 S Normandie Ave La, Ca 90037, Los Angeles, CA, 90007', '4419 S Normandie Ave, Los Angeles, CA, 90037') missing['Address'] = missing['Address'].str.replace('2521 Grove Street, Blue Island, IL 60406, Chicago, IL, 60643', '2521 Grove Street, Blue Island, IL, 60406') missing['Address'] = missing['Address'].str.replace('1913 Southwest Fwy #B, Houston, TX 77098, Houston, TX, 77030', '1913 Southwest Fwy #B, Houston, TX, 77098') missing['Address'] = missing['Address'].str.replace('4009 Sherwood Lane, Houston, TX 77092, Houston, TX, 77092', '4009 Sherwood Lane, Houston, TX, 77092') missing['Address'] = missing['Address'].str.replace('1600 W. Imperial Highway, Los Angeles, CA 90047, Los Angeles, CA, 90045', '1600 W. Imperial Highway, Los Angeles, CA, 90047') missing['Address'] = missing['Address'].str.replace('131 E. 50th Street, Los Angles, CA 90011, Los Angeles, CA, 90011', '131 E. 50th Street, Los Angeles, CA, 90011') missing['Address'] = missing['Address'].str.replace('4301 West Martin Luther King Jr. Boulevard, Los Angeles, CA 90008, Los Angeles, CA, 90016', '4301 West Martin Luther King Jr. Boulevard, Los Angeles, CA, 90008') missing['Address'] = missing['Address'].str.replace('8515 Kansas Avenue, Los Angeles, CA 90044, Los Angeles, CA, 90047', '8515 Kansas Avenue, Los Angeles, CA, 90044') missing['Address'] = missing['Address'].str.replace('1989 Westwood Blvd, LA, CA 90025, Los Angeles, CA, 90025', '1989 Westwood Blvd, Los Angeles, CA, 90025') missing['Address'] = missing['Address'].str.replace('6601 NW 167th St, Hialeah, FL 33015, Miami, FL, 33015', '6601 NW 167th St, Hialeah, FL, 33015') missing['Address'] = missing['Address'].str.replace('7412 Sunset Drive, Miami, FL 33143, Miami, FL, 33176', '7412 Sunset Drive, Miami, FL, 33143') missing['Address'] = missing['Address'].str.replace('259 10th Avenue, New York, NY 10001, New York, NY, 10001', '259 10th Avenue, New York, NY, 10001') missing['Address'] = missing['Address'].str.replace('2212 Third Avenue, 2nd Floor, New York, NY 10035, New York, NY, 10065', '2212 Third Avenue, 2nd Floor, New York, NY, 10035') missing['Address'] = missing['Address'].str.replace('10126 South Western, CHICAGO, IL, 60643', '10126 South Western, Chicago, IL, 60643') missing['Address'] = missing['Address'].str.replace('38 delancey st., new york, NY, 10002', '38 Delancey St., New York, NY, 10002') missing['Address'] = missing['Address'].str.replace('40 Rector Street, new york, NY, 10006', '40 Rector Street, New York, NY, 10006') # specific missing.at[3886, 'Address'] = '4240 E. Olympic Blvd., Los Angeles, CA, 90023' ###Output _____no_output_____ ###Markdown Split Address Column ###Code missing['City, State'] = missing['Address'].str.split(',') ###Output _____no_output_____ ###Markdown Create Lengths to find discrepancies in Address column ###Code # Finding length because there are anomalies with the information in the address column missing['Length'] = missing['City, State'].apply(lambda x: len(x) if x != None else 0 ) # 4 is the expected length missing['Length'].unique() ###Output _____no_output_____ ###Markdown Create City, State column ###Code missing['City'] = missing['City, State'].str[-3] missing['State'] = missing['City, State'].str[-2] ###Output _____no_output_____ ###Markdown Check for Unique Citiesshould be about 5 (maybe slightly more after cleaning addresses) ###Code print(missing['City'].nunique()) missing['City'].unique() ###Output 8 ###Markdown Check for Unique States- expecting 5 ###Code print(missing['State'].nunique()) missing['State'].unique() ###Output 5 ###Markdown Update School Scores ###Code missing['Score'] = missing['Score'].str.replace('/10', '') missing['Score'] = missing['Score'].astype(int) ###Output _____no_output_____ ###Markdown Separate into PK, Elementary, Middle, High School ###Code def parse_grades(grades_string): GRADES = ['PK', 'K', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', 'Ungraded'] # Remove & for grades list grades_string = grades_string.replace(' &', ',') # Grades list - will add to separated grade string to grades grades = [] # split strings based on ',' string_list = grades_string.split(',') # look for sections of list with '-' dash = "-" for i in range(len(string_list)): clean_string = string_list[i].strip() if dash in clean_string: # split using '-', loop and add to grades variable start_grade, end_grade = clean_string.split(dash) grades += GRADES[GRADES.index(start_grade) : GRADES.index(end_grade)+ 1] else: # add string to grades grades.append(clean_string) return grades print(missing['Grades'].nunique()) unique_grades_combination = missing['Grades'].unique() def test_complete_dataset(unique_grades_combination): # create a loop that goes thru dataset and invoke parse_grades with each element separated_grades_list = [] for i in unique_grades_combination: separated_grades_list.append(parse_grades(i)) dictionary_grade_list = dict(zip(unique_grades_combination, separated_grades_list)) return dictionary_grade_list dictionary = test_complete_dataset(unique_grades_combination) missing['Clean_Grades'] = missing['Grades'].map(dictionary) # https://stackoverflow.com/questions/53350793/how-to-check-if-pandas-column-has-value-from-list-of-string high_school = ['9', '10', '11', '12'] middle_school = ['6', '7', '8'] elementary = ['K', '1', '2', '3', '4', '5'] pre_k = ['PK'] set1 = set(high_school) missing['High School (9-12)'] = missing['Clean_Grades'].apply(lambda x: any([k in x for k in set1])) set2 = set(middle_school) missing['Middle School (6-8)'] = missing['Clean_Grades'].apply(lambda x: any([k in x for k in set2])) set3 = set(elementary) missing['Elementary (K-5)'] = missing['Clean_Grades'].apply(lambda x: any([k in x for k in set3])) set4 = set(pre_k) missing['Pre-Kindergarten (PK)'] = missing['Clean_Grades'].apply(lambda x: any([k in x for k in set4])) missing[['High School (9-12)', 'Middle School (6-8)', 'Elementary (K-5)', 'Pre-Kindergarten (PK)']] = missing[['High School (9-12)', 'Middle School (6-8)', 'Elementary (K-5)', 'Pre-Kindergarten (PK)']] * 1 missing['Grades'] = missing['Grades'].str.replace(' & Ungraded', '') ###Output _____no_output_____ ###Markdown Check ###Code missing.loc[missing['Grades'] == 'PK-3, 5-8'] ###Output _____no_output_____ ###Markdown Filling NaNs ###Code missing.isna().sum() missing[['Total Students Enrolled', 'Students per teacher']] = missing[['Total Students Enrolled', 'Students per teacher']].fillna(0) missing['District'] = missing['District'].fillna('Unavailable') missing.isna().sum() ###Output _____no_output_____ ###Markdown Clean and Drop columns ###Code missing['City'] = missing['City'].str.strip() missing['State'] = missing['State'].str.strip() missing['Address'] = missing['Address'].str.strip() missing['School'] = missing['School'].str.strip() missing['Rating'] = missing['Rating'].str.strip() missing['Address'] = missing['Address'].str.strip() missing['Type'] = missing['Type'].str.strip() missing['Grades'] = missing['Grades'].str.strip() missing['Students per teacher'] = missing['Students per teacher'].str.strip() missing['District'] = missing['District'].str.strip() # Drop missing = missing.drop(columns = ['City, State', 'Length', 'Clean_Grades']) missing.to_csv('files/merge_schools/missing_schools_cleaned.csv', index = False) ###Output _____no_output_____ ###Markdown Part 3 Merge1. remove cities in missing_cities from df to prevent duplicates - 'Chicago', 'Blue Island', 'Houston', 'Los Angeles', 'Miami', 'Hialeah', 'New York', 'San Antonio'2. Merge3. Clean ###Code import pandas as pd pd.set_option('display.max_colwidth', None) pd.set_option('display.max_rows', 25) df = pd.read_csv('files/merge_schools/schools_cleaned.csv') missing = pd.read_csv('files/merge_schools/missing_schools_cleaned.csv') print(df.shape) df.head() print(missing.shape) missing.head() # Removing cities from schools to prevent duplicate cities df = df[df['City'] != 'Chicago'] df = df[df['City'] != 'Houston'] df = df[df['City'] != 'Los Angeles'] df = df[df['City'] != 'Miami'] df = df[df['City'] != 'New York'] df = df[df['City'] != 'San Antonio'] frames = [df, missing] final = pd.concat(frames) print(final.shape) # 58779 + 8941 - 150(dropped cities) = 67570 final.head() final.isnull().sum() final['Students per teacher'] = final['Students per teacher'].fillna(0) final.isnull().sum() final = final.drop(columns = ['Unnamed: 0']) final.to_csv('csv/final_school.csv', index = False) final.to_csv('../../datasets_to_merge/labs2/files/final_school.csv') ###Output _____no_output_____ ###Markdown Clean Schools.csv1. Split address column2. Look at length - this displays discrepancies in addresses (looking for lengths 1, 3, 4)3. Create a city and state column - consistency with other data4. Create columns for schools categories - pk, k, elementary, middle, and high school5. Make score column an int ###Code import pandas as pd pd.set_option('display.max_colwidth', None) pd.set_option('display.max_rows', 10) df = pd.read_csv('files/scrape_schools/schools.csv') print(df.shape) df.head() ###Output (58782, 10) ###Markdown Clean Addresses ###Code df['Address'] = df['Address'].str.replace('2100 Morse Road, Suite 4609, Columbus, OH 43229, Columbus, OH, 43211', '2100 Morse Road, Suite 4609, Columbus, OH, 43229') df['Address'] = df['Address'].str.replace('2501 Syracuse Street, Denver, Colorado, 80238, Denver, CO, 80238', '2501 Syracuse Street, Denver, CO, 80238') df['Address'] = df['Address'].str.replace('4450 West Eau Gallie Boulevard, Suite 180, Melbourne, FL 32934, Melbourne, FL, 32934', '4450 West Eau Gallie Boulevard, Suite 180, Melbourne, FL, 32934') df['Address'] = df['Address'].str.replace('4530 MacArthur Blvd, NW, Washington, DC, Washington, DC, 20007', '4530 MacArthur Blvd NW, Washington, DC, 20007') df['Address'] = df['Address'].str.replace('1075 New Scotland Road, Albany NY 12208, Albany, NY, 12208', '1075 New Scotland Road, Albany NY, 12208') df['Address'] = df['Address'].str.replace('216 Shelburne Road Asheville, NC 28806, Asheville, NC, 28806', '216 Shelburne Road, Asheville, NC, 28806') df['Address'] = df['Address'].str.replace('26450 RR 12 Dripping Springs, TX 78620, Austin, TX, 78736', '26450 RR 12, Dripping Springs, TX, 78620') df['Address'] = df['Address'].str.replace('NE Stoneridge Loop, Prineville OR 97754, Bend, OR, 97702', 'NE Stoneridge Loop, Prineville, OR, 97754') df['Address'] = df['Address'].str.replace('5225 - Seventy seven Center Dr, Charlotte NC 28217, Charlotte, NC, 28217', '5225 77 Center Dr, Charlotte, NC, 28217') df['Address'] = df['Address'].str.replace('3375 W. 99th Street Cleveland, OH 44102, Cleveland, OH, 44111', '3375 W. 99th Street, Cleveland, OH, 44102') df['Address'] = df['Address'].str.replace('21 Broadmoor Avenue Colorado Springs, CO 80906, Colorado Springs, CO, 80906', '21 Broadmoor Avenue, Colorado Springs, CO, 80906') df['Address'] = df['Address'].str.replace('220 Stoneridge Drive Suite 403 Columbia, SC 29210 , Columbia, SC, 29210', '220 Stoneridge Drive, Suite 403, Columbia, SC, 29210') df['Address'] = df['Address'].str.replace('2247 South Ridgewood South Daytona, Florida 32119, Daytona Beach, FL, 32117', '2247 South Ridgewood, South Daytona, FL, 32119') df['Address'] = df['Address'].str.replace('7005 Woodbine Ave Sacramento, Ca. 95822, Fairfield, CA, 94534', '7005 Woodbine Ave, Sacramento, CA, 95822') df['Address'] = df['Address'].str.replace('4424 Innovation Drive Fort Collins, Colorado 80525, Fort Collins, CO, 80525', '4424 Innovation Drive, Fort Collins, CO, 80525') df['Address'] = df['Address'].str.replace('5300 El Camino Road Las Vegas, NV 89118, Henderson, NV, 89014', '5300 El Camino Road, Las Vegas, NV, 89118') df['Address'] = df['Address'].str.replace('9039 Beach Blvd Jacksonville, FL 32216, Jacksonville, FL, 32207', '9039 Beach Blvd, Jacksonville, FL, 32216') df['Address'] = df['Address'].str.replace('390 New Holland Pike, Lancaster PA 17601, Lancaster, PA, 17601', '390 New Holland Pike, Lancaster, PA, 17601') df['Address'] = df['Address'].str.replace('4801. S. Sandhill Drive LV, NV 89121, Las Vegas, NV, 89123', '4801. S. Sandhill Drive, Las Vegas, NV, 89123') df['Address'] = df['Address'].str.replace('2727 Stinson Blvd. NE Minneapolis, MN 55418, Minneapolis, MN, 55418', '2727 Stinson Blvd. NE, Minneapolis, MN, 55418') df['Address'] = df['Address'].str.replace('3000 53rd St SW Naples, FL 34116, Naples, FL, 34116', '3000 53rd St SW, Naples, FL, 34116') df['Address'] = df['Address'].str.replace('177 W Klein Rd. New Braunfels, TX 78130, New Braunfels, TX, 78130', '177 W Klein Rd., New Braunfels, TX, 78130') df['Address'] = df['Address'].str.replace('500 Soraparu St. New Orleans, La 70130, New Orleans, LA, 70130', '500 Soraparu St., New Orleans, LA, 70130') df['Address'] = df['Address'].str.replace('2162 Mountain Blvd, Oakland CA 94611, Oakland, CA, 94605', '2162 Mountain Blvd, Oakland, CA, 94611') df['Address'] = df['Address'].str.replace('13231 N. 22nd St. Phoenix, AZ 85022, Phoenix, AZ, 85028', '13231 N. 22nd St., Phoenix, AZ, 85022') df['Address'] = df['Address'].str.replace('14124 SE Mill St, Portland OR 97233, Portland, OR, 97266', '14124 SE Mill St, Portland, OR, 97233') df['Address'] = df['Address'].str.replace('555 Double Eagle Ct. Suite 2000 Reno, NV 89521 , Reno, NV, 89521', '555 Double Eagle Ct., Suite 2000, Reno, NV, 89521') df['Address'] = df['Address'].str.replace('3422 Rustin Ave Riverside, CA 92507, Riverside, CA, 92504', '3422 Rustin Ave, Riverside, CA, 92507') df['Address'] = df['Address'].str.replace('2800 19th Stree NW Rochester, MN 55901, Rochester, MN, 55902', '2800 19th Stree NW, Rochester, MN, 55901') df['Address'] = df['Address'].str.replace('9510 Carmel Mountain Road, San Diego CA 92129, San Diego, CA, 92129', '9510 Carmel Mountain Road, San Diego CA, 92129') df['Address'] = df['Address'].str.replace('6540 Flanders Drive. San Diego, CA 92121, San Diego, CA, 92127', '6540 Flanders Drive., San Diego, CA, 92121') df['Address'] = df['Address'].str.replace('725 Washington St. Santa Clara, Ca 95050, Santa Clara, CA, 95050', '725 Washington St., Santa Clara, CA, 95050') df['Address'] = df['Address'].str.replace('6715 S Boe Lane Sioux Falls, SD 57108, Sioux Falls, SD, 57105', '6715 S Boe Lane, Sioux Falls, SD, 57108') df['Address'] = df['Address'].str.replace('12611 N. Wilson St. Mead, WA 99021, Spokane, WA, 99218', '12611 N. Wilson St., Mead, WA, 99021') df['Address'] = df['Address'].str.replace('1450 Newfield Avenue Stamford, CT 06905, Stamford, CT, 06905', '1450 Newfield Avenue, Stamford, CT, 06905') df['Address'] = df['Address'].str.replace('2525 Gold Brook Dr Stockton, CA 95212, Stockton, CA, 95212', '2525 Gold Brook Dr, Stockton, CA, 95212') df['Address'] = df['Address'].str.replace('1112 North G Street | Tacoma, WA 98403, Tacoma, WA, 98403', '1112 North G Street, Tacoma, WA, 98403') df['Address'] = df['Address'].str.replace('1250 Erbes Rd. Thousand Oaks, CA 91362, Thousand Oaks, CA, 91302', '1250 Erbes Rd., Thousand Oaks, CA, 91362') df['Address'] = df['Address'].str.replace('3201 N. Eastman Rd. Longview, TX 75605, Tyler, TX, 75799', '3201 N. Eastman Rd., Longview, TX, 75605') df['Address'] = df['Address'].str.replace('St. Catherine of Siena School, 3460 Tennessee Street, Vallejo, CA, 94591', '3460 Tennessee Street, Vallejo, CA, 94591') df['Address'] = df['Address'].str.replace('1650 Godfrey Ave. Wyoming,Mi 49509 , Wyoming, MI, 49509', '1650 Godfrey Ave., Wyoming, MI, 49509' ) df['Address'] = df['Address'].str.replace('3422 Rustin Ave Riverside, CA 92507', '3422 Rustin Ave, Riverside, CA, 92507') df['Address'] = df['Address'].str.replace('San Martin De Porres Clinic: Kallumadanda Vinnie MD Mission, TX 78572', 'San Martin De Porres Clinic: Kallumadanda Vinnie MD, Mission, TX, 78572') # 33396 df['Address'] = df['Address'].str.replace('Rockwood Plastic Surgery Center: Gardner Glenn P MD Spokane, WA 99204', 'Rockwood Plastic Surgery Center: Gardner Glenn P MD, Spokane, WA, 99204' ) # 50841 df['Address'] = df['Address'].str.replace('2950 East 29th Street, Long Beach, CA', '2950 E 29th St, Long Beach, CA, 90806') df['Address'] = df['Address'].str.replace('2585 Business Park Drive, Vista, 92081', '2585 Business Park Dr, Vista, CA, 92081') df['Address'] = df['Address'].str.replace('401 E Arrowood Rd, Charlotte, Nc', '401 E Arrowood Rd, Charlotte, NC, 28217') df['Address'] = df['Address'].str.replace('2900 Barberry Avenue, Columbia, Missouri 65202', '2900 Barberry Avenue, Columbia, MO, 65202') df['Address'] = df['Address'].str.replace('2572 John F Kennedy Boulevard, Jersey City, New Jersey 07304', '2572 John F Kennedy Boulevard, Jersey City, NJ, 07304') df['Address'] = df['Address'].str.replace('4656 N. Rancho Drive, Las Vegas, Nevada 89130', '4656 N. Rancho Drive, Las Vegas, NV, 89130') df['Address'] = df['Address'].str.replace('6415 SE Morrison street, Portland, Oregon 97215', '6415 SE Morrison Street, Portland, OR, 97215') df['Address'] = df['Address'].str.replace('2120 21st Avenue South, Seattle, Washington 98144', '2120 21st Avenue South, Seattle, WA, 98144') df['Address'] = df['Address'].str.replace('4025 N. Hartford Ave., Tulsa, OK. 74106', '4025 N. Hartford Ave., Tulsa, OK, 74106') df['Address'] = df['Address'].str.replace('6355 Willowbrook St., Wichita, Ks 67208', '6355 Willowbrook St., Wichita, KS, 67208') df['Address'] = df['Address'].str.replace('4314 clarno dr, austin, TX 78749', '4314 Clarno Dr, Austin, TX 78749') df['Address'] = df['Address'].str.replace('Suite 117', 'Suite 117,') # specific df.at[52126, 'Address'] = '1112 North G Street, Tacoma, WA, 98403' df.at[46311, 'Address'] = '5531 Cancha de Golf Ste 202, Rancho Santa Fe, CA, 92091' df.at[56607, 'Address'] = '4880 MacArthur Blvd. NW, Washington, DC, 20007' df.at[27205, 'Address'] = '1018 Harding Street, Suite 112, Lafayette, LA, 70503' df.at[50525, 'Address'] = '8740 Asheville Hwy, Spartanburg, SC, 29316' df.at[397, 'Address'] = '1075 New Scotland Road, Albany, NY, 12208' df.at[8207, 'Address'] = '3500 Cleveland Avenue NW, Canton, OH, 44709' df.at[8292, 'Address'] = '231 Del Prado Blvd. S, Cape Coral, FL, 33990' df.at[11542, 'Address'] = '1320 South Fairview Road, Columbia MO, 65203' df.at[18372, 'Address'] = '7005 Woodbine Ave, Sacramento, CA, 95822' df.at[19249, 'Address'] = '4424 Innovation Drive, Fort Collins, CO, 80525' df.at[21626, 'Address'] = '1130 Eliza St.,, Green Bay, WI, 54301' df.at[38985, 'Address'] = '2211 Saint Andrews Blvd., Panama City FL, 32405' df.at[42682, 'Address'] = '5510 Munford Road, Raleigh NC, 27612' df.at[46031, 'Address'] = '2850 Logan Ave, San Diego, CA, 92113' df.at[46285, 'Address'] = '9510 Carmel Mountain Road, San Diego, CA, 92129' df.at[54169, 'Address'] = '3535 West Messala Way, Tucson, AZ, 85746' df.at[56231, 'Address'] = '2200 Minnesota Av. SE Washington DC, 20020' df.at[56603, 'Address'] = '3328 Martin Luther King Junior Avenue Southeast, Washington DC, 20032' df.at[10584, 'Address'] = '3375 W. 99th Street, Cleveland, OH, 44102' df.at[11668, 'Address'] = '220 Stoneridge Drive, Suite 403, Columbia, SC, 29210' df.at[23334, 'Address'] = '5300 El Camino Road, Las Vegas, NV, 89118' df.at[34536, 'Address'] = '3000 53rd St SW, Naples, FL, 34116' df.at[36778, 'Address'] = '2162 Mountain Blvd, Oakland, CA, 94611' df.at[41320, 'Address'] = '6415 SE Morrison Street, Portland, OR, 97215' df.at[42400, 'Address'] = '555 Double Eagle Ct., Suite 2000, Reno, NV, 89521' df.at[49117, 'Address'] = '12351 8th Ave NE, Seattle, WA, 98125' df.at[49183 , 'Address'] = '2120 21st Avenue South, Seattle, WA, 98144' df.at[56231, 'Address'] = '2200 Minnesota Av. SE, Washington, DC, 20020' df.at[11542, 'Address'] = '1320 South Fairview Road, Columbia, MO, 65203' df.at[38985, 'Address'] = '2211 Saint Andrews Blvd., Panama City, FL, 32405' df.at[42682, 'Address'] = '5510 Munford Road, Raleigh, NC, 27612' df.at[56603, 'Address'] = '3328 Martin Luther King Junior Avenue Southeast, Washington, DC, 20032' df['Address'] = df['Address'].str.replace('Washington, DC, Washington, DC,', 'Washington, DC,') df['Address'] = df['Address'].str.replace('New Orleans, LA, New Orleans, LA,', 'New Orleans, LA,') df['Address'] = df['Address'].str.replace('Albuquerque, NM, Albuquerque, NM,', 'Albuquerque, NM,' ) df['Address'] = df['Address'].str.replace('Chelsea, MA, Boston, MA,', 'Chelsea, MA,' ) df['Address'] = df['Address'].str.replace('Franklin, TN, Franklin, TN,', 'Franklin, TN,') df['Address'] = df['Address'].str.replace('Hales Corners, WI, Milwaukee, WI', 'Hales Corners, WI,') # 50525 df['Address'] = df['Address'].str.replace('Albany NY', 'Albany, NY,' ) df['Address'] = df['Address'].str.replace('Prineville OR', 'Prineville, OR,') df['Address'] = df['Address'].str.replace('Lancaster PA', 'Lancaster, PA,') df['Address'] = df['Address'].str.replace('Portland OR', 'Portland, OR,') df['Address'] = df['Address'].str.replace('San Diego CA', 'San Diego, CA,') df['Address'] = df['Address'].str.replace('austin', 'Austin') df['Address'] = df['Address'].str.replace('milwaukee', 'Milwaukee') df['Address'] = df['Address'].str.replace('greeley', 'Greeley') df['Address'] = df['Address'].str.replace('Oklahoma city', 'Oklahoma City') df['Address'] = df['Address'].str.replace('CARMEL', 'Carmel') df['Address'] = df['Address'].str.replace('COLORADO SPRINGS', 'Colorado Springs') df['Address'] = df['Address'].str.replace('GREENSBORO', 'Greensboro') df['Address'] = df['Address'].str.replace('SAN DIEGO', 'San Diego') df['Address'] = df['Address'].str.replace('Cherry Hill/Baltimore', 'Cherry Hill') df['Address'] = df['Address'].str.replace('AL ', 'AL, ') df['Address'] = df['Address'].str.replace('AK ', 'AK, ') df['Address'] = df['Address'].str.replace('AR ', 'AR, ') df['Address'] = df['Address'].str.replace('AZ ', 'AZ, ') df['Address'] = df['Address'].str.replace('CA ', 'CA, ') df['Address'] = df['Address'].str.replace('CO ', 'CO, ') df['Address'] = df['Address'].str.replace('CT ', 'CT, ') df['Address'] = df['Address'].str.replace('DE ', 'DE, ') df['Address'] = df['Address'].str.replace('DC ', 'DC, ') df['Address'] = df['Address'].str.replace('FL ', 'FL, ') df['Address'] = df['Address'].str.replace('GA ', 'GA, ') df['Address'] = df['Address'].str.replace('HI ', 'HI, ') df['Address'] = df['Address'].str.replace('IA ', 'IA, ') df['Address'] = df['Address'].str.replace('ID ', 'ID, ') df['Address'] = df['Address'].str.replace('IL ', 'IL, ') df['Address'] = df['Address'].str.replace('IN ', 'IN, ') df['Address'] = df['Address'].str.replace('KS ', 'KS, ') df['Address'] = df['Address'].str.replace('KY ', 'KY, ') df['Address'] = df['Address'].str.replace('LA ', 'LA, ') df['Address'] = df['Address'].str.replace('MA ', 'MA, ') df['Address'] = df['Address'].str.replace('MD ', 'MD, ') df['Address'] = df['Address'].str.replace('ME ', 'ME, ') df['Address'] = df['Address'].str.replace('MI ', 'MI, ') df['Address'] = df['Address'].str.replace('MN ', 'MN, ') df['Address'] = df['Address'].str.replace('MO ', 'MO, ') df['Address'] = df['Address'].str.replace('MS ', 'MS, ') df['Address'] = df['Address'].str.replace('MT ', 'MT, ') df['Address'] = df['Address'].str.replace('NC ', 'NC, ') df['Address'] = df['Address'].str.replace('ND ', 'ND, ') df['Address'] = df['Address'].str.replace('NH ', 'NH, ') df['Address'] = df['Address'].str.replace('NJ ', 'NJ, ') df['Address'] = df['Address'].str.replace('NM ', 'NM, ') df['Address'] = df['Address'].str.replace('NV ', 'NV, ') df['Address'] = df['Address'].str.replace('NY ', 'NY, ') df['Address'] = df['Address'].str.replace('OH ', 'OH, ') df['Address'] = df['Address'].str.replace('OK ', 'OK, ') df['Address'] = df['Address'].str.replace('OR ', 'OR, ') df['Address'] = df['Address'].str.replace('PA ', 'PA, ') df['Address'] = df['Address'].str.replace('RI ', 'RI, ') df['Address'] = df['Address'].str.replace('SC ', 'SC, ') df['Address'] = df['Address'].str.replace('SD ', 'SD, ') df['Address'] = df['Address'].str.replace('TN ', 'TN, ') df['Address'] = df['Address'].str.replace('TX ', 'TX, ') df['Address'] = df['Address'].str.replace('UT ', 'UT, ') df['Address'] = df['Address'].str.replace('VA ', 'VA, ') df['Address'] = df['Address'].str.replace('VT ', 'VT, ') df['Address'] = df['Address'].str.replace('WA ', 'WA, ') df['Address'] = df['Address'].str.replace('WI ', 'WI, ') df['Address'] = df['Address'].str.replace('WV ', 'WV, ') df['Address'] = df['Address'].str.replace('WY ', 'WY, ') ###Output _____no_output_____ ###Markdown Split Address Column- look for more discrepancies Create lengths to find discrepancies in 'Address' column ###Code df['City, State'] = df['Address'].str.split(',') # Finding length because there are anomalies with the information in the address column df['Length'] = df['City, State'].apply(lambda x: len(x) if x != None else 0 ) # 4 is the expected length df['Length'].unique() ###Output _____no_output_____ ###Markdown Create new dataframes for different lengths Length 1 ###Code # No Address - removing from df df = df[df['Length'] != 1] ###Output _____no_output_____ ###Markdown Length 7- https://stackoverflow.com/questions/6266727/python-cut-off-the-last-word-of-a-sentence- https://towardsdatascience.com/a-really-simple-way-to-edit-row-by-row-in-a-pandas-dataframe-75d339cbd313 ###Code df.loc[df['Length'] == 7] for index in df.index: if df.loc[index, 'Length'] == 7: content = df.loc[index, 'Address'] df.loc[index, 'Address'] = ', '.join(content.split(', ')[:-3]) ###Output _____no_output_____ ###Markdown Length 8 ###Code df.loc[df['Length'] == 8] for index in df.index: if df.loc[index, 'Length'] == 8: content = df.loc[index, 'Address'] df.loc[index, 'Address'] = ', '.join(content.split(', ')[:-3]) ###Output _____no_output_____ ###Markdown Check ###Code df = df.drop(columns = ['City, State', 'Length']) df['City, State'] = df['Address'].str.split(',') # Checking string lengths after cleaning df['Length'] = df['City, State'].apply(lambda x: len(x) if x != None else 0 ) df['Length'].unique() ###Output _____no_output_____ ###Markdown Create City, State columns ###Code df['City'] = df['City, State'].str[-3] df['State'] = df['City, State'].str[-2] ###Output _____no_output_____ ###Markdown Check Unique Cities ###Code print(df['City'].nunique()) df['City'].unique() ###Output 396 ###Markdown Check Unique States ###Code print(df['State'].nunique()) df['State'].unique() df.loc[df['State'] == ''] df.at[32718, 'Address'] = '5425 S. 111th Street, Hales Corners, WI, 53222' df.at[32718, 'State'] = 'WI' df.at[32718, 'City'] = 'Hales Corners' ###Output _____no_output_____ ###Markdown Update School Score- change to int so data can be sorted by the value ###Code df['Score'] = df['Score'].str.replace('/10', '') df['Score'] = df['Score'].astype(int) ###Output _____no_output_____ ###Markdown Separating into PK, K, Elementary, Middle, High School- https://stackoverflow.com/questions/61877712/check-if-an-item-in-a-list-is-available-in-a-column-which-is-of-type-list ###Code def parse_grades(grades_string): GRADES = ['PK', 'K', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', 'Ungraded'] # Remove & for grades list grades_string = grades_string.replace(' &', ',') # Grades list - will add to separated grade string to grades grades = [] # split strings based on ',' string_list = grades_string.split(',') # look for sections of list with '-' dash = "-" for i in range(len(string_list)): clean_string = string_list[i].strip() if dash in clean_string: # split using '-', loop and add to grades variable start_grade, end_grade = clean_string.split(dash) grades += GRADES[GRADES.index(start_grade) : GRADES.index(end_grade)+ 1] else: # add string to grades grades.append(clean_string) return grades print(df['Grades'].nunique()) unique_grades_combination = df['Grades'].unique() def test_complete_dataset(unique_grades_combination): # create a loop that goes thru dataset and invoke parse_grades with each element separated_grades_list = [] for i in unique_grades_combination: separated_grades_list.append(parse_grades(i)) dictionary_grade_list = dict(zip(unique_grades_combination, separated_grades_list)) return dictionary_grade_list dictionary = test_complete_dataset(unique_grades_combination) df['Clean_Grades'] = df['Grades'].map(dictionary) high_school = ['9', '10', '11', '12'] middle_school = ['6', '7', '8'] elementary = ['K', '1', '2', '3', '4', '5'] pre_k = ['PK'] set1 = set(high_school) df['High School (9-12)'] = df['Clean_Grades'].apply(lambda x: any([k in x for k in set1])) set2 = set(middle_school) df['Middle School (6-8)'] = df['Clean_Grades'].apply(lambda x: any([k in x for k in set2])) set3 = set(elementary) df['Elementary (K-5)'] = df['Clean_Grades'].apply(lambda x: any([k in x for k in set3])) set4 = set(pre_k) df['Pre-Kindergarten (PK)'] = df['Clean_Grades'].apply(lambda x: any([k in x for k in set4])) df[['High School (9-12)', 'Middle School (6-8)', 'Elementary (K-5)', 'Pre-Kindergarten (PK)']] = df[['High School (9-12)', 'Middle School (6-8)', 'Elementary (K-5)', 'Pre-Kindergarten (PK)']] * 1 df['Grades'] = df['Grades'].str.replace(' & Ungraded', '') ###Output _____no_output_____
notebooks/Basic experiment tools dev.ipynb
###Markdown Section II. Dask image parallelization dev notebookCreated on: Monday March 28th, 2022 Created by: Jacob Alexander Rose ###Code # %%bash # !export OMP_NUM_THREADS=1 # export MKL_NUM_THREADS=1 # export OPENBLAS_NUM_THREADS=1 # echo '${OMP_NUM_THREADS}' # import dask # @dask.delayed # def load(filename): # ... # @dask.delayed # def process(data): # ... # @dask.delayed # def save(data): # ... # def f(filenames): # results = [] # for filename in filenames: # data = load(filename) # data = process(data) # result = save(data) # return results # dask.compute(f(filenames)) # source: https://examples.dask.org/machine-learning/torch-prediction.html from typing import * import glob import toolz import dask import dask.array as da import torch from torchvision import transforms from PIL import Image import pandas as pd pd.set_option("display.max_colwidth", 150) import numpy as np from imutils.ml.data.datamodule import Herbarium2022DataModule, Herbarium2022Dataset # @dask.delayed # def transform(img): # trn = transforms.Compose([ # transforms.Resize(256), # transforms.CenterCrop(224), # transforms.ToTensor(), # transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # ]) # return trn(img) import os from pathlib import Path import dask import dask.dataframe as dd ##################################################### @dask.delayed def load(path: str, fs=__builtins__): with fs.open(path, 'rb') as f: img = Image.open(f).convert("RGB") return img @dask.delayed def process(img: Image.Image, size: Tuple[int]): img = img.resize(size=size, resample=Image.BICUBIC) return img @dask.delayed def save(img: Image.Image, target_path: str, fs=__builtins__): with fs.open(target_path, 'wb') as f: img = Image.save(f, format="jpeg") return os.path.isfile(target_path) def run(data_chunk: pd.DataFrame): results = [] for filename in filenames: data = load(filename) data = process(data) result = save(data) return results # dask.compute(f(filenames)) from rich import print as pp from dataclasses import dataclass, field @dataclass class Config: source_root_dir: Path = Path('/media/data_cifs/projects/prj_fossils/data/raw_data/herbarium-2022-fgvc9_resize') target_root_dir_template: Path = Path('/media/data_cifs/projects/prj_fossils/data/raw_data/herbarium-2022-fgvc9_resize') target_resolution: int = 512 target_root_dir: str = field(init=False) def __post_init__(self): self.target_root_dir = Path(f"{str(self.target_root_dir_template)}-{self.target_resolution}") os.makedirs(self.target_root_dir, exist_ok=True) def get_target_path(self, source_path: Path) -> Path: """ Finds the source path's location relative to the source root, and returns a new path at the same location relative to the target root. - source and target root dirs are specified at instantiation of config, must update instance attributes in order to chaange this method. """ return str(self.target_root_dir / Path(source_path).relative_to(self.source_root_dir)) def process_full_dataframe(self, data_df: pd.DataFrame) -> pd.DataFrame: """ Prepare dataframe for large-scale image file processing. Creates a `target_path` column in data_df and fills it with values produced by self.get_target_path, then renames is as `path` while renaming the original colmn `path` to be `source_path`. """ data_df = data_df.assign(target_path = data_df.path.apply(self.get_target_path, meta=("target_path", "string"))) data_df = data_df.rename(columns={"path":"source_path", "target_path":"path"}) data_df = data_df.sort_index() return data_df def read_dask_dataframe_from_csv(self, csv_path: str, columns: List[str], col_dtypes: Dict[str, Any]) -> dd.DataFrame: data_df = dd.read_csv(csv_path, usecols=["Unnamed: 0", *columns], dtype=col_dtypes ).rename(columns={"Unnamed: 0":"idx"}) data_df = data_df.set_index("idx") data_df = data_df.repartition(16) return data_df cfg = Config() pp(cfg) catalog_dir = "/media/data/jacob/GitHub/image-utils/imutils/big/data" train_csv_path = Path(catalog_dir, "train_metadata.csv") test_csv_path = Path(catalog_dir, "test_metadata.csv") train_columns = ['path', 'image_id', 'category_id', 'genus_id', 'scientificName', 'Species', 'institution_id', 'family', 'genus', 'species', 'file_name', 'collectionCode'] train_col_dtypes = {'path':"string", 'image_id':"string", 'category_id': "category", 'genus_id': "category", 'scientificName': "category", 'Species': "category", 'institution_id': "category", 'family': "category", 'genus': "category", 'species': "category", 'file_name': "string", 'collectionCode': "category"} test_columns = ['path', 'image_id', 'file_name'] test_col_dtypes = {'path':"string", 'image_id':"string", 'file_name': "string"} train_df = cfg.read_dask_dataframe_from_csv(csv_path=train_csv_path, columns=train_columns, col_dtypes=train_col_dtypes) test_df = cfg.read_dask_dataframe_from_csv(csv_path=test_csv_path, columns=test_columns, col_dtypes=test_col_dtypes) train_df.head() test_df.head() # train_df = dd.read_csv(train_csv_path, usecols=["Unnamed: 0", *train_columns], dtype=train_col_dtypes # ).rename(columns={"Unnamed: 0":"idx"}) # train_df = train_df.set_index("idx") # train_df = train_df.repartition(16) # train_df.head() # data_df = data_df.assign(target_path = data_df.path.apply(cfg.get_target_path, meta=("target_path", "string"))) # data_df = data_df.rename(columns={"path":"source_path", # "target_path":"path"}) # data_df = data_df.sort_index() seed = 85 random_state = np.random.RandomState(seed=seed) # test_df = dd.read_csv(train_csv_path, index=0) # train_df = pd.read_csv(train_csv_path, index_col=0, usecols=train_columns, dtype=train_col_dtypes) # train_df.describe(include='all') test_df = dd.read_csv(test_csv_path, usecols=["Unnamed: 0", *test_columns], dtype=test_col_dtypes ).rename(columns={"Unnamed: 0":"idx"}) test_df = test_df.set_index("idx") test_df = test_df.repartition(16) test_df.head() %%time train_df = dd.read_csv(train_csv_path, usecols=["Unnamed: 0", *train_columns], dtype=train_col_dtypes ).rename(columns={"Unnamed: 0":"idx"}) # ).set_index("idx") train_df = train_df.set_index("idx") train_df = train_df.repartition(16) train_df.head() ###Output CPU times: user 10.5 s, sys: 1.57 s, total: 12.1 s Wall time: 14.2 s ###Markdown Take a small fraction of dataset for testing ###Code data_df = train_df.sample(frac=0.001, replace=False, random_state=random_state) data_df.visualize() for batch in data_df.itertuples(): break print(type(batch)) print(dir(batch)) batch.scientificName batch.category_id from IPython.display import display display(batch) !ls -alh '/media/data_cifs/projects/prj_fossils/data/raw_data/herbarium-2022-fgvc9_resize' df = data_df.compute() df data_df.head(2).path.apply(lambda x: Path(x).parent.parent.parent.parent) df = data_df.loc[0,:].persist() df.persist() topk = 2 ckpt_dir = "/media/data_cifs/projects/prj_fossils/users/jacob/experiments/2022/herbarium2022/hydra_experiments/2022-03-28/09-32-27/ckpts/" # ckpt_paths = [os.path.join(ckpt_dir, file_path) for file_path in sorted(os.listdir(ckpt_dir), reverse=True)][:2] # pp(ckpt_paths) ckpt_path = "/media/data_cifs/projects/prj_fossils/users/jacob/experiments/2022/herbarium2022/hydra_experiments/2022-03-28/09-32-27/ckpts/epoch=10-val_loss=1.901-val_macro_F1=0.567/model_weights.ckpt" # jrose/herbarium2022/2up1al9o import os import wandb artifact = wandb.Artifact("model-weights", "checkpoints") # Add Files and Assets to the artifact using # `.add`, `.add_file`, `.add_dir`, and `.add_reference` artifact.add_file(ckpt_path) artifact.save() os.environ["WANDB_PROJECT"]="herbarium2022" !set | grep WANDB api = wandb.Api() # run = api.run(overrides=dict(entity="jrose", project="herbarium2022", run="2up1al9o")) run = api.run("herbarium2022/2up1al9o") print(run) run.upload_file(ckpt_path) # for path in ckpt_paths: # print(f"Uploading file to wandb: {path}") # run.upload_file(path) # run = wandb.init(project=PROJECT_NAME, resume=True) run.finish # Herbarium2022DataModule, catalog_dir = "/media/data/jacob/GitHub/image-utils/imutils/big/data" data = Herbarium2022Dataset(catalog_dir=catalog_dir, subset="train", transform=transform) ###Output _____no_output_____ ###Markdown Download from wandb the best resnext50_4x30d or w/e from Experiment 18 2022-03-28 ###Code import wandb run = wandb.init() artifact = run.use_artifact('jrose/herbarium2022/model-weights:v8', type='checkpoints') artifact_dir = artifact.download() ###Output _____no_output_____ ###Markdown etc ###Code data_df.loc[:5,:] %%time demo = data_df.loc[:10,:].path.apply(cfg.get_target_path, meta=("target_path", "string")) demo # demo.compute() demo = demo.persist() demo demo.shape[0].compute() dir(demo) data_df = data_df.assign(target_path = data_df.path.apply(cfg.get_target_path, meta=("target_path", "string"))) data_df.head(10) # data_df = data_df.persist() print(data_df.shape[0].compute()) # data_df = data_df.persist() print(train_df.shape[0].compute()) 839772/836 train_df.visualize() def partition_info(data): print(f"type(data): {type(data)}") print(f"data.shape: {data.shape}") result = train_df.map_partitions(partition_info) # train_ddf = train_df.to_delayed() result.compute() train_ddf %time train_df.head() import torch torch.cat? # decoded_targets = data.get_decoded_targets() # decoded_targets paths = data.paths.sample(100).values.tolist() # paths import sys from PIL import Image from tqdm import tqdm for infile in tqdm(paths): try: with Image.open(infile) as im: print(infile, im.format, f"{im.size}x{im.mode}") except OSError: pass data[0] ###Output _____no_output_____ ###Markdown prefect ###Code import datetime import os import prefect from prefect import task from prefect.engine.signals import SKIP from prefect.tasks.shell import ShellTask @task def curl_cmd(url: str, fname: str) -> str: """ The curl command we wish to execute. """ if os.path.exists(fname): raise SKIP("Image data file already exists.") return "curl -fL -o {fname} {url}".format(fname=fname, url=url) # ShellTask is a task from the Task library which will execute a given command in a subprocess # and fail if the command returns a non-zero exit code download = ShellTask(name="curl_task", max_retries=2, retry_delay=datetime.timedelta(seconds=10)) ###Output _____no_output_____ ###Markdown etc ###Code objs = [load(x) for x in glob.glob("hymenoptera_data/val/*/*.jpg")] To load the data from cloud storage, say Amazon S3, you would use import s3fs fs = s3fs.S3FileSystem(...) objs = [load(x, fs=fs) for x in fs.glob(...)] tensors = [transform(x) for x in objs] batches = [dask.delayed(torch.stack)(batch) for batch in toolz.partition_all(10, tensors)] batches[:5] @dask.delayed def predict(batch, model): with torch.no_grad(): out = model(batch) _, predicted = torch.max(out, 1) predicted = predicted.numpy() return predicted Moving the model around¶ PyTorch neural networks are large, so we don’t want to repeat it many times in our task graph (once per batch). import pickle dask.utils.format_bytes(len(pickle.dumps(model))) '44.80 MB' Instead, we’ll also wrap the model itself in dask.delayed. This means the model only shows up once in the Dask graph. Additionally, since we performed fine-tuning in the above (and that runs on a GPU if its available), we should move the model back to the CPU. dmodel = dask.delayed(model.cpu()) # ensuring model is on the CPU Now we’ll use the (delayed) predict method to get our predictions. predictions = [predict(batch, dmodel) for batch in batches] dask.visualize(predictions[:2]) predictions = dask.compute(*predictions) predictions ###Output _____no_output_____ ###Markdown Scratch ###Code # import wandb # import os from pytorch_lightning import utilities #.rank_zero import rank_zero_only # import wandb # import os from pytorch_lightning import plugins #, utilities #.rank_zero import rank_zero_only dir(plugins) os.path.isfile("/media/data_cifs/projects/prj_fossils/users/jacob/experiments/2022/herbarium2022/hydra_experiments/2022-03-28/00-59-52/ckpts/epoch=00-val_loss=10.447-val_macro_F1=0.000/model_weights.ckpt") os.listdir(os.path.dirname("/media/data_cifs/projects/prj_fossils/users/jacob/experiments/2022/herbarium2022/hydra_experiments/2022-03-28/00-59-52/ckpts/epoch=00-val_loss=10.447-val_macro_F1=0.000/model_weights.ckpt")) ckpts = wandb.Artifact("experiment-ckpts", type="checkpoints") ckpt = "/media/data_cifs/projects/prj_fossils/users/jacob/experiments/2022/herbarium2022/hydra_experiments/2022-03-28/00-18-52/ckpts/epoch=00-val_loss=22.030-val_macro_F1=0.000.ckpt" ckpts.add_file(ckpt)#trainer.checkpoint_callback.best_model_path) exp.use_artifact(ckpts) ###Output _____no_output_____ ###Markdown Section I. Basic experiment tools dev notebookCreated on: Tuesday March 22nd, 2022 Created by: Jacob Alexander Rose ###Code %load_ext autoreload %autoreload 2 import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" from IPython.display import display from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" import pandas as pd from pathlib import Path from icecream import ic from rich import print as pp import warnings warnings.simplefilter(action='ignore', category=FutureWarning) # from imutils.big.datamodule import Herbarium2022DataModule, Herbarium2022Dataset from imutils.ml.data.datamodule import Herbarium2022DataModule, Herbarium2022Dataset from imutils.ml.utils.etl_utils import ETL import pytorch_lightning as pl from torchvision import transforms as T import argparse import imutils from hydra.experimental import compose, initialize, initialize_config_dir import hydra from omegaconf import DictConfig, OmegaConf from typing import * 251932/256 ###Output _____no_output_____ ###Markdown helper display func ###Code def display_train_timing_info(batches_per_epoch: int, batches_per_second: float, batch_size: int): samples_per_epoch = batches_per_epoch*batch_size seconds_per_epoch = batches_per_epoch * batches_per_second min_per_epoch = seconds_per_epoch / 60 hrs_per_epoch = min_per_epoch / 60 samples_per_second = batches_per_second * batch_size batches_per_min = batches_per_second * 60 batches_per_hr = batches_per_min * 60 samples_per_min = samples_per_second * 60 samples_per_hr = samples_per_min * 60 pp([f"seconds_per_epoch: {seconds_per_epoch:>,}", f"min_per_epoch: {min_per_epoch:.4f}", f"hrs_per_epoch: {hrs_per_epoch:.4f}", f"epochs_per_second: {1/seconds_per_epoch:.4f}", f"epochs_per_min: {1/min_per_epoch:.4f}", f"epochs_per_hr: {1/hrs_per_epoch:.4f}", f"batches_per_epoch: {batches_per_epoch:.4g}", f"samples_per_epoch: {samples_per_epoch:.4g}", f"seconds_per_batch: {1/batches_per_second:.4f}", f"batches_per_second: {batches_per_second:.4f}", f"batches_per_min: {batches_per_min:.4f}", f"batches_per_hr: {batches_per_hr:.4f}", f"samples_per_second: {samples_per_second:.4f}", f"samples_per_min: {samples_per_min:.4f}", f"samples_per_hr: {samples_per_hr:.4g}", f"batch_size: {batch_size}"]) ###Output _____no_output_____ ###Markdown Experiment 2 ###Code batches_per_second = (1/1.7) batches_per_epoch = 4374 batch_size=48 print(f"Experiment #2: batch_size={batch_size}, num_processes=4, num_devices=2") print("Using 50% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch, batches_per_second=batches_per_second, batch_size=batch_size) print("(Extrapolated prediction) Using 100% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch*2, batches_per_second=batches_per_second, batch_size=batch_size) ###Output Experiment #2: batch_size=48, num_processes=4, num_devices=2 Using 50% of samples ###Markdown Experiment 3 ###Code batches_per_second = (1/2.15) batches_per_epoch = 3280 batch_size=64 print(f"Experiment #3: batch_size=64, num_processes=4, num_devices=2") print("Using 50% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch, batches_per_second=batches_per_second, batch_size=batch_size) print("(Extrapolated prediction) Using 100% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch*2, batches_per_second=batches_per_second, batch_size=batch_size) ###Output Experiment #3: batch_size=64, num_processes=4, num_devices=2 Using 50% of samples ###Markdown Experiment 4 ###Code batches_per_second = (1/3.3) batches_per_epoch = 2187 batch_size=96 print(f"Experiment #4: batch_size={batch_size}, num_processes=4, num_devices=2") print("Using 50% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch, batches_per_second=batches_per_second, batch_size=batch_size) print("(Extrapolated prediction) Using 100% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch*2, batches_per_second=batches_per_second, batch_size=batch_size) ###Output Experiment #4: batch_size=96, num_processes=4, num_devices=2 Using 50% of samples ###Markdown Experiment 5Started: 3:15 AM - 2022-03-23 Ended: 4:30 AM - 2022-03-23 ###Code batches_per_second = (1/4.3) batches_per_epoch = 1640 batch_size=128 print(f"Experiment #5: batch_size={batch_size}, num_processes=4, num_devices=2") print("Using 50% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch, batches_per_second=batches_per_second, batch_size=batch_size) print("(Extrapolated prediction) Using 100% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch*2, batches_per_second=batches_per_second, batch_size=batch_size) ###Output Experiment #5: batch_size=128, num_processes=4, num_devices=2 Using 50% of samples ###Markdown Experiment 6Started: 4:30 AM - 2022-03-23 Ended: 5:45 AM - 2022-03-23 ###Code batches_per_second = (1/5.15) batches_per_epoch = 1458 batch_size=144 print(f"Experiment #6: batch_size={batch_size}, num_processes=4, num_devices=2") print("Using 50% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch, batches_per_second=batches_per_second, batch_size=batch_size) print("(Extrapolated prediction) Using 100% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch*2, batches_per_second=batches_per_second, batch_size=batch_size) batches_per_second = (1/4.87) batches_per_epoch = 1458 batch_size=144 print(f"Experiment #6: batch_size={batch_size}, num_processes=4, num_devices=2") print("Using 50% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch, batches_per_second=batches_per_second, batch_size=batch_size) print("(Extrapolated prediction) Using 100% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch*2, batches_per_second=batches_per_second, batch_size=batch_size) ###Output Experiment #6: batch_size=144, num_processes=4, num_devices=2 Using 50% of samples ###Markdown Experiment 7- Using Accumulate_grad_batches=2Started: 5:45 AM - 2022-03-23 Ended: x:xx AM - 2022-03-23 ###Code batches_per_second = (1/4.81) batches_per_epoch = 1458 batch_size=144 print(f"Experiment #7: batch_size={batch_size}, num_processes=4, num_devices=2") print("Using 50% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch, batches_per_second=batches_per_second, batch_size=batch_size) print("(Extrapolated prediction) Using 100% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch*2, batches_per_second=batches_per_second, batch_size=batch_size) ###Output Experiment #7: batch_size=144, num_processes=4, num_devices=2 Using 50% of samples ###Markdown Experiment 8- Using Accumulate_grad_batches=2- lr=1e-2- Removed base_callbacks.yaml: -train.callbacks.lr_monitor \ -train.callbacks.early_stopping \ -train.callbacks.model_checkpointStarted: 9:00 AM - 2022-03-23 Ended: x:xx AM - 2022-03-23 ###Code batches_per_second = (1/ 4.26) batches_per_epoch = 229 batch_size=128 print(f"Experiment #8: batch_size={batch_size}, num_processes=4, num_devices=2") print("Using 1% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch, batches_per_second=batches_per_second, batch_size=batch_size) print("Using 50% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch*50, batches_per_second=batches_per_second, batch_size=batch_size) print("(Extrapolated prediction) Using 100% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch*100, batches_per_second=batches_per_second, batch_size=batch_size) ###Output Experiment #8: batch_size=128, num_processes=4, num_devices=2 Using 1% of samples ###Markdown Experiment 11- Using Accumulate_grad_batches=1- lr=0.5e-3- freeze_backbone_up_to=-4Started: 12:25 PM - 2022-03-23 Ended: 2:55 PM - 2022-03-23 ###Code batches_per_second = (1/ 4.53) batches_per_epoch = 3282 batch_size=128 print(f"Experiment #11: batch_size={batch_size}, num_processes=4, num_devices=2") print("Using 1% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch, batches_per_second=batches_per_second, batch_size=batch_size) print("Using 50% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch*50, batches_per_second=batches_per_second, batch_size=batch_size) print("(Extrapolated prediction) Using 100% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch*100, batches_per_second=batches_per_second, batch_size=batch_size) ###Output Experiment #11: batch_size=128, num_processes=4, num_devices=2 Using 1% of samples ###Markdown Experiment 12- Using Accumulate_grad_batches=1- lr=1e-2- freeze_backbone_up_to=-4- batch_size=128- preprocess_size=256- resolution=224Started: 3:00 PM - 2022-03-23 Ended: x:xx AM - 2022-03-23 ###Code batches_per_second = (1/ 2.58) batches_per_epoch = 3282 batch_size=128 print(f"Experiment #8: batch_size={batch_size}, num_processes=4, num_devices=2") print("Using 100% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch, batches_per_second=batches_per_second, batch_size=batch_size) print("Using 50% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch/2, batches_per_second=batches_per_second, batch_size=batch_size) print("(Extrapolated prediction) Using 1% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch/100, batches_per_second=batches_per_second, batch_size=batch_size) ###Output Experiment #8: batch_size=128, num_processes=4, num_devices=2 Using 100% of samples ###Markdown Experiment 13(Running in parallel to 12, since 4 GPUs just opened up.Tried doubling the scaling of the lr to accomodate the doubling of the of GPUs- Increased num_devices from 2->4- Using Accumulate_grad_batches=1- lr=2e-2- freeze_backbone_up_to=-4- batch_size=128- preprocess_size=256- resolution=224Started: 3:52 PM - 2022-03-23 Ended: x:xx AM - 2022-03-23 ###Code batches_per_second = (1/ 4.2) batches_per_epoch = 1642 batch_size=128 print(f"Experiment #8: batch_size={batch_size}, num_processes=4, num_devices=2") print("Using 100% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch, batches_per_second=batches_per_second, batch_size=batch_size) print("Using 50% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch/2, batches_per_second=batches_per_second, batch_size=batch_size) print("(Extrapolated prediction) Using 1% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch/100, batches_per_second=batches_per_second, batch_size=batch_size) ###Output Experiment #8: batch_size=128, num_processes=4, num_devices=2 Using 100% of samples ###Markdown Experiment 14- Increased num_devices from 4- Using Accumulate_grad_batches=2- lr=1e-3- freeze_backbone=False- batch_size=64- preprocess_size=256- resolution=224Started: 5:00 PM - 2022-03-23 Ended: x:xx AM - 2022-03-24 ###Code print(f"{1/((3282)/(90*60)):.2f}") batches_per_second = (1/1.65 ) batches_per_epoch = 3282 batch_size=64 print(f"Experiment #8: batch_size={batch_size}, num_processes=4, num_devices=2") print("Using 100% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch, batches_per_second=batches_per_second, batch_size=batch_size) print("Using 50% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch/2, batches_per_second=batches_per_second, batch_size=batch_size) print("(Extrapolated prediction) Using 1% of samples") display_train_timing_info(batches_per_epoch=batches_per_epoch/100, batches_per_second=batches_per_second, batch_size=batch_size) 229/16/60 27.96*2 ###Output _____no_output_____
Python_Notebook.ipynb
###Markdown Type Conversions ###Code #This is type conversion code result='10' print(type(result)) print(float(result)) print(int(result)) #Converting string into list mystring='abcdef' print(type(mystring)) print(list(mystring)) print(tuple(mystring)) #converting a list to Tuple mylist=['abc',10,'def',25.5] print(type(mylist)) print(tuple(mylist)) #converting list to string changed_string=str(mylist) print(changed_string) print(type(changed_string)) #working with dictionary #converting dictionary to list - it will consider only values and not keys my_dict={'name':'Yatheesh', 'age': 22} print(list(my_dict)) #converting range to list and tuple my_range=range(10) print(list(my_range)) print(tuple(my_range)) ###Output _____no_output_____ ###Markdown OPERATORS Arithematic Operators ###Code #ARITHEMATIC OPERATORS #Addition (+) print(2+3) print('hello'+'world') print(10.234+63.248) list1=['hello','Yatheesh', 10,55] list2=['i am','God',100,6348] print(list1+list2) print(False+True) #list and tuple cannot be added #Subtraction (-) print(2-3) print(10.23-6.874) print(True-True) #Multiplication(*) print('&&&&&&&&&&&&&&&&&&&') print('&'*15) mystringo='class' print(mystringo*5) #Division(/) print(98/32) print(False/6) #Floor Division (//) - Removes decimal places and keeps only integer print(7/3) print(7//3) #exponents(**) print(2**5) print(25**6) #Modulus(%) print(18.368%4) ###Output _____no_output_____ ###Markdown Assigment Operators ###Code #ASSIGNMENT OPERATORS var1=10 var2=10 var1+=20 #var1=var1+20 var2-=30 #var2=var2-20 print(var1,var2) ###Output _____no_output_____ ###Markdown Comparison Operators ###Code #COMPARISON OPERATORS var1=10 var2=20 var3=20 print(var1==var2) print(var2==var3) print(10==20) print('hello'=='helllooo') print(False==False) print(10<20) print(20.34>845.368) ###Output _____no_output_____ ###Markdown Logical Operators ###Code #LOGICAL OPERATORS print(True and True) print(True and False) print(True or False) var1=10 var2=55 str1='hello' str2='hello' print(var1<var2 and str1 != str2) ###Output _____no_output_____ ###Markdown ###Code # Importing the libraries we will need # Importing the pandas library # import pandas as pd # Importing the numpy library # import numpy as np ###Output _____no_output_____ ###Markdown Reading our Dataset from CSV file ###Code # Let's read the data from the CSV file and create the dataframe to be used # df = pd.read_csv("//content/Autolib_dataset (2) (1).csv") df ###Output _____no_output_____ ###Markdown Previewing our Dataset ###Code #previewing the first ten rows of our data df.head(10) df ###Output _____no_output_____ ###Markdown Accessing Information about our Dataset ###Code #information about our dataset df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 5000 entries, 0 to 4999 Data columns (total 25 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Address 5000 non-null object 1 Cars 5000 non-null int64 2 Bluecar counter 5000 non-null int64 3 Utilib counter 5000 non-null int64 4 Utilib 1.4 counter 5000 non-null int64 5 Charge Slots 5000 non-null int64 6 Charging Status 5000 non-null object 7 City 5000 non-null object 8 Displayed comment 111 non-null object 9 ID 5000 non-null object 10 Kind 5000 non-null object 11 Geo point 5000 non-null object 12 Postal code 5000 non-null int64 13 Public name 5000 non-null object 14 Rental status 5000 non-null object 15 Scheduled at 47 non-null object 16 Slots 5000 non-null int64 17 Station type 5000 non-null object 18 Status 5000 non-null object 19 Subscription status 5000 non-null object 20 year 5000 non-null int64 21 month 5000 non-null int64 22 day 5000 non-null int64 23 hour 5000 non-null int64 24 minute 5000 non-null int64 dtypes: int64(12), object(13) memory usage: 976.7+ KB ###Markdown Cleaning our Dataset ###Code df.drop(['Displayed comment', 'ID', 'Geo point', 'Address', 'Cars'], axis = 1, inplace = True) df #Outliers Q1 = df.quantile(0.25) Q3 = df.quantile(0.75) IQR = Q3 - Q1 (df < (Q1 - 1.5 * IQR)) |(df > (Q3 + 1.5 * IQR)) ###Output _____no_output_____ ###Markdown Completeness ###Code #finding missing values df.isnull().any() ###Output _____no_output_____ ###Markdown Consistency ###Code df[df.duplicated()] df2=df.drop_duplicates() df.head() ###Output _____no_output_____ ###Markdown Uniformity ###Code # Creating a new column where we find the difference in the number of bluecars at the station df2['Bluecar_Diff'] = df2['Bluecar counter'].diff() df2.head() ###Output _____no_output_____ ###Markdown The most popular hour of the dayfor picking up a shared electriccar(Bluecar) in the city of Paris over the month of April 2018 ###Code df2[df2['Bluecar_Diff'] < 0].groupby('hour')['hour'].count().sort_values(ascending= False) ###Output _____no_output_____ ###Markdown The most popularhour for returning cars? ###Code df2[df2['Bluecar_Diff'] > 0].groupby('hour')['hour'].count().sort_values(ascending= False) ###Output _____no_output_____ ###Markdown What station is the most popular ###Code #overall df2[(df2['Kind'] == 'STATION') & (df2['Status'] == 'ok')].groupby('Public name')['Public name'].count().sort_values(ascending= False) ###Output _____no_output_____ ###Markdown What station is at the most popular picking hour ###Code df2[(df2['Kind'] == 'STATION') & (df2['Status'] == 'ok') & (df2['hour'] == 21)].groupby('Public name')['Public name'].count().sort_values(ascending= False) ###Output _____no_output_____ ###Markdown What postal code is the most popular for picking up Blue cars? Does the most popular station belong to that postal code?Overall? ###Code df2[(df2['Kind'] == 'STATION') & (df2['Status'] == 'ok')].groupby('Postal code')['Postal code'].count().sort_values(ascending= False) ###Output _____no_output_____ ###Markdown What postal code is the most popular for picking up Blue cars? Does the most popular station belong to that postal code? ###Code #At the most popular picking hour? df2[(df2['Kind'] == 'STATION') & (df2['Status'] == 'ok') & (df2['hour'] == 4)].groupby('Postal code')['Postal code'].count().sort_values(ascending= False) ###Output _____no_output_____ ###Markdown Utilib counter ###Code #creating a new column where we find the difference in the number of utilib at the counter df2['Utilib_Diff'] = df2['Utilib counter'].diff() df2.head() #The most popular hour of the dayfor picking up a shared electriccar(Utilib) in the city of Paris over the month of April 2018 df2[df2['Utilib_Diff'] < 0].groupby('hour')['hour'].count().sort_values(ascending= False) #What is the most popular hour for returning cars? df2[df2['Utilib_Diff'] > 0].groupby('hour')['hour'].count().sort_values(ascending= False) #What station is the most popular? #Overall df2[(df2['Kind'] == 'STATION') & (df2['Status'] == 'ok') & (df2['hour'] == 5)].groupby('Public name')['Public name'].count().sort_values(ascending= False) #What station is the most popular? #At the most popular picking hour? df2[(df2['Kind'] == 'STATION') & (df2['Status'] == 'ok') & (df2['hour'] == 5)].groupby('Postal code')['Postal code'].count().sort_values(ascending= False) #What postal code is the most popular for picking up utilib? Does the most popular station belong to that postal code? #At the most popular picking hour? df2[(df2['Kind'] == 'STATION') & (df2['Status'] == 'ok') & (df2['hour'] == 4)].groupby('Postal code')['Postal code'].count().sort_values(ascending= False) ###Output _____no_output_____
predictive-analytics/foundations-of-predictive-analytics-in-python/foundations-of-predictive-analytics-in-python-2.ipynb
###Markdown 1. The basetable timeline ###Code import pandas as pd import datetime def min_max(column): return pd.Series(index=['min','max'], data=[column.min(), column.max()]) gifts = pd.read_csv('data2/gifts.csv') gifts.info() gifts.head(2) gifts['date'] = pd.to_datetime(gifts['date']) gifts.info() gifts.head(2) gifts.apply(min_max) gifts.describe() gifts.drop(['Unnamed: 0'], axis=1, inplace=True) gifts.head() start_target = datetime.datetime(year=2018, month=5, day=1) end_target = datetime.datetime(year=2018, month=8, day=1) start_target, end_target gifts_target = gifts[(gifts['date']>=start_target) & (gifts['date']<end_target)] gifts_target.info() gifts_pred_variables = gifts[(gifts['date']<start_target)] gifts_pred_variables.info() gifts_pred_variables.head(2) gifts_pred_variables.apply(min_max) ###Output _____no_output_____ ###Markdown 1.1. The population ###Code donation_2016 = gifts[gifts['date'].dt.year==2016] donation_2016.info() donors_include = set(donation_2016['id']) len(donors_include) donation_2017 = gifts[(gifts['date'].dt.year==2017) & (gifts['date'].dt.month<5)] donation_2017.info() donors_exclude = set(donation_2017['id']) len(donors_exclude) population = donors_include.difference(donors_exclude) len(population) ###Output _____no_output_____ ###Markdown Population is the list of people who unsubscribe in 2017. Since you have **12,062** ids in 2016 and **2,305** ids in 2017 1.2. The target ###Code basetable = pd.read_csv('data2/basetable.csv') basetable.info() basetable.head() basetable.describe() basetable2 = pd.read_csv('data2/basetable_ex_2_13.csv') basetable2.info() basetable2.head() basetable2.apply(min_max) basetable3 = pd.read_csv('data2/basetable_interactions.csv') basetable3.info() basetable3.head() basetable3.apply(min_max) living_places = pd.read_csv('data2/living_places.csv') living_places.info() living_places.iloc[:, 1:3] = living_places.iloc[:, 1:3].apply(pd.to_datetime, errors='coerce') living_places.info() living_places.head() living_places.apply(min_max) basetable['target'] = pd.Series([1 if donor_id in population else 0 for donor_id in basetable['donor_ID']]) basetable.info() basetable.head() basetable['target'].value_counts() '''Target period''' start_target = datetime.datetime(year=2017, month=1, day=1) end_target = datetime.datetime(year=2018, month=1, day=1) start_target, end_target '''Target period donation''' gifts_target = gifts[(gifts['date']>=start_target) & (gifts['date']<end_target)] gifts_target.info() gifts_target.head(2) '''Group and sum donations by donor''' gifts_target_byid = gifts_target.groupby('id')['amount'].sum().reset_index() gifts_target_byid.info() gifts_target_byid.head(2) '''Derive targets and add to basetable''' targets = list(gifts_target_byid['id'][gifts_target_byid['amount']>500]) targets # basetable['target'] = pd.Series([1 if donor_id in gifts_target_byid['id'].values.tolist() else 0 for donor_id in basetable['donor_ID']]) basetable['target'] = pd.Series([1 if donor_id in targets else 0 for donor_id in basetable['donor_ID']]) basetable.info() basetable.head() basetable['target'].value_counts() ###Output _____no_output_____ ###Markdown 2. Adding predictive variables ###Code reference_date = datetime.datetime(2018,4,1) reference_date living_places.head(2) living_places['active_period'] = living_places['end_date'] - living_places['start_date'] living_places.head(2) living_places['lifetime'] = reference_date - living_places['start_date'] living_places.head(2) living_places_reference_date = living_places[(living_places['start_date']<=reference_date) & (living_places['end_date']>reference_date)] living_places_reference_date.info() living_places_reference_date.head(2) ###Output _____no_output_____ ###Markdown 2.1. Adding aggregated variables ###Code '''Start and end date of the aggregation method''' start_date = datetime.datetime(2016,1,1) end_date = datetime.datetime(2017,1,1) start_date, end_date '''Select gifts made in 2016''' gifts_2016 = gifts[(gifts['date']>=start_date) & (gifts['date']<=end_date)] gifts_2016.info() gifts_2016.head(2) '''Sum of gifts per donor in 2016''' gifts_2016_bydonor = gifts_2016.groupby(['id'])['amount'].sum().reset_index() gifts_2016_bydonor.info() gifts_2016_bydonor.columns = ['donor_ID','sum_2016'] gifts_2016_bydonor.head(2) basetable.head(2) '''Add sum of gifts to the basetable''' basetable = pd.merge(basetable, gifts_2016_bydonor, how='left', on='donor_ID') basetable.info() basetable.head(2) '''Number of gifts per donor in 2016''' gifts_2016_bydonor = gifts_2016.groupby(['id']).size().reset_index() gifts_2016_bydonor.columns = ['donor_ID','count_2016'] gifts_2016_bydonor.head(2) '''Add sum of gifts to the basetable''' basetable = pd.merge(basetable, gifts_2016_bydonor, how='left', on='donor_ID') basetable.info() basetable.head(2) ###Output _____no_output_____ ###Markdown 2.2. Adding evolutions ###Code start_2017 = datetime.datetime(2017,1,1) start_2016 = datetime.datetime(2016,1,1) start_2015 = datetime.datetime(2015,1,1) start_2015, start_2016, start_2017 gifts_2016 = gifts[(gifts['date']<start_2017) & (gifts['date']>=start_2016)] gifts_2016.info() gifts_2016.head(2) gifts_2015_and_2016 = gifts[(gifts['date']<start_2017) & (gifts['date']>=start_2015)] gifts_2015_and_2016.info() gifts_2015_and_2016.head(2) number_gifts_2016 = gifts_2016.groupby(['id'])['amount'].size().reset_index() number_gifts_2016.columns = ['donor_ID','number_gifts_2016'] number_gifts_2016.head(2) number_gifts_2015_and_2016 = gifts_2015_and_2016.groupby(['id'])['amount'].size().reset_index() number_gifts_2015_and_2016.columns = ['donor_ID','number_gifts_2015_and_2016'] number_gifts_2015_and_2016.head(2) basetable = pd.merge(basetable, number_gifts_2016, on='donor_ID', how='left') basetable = pd.merge(basetable, number_gifts_2015_and_2016, on='donor_ID', how='left') basetable.head(2) basetable.describe() '''Calculate ratio of last month and last year average''' basetable['ratio_2015_to_2015_and_2016'] = basetable['number_gifts_2016'] / basetable['number_gifts_2015_and_2016'] basetable.describe() ###Output _____no_output_____ ###Markdown 2.3. Using evolution variables ###Code from sklearn import linear_model variables = ['gender','age','donation_last_year','ratio_month_year'] ###Output _____no_output_____
Case Study 1/Reservoir Engineering/Reservoir Engineering.ipynb
###Markdown **Reservoir Engineering** ###Code # importing basic libraries import pandas as pd from pandas import DataFrame import numpy as np import requests import random import xlrd import csv from datetime import datetime import os import warnings warnings.filterwarnings('ignore') from datetime import datetime # visualization/plotting libraries import matplotlib as mpl import matplotlib.style import seaborn as sns import matplotlib.pyplot as plt # setting to default parameters plt.rcParams.update(plt.rcParamsDefault) # formatting for decimal places pd.set_option("display.float_format", "{:.2f}".format) sns.set_style("white") from scipy.optimize import curve_fit from sklearn.metrics import mean_squared_error from math import sqrt from statsmodels.tsa.stattools import acf, pacf from statsmodels.tsa.stattools import adfuller from statsmodels.tsa.arima_model import ARIMA # matplotlib settings mpl.rcParams.update(mpl.rcParamsDefault) plt.style.use('seaborn-white') mpl.rcParams["figure.figsize"] = (12, 8) mpl.rcParams["axes.grid"] = False # setting seed for model reproducibility seed_value = 42 os.environ['PYTHONHASHSEED'] = str(seed_value) random.seed(seed_value) np.random.seed(seed_value) from google.colab import files uploaded = files.upload() # setting the destination for the data folder path = os.path.join(os.getcwd(), "data") norm_path = os.path.normpath(path) # defining a function to scrape NDIC data # https://www.dmr.nd.gov/oilgas/ # data from May 2015 to December 2018 will be used as a training dataset # data from 2019 will be used as a test dataset # function to scrape data from NDIC def scrape_ndic(months_list): '''function to scrape NDIC data''' # link to website with production data website = "https://www.dmr.nd.gov/oilgas/mpr/" df = pd.DataFrame() # loop through all of the dates in the list for period in months_list: url = website + period + ".xlsx" req = requests.get(url) book = xlrd.open_workbook(file_contents=req.content) sheet = book.sheet_by_index(0) for i in range(1, sheet.nrows): temp_value = sheet.cell_value(i, 0) year, month, day, hour, minute, second = xlrd.xldate_as_tuple(temp_value, book.datemode) sheet._cell_values[i][0] = datetime(year, month, 1).strftime("%m/%Y") new_file = (path + '\\'+ period + ".csv") csv_file = open(new_file, "w", newline="") writer = csv.writer(csv_file) # iteration through each row for data pull for rownum in range(sheet.nrows): writer.writerow(sheet.row_values(rownum)) csv_file.close() df = pd.read_csv(new_file) df = df.append(df) # dataframe with entire monthly production return df !unzip data train_list = ["2015_05","2015_06","2015_07","2015_08","2015_09","2015_10","2015_11","2015_12", "2016_01","2016_02","2016_03","2016_04","2016_05","2016_06","2016_07","2016_08","2016_09","2016_10","2016_11","2016_12", "2017_01","2017_02","2017_03","2017_04","2017_05","2017_06","2017_07","2017_08","2017_09","2017_10","2017_11","2017_12", "2018_01","2018_02","2018_03","2018_04","2018_05","2018_06","2018_07","2018_08","2018_09","2018_10","2018_11","2018_12"] train_prod_data = scrape_ndic(train_list) train_prod_data["ReportDate"] = pd.to_datetime(train_prod_data["ReportDate"]) #train_prod_data.to_csv("train_prod.csv") test_list = ["2019_01","2019_02","2019_03","2019_04","2019_05","2019_06","2019_07","2019_08","2019_09","2019_10","2019_11","2019_12"] test_prod_data = scrape_ndic(test_list) test_prod_data["ReportDate"] = pd.to_datetime(test_prod_data["ReportDate"]) #test_prod_data.to_csv("test_prod.csv") # ARPS Decline Curve Analysis def pre_process(df, column): df.drop("Unnamed: 0", axis=1, inplace=True) df.info() print(df.columns) # descriptive statistics df.describe().T df.head(15) df.nunique() df.dtypes df.shape # filtering df.dropna(inplace=True) # drop rows where oil rate is 0 df = df[(df[column].notnull()) & (df[column] > 0)] return df def plot_production_rate(df): '''Plot decline curve using production rates''' sns.lineplot(x = df['ReportDate'], y = df['oil_rate'], markers=True, dashes=False, label="Oil Production",color='blue', linewidth=1.5) plt.title('Decline Curve', fontweight='bold', fontsize = 20) plt.xlabel('Time', fontweight='bold', fontsize = 15) plt.ylabel('Oil Production Rate (bbl/d)', fontweight='bold', fontsize = 15) plt.show() def decline_curve(curve_type, q_i): if curve_type == "exponential": def exponential_decline(T, d): return q_i * np.exp(-d * T) return exponential_decline elif curve_type == "hyperbolic": def hyperbolic_decline(T, d_i, b): return q_i / np.power((1 + b * d_i * T), 1.0 / b) return hyperbolic_decline elif curve_type == "harmonic": def parabolic_decline(T, d_i): return q_i / (1 + d_i * T) return parabolic_decline else: raise "Unknown Decline Curve!" def L2_norm(Q, Q_obs): return np.sum(np.power(np.subtract(Q, Q_obs), 2)) # reading train and test data train_prod = pd.read_csv('data/train_prod.csv') test_prod = pd.read_csv("data/test_prod.csv") # Basic Processing and data exploration train_prod = pre_process(train_prod, 'Oil') test_prod = pre_process(test_prod, 'Oil') # convert time to datetime and set as dataframe index train_prod["ReportDate"] = pd.to_datetime(train_prod["ReportDate"]) test_prod["ReportDate"] = pd.to_datetime(test_prod["ReportDate"]) #bakken_data.set_index("ReportDate", inplace=True) train_prod["First_Prod_Date"] = train_prod.groupby("API_WELLNO")["ReportDate"].transform('min') train_prod["Days_Online"] = (train_prod["ReportDate"] - train_prod["First_Prod_Date"]).dt.days # find the top 10 wells with highest production (sum) grouped_data = train_prod.groupby(['API_WELLNO']).sum() grouped_data = grouped_data.sort_values(by=['Oil']) grouped_data = grouped_data.nlargest(10, 'Oil').reset_index() example_wells = grouped_data['API_WELLNO'].to_numpy() print (example_wells) demo_well = [33053059210000, 33025021780000] print('API:', demo_well) df_temp = train_prod[train_prod['API_WELLNO'] == demo_well[1]] df_temp["oil_rate"] = df_temp["Oil"] / df_temp["Days"] df_temp['date_delta'] = (df_temp['ReportDate'] - df_temp['ReportDate'].min())/np.timedelta64(1,'D') plot_production_rate(df_temp) df_temp = df_temp[['date_delta', 'oil_rate']] data = df_temp.to_numpy() # T is number of days of production - cumulative # q is production rate T_train, q = data.T print(T_train) print(q) # Assumption - determine qi from max value of first 3 months of production df_initial_period = df_temp.head(3) qi = df_initial_period['oil_rate'].max() exp_decline = decline_curve("exponential", qi) hyp_decline = decline_curve("hyperbolic", qi) har_decline = decline_curve("harmonic", qi) popt_exp, pcov_exp = curve_fit(exp_decline, T_train, q, method="trf") popt_hyp, pcov_hyp = curve_fit(hyp_decline, T_train, q, method="trf") popt_har, pcov_har = curve_fit(har_decline, T_train, q, method="trf") print("L2 Norm of exponential decline: ", L2_norm(exp_decline(T_train, popt_exp[0]), q)) print("L2 Norm of hyperbolic decline decline: ",L2_norm(hyp_decline(T_train, popt_hyp[0], popt_hyp[1]), q)) print("L2 Norm of harmonic decline decline: ", L2_norm(har_decline(T_train, popt_har[0]), q)) # Predict plt.scatter(T_train, q, color="black", marker="x", alpha=1) pred_exp = exp_decline(T_train, popt_exp[0]) pred_hyp = hyp_decline(T_train, popt_hyp[0], popt_hyp[1]) pred_har = har_decline(T_train, popt_har[0]) plt.plot(T_train, pred_exp, color="red", label="Exponential", linewidth = 4) plt.plot(T_train, pred_hyp, color="green", label="Hyperbolic", linestyle="--", linewidth = 4) plt.plot(T_train, pred_har, color="blue", label="Harmonic", linestyle = ':', linewidth = 4) plt.title('History Match', fontweight='bold', fontsize = 20) plt.xlabel('Time', fontweight='bold', fontsize = 15) plt.ylabel('Oil Production Rate (bbl/d)', fontweight='bold', fontsize = 15) plt.legend(loc='best') plt.show() # Forecast max_time_forecast = 5000 T_pred = np.linspace(min(T_train), max_time_forecast) plt.scatter(T_train, q, color="black", marker="x", alpha=1) pred_exp = exp_decline(T_pred, popt_exp[0]) pred_hyp = hyp_decline(T_pred, popt_hyp[0], popt_hyp[1]) pred_har = har_decline(T_pred, popt_har[0]) plt.plot(T_pred, pred_exp, color="red", label="Exponential", linewidth = 4) plt.plot(T_pred, pred_hyp, color="green", label="Hyperbolic", linestyle="--", linewidth = 4) plt.plot(T_pred, pred_har, color="blue", label="Harmonic", linestyle = ':', linewidth = 4) plt.title('Forecast', fontweight='bold', fontsize = 20) plt.xlabel('Time', fontweight='bold', fontsize = 15) plt.ylabel('Oil Production Rate (bbl/d)', fontweight='bold', fontsize = 15) plt.legend(loc='best') plt.show() # validation procedure print('API:', demo_well[1]) df_temp_test = test_prod[test_prod['API_WELLNO'] == demo_well[1]] df_temp_test["oil_rate"] = df_temp_test["Oil"] / df_temp_test["Days"] df_temp_test['date_delta'] = (df_temp_test['ReportDate'] - df_temp_test['ReportDate'].min()) / np.timedelta64(1,'D') print(df_temp_test) df_temp_test = df_temp_test[['date_delta', 'oil_rate']] data_test = df_temp_test.to_numpy() # T is number of days of production - cumulative # q is production rate T_test, q_test = data_test.T #T_test = np.concatenate(T_train, T) print(T_test) print(q_test) time = pd.date_range(start='6/1/2015', periods= 54, freq='MS') time T_Test2 = T_train[-1] + T_test len(T_train) pred_hyp = hyp_decline(T_train, popt_hyp[0], popt_hyp[1]) pred_hyp2 = hyp_decline(T_Test2, popt_hyp[0], popt_hyp[1]) print(pred_hyp) print(pred_hyp2) # forecast q_orig = np.append(q, q_test) forecast = np.concatenate([pred_hyp, pred_hyp2]) # hyperbolic forecast - plot plt.plot(time, q_orig, color="black", alpha = 0.8, label='Actual Data', linewidth = 4) plt.plot(time, forecast, color="green", label="Hyperbolic Trend", linewidth = 4, linestyle="--") plt.title('Production Forecast', fontweight='bold', fontsize = 20) plt.xlabel('Time', fontweight='bold', fontsize = 15) plt.ylabel('Oil Production Rate (bbl/d)', fontweight='bold', fontsize = 15) plt.legend(loc='best') plt.show() rmse = sqrt(mean_squared_error(q_orig, forecast)) print("RMSE - Hyperbolic Method:", rmse) ###Output RMSE - Hyperbolic Method: 81.41922167927639 ###Markdown **ARIMA MODEL BASED DCA** ###Code def plot_production_series(series): plt.figure(figsize=(10, 6)) plt.plot(series, color = 'blue') plt.title("Oil Production Decline") plt.xlabel("Year") plt.ylabel("Production Rate (bbls/d)") plt.show() # data train_prod = pd.read_csv('data/train_prod.csv') test_prod = pd.read_csv("data/test_prod.csv") print('Training Data:\n', train_prod.head(10)) print('\n') print('Test Data:\n', train_prod.head(10)) # Preprocessing on train data # well selection for demo - time series train_prod = train_prod[train_prod["API_WELLNO"] == 33025021780000.0] train_prod.drop("Unnamed: 0", axis=1, inplace=True) train_prod["ReportDate"] = pd.to_datetime(train_prod["ReportDate"]) train_prod.set_index("ReportDate", inplace=True) train_prod.nunique() # converting data from dataframe to series - oil production timeseries_train= train_prod["Oil"] timeseries_train.head() plot_production_series(timeseries_train) # Preprocessing on test data # well selection for demo - time series test_prod = test_prod[test_prod["API_WELLNO"] == 33025021780000.0] test_prod.drop("Unnamed: 0", axis=1, inplace=True) test_prod["ReportDate"] = pd.to_datetime(test_prod["ReportDate"]) test_prod.set_index("ReportDate", inplace=True) test_prod.nunique() # time series is production volumes and not flow rates timeseries_test = test_prod["Oil"] timeseries_test.head() plot_production_series(timeseries_test) # ADF - Augmented Dickey-Fuller unit root test - to test stationarity print("p-value:", adfuller(timeseries_train.dropna())[1]) # Perform Dickey-Fuller test: def dickey_ful_test(series): print("Results of Dickey-Fuller Test:") df_test = adfuller(series, autolag="AIC") df_output = pd.Series(df_test[0:4],index=["Test Statistic","p-value","#Lags Used","Number of Observations Used"]) for key, value in df_test[4].items(): df_output["Critical Value (%s)" % key] = value print(df_output) def stationary_test_plot(metric, data_series, method): plt.figure(figsize=(10, 6)) orig = plt.plot(data_series, label="Original", color = 'blue') metric = plt.plot(metric, label= method, color ='red') plt.legend(loc="best") plt.title(method) plt.xlabel('Time (yyyy-mm)') plt.ylabel('Oil Production (bbls)') plt.show() def stationary_test(data_series, method): rolling_mean = data_series.rolling(10).mean() stationary_test_plot(rolling_mean, data_series, method) dickey_ful_test(data_series) # test if the time series data is stationary or not stationary_test(timeseries_train, "Rolling Mean") def plot_time_series(y_axis, x_label, y_label, title): plt.figure(figsize=(10, 6)) plt.plot(y_axis, label = y_label, color = 'blue') plt.title(title) plt.xlabel(x_label) plt.ylabel(y_label) plt.show() # y axis transformation - log(data) ts_log = np.log(timeseries_train) plot_time_series(ts_log, "Time (yyyy-mm)", "log (Oil Production (bbls))", "Plot with Log transformation") # rolling mean estimation and plot rolling_mean_log = ts_log.rolling(10).mean() plt.figure(figsize=(10, 6)) orig = plt.plot(ts_log, label="Original", color = 'blue') mean = plt.plot(rolling_mean_log, label="Rolling Mean", color ='red') plt.title("Rolling Mean - With Log Transformation") plt.xlabel('Time (yyyy-mm)') plt.ylabel('log(Oil Production (bbls))') plt.legend(loc="best") plt.show() # plot of difference between log(data) and moving average diff_log_rolmean = ts_log - rolling_mean_log diff_log_rolmean.dropna(inplace=True) stationary_test(diff_log_rolmean, "Diff - Log and Rolling Mean") # exponential weighted calculations weighted_avg_exp = ts_log.ewm(halflife=2).mean() plt.figure(figsize=(10, 6)) orig = plt.plot(ts_log, label="Original", color = 'blue') mean = plt.plot(weighted_avg_exp, label="Exponential Weighted Mean", color ='red') plt.title("Exponential Weighted Mean - With Log Transformation") plt.xlabel('Time (yyyy-mm)') plt.ylabel('log(Oil Production (bbls))') plt.legend(loc="best") plt.show() diff_log_ewm = ts_log - weighted_avg_exp stationary_test(diff_log_ewm, "Diff - Log and Exponential Weighted Mean") # First Order differencing - n this technique, we take the difference of the observation at a particular instant with # that at the previous instant. This mostly works well in improving stationarity # Differencing can help stabilize the mean of the time series by removing changes in the level of a time series, # and so eliminating (or reducing) trend and seasonality # https://machinelearningmastery.com/difference-time-series-dataset-python/ first_order_diff = ts_log - ts_log.shift() first_order_diff.dropna(inplace=True) plt.figure(figsize=(10, 6)) stationary_test(first_order_diff, "First Order Difference") ts_log_diff_active = first_order_diff lag_acf = acf(ts_log_diff_active, nlags=5) lag_pacf = pacf(ts_log_diff_active, nlags=5, method="ols") plt.figure(figsize=(10, 5)) # Plot ACF: plt.subplot(121) plt.plot(lag_acf, color = 'blue') plt.axhline(y=0, linestyle="--", color="gray") plt.axhline(y=-1.96 / np.sqrt(len(ts_log_diff_active)), linestyle="--", color="gray") plt.axhline(y=1.96 / np.sqrt(len(ts_log_diff_active)), linestyle="--", color="gray") plt.title("Autocorrelation Function") # Plot PACF: plt.subplot(122) plt.plot(lag_pacf, color = 'red') plt.axhline(y=0, linestyle="--", color="gray") plt.axhline(y=-1.96 / np.sqrt(len(ts_log_diff_active)), linestyle="--", color="gray") plt.axhline(y=1.96 / np.sqrt(len(ts_log_diff_active)), linestyle="--", color="gray") plt.title("Partial Autocorrelation Function") plt.tight_layout() plt.show() # Auto-Regressive Model (p=2, d=1, q=0) model_AR = ARIMA(ts_log, order=(2, 1, 0)) results_ARIMA_AR = model_AR.fit(disp=-1) plt.figure(figsize=(10, 5)) plt.plot(ts_log_diff_active, color = 'blue') plt.plot(results_ARIMA_AR.fittedvalues, color="red") plt.title("RSS: %.3f" % sum((results_ARIMA_AR.fittedvalues - first_order_diff) ** 2)) plt.show() # Moving Average Model (p=0, d=1, q=2) model_MA = ARIMA(ts_log, order=(0, 1, 2)) results_ARIMA_MA = model_MA.fit(disp=-1) plt.figure(figsize=(10, 5)) plt.plot(ts_log_diff_active, color = 'blue') plt.plot(results_ARIMA_MA.fittedvalues, color="red") plt.title("RSS: %.3f" % sum((results_ARIMA_MA.fittedvalues - first_order_diff) ** 2)) plt.show() # Combined ARIMA model (p=2, d=1, q=2) model = ARIMA(ts_log, order=(2, 1, 2)) results_ARIMA = model.fit(disp=-1) print(results_ARIMA.summary()) plt.plot(ts_log_diff_active, color = 'blue') plt.plot(results_ARIMA.fittedvalues, color="red") plt.title("RSS: %.3f" % sum((results_ARIMA.fittedvalues - first_order_diff) ** 2)) plt.show() # residual and kde plot plt.figure(figsize=(10, 5))# plot residual errors residuals = DataFrame(results_ARIMA.resid) residuals.plot(legend=None, color = 'blue') plt.title('Residuals - ARIMA History Match', fontweight='bold', fontsize = 20) plt.show() residuals.plot(kind='kde', legend=None, color = 'blue') plt.title('Kernel Density Estimation - Plot', fontweight='bold', fontsize = 20) plt.show() print(residuals.describe()) # forecast - ARIMA model results_ARIMA.plot_predict(1, 60) plt.title('ARIMA Model Forecast', fontweight='bold', fontsize = 20) plt.xlabel('Time (years)', fontweight='bold', fontsize = 15) plt.ylabel('Production (bbls)', fontweight='bold', fontsize = 15) plt.show() # Predictions converted to right units - ARIMA predictions_ARIMA_diff = pd.Series(results_ARIMA.fittedvalues, copy=True) predictions_ARIMA_diff_cumsum = predictions_ARIMA_diff.cumsum() predictions_ARIMA_log = pd.Series(ts_log, index=ts_log.index) predictions_ARIMA_log = predictions_ARIMA_log.add(predictions_ARIMA_diff_cumsum, fill_value=0) predictions_ARIMA = np.exp(predictions_ARIMA_log) print(predictions_ARIMA) plt.figure(figsize=(12, 8)) plt.plot(timeseries_train, linewidth = 2, color = 'black') plt.plot(predictions_ARIMA, linestyle = "--", color = 'green', linewidth = 2) plt.title("RMSE: %.3f" % np.sqrt(sum((predictions_ARIMA - timeseries_train) ** 2) / len(timeseries_train)), fontweight='bold', fontsize = 20) plt.gca().legend(("Original Decline Curve", "ARIMA Model Decline Curve")) plt.xlabel('Time (yyyy-mm)', fontweight='bold', fontsize = 15) plt.ylabel('Oil Production (bbls)', fontweight='bold', fontsize = 15) plt.show() forecast = results_ARIMA.forecast(steps=12)[0] forecast # invert the differenced forecast results to covert to right units X = timeseries_train.values history = [x for x in X] months_in_year = 12 Month = 1 # invert differenced value def inverse_difference(history, yhat, interval=1): return yhat + history[-interval] for yhat in forecast: inverted = inverse_difference(history, yhat, months_in_year) print(Month, inverted) history.append(inverted) Month += 1 history forecast_12_months = history[-12:] # last 12 forecasted values predictions_ARIMA = predictions_ARIMA.to_numpy() forecast_12_months = np.array(forecast_12_months) print(predictions_ARIMA) print(forecast_12_months) arima_model_results = np.concatenate((predictions_ARIMA, forecast_12_months)) arima_model_results timeseries_train.values # oil rate - train timeseries_test # oil rate - test forecast_12_months # oil rate - forecast ts_np = timeseries_train.to_numpy() ts_forecast = np.array(forecast_12_months) ts_test_np = timeseries_test.to_numpy() actual = np.concatenate([ts_np, ts_test_np]) actual = np.delete(actual, -1) actual forecast = np.concatenate([predictions_ARIMA, ts_forecast]) forecast = np.delete(forecast, -1) forecast time = pd.date_range(start='6/1/2015', periods= 54, freq='MS') rmse = sqrt(mean_squared_error(actual, forecast)) print("RMSE - ARIMA Method:", rmse) ###Output _____no_output_____
Day_20_BST_from_Preordered_Traversal.ipynb
###Markdown ProblemReturn the root node of a binary search tree that matches the given preorder traversal.(Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.)Example 1:```Input: [8,5,1,7,10,12]Output: [8,5,10,1,7,null,12]```![](https://assets.leetcode.com/uploads/2019/03/06/1266.png) Note: - 1 <= preorder.length <= 100- The values of preorder are distinct. Solution ###Code # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None def bst_from_preorder(self, preorder: List[int]) -> TreeNode: def insert(node_value, root): while True: if root.val > node_value: if not root.left: root.left = TreeNode(node_value) break else: root = root.left else: if not root.right: root.right = TreeNode(node_value) break else: root = root.right if len(preorder) == 0: return root = TreeNode(preorder[0]) head = root for i in range(1, len(preorder)): head = root insert(preorder[i], head) return head ###Output _____no_output_____
mini-crops/2020-04-04-EDAMiniCrops.ipynb
###Markdown Processing Milwaukee Label (~3K labels) Building on `2020-03-24-EDA-Size.ipynb`Goal is to prep a standard CSV that we can update and populate ###Code import pandas as pd import numpy as np import os import s3fs # for reading from S3FileSystem import json # for working with JSON files import matplotlib.pyplot as plt pd.set_option('max_colwidth', -1) SAGEMAKER_PATH = r'/home/ec2-user/SageMaker' SPLIT_PATH = os.path.join(SAGEMAKER_PATH, 'classify-streetview', 'split-train-test') MINI_PATH = os.path.join(SAGEMAKER_PATH, 'classify-streetview', 'mini-crops') ###Output _____no_output_____ ###Markdown Alternative Template - row for ~3K labels x crops appeared in* img_id* heading* crop_id* label* dist_x_left* dist_x_right* dist_y_top* dist_y_bottom ###Code df_labels = pd.read_csv(os.path.join(SPLIT_PATH, 'restructure_single_labels.csv')) print(df_labels.shape) df_labels.head() df_labels_present = df_labels.loc[df_labels['present_ramp']] df_labels_present['sv_image_y'].describe(percentiles = [0.25, 0.5, 0.75, 0.9, 0.95, 0.99]) df_labels_present['sv_image_x'].describe(percentiles = [0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99]) df_coor = pd.read_csv(os.path.join(MINI_PATH,'mini-crops.csv'), sep = '\t') df_coor df_outer = pd.concat([df_labels, df_coor], axis = 1) df_outer.head(10) df_outer.columns # Let's just use a for loop and join back together list_dfs = [] coor_cols = list(df_coor.columns) for index, row in df_coor.iterrows(): df_temp_labels = df_labels for col in coor_cols: df_temp_labels[col] = row[col] list_dfs.append(df_temp_labels) print(df_temp_labels.shape) # Let's just use a for loop and join back together list_dfs = [] coor_cols = list(df_coor.columns) for index, row in df_coor.iterrows(): df_temp_labels = df_labels.copy() for col in coor_cols: df_temp_labels[col] = row[col] list_dfs.append(df_temp_labels) print(df_temp_labels.shape) df_concat = pd.concat(list_dfs) df_concat.shape df_concat['corner_x'].value_counts() df_concat.head() df_concat.to_csv(os.path.join(MINI_PATH, 'merged_crops_template.csv'), index = False) df_concat.columns ###Output _____no_output_____ ###Markdown Take the differences ###Code df_concat['xpt_minus_xleft'] = df_concat['sv_image_x'] - df_concat['x_crop_left'] df_concat['xright_minus_xpt'] = df_concat['x_crop_right'] - df_concat['sv_image_x'] df_concat['ypt_minus_ytop'] = df_concat['sv_image_y'] - df_concat['y_crop_top'] df_concat['ybottom_minus_ypt'] = df_concat['y_crop_bottom'] - df_concat['sv_image_y'] df_concat['xpt_minus_xleft'] = df_concat['sv_image_x'] - df_concat['x_crop_left'] df_concat['xright_minus_xpt'] = df_concat['x_crop_right'] - df_concat['sv_image_x'] df_concat['ypt_minus_ytop'] = df_concat['sv_image_y'] - df_concat['y_crop_top'] df_concat['ybottom_minus_ypt'] = df_concat['y_crop_bottom'] - df_concat['sv_image_y'] positive_mask = (df_concat['xpt_minus_xleft'] > 0) & (df_concat['xright_minus_xpt'] > 0) & (df_concat['ypt_minus_ytop'] > 0) & (df_concat['ybottom_minus_ypt'] > 0) df_concat['label_in_crop'] = positive_mask df_concat['label_in_crop'].value_counts() df_incrop = df_concat.loc[df_concat['label_in_crop']] df_incrop.shape df_incrop['crop_num'].value_counts() df_incrop.head() df_incrop.to_csv(os.path.join(MINI_PATH, 'Crops_with_Labels.csv'), index = False) ###Output _____no_output_____ ###Markdown Visualize Label Locations* xpt_minus_xleft - x location in the crop relative to bottom left (0, 0)* ybottom_minus_ypt - y location in the crop relative to bottom left (0, 0) ###Code df_concat_present = df_concat.loc[df_concat['present_ramp']].drop_duplicates() df_incrop_present = df_incrop.loc[df_incrop['present_ramp']] fig = plt.figure(figsize = (18, 3)) colors_list = ['tab:red', 'orange', 'gold', 'forestgreen', 'blue', 'indigo'] for crop_id, crop_name in enumerate(['A', 'B', 'C', 'D', 'E', 'F']): ax = fig.add_subplot(1, 6, crop_id+1) x = df_incrop_present['xpt_minus_xleft'].loc[df_incrop_present['crop_num'] == crop_name] y = df_incrop_present['ybottom_minus_ypt'].loc[df_incrop_present['crop_num'] == crop_name] ax.plot(x, y, marker = '.', ls = 'none', alpha = 0.6, color = colors_list[int(crop_id)]) #ax.plot(x, y, marker = '.', ls = 'none', alpha = 0.4) plt.ylim(0, 180) plt.xlim(0, 180) plt.title(f'Crop: {crop_name}') ax.set_yticklabels([]) ax.set_xticklabels([]) plt.tight_layout() fig2 = plt.figure(figsize = (6, 6)) ax2 = fig2.add_subplot(111) inside_mask = (df_concat_present['sv_image_y'] < 500) & (df_concat_present['sv_image_x'] > 5) & (df_concat_present['sv_image_x'] < 635) x_crop = df_concat_present['sv_image_x'].loc[inside_mask] y_crop = df_concat_present['sv_image_y_bottom_origin'].loc[inside_mask] ax2.plot(x_crop, y_crop, marker = '.', ls = 'none', alpha = 0.4, color = 'blue', label = 'in crop') outside_mask = (df_concat_present['sv_image_y'] > 500) | (df_concat_present['sv_image_x'] < 5) | (df_concat_present['sv_image_x'] > 635) x_all = df_concat_present['sv_image_x'].loc[outside_mask] y_all = df_concat_present['sv_image_y_bottom_origin'].loc[outside_mask] ax2.plot(x_all, y_all, marker = '.', ls = 'none', alpha = 0.4, color = 'orange', label = 'outside') plt.ylim(0, 640) plt.xlim(0, 640) plt.legend(loc = 'best') ax2.set_yticklabels([]) ax2.set_xticklabels([]) plt.tight_layout() ###Output _____no_output_____ ###Markdown Look at the Present DistributionHow many are within a crop or not ###Code inside_mask.value_counts() 9600 / (9600 + 462) * 100 ###Output _____no_output_____ ###Markdown Look at Image 1908 Details ###Code df_incrop.loc[df_incrop['filename'] == '1908_135.jpg'] ###Output _____no_output_____
Main Python notebook.ipynb
###Markdown 9608/22/PRE/O/N/2020Last update: Anuj Verma, 03:16 PM 06/10/2020The cell below declares the variables and arrays that are supposed to be pre-populated. ###Code ItemCode = ["1001", "6056", "5557", "2568", "4458"] ItemDescription = ["Pencil", "Pen", "Notebook", "Ruler", "Compass"] Price = [1.0, 10.0, 100.0, 20.0, 30.0] NumberInStock = [100, 100, 50, 20, 20] n = len(ItemCode) ###Output _____no_output_____ ###Markdown TASK 1.4Write program code to produce a report displaying all the information stored about each item for which the number in stock is below a given level. The planning and identifier table are in the pasudocode file and the markdown respectively. ###Code ThresholdLevel = int(input("Enter the minumum stock level: ")) for Counter in range(n): if NumberInStock[Counter] < ThresholdLevel: print("\nItem Code:", ItemCode[Counter]) print("Item Description:", ItemDescription[Counter]) print("Price:", Price[Counter]) print("Number in stock:", NumberInStock[Counter]) ###Output _____no_output_____ ###Markdown TASK 2.2Design an algorithm to input the four pieces of data about a stock item, form a string according to your format design, and write the string to the text file. First draw a program flowchart, then write the equivalent pseudocode. ###Code RecordsFile = "Item Records.txt" FileObject = open(RecordsFile, "a+") WriteString = "" NewItemCode = int(input("\nEnter item code: ")) WriteString = ':' + str(NewItemCode) NewItemDescription = input("Enter item description: ") WriteString += ':' + NewItemDescription NewPrice = float(input("Enter new price: ")) WriteString += ':' + str(NewPrice) NewNumberInStock = int(input("Enter the number of items in stock: ")) WriteString += ':' + str(NewNumberInStock) + '\n' FileObject.write(WriteString) FileObject.close() ###Output _____no_output_____ ###Markdown TASK 2.4The cell below defines the sub-routines which will be used by more than of the tasks. ###Code def GetItemCode(): TestItemCode = int(input("Enter the code of the item: ")) while not (TestItemCode > 1000 and TestItemCode < 9999): TestItemCode = int(input("Re-enter the code of the item: ")) return TestItemCode def GetNumberInStock(): TestNumberInStock = int(input("Enter the number of the item in stock: ")) while not (TestNumberInStock >= 0): TestNumberInStock = int(input("Re-enter the number of the item in stock: ")) return TestNumberInStock def GetPrice(): TestPrice = float(input("Enter the price of the item: ")) while not (TestPrice >= 0): TestPrice = float(input("Re-enter the price of the item: ")) return TestPrice def ExtractDetails(RecordString, Details): Position = 0 SearchString = RecordString.strip() + ':' if RecordString != "": for Counter in range(4): Position += 1 CurrentCharacter = SearchString[Position : Position + 1] while CurrentCharacter != ':': Details[Counter] += CurrentCharacter Position += 1 CurrentCharacter = SearchString[Position : Position + 1] ###Output _____no_output_____ ###Markdown TASK 2.4 (1)Add a new stock item to the text file. Include validation of the different pieces of information as appropriate. For example item code data may be a fixed format. ###Code WriteString = "" WriteString = ':' + str(GetItemCode()) NewItemDescription = input("\nEnter item description: ") WriteString += ':' + NewItemDescription WriteString += ':' + str(GetPrice()) WriteString += ':' + str(GetNumberInStock()) + '\n' FileObject = open(RecordsFile, "a+") FileObject.write(WriteString) FileObject.close() ###Output _____no_output_____ ###Markdown TASK 2.4 (2)Search for a stock item with a specific item code. Output the other pieces of data together with suitable supporting text. ###Code Found = False CurrentRecord = "" print("\nEnter the code of the item you want to search for.") DesiredItemCode = GetItemCode() FileObject = open(RecordsFile, "r+") FileData = FileObject.readlines() FileObject.close() for record in FileData: CurrentRecord = record if CurrentRecord[1:5] == str(DesiredItemCode): Found = True break if Found: DetailsOfRecord = ["" for i in range(4)] ExtractDetails(CurrentRecord, DetailsOfRecord) print("\nItem Code: " + str(DetailsOfRecord[0])) print("Item Description: " + DetailsOfRecord[1]) print("Price of item: " + str(DetailsOfRecord[2])) print("Number of the item in stock: " + str(DetailsOfRecord[3])) else: print("Item not found.") ###Output _____no_output_____ ###Markdown TASK 2.4 (3)Search for all stock items with a specific item description, with output as for task 2. ###Code DesiredItemDescription = input("\nEnter the description of the item you want to search for: ") FileObject = open(RecordsFile, "r+") FileData = FileObject.readlines() FileObject.close() for record in FileData: DetailsOfRecord = ["" for i in range(4)] ExtractDetails(record, DetailsOfRecord) if DetailsOfRecord[1] == DesiredItemDescription: print("\nItem Code: " + str(DetailsOfRecord[0])) print("Item Description: " + DetailsOfRecord[1]) print("Price of item: " + str(DetailsOfRecord[2])) print("Number of the item in stock: " + str(DetailsOfRecord[3])) ###Output _____no_output_____ ###Markdown TASK 2.4 (4)Output a list of all stock items with a price greater than a given amount. ###Code print ("\nEnter the maximum threshold price.") ThresholdPrice = GetPrice() FileObject = open(RecordsFile, "r+") FileData = FileObject.readlines() FileObject.close() for record in FileData: DetailsOfRecord = ["" for i in range(4)] ExtractDetails(record, DetailsOfRecord) if float(DetailsOfRecord[2]) < ThresholdPrice: print("\nItem Code: " + str(DetailsOfRecord[0])) print("Item Description: " + DetailsOfRecord[1]) print("Price of item: " + str(DetailsOfRecord[2])) print("Number of the item in stock: " + str(DetailsOfRecord[3])) ###Output _____no_output_____ ###Markdown Standalone Compliled ProgramThe above cells demonstrate how each individual aspect of each task works. The code in the cell below is for every task combined into one, and can run independently. ###Code ## Arrays which are supposed to be pre-populated ItemCode = ["1001", "6056", "5557", "2568", "4458"] ItemDescription = ["Pencil", "Pen", "Notebook", "Ruler", "Compass"] Price = [1.0, 10.0, 100.0, 20.0, 30.0] NumberInStock = [100, 100, 50, 20, 20] ## Constant for the initial number of element (pre-defined) n = len(ItemCode) ## Constant for the name of the file RecordsFile = "Item Records.txt" ## Open file for "APPEND" and assign the I/O reference to a variable FileObject = open(RecordsFile, "a") ## Subroutine to input a valid item code def GetItemCode(): TestItemCode = int(input("Enter the code of the item: ")) while not (TestItemCode > 1000 and TestItemCode < 9999): TestItemCode = int(input("Re-enter the code of the item: ")) return TestItemCode ## Subroutine to input a valid number of the item in stock def GetNumberInStock(): TestNumberInStock = int(input("Enter the number of the item in stock: ")) while not (TestNumberInStock >= 0): TestNumberInStock = int(input("Re-enter the number of the item in stock: ")) return TestNumberInStock ## Subroutine to input a valid item price def GetPrice(): TestPrice = float(input("Enter the price of the item: ")) while not (TestPrice >= 0): TestPrice = float(input("Re-enter the price of the item: ")) return TestPrice ## Subroutine to extract details of a given record string into an array def ExtractDetails(RecordString, Details): Position = 0 SearchString = RecordString.strip() + ':' if RecordString != "": for Counter in range(4): Position += 1 CurrentCharacter = SearchString[Position : Position + 1] while CurrentCharacter != ':': Details[Counter] += CurrentCharacter Position += 1 CurrentCharacter = SearchString[Position : Position + 1] ## TASK 1.4 ThresholdLevel = int(input("Enter the minumum stock level: ")) for Counter in range(n): if NumberInStock[Counter] < ThresholdLevel: print("\nItem Code:", ItemCode[Counter]) print("Item Description:", ItemDescription[Counter]) print("Price:", Price[Counter]) print("Number in stock:", NumberInStock[Counter]) ## TASK 2.2 WriteString = "" NewItemCode = int(input("\nEnter item code: ")) WriteString = ':' + str(NewItemCode) NewItemDescription = input("Enter item description: ") WriteString += ':' + NewItemDescription NewPrice = float(input("Enter new price: ")) WriteString += ':' + str(NewPrice) NewNumberInStock = int(input("Enter the number of items in stock: ")) WriteString += ':' + str(NewNumberInStock) + '\n' FileObject.write(WriteString) print("") ## TAKS 2.4 (1) WriteString = "" WriteString = ':' + str(GetItemCode()) NewItemDescription = input("Enter item description: ") WriteString += ':' + NewItemDescription WriteString += ':' + str(GetPrice()) WriteString += ':' + str(GetNumberInStock()) + '\n' FileObject.write(WriteString) ## Close the file and save changes FileObject.close() ## Open the file in "READ" mode FileObject = open(RecordsFile, "r") ## Read data from the file into an array. They are also split using the newline delimiter '\n'. FileData = FileObject.readlines() ## Close the file FileObject.close() ## TASK 2.4 (2) Found = False print("\nEnter the code of the item you want to search for.") DesiredItemCode = GetItemCode() for record in FileData: if record[1:5] == str(DesiredItemCode): Found = True break if Found: DetailsOfRecord = ["" for i in range(4)] ExtractDetails(record, DetailsOfRecord) print("\nItem Code: " + str(DetailsOfRecord[0])) print("Item Description: " + DetailsOfRecord[1]) print("Price of item: " + str(DetailsOfRecord[2])) print("Number of the item in stock: " + str(DetailsOfRecord[3])) else: print("Item not found.") ## TASK 2.4 (3) DesiredItemDescription = input("\nEnter the description of the item you want to search for: ") for record in FileData: DetailsOfRecord = ["" for i in range(4)] ExtractDetails(record, DetailsOfRecord) if DetailsOfRecord[1] == DesiredItemDescription: print("\nItem Code: " + str(DetailsOfRecord[0])) print("Item Description: " + DetailsOfRecord[1]) print("Price of item: " + str(DetailsOfRecord[2])) print("Number of the item in stock: " + str(DetailsOfRecord[3])) ## TASK 2.4 (4) print ("\nEnter the maximum threshold price.") ThresholdPrice = GetPrice() for record in FileData: DetailsOfRecord = ["" for i in range(4)] ExtractDetails(record, DetailsOfRecord) if float(DetailsOfRecord[2]) < ThresholdPrice: print("\nItem Code: " + str(DetailsOfRecord[0])) print("Item Description: " + DetailsOfRecord[1]) print("Price of item: " + str(DetailsOfRecord[2])) print("Number of the item in stock: " + str(DetailsOfRecord[3])) ###Output _____no_output_____
Tutorial-Template_Style_Guide.ipynb
###Markdown window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-59152712-8'); The NRPy+ Jupyter Tutorial Style Guide / Template Authors: Brandon Clark, Zach Etienne, & First Last Formatting improvements courtesy Brandon Clark **This is a warning message, in red text and bolded, to warn anyone using the module that it is, for example, actively in development, not yet validated, etc. Warning messages are optional.** This module implements a template designed by Brandon Clark to be used as a style guide for all tutorial notebooks within NRPy+. Items in Markdown code contained within "" are not included within the output (double click this box to see what I mean). To the run Markdown code simply hit "Shift + Enter" or the "Run" button above. **This text discusses how a module has been validated against other existing code or modules. This text is given a green font color and bolded. See how to bold and make text different colors in the Markdown code.** NRPy+ Source Code for this module:1. [Template_Style_Guide.py](../edit/Template_Style_Guide.py); [\[**tutorial**\]](Tutorial-Template_Style_Guide.ipynb) This is where you would describe what purpose this source code serves in this module. Read how to correctly link to these source code files/tutorial notebooks later in []. 1. Introduction:Here you write an introduction that discusses in slight detail the framework of this tutorial notebook. Here you may reference external works or websites on which pieces of your module rely. It is often helpful to include an enumerated algorihtm to highlight this modules processes. Within the algortihm you may refer to where source code is implemeted as a part of this module. The entire algorithm is outlined below, with NRPy+-based components highlighted in green.1. Constructing a Table of Contents1. 1. Discussing [Markdown Linking Protocol](https://medium.com/@sambozek/ipython-er-jupyter-table-of-contents-69bb72cf39d3) 1. Linking to sections internally within the module 1. Linking to external sources1. No parts of this template tutorial notebook rely on NRPy+-based components1. Converting Jupyter notebook to output LaTex PDFYou could also write your introduction to include subsections preceded by . introduction subsection:Include information relevant to this subsection here. Other (Optional): You may include any number of items here within the first box of the tutorial notebook, but I suggest being minimalistic when you can. Other sections that have been included in other tutorial moudles are as follows Note on Notation:When using a new type of notation for the first time within the NRPy+ tutorial, you may want to include some notes on that here. Citations:This is a great place to list out the references you link to within the module with actual citations. Table of Contents$$\label{toc}$$This notebook is organized as follows0. [Preliminaries](prelim): This is an optional section1. [Step 1](linking): The Markdown Linking Protocol 1. [Step 1.a](internal_links) Internal linking with the Jupyter notebook, Table of Contents 1. [Step 1.b](external_links): External linking outside of Jupyter notebook 1. [Step 1.b.i](nrpy_links): Linking to other files/modules within NRPy+ 1. [Step 2](latex_pdf_output): Output this notebook to $\LaTeX$-formatted PDF fileThe Table of Contents (ToC) plays a significant role in the formatting of your module. The above ToC is for this module, but I have constructed it in a way such that you should see all of the important details for any module you need to write. If you choose to include a preliminaries section, enumerate it with the "0." All other sections, subsections, and sub-subsections can be enumerated with the 1. Jupyter/LaTex will handle there own numerbing/lettering scheme. It is important when creating subsections and sub-subsections that you indent seen in the Markdown code. The text colors vary for the level section you're assigning within the Markdown code. When writing within the brackets to specify a step number, the following scheme is to be used:* Header Sections: Step 1, Step 2, Step 3* Subsections: Step 1.a, Step 1.b, Step 1.c* Sub-subsections: Step 1.a.i, 1.a.ii, 1.a.iii If for some reason you go more then three levels deep in your sectioning, I would suggest finding a way to reorganize your sectioning to prevent that, or ask Zach Etienne what the next level of labelling for Steps should be. We will talk about the other components within the Markdown Code for the ToC in [Step 1.a](internal_links). The only text within the ToC section of this module should be the ToC code itself and what precedes it.I also suggest that the titles for the Steps you include here following the ":" match the titles you use throughout your module. Preliminaries: This is an optional section \[Back to [top](toc)\]$$\label{prelim}$$ This section is a great chance to include textual verbage that might have been too specific for the introduction section, but serves as a beneficial setup to the remainder of the module. For instance, you may want to define quantities here, express important equations, and so on. I suggest that the Preliminaries section is not followed by any Python code blocks, and remains simply a block of information for users to refer back to. Step 1: The Markdown Linking Protocol \[Back to [top](toc)\]$$\label{linking}$$We have already within this template had to link to sources both internally within this module, exteranlly to other components of the NRPy+ tutorial, as well as externally to additional web sources. The next few sections discuss how this is done. It is important to know that any linking is down by combining brackets and parentheses "\[ \]()" with the desired input in each. On another note, main sections like this have their titles preoceed by a single . As you will see, for every deeper layer of sectioning, an addiotnal is appended on, reducing the size of the text. Step 1.a: Internal linking with the Jupyter notebook, Table of Contents \[Back to [top](toc)\]$$\label{internal_links}$$A great resource for how to construct a Table of Contents is:https://medium.com/@sambozek/ipython-er-jupyter-table-of-contents-69bb72cf39d3The Table of Contents is a family of internal links. To link internally we first have to specify an ***anchor tag*** which is the text within the parenthese of preceded by a (See ToC Markdown code). For instance, the anchor tag for this subsection is "internal_links". So, for a particular Step within the Table of Contents you specify the Step title in brackets (e.g., [Step 1.a]), appended by the anchor tag in parentheses preced by a (e.g., (internal_links)), followed by a ":" and the Step description (e.g., : Internal linking with the Jupyter notebook, Table of Contents). Look at the Markdown code for the Table of Contents for a few examples. **Important Note**: The anchor tags cannot be anything that you want. Anchor tags must be entirely lowercase and contain no spaces. Numbers are fine as well as underscores, but not capitalization. I suggest making the anchor tags have siginificant meaning to the section there tied to, instead of making one that reads "step1a". The reason I say this, is because if you ever need to resection your module, the tags won't all need to be chnaged as well if you give each one a unqiue name. All we have done so far is establish anchor tags and clickable links within the Table of Contents, but how do we establish the link to the specific section within the module. Opening up the Markdown code for this section you will see a line of code above the title, and a line of code directly below the title. These are the answers to the question. Each section requires these components to be included for both the Jupyter notebook and LaTex internal linking. Make sure the top line of the Markdown code has a space between it and the title. Similarly, the code directly beneath the title needs space below it as well, separated from the main body of text (see above in Markdown code).**Important Note**: Links do not work unless the two sections which are linked have been run.The Table of Contents is now linked to this section and you may have already noticed but this section, and all others, are linked back to the Table of Contents using the Markdown code in line at the end of the section title. This is exceedingly convenient for modules of great length. It may also be convenient when you're in a particular subsection and you wish to just return to the header section. This is accomplished using a bracket parentheses \[\]() pairing like so (see this in Markdown code). Go back to [Step 1](linking)Lastly, you would more often than not write a code block below implementing what was discussed in this section. This isn't always necessary, some header sections plainly serve as a set up for subsections that will contain all of the necessary coding components. ###Code # This is the code block corresponding to Step 1.a: Internal linking within the Jupyter notebook, Table of Contents print("We have successfully learned how to code internal links using Markdown Linking Protocol!!!") ###Output We have successfully learned how to code internal links using Markdown Linking Protocol!!! ###Markdown Step 1.b: External linking outside of this module \[Back to [top](toc)\]$$\label{external_links}$$To link outside of this particular module we still use bracket parentheses \[ \]() pairings. Since the links are not internal, we no longer need the symbol and anchor tags. Instead, you need an actual link. For instance, look at your Markdown code to see how we link this [website](https://medium.com/@sambozek/ipython-er-jupyter-table-of-contents-69bb72cf39d3) to a line of text. Of course, web links will simply work on there own as a hyperlink, but often you may need to link to multiple external sources and do not want all of the individual addresses clogging up the body of your text. ###Code # This is the code block for Step 1.b: External linking outside of Jupyter notebook print("Be efficient in how you link external sources, utilize []() pairs!!!") ###Output Be efficient in how you link external sources, utilize []() pairs!!! ###Markdown Step 1.b.i: Linking to other files/modules within NRPy+ \[Back to [top](toc)\]$$\label{nrpy_links}$$Other useful extranal sources we would like to link to are the existing files/moudles within NRPy+. To do this we again resort to the \[ \]() pair. By simply typing the file name into the parentheses, you can connect to another [Tutorial module](Tutorial-Template_Style_Guide.ipynb) (see Markdown). To access a .py file, you want to type the command ../edit/followed by the file location. For instance, here is the [.py file](../edit/Template_Style_Guide.py) for this notebook (see Markdown). ###Code # This is the code block for Step 1.b.i: Linking to other files/modules within NRPy+ print("Template_Style_Guide.py is an empty file...") ###Output Template_Style_Guide.py is an empty file... ###Markdown Step 2: Output this notebook to $\LaTeX$-formatted PDF file \[Back to [top](toc)\]$$\label{latex_pdf_output}$$The following code cell converts this Jupyter notebook into a proper, clickable $\LaTeX$-formatted PDF file. After the cell is successfully run, the generated PDF may be found in the root NRPy+ tutorial directory, with filename[Tutorial-Template_Style_Guide.pdf](Tutorial-Template_Style_Guide.pdf) (Note that clicking on this link may not work; you may need to open the PDF file through another means.)**Important Note**: Make sure that the file name is right in all six locations, two here in the Markdown, four in the code below. * Tutorial-Template_Style_Guide.pdf* Tutorial-Template_Style_Guide.ipynb* Tutorial-Template_Style_Guide.tex ###Code !jupyter nbconvert --to latex --template latex_nrpy_style.tplx --log-level='WARN' Tutorial-Template_Style_Guide.ipynb !pdflatex -interaction=batchmode Tutorial-Template_Style_Guide.tex !pdflatex -interaction=batchmode Tutorial-Template_Style_Guide.tex !pdflatex -interaction=batchmode Tutorial-Template_Style_Guide.tex !rm -f Tut*.out Tut*.aux Tut*.log ###Output This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) (preloaded format=pdflatex) restricted \write18 enabled. entering extended mode This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) (preloaded format=pdflatex) restricted \write18 enabled. entering extended mode This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) (preloaded format=pdflatex) restricted \write18 enabled. entering extended mode ###Markdown window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-59152712-8'); The NRPy+ Jupyter Tutorial Style Guide / Template Authors: Brandon Clark, Zach Etienne, & First Last Formatting improvements courtesy Brandon Clark **This is a warning message, in red text and bolded, to warn anyone using the module that it is, for example, actively in development, not yet validated, etc. Warning messages are optional.** This module implements a template designed by Brandon Clark to be used as a style guide for all tutorial notebooks within NRPy+. Items in Markdown code contained within "" are not included within the output (double click this box to see what I mean). To the run Markdown code simply hit "Shift + Enter" or the "Run" button above. **This text discusses how a module has been validated against other existing code or modules. This text is given a green font color and bolded. See how to bold and make text different colors in the Markdown code.** NRPy+ Source Code for this module:1. [Template_Style_Guide.py](../edit/Template_Style_Guide.py); [\[**tutorial**\]](Tutorial-Template_Style_Guide.ipynb) This is where you would describe what purpose this source code serves in this module. Read how to correctly link to these source code files/tutorial notebooks later in []. 1. Introduction:Here you write an introduction that discusses in slight detail the framework of this tutorial notebook. Here you may reference external works or websites on which pieces of your module rely. It is often helpful to include an enumerated algorihtm to highlight this modules processes. Within the algortihm you may refer to where source code is implemeted as a part of this module. The entire algorithm is outlined below, with NRPy+-based components highlighted in green.1. Constructing a Table of Contents1. 1. Discussing [Markdown Linking Protocol](https://medium.com/@sambozek/ipython-er-jupyter-table-of-contents-69bb72cf39d3) 1. Linking to sections internally within the module 1. Linking to external sources1. No parts of this template tutorial notebook rely on NRPy+-based components1. Converting Jupyter notebook to output LaTex PDFYou could also write your introduction to include subsections preceded by . introduction subsection:Include information relevant to this subsection here. Other (Optional): You may include any number of items here within the first box of the tutorial notebook, but I suggest being minimalistic when you can. Other sections that have been included in other tutorial moudles are as follows Note on Notation:When using a new type of notation for the first time within the NRPy+ tutorial, you may want to include some notes on that here. Citations:This is a great place to list out the references you link to within the module with actual citations. Table of Contents$$\label{toc}$$This notebook is organized as follows0. [Preliminaries](prelim): This is an optional section1. [Step 1](linking): The Markdown Linking Protocol 1. [Step 1.a](internal_links) Internal linking with the Jupyter notebook, Table of Contents 1. [Step 1.b](external_links): External linking outside of Jupyter notebook 1. [Step 1.b.i](nrpy_links): Linking to other files/modules within NRPy+ 1. [Step 2](latex_pdf_output): Output this notebook to $\LaTeX$-formatted PDF fileThe Table of Contents (ToC) plays a significant role in the formatting of your module. The above ToC is for this module, but I have constructed it in a way such that you should see all of the important details for any module you need to write. If you choose to include a preliminaries section, enumerate it with the "0." All other sections, subsections, and sub-subsections can be enumerated with the 1. Jupyter/LaTex will handle there own numerbing/lettering scheme. It is important when creating subsections and sub-subsections that you indent seen in the Markdown code. The text colors vary for the level section you're assigning within the Markdown code. When writing within the brackets to specify a step number, the following scheme is to be used:* Header Sections: Step 1, Step 2, Step 3* Subsections: Step 1.a, Step 1.b, Step 1.c* Sub-subsections: Step 1.a.i, 1.a.ii, 1.a.iii If for some reason you go more then three levels deep in your sectioning, I would suggest finding a way to reorganize your sectioning to prevent that, or ask Zach Etienne what the next level of labelling for Steps should be. We will talk about the other components within the Markdown Code for the ToC in [Step 1.a](internal_links). The only text within the ToC section of this module should be the ToC code itself and what precedes it.I also suggest that the titles for the Steps you include here following the ":" match the titles you use throughout your module. Preliminaries: This is an optional section \[Back to [top](toc)\]$$\label{prelim}$$ This section is a great chance to include textual verbage that might have been too specific for the introduction section, but serves as a beneficial setup to the remainder of the module. For instance, you may want to define quantities here, express important equations, and so on. I suggest that the Preliminaries section is not followed by any Python code blocks, and remains simply a block of information for users to refer back to. Step 1: The Markdown Linking Protocol \[Back to [top](toc)\]$$\label{linking}$$We have already within this template had to link to sources both internally within this module, exteranlly to other components of the NRPy+ tutorial, as well as externally to additional web sources. The next few sections discuss how this is done. It is important to know that any linking is down by combining brackets and parentheses "\[ \]()" with the desired input in each. On another note, main sections like this have their titles preoceed by a single . As you will see, for every deeper layer of sectioning, an addiotnal is appended on, reducing the size of the text. Step 1.a: Internal linking with the Jupyter notebook, Table of Contents \[Back to [top](toc)\]$$\label{internal_links}$$A great resource for how to construct a Table of Contents is:https://medium.com/@sambozek/ipython-er-jupyter-table-of-contents-69bb72cf39d3The Table of Contents is a family of internal links. To link internally we first have to specify an ***anchor tag*** which is the text within the parenthese of preceded by a (See ToC Markdown code). For instance, the anchor tag for this subsection is "internal_links". So, for a particular Step within the Table of Contents you specify the Step title in brackets (e.g., [Step 1.a]), appended by the anchor tag in parentheses preced by a (e.g., (internal_links)), followed by a ":" and the Step description (e.g., : Internal linking with the Jupyter notebook, Table of Contents). Look at the Markdown code for the Table of Contents for a few examples. **Important Note**: The anchor tags cannot be anything that you want. Anchor tags must be entirely lowercase and contain no spaces. Numbers are fine as well as underscores, but not capitalization. I suggest making the anchor tags have siginificant meaning to the section there tied to, instead of making one that reads "step1a". The reason I say this, is because if you ever need to resection your module, the tags won't all need to be chnaged as well if you give each one a unqiue name. All we have done so far is establish anchor tags and clickable links within the Table of Contents, but how do we establish the link to the specific section within the module. Opening up the Markdown code for this section you will see a line of code above the title, and a line of code directly below the title. These are the answers to the question. Each section requires these components to be included for both the Jupyter notebook and LaTex internal linking. Make sure the top line of the Markdown code has a space between it and the title. Similarly, the code directly beneath the title needs space below it as well, separated from the main body of text (see above in Markdown code).**Important Note**: Links do not work unless the two sections which are linked have been run.The Table of Contents is now linked to this section and you may have already noticed but this section, and all others, are linked back to the Table of Contents using the Markdown code in line at the end of the section title. This is exceedingly convenient for modules of great length. It may also be convenient when you're in a particular subsection and you wish to just return to the header section. This is accomplished using a bracket parentheses \[\]() pairing like so (see this in Markdown code). Go back to [Step 1](linking)Lastly, you would more often than not write a code block below implementing what was discussed in this section. This isn't always necessary, some header sections plainly serve as a set up for subsections that will contain all of the necessary coding components. ###Code # This is the code block corresponding to Step 1.a: Internal linking within the Jupyter notebook, Table of Contents print("We have successfully learned how to code internal links using Markdown Linking Protocol!!!") ###Output We have successfully learned how to code internal links using Markdown Linking Protocol!!! ###Markdown Step 1.b: External linking outside of this module \[Back to [top](toc)\]$$\label{external_links}$$To link outside of this particular module we still use bracket parentheses \[ \]() pairings. Since the links are not internal, we no longer need the symbol and anchor tags. Instead, you need an actual link. For instance, look at your Markdown code to see how we link this [website](https://medium.com/@sambozek/ipython-er-jupyter-table-of-contents-69bb72cf39d3) to a line of text. Of course, web links will simply work on there own as a hyperlink, but often you may need to link to multiple external sources and do not want all of the individual addresses clogging up the body of your text. ###Code # This is the code block for Step 1.b: External linking outside of Jupyter notebook print("Be efficient in how you link external sources, utilize []() pairs!!!") ###Output Be efficient in how you link external sources, utilize []() pairs!!! ###Markdown Step 1.b.i: Linking to other files/modules within NRPy+ \[Back to [top](toc)\]$$\label{nrpy_links}$$Other useful extranal sources we would like to link to are the existing files/moudles within NRPy+. To do this we again resort to the \[ \]() pair. By simply typing the file name into the parentheses, you can connect to another [Tutorial module](Tutorial-Template_Style_Guide.ipynb) (see Markdown). To access a .py file, you want to type the command ../edit/followed by the file location. For instance, here is the [.py file](../edit/Template_Style_Guide.py) for this notebook (see Markdown). ###Code # This is the code block for Step 1.b.i: Linking to other files/modules within NRPy+ print("Template_Style_Guide.py is an empty file...") ###Output Template_Style_Guide.py is an empty file... ###Markdown Step 2: Output this notebook to $\LaTeX$-formatted PDF file \[Back to [top](toc)\]$$\label{latex_pdf_output}$$The following code cell converts this Jupyter notebook into a proper, clickable $\LaTeX$-formatted PDF file. After the cell is successfully run, the generated PDF may be found in the root NRPy+ tutorial directory, with filename[Tutorial-Template_Style_Guide.pdf](Tutorial-Template_Style_Guide.pdf) (Note that clicking on this link may not work; you may need to open the PDF file through another means.)**Important Note**: Make sure that the file name is right in all six locations, two here in the Markdown, four in the code below. * Tutorial-Template_Style_Guide.pdf* Tutorial-Template_Style_Guide.ipynb* Tutorial-Template_Style_Guide.tex ###Code !jupyter nbconvert --to latex --template latex_nrpy_style.tplx --log-level='WARN' Tutorial-Template_Style_Guide.ipynb !pdflatex -interaction=batchmode Tutorial-Template_Style_Guide.tex !pdflatex -interaction=batchmode Tutorial-Template_Style_Guide.tex !pdflatex -interaction=batchmode Tutorial-Template_Style_Guide.tex !rm -f Tut*.out Tut*.aux Tut*.log ###Output [NbConvertApp] Converting notebook Tutorial-Template_Style_Guide.ipynb to latex [NbConvertApp] Writing 37877 bytes to Tutorial-Template_Style_Guide.tex This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) (preloaded format=pdflatex) restricted \write18 enabled. entering extended mode This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) (preloaded format=pdflatex) restricted \write18 enabled. entering extended mode This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) (preloaded format=pdflatex) restricted \write18 enabled. entering extended mode ###Markdown window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-59152712-8'); The NRPy+ Jupyter Tutorial Style Guide / Template Authors: Brandon Clark, Zach Etienne, & First Last Formatting improvements courtesy Brandon Clark**This is a warning message, in red text and bolded, to warn anyone using the module that it is, for example, actively in development, not yet validated, etc. Warning messages are optional.** This module implements a template designed by Brandon Clark to be used as a style guide for all tutorial notebooks within NRPy+. Items in Markdown code contained within "" are not included within the output (double click this box to see what I mean). To the run Markdown code simply hit "Shift + Enter" or the "Run" button above. **This text discusses how a module has been validated against other existing code or modules. This text is given a green font color and bolded. See how to bold and make text different colors in the Markdown code.** NRPy+ Source Code for this module:1. [Template_Style_Guide.py](../edit/Template_Style_Guide.py); [\[**tutorial**\]](Tutorial-Template_Style_Guide.ipynb) This is where you would describe what purpose this source code serves in this module. Read how to correctly link to these source code files/tutorial notebooks later in []. 1. Introduction:Here you write an introduction that discusses in slight detail the framework of this tutorial notebook. Here you may reference external works or websites on which pieces of your module rely. It is often helpful to include an enumerated algorihtm to highlight this modules processes. Within the algortihm you may refer to where source code is implemeted as a part of this module. The entire algorithm is outlined below, with NRPy+-based components highlighted in green.1. Constructing a Table of Contents1. 1. Discussing [Markdown Linking Protocol](https://medium.com/@sambozek/ipython-er-jupyter-table-of-contents-69bb72cf39d3) 1. Linking to sections internally within the module 1. Linking to external sources1. No parts of this template tutorial notebook rely on NRPy+-based components1. Converting Jupyter notebook to output LaTex PDFYou could also write your introduction to include subsections preceded by . introduction subsection:Include information relevant to this subsection here. Other (Optional): You may include any number of items here within the first box of the tutorial notebook, but I suggest being minimalistic when you can. Other sections that have been included in other tutorial moudles are as follows Note on Notation:When using a new type of notation for the first time within the NRPy+ tutorial, you may want to include some notes on that here. Citations:This is a great place to list out the references you link to within the module with actual citations. Table of Contents$$\label{toc}$$This notebook is organized as follows0. [Preliminaries](prelim): This is an optional section1. [Step 1](linking): The Markdown Linking Protocol 1. [Step 1.a](internal_links) Internal linking with the Jupyter notebook, Table of Contents 1. [Step 1.b](external_links): External linking outside of Jupyter notebook 1. [Step 1.b.i](nrpy_links): Linking to other files/modules within NRPy+ 1. [Step 2](latex_pdf_output): Output this notebook to $\LaTeX$-formatted PDF fileThe Table of Contents (ToC) plays a significant role in the formatting of your module. The above ToC is for this module, but I have constructed it in a way such that you should see all of the important details for any module you need to write. If you choose to include a preliminaries section, enumerate it with the "0." All other sections, subsections, and sub-subsections can be enumerated with the 1. Jupyter/LaTex will handle there own numerbing/lettering scheme. It is important when creating subsections and sub-subsections that you indent seen in the Markdown code. The text colors vary for the level section you're assigning within the Markdown code. When writing within the brackets to specify a step number, the following scheme is to be used:* Header Sections: Step 1, Step 2, Step 3* Subsections: Step 1.a, Step 1.b, Step 1.c* Sub-subsections: Step 1.a.i, 1.a.ii, 1.a.iii If for some reason you go more then three levels deep in your sectioning, I would suggest finding a way to reorganize your sectioning to prevent that, or ask Zach Etienne what the next level of labelling for Steps should be. We will talk about the other components within the Markdown Code for the ToC in [Step 1.a](internal_links). The only text within the ToC section of this module should be the ToC code itself and what precedes it.I also suggest that the titles for the Steps you include here following the ":" match the titles you use throughout your module. Preliminaries: This is an optional section \[Back to [top](toc)\]$$\label{prelim}$$ This section is a great chance to include textual verbage that might have been too specific for the introduction section, but serves as a beneficial setup to the remainder of the module. For instance, you may want to define quantities here, express important equations, and so on. I suggest that the Preliminaries section is not followed by any Python code blocks, and remains simply a block of information for users to refer back to. Step 1: The Markdown Linking Protocol \[Back to [top](toc)\]$$\label{linking}$$We have already within this template had to link to sources both internally within this module, exteranlly to other components of the NRPy+ tutorial, as well as externally to additional web sources. The next few sections discuss how this is done. It is important to know that any linking is down by combining brackets and parentheses "\[ \]()" with the desired input in each. On another note, main sections like this have their titles preoceed by a single . As you will see, for every deeper layer of sectioning, an addiotnal is appended on, reducing the size of the text. Step 1.a: Internal linking with the Jupyter notebook, Table of Contents \[Back to [top](toc)\]$$\label{internal_links}$$A great resource for how to construct a Table of Contents is:https://medium.com/@sambozek/ipython-er-jupyter-table-of-contents-69bb72cf39d3The Table of Contents is a family of internal links. To link internally we first have to specify an ***anchor tag*** which is the text within the parenthese of preceded by a (See ToC Markdown code). For instance, the anchor tag for this subsection is "internal_links". So, for a particular Step within the Table of Contents you specify the Step title in brackets (e.g., [Step 1.a]), appended by the anchor tag in parentheses preced by a (e.g., (internal_links)), followed by a ":" and the Step description (e.g., : Internal linking with the Jupyter notebook, Table of Contents). Look at the Markdown code for the Table of Contents for a few examples. **Important Note**: The anchor tags cannot be anything that you want. Anchor tags must be entirely lowercase and contain no spaces. Numbers are fine as well as underscores, but not capitalization. I suggest making the anchor tags have siginificant meaning to the section there tied to, instead of making one that reads "step1a". The reason I say this, is because if you ever need to resection your module, the tags won't all need to be chnaged as well if you give each one a unqiue name. All we have done so far is establish anchor tags and clickable links within the Table of Contents, but how do we establish the link to the specific section within the module. Opening up the Markdown code for this section you will see a line of code above the title, and a line of code directly below the title. These are the answers to the question. Each section requires these components to be included for both the Jupyter notebook and LaTex internal linking. Make sure the top line of the Markdown code has a space between it and the title. Similarly, the code directly beneath the title needs space below it as well, separated from the main body of text (see above in Markdown code).**Important Note**: Links do not work unless the two sections which are linked have been run.The Table of Contents is now linked to this section and you may have already noticed but this section, and all others, are linked back to the Table of Contents using the Markdown code in line at the end of the section title. This is exceedingly convenient for modules of great length. It may also be convenient when you're in a particular subsection and you wish to just return to the header section. This is accomplished using a bracket parentheses \[\]() pairing like so (see this in Markdown code). Go back to [Step 1](linking)Lastly, you would more often than not write a code block below implementing what was discussed in this section. This isn't always necessary, some header sections plainly serve as a set up for subsections that will contain all of the necessary coding components. ###Code # This is the code block corresponding to Step 1.a: Internal linking within the Jupyter notebook, Table of Contents print("We have successfully learned how to code internal links using Markdown Linking Protocol!!!") ###Output We have successfully learned how to code internal links using Markdown Linking Protocol!!! ###Markdown Step 1.b: External linking outside of this module \[Back to [top](toc)\]$$\label{external_links}$$To link outside of this particular module we still use bracket parentheses \[ \]() pairings. Since the links are not internal, we no longer need the symbol and anchor tags. Instead, you need an actual link. For instance, look at your Markdown code to see how we link this [website](https://medium.com/@sambozek/ipython-er-jupyter-table-of-contents-69bb72cf39d3) to a line of text. Of course, web links will simply work on there own as a hyperlink, but often you may need to link to multiple external sources and do not want all of the individual addresses clogging up the body of your text. ###Code # This is the code block for Step 1.b: External linking outside of Jupyter notebook print("Be efficient in how you link external sources, utilize []() pairs!!!") ###Output Be efficient in how you link external sources, utilize []() pairs!!! ###Markdown Step 1.b.i: Linking to other files/modules within NRPy+ \[Back to [top](toc)\]$$\label{nrpy_links}$$Other useful extranal sources we would like to link to are the existing files/moudles within NRPy+. To do this we again resort to the \[ \]() pair. By simply typing the file name into the parentheses, you can connect to another [Tutorial module](Tutorial-Template_Style_Guide.ipynb) (see Markdown). To access a .py file, you want to type the command ../edit/followed by the file location. For instance, here is the [.py file](../edit/Template_Style_Guide.py) for this notebook (see Markdown). ###Code # This is the code block for Step 1.b.i: Linking to other files/modules within NRPy+ print("Template_Style_Guide.py is an empty file...") ###Output Template_Style_Guide.py is an empty file... ###Markdown Step 2: Output this notebook to $\LaTeX$-formatted PDF file \[Back to [top](toc)\]$$\label{latex_pdf_output}$$The following code cell converts this Jupyter notebook into a proper, clickable $\LaTeX$-formatted PDF file. After the cell is successfully run, the generated PDF may be found in the root NRPy+ tutorial directory, with filename[Tutorial-Template_Style_Guide.pdf](Tutorial-Template_Style_Guide.pdf) (Note that clicking on this link may not work; you may need to open the PDF file through another means.)**Important Note**: Make sure that the file name is right in all six locations, two here in the Markdown, four in the code below. * Tutorial-Template_Style_Guide.pdf* Tutorial-Template_Style_Guide.ipynb* Tutorial-Template_Style_Guide.tex ###Code import cmdline_helper as cmd # NRPy+: Multi-platform Python command-line interface cmd.output_Jupyter_notebook_to_LaTeXed_PDF("Tutorial-Template_Style_Guide") ###Output Created Tutorial-Template_Style_Guide.tex, and compiled LaTeX file to PDF file Tutorial-Template_Style_Guide.pdf ###Markdown window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-59152712-8'); The NRPy+ Jupyter Tutorial Style Guide / Template Authors: Brandon Clark, Zach Etienne, & First Last Formatting improvements courtesy Brandon Clark**This is a warning message, in red text and bolded, to warn anyone using the module that it is, for example, actively in development, not yet validated, etc. Warning messages are optional.** This module implements a template designed by Brandon Clark to be used as a style guide for all tutorial notebooks within NRPy+. Items in Markdown code contained within "" are not included within the output (double click this box to see what I mean). To the run Markdown code simply hit "Shift + Enter" or the "Run" button above. **This text discusses how a module has been validated against other existing code or modules. This text is given a green font color and bolded. See how to bold and make text different colors in the Markdown code.** NRPy+ Source Code for this module:1. [Template_Style_Guide.py](../edit/Template_Style_Guide.py); [\[**tutorial**\]](Tutorial-Template_Style_Guide.ipynb) This is where you would describe what purpose this source code serves in this module. Read how to correctly link to these source code files/tutorial notebooks later in []. 1. Introduction:Here you write an introduction that discusses in slight detail the framework of this tutorial notebook. Here you may reference external works or websites on which pieces of your module rely. It is often helpful to include an enumerated algorithm to highlight this modules processes. Within the algorithm you may refer to where source code is implemented as a part of this module. The entire algorithm is outlined below, with NRPy+-based components highlighted in green.1. Constructing a Table of Contents1. 1. Discussing [Markdown Linking Protocol](https://medium.com/@sambozek/ipython-er-jupyter-table-of-contents-69bb72cf39d3) 1. Linking to sections internally within the module 1. Linking to external sources1. No parts of this template tutorial notebook rely on NRPy+-based components1. Converting Jupyter notebook to output LaTex PDFYou could also write your introduction to include subsections preceded by . introduction subsection:Include information relevant to this subsection here. Other (Optional): You may include any number of items here within the first box of the tutorial notebook, but I suggest being minimalistic when you can. Other sections that have been included in other tutorial modules are as follows Note on Notation:When using a new type of notation for the first time within the NRPy+ tutorial, you may want to include some notes on that here. Citations:This is a great place to list out the references you link to within the module with actual citations. Table of Contents$$\label{toc}$$This notebook is organized as follows0. [Preliminaries](prelim): This is an optional section1. [Step 1](linking): The Markdown Linking Protocol 1. [Step 1.a](internal_links) Internal linking with the Jupyter notebook, Table of Contents 1. [Step 1.b](external_links): External linking outside of Jupyter notebook 1. [Step 1.b.i](nrpy_links): Linking to other files/modules within NRPy+ 1. [Step 2](latex_pdf_output): Output this notebook to $\LaTeX$-formatted PDF fileThe Table of Contents (ToC) plays a significant role in the formatting of your module. The above ToC is for this module, but I have constructed it in a way such that you should see all of the important details for any module you need to write. If you choose to include a preliminaries section, enumerate it with the "0." All other sections, subsections, and sub-subsections can be enumerated with the 1. Jupyter/LaTex will handle there own numbering/lettering scheme. It is important when creating subsections and sub-subsections that you indent seen in the Markdown code. The text colors vary for the level section you're assigning within the Markdown code. When writing within the brackets to specify a step number, the following scheme is to be used:* Header Sections: Step 1, Step 2, Step 3* Subsections: Step 1.a, Step 1.b, Step 1.c* Sub-subsections: Step 1.a.i, 1.a.ii, 1.a.iii If for some reason you go more then three levels deep in your sectioning, I would suggest finding a way to reorganize your sectioning to prevent that, or ask Zach Etienne what the next level of labeling for Steps should be. We will talk about the other components within the Markdown Code for the ToC in [Step 1.a](internal_links). The only text within the ToC section of this module should be the ToC code itself and what precedes it.I also suggest that the titles for the Steps you include here following the ":" match the titles you use throughout your module. Preliminaries: This is an optional section \[Back to [top](toc)\]$$\label{prelim}$$ This section is a great chance to include textual verbiage that might have been too specific for the introduction section, but serves as a beneficial setup to the remainder of the module. For instance, you may want to define quantities here, express important equations, and so on. I suggest that the Preliminaries section is not followed by any Python code blocks, and remains simply a block of information for users to refer back to. Step 1: The Markdown Linking Protocol \[Back to [top](toc)\]$$\label{linking}$$We have already within this template had to link to sources both internally within this module, externally to other components of the NRPy+ tutorial, as well as externally to additional web sources. The next few sections discuss how this is done. It is important to know that any linking is down by combining brackets and parentheses "\[ \]()" with the desired input in each. On another note, main sections like this have their titles preceded by a single . As you will see, for every deeper layer of sectioning, an additional is appended on, reducing the size of the text. Step 1.a: Internal linking with the Jupyter notebook, Table of Contents \[Back to [top](toc)\]$$\label{internal_links}$$A great resource for how to construct a Table of Contents is:https://medium.com/@sambozek/ipython-er-jupyter-table-of-contents-69bb72cf39d3The Table of Contents is a family of internal links. To link internally we first have to specify an ***anchor tag*** which is the text within the parentheses of preceded by a (See ToC Markdown code). For instance, the anchor tag for this subsection is "internal_links". So, for a particular Step within the Table of Contents you specify the Step title in brackets (e.g., [Step 1.a]), appended by the anchor tag in parentheses preceded by a (e.g., (internal_links)), followed by a ":" and the Step description (e.g., : Internal linking with the Jupyter notebook, Table of Contents). Look at the Markdown code for the Table of Contents for a few examples. **Important Note**: The anchor tags cannot be anything that you want. Anchor tags must be entirely lowercase and contain no spaces. Numbers are fine as well as underscores, but not capitalization. I suggest making the anchor tags have significant meaning to the section there tied to, instead of making one that reads "step1a". The reason I say this, is because if you ever need to resection your module, the tags won't all need to be changed as well if you give each one a unique name. All we have done so far is establish anchor tags and clickable links within the Table of Contents, but how do we establish the link to the specific section within the module. Opening up the Markdown code for this section you will see a line of code above the title, and a line of code directly below the title. These are the answers to the question. Each section requires these components to be included for both the Jupyter notebook and LaTex internal linking. Make sure the top line of the Markdown code has a space between it and the title. Similarly, the code directly beneath the title needs space below it as well, separated from the main body of text (see above in Markdown code).**Important Note**: Links do not work unless the two sections which are linked have been run.The Table of Contents is now linked to this section and you may have already noticed but this section, and all others, are linked back to the Table of Contents using the Markdown code in line at the end of the section title. This is exceedingly convenient for modules of great length. It may also be convenient when you're in a particular subsection and you wish to just return to the header section. This is accomplished using a bracket parentheses \[\]() pairing like so (see this in Markdown code). Go back to [Step 1](linking)Lastly, you would more often than not write a code block below implementing what was discussed in this section. This isn't always necessary, some header sections plainly serve as a set up for subsections that will contain all of the necessary coding components. ###Code # This is the code block corresponding to Step 1.a: Internal linking within the Jupyter notebook, Table of Contents print("We have successfully learned how to code internal links using Markdown Linking Protocol!!!") ###Output We have successfully learned how to code internal links using Markdown Linking Protocol!!! ###Markdown Step 1.b: External linking outside of this module \[Back to [top](toc)\]$$\label{external_links}$$To link outside of this particular module we still use bracket parentheses \[ \]() pairings. Since the links are not internal, we no longer need the symbol and anchor tags. Instead, you need an actual link. For instance, look at your Markdown code to see how we link this [website](https://medium.com/@sambozek/ipython-er-jupyter-table-of-contents-69bb72cf39d3) to a line of text. Of course, web links will simply work on there own as a hyperlink, but often you may need to link to multiple external sources and do not want all of the individual addresses clogging up the body of your text. ###Code # This is the code block for Step 1.b: External linking outside of Jupyter notebook print("Be efficient in how you link external sources, utilize []() pairs!!!") ###Output Be efficient in how you link external sources, utilize []() pairs!!! ###Markdown Step 1.b.i: Linking to other files/modules within NRPy+ \[Back to [top](toc)\]$$\label{nrpy_links}$$Other useful external sources we would like to link to are the existing files/modules within NRPy+. To do this we again resort to the \[ \]() pair. By simply typing the file name into the parentheses, you can connect to another [Tutorial module](Tutorial-Template_Style_Guide.ipynb) (see Markdown). To access a .py file, you want to type the command ../edit/followed by the file location. For instance, here is the [.py file](../edit/Template_Style_Guide.py) for this notebook (see Markdown). ###Code # This is the code block for Step 1.b.i: Linking to other files/modules within NRPy+ print("Template_Style_Guide.py is an empty file...") ###Output Template_Style_Guide.py is an empty file... ###Markdown Step 2: Output this notebook to $\LaTeX$-formatted PDF file \[Back to [top](toc)\]$$\label{latex_pdf_output}$$The following code cell converts this Jupyter notebook into a proper, clickable $\LaTeX$-formatted PDF file. After the cell is successfully run, the generated PDF may be found in the root NRPy+ tutorial directory, with filename[Tutorial-Template_Style_Guide.pdf](Tutorial-Template_Style_Guide.pdf) (Note that clicking on this link may not work; you may need to open the PDF file through another means.)**Important Note**: Make sure that the file name is right in all six locations, two here in the Markdown, four in the code below. * Tutorial-Template_Style_Guide.pdf* Tutorial-Template_Style_Guide.ipynb* Tutorial-Template_Style_Guide.tex ###Code import cmdline_helper as cmd # NRPy+: Multi-platform Python command-line interface cmd.output_Jupyter_notebook_to_LaTeXed_PDF("Tutorial-Template_Style_Guide") ###Output Created Tutorial-Template_Style_Guide.tex, and compiled LaTeX file to PDF file Tutorial-Template_Style_Guide.pdf ###Markdown window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-59152712-8'); The NRPy+ Jupyter Tutorial Style Guide / Template Authors: Brandon Clark, Zach Etienne, & First Last Formatting improvements courtesy Brandon Clark**This is a warning message, in red text and bolded, to warn anyone using the module that it is, for example, actively in development, not yet validated, etc. Warning messages are optional.** This module implements a template designed by Brandon Clark to be used as a style guide for all tutorial notebooks within NRPy+. Items in Markdown code contained within "" are not included within the output (double click this box to see what I mean). To the run Markdown code simply hit "Shift + Enter" or the "Run" button above. **This text discusses how a module has been validated against other existing code or modules. This text is given a green font color and bolded. See how to bold and make text different colors in the Markdown code.** NRPy+ Source Code for this module:1. [Template_Style_Guide.py](../edit/Template_Style_Guide.py); [\[**tutorial**\]](Tutorial-Template_Style_Guide.ipynb) This is where you would describe what purpose this source code serves in this module. Read how to correctly link to these source code files/tutorial notebooks later in []. 1. Introduction:Here you write an introduction that discusses in slight detail the framework of this tutorial notebook. Here you may reference external works or websites on which pieces of your module rely. It is often helpful to include an enumerated algorihtm to highlight this modules processes. Within the algortihm you may refer to where source code is implemeted as a part of this module. The entire algorithm is outlined below, with NRPy+-based components highlighted in green.1. Constructing a Table of Contents1. 1. Discussing [Markdown Linking Protocol](https://medium.com/@sambozek/ipython-er-jupyter-table-of-contents-69bb72cf39d3) 1. Linking to sections internally within the module 1. Linking to external sources1. No parts of this template tutorial notebook rely on NRPy+-based components1. Converting Jupyter notebook to output LaTex PDFYou could also write your introduction to include subsections preceded by . introduction subsection:Include information relevant to this subsection here. Other (Optional): You may include any number of items here within the first box of the tutorial notebook, but I suggest being minimalistic when you can. Other sections that have been included in other tutorial moudles are as follows Note on Notation:When using a new type of notation for the first time within the NRPy+ tutorial, you may want to include some notes on that here. Citations:This is a great place to list out the references you link to within the module with actual citations. Table of Contents$$\label{toc}$$This notebook is organized as follows0. [Preliminaries](prelim): This is an optional section1. [Step 1](linking): The Markdown Linking Protocol 1. [Step 1.a](internal_links) Internal linking with the Jupyter notebook, Table of Contents 1. [Step 1.b](external_links): External linking outside of Jupyter notebook 1. [Step 1.b.i](nrpy_links): Linking to other files/modules within NRPy+ 1. [Step 2](latex_pdf_output): Output this notebook to $\LaTeX$-formatted PDF fileThe Table of Contents (ToC) plays a significant role in the formatting of your module. The above ToC is for this module, but I have constructed it in a way such that you should see all of the important details for any module you need to write. If you choose to include a preliminaries section, enumerate it with the "0." All other sections, subsections, and sub-subsections can be enumerated with the 1. Jupyter/LaTex will handle there own numerbing/lettering scheme. It is important when creating subsections and sub-subsections that you indent seen in the Markdown code. The text colors vary for the level section you're assigning within the Markdown code. When writing within the brackets to specify a step number, the following scheme is to be used:* Header Sections: Step 1, Step 2, Step 3* Subsections: Step 1.a, Step 1.b, Step 1.c* Sub-subsections: Step 1.a.i, 1.a.ii, 1.a.iii If for some reason you go more then three levels deep in your sectioning, I would suggest finding a way to reorganize your sectioning to prevent that, or ask Zach Etienne what the next level of labelling for Steps should be. We will talk about the other components within the Markdown Code for the ToC in [Step 1.a](internal_links). The only text within the ToC section of this module should be the ToC code itself and what precedes it.I also suggest that the titles for the Steps you include here following the ":" match the titles you use throughout your module. Preliminaries: This is an optional section \[Back to [top](toc)\]$$\label{prelim}$$ This section is a great chance to include textual verbage that might have been too specific for the introduction section, but serves as a beneficial setup to the remainder of the module. For instance, you may want to define quantities here, express important equations, and so on. I suggest that the Preliminaries section is not followed by any Python code blocks, and remains simply a block of information for users to refer back to. Step 1: The Markdown Linking Protocol \[Back to [top](toc)\]$$\label{linking}$$We have already within this template had to link to sources both internally within this module, exteranlly to other components of the NRPy+ tutorial, as well as externally to additional web sources. The next few sections discuss how this is done. It is important to know that any linking is down by combining brackets and parentheses "\[ \]()" with the desired input in each. On another note, main sections like this have their titles preoceed by a single . As you will see, for every deeper layer of sectioning, an addiotnal is appended on, reducing the size of the text. Step 1.a: Internal linking with the Jupyter notebook, Table of Contents \[Back to [top](toc)\]$$\label{internal_links}$$A great resource for how to construct a Table of Contents is:https://medium.com/@sambozek/ipython-er-jupyter-table-of-contents-69bb72cf39d3The Table of Contents is a family of internal links. To link internally we first have to specify an ***anchor tag*** which is the text within the parenthese of preceded by a (See ToC Markdown code). For instance, the anchor tag for this subsection is "internal_links". So, for a particular Step within the Table of Contents you specify the Step title in brackets (e.g., [Step 1.a]), appended by the anchor tag in parentheses preced by a (e.g., (internal_links)), followed by a ":" and the Step description (e.g., : Internal linking with the Jupyter notebook, Table of Contents). Look at the Markdown code for the Table of Contents for a few examples. **Important Note**: The anchor tags cannot be anything that you want. Anchor tags must be entirely lowercase and contain no spaces. Numbers are fine as well as underscores, but not capitalization. I suggest making the anchor tags have siginificant meaning to the section there tied to, instead of making one that reads "step1a". The reason I say this, is because if you ever need to resection your module, the tags won't all need to be chnaged as well if you give each one a unqiue name. All we have done so far is establish anchor tags and clickable links within the Table of Contents, but how do we establish the link to the specific section within the module. Opening up the Markdown code for this section you will see a line of code above the title, and a line of code directly below the title. These are the answers to the question. Each section requires these components to be included for both the Jupyter notebook and LaTex internal linking. Make sure the top line of the Markdown code has a space between it and the title. Similarly, the code directly beneath the title needs space below it as well, separated from the main body of text (see above in Markdown code).**Important Note**: Links do not work unless the two sections which are linked have been run.The Table of Contents is now linked to this section and you may have already noticed but this section, and all others, are linked back to the Table of Contents using the Markdown code in line at the end of the section title. This is exceedingly convenient for modules of great length. It may also be convenient when you're in a particular subsection and you wish to just return to the header section. This is accomplished using a bracket parentheses \[\]() pairing like so (see this in Markdown code). Go back to [Step 1](linking)Lastly, you would more often than not write a code block below implementing what was discussed in this section. This isn't always necessary, some header sections plainly serve as a set up for subsections that will contain all of the necessary coding components. ###Code # This is the code block corresponding to Step 1.a: Internal linking within the Jupyter notebook, Table of Contents print("We have successfully learned how to code internal links using Markdown Linking Protocol!!!") ###Output We have successfully learned how to code internal links using Markdown Linking Protocol!!! ###Markdown Step 1.b: External linking outside of this module \[Back to [top](toc)\]$$\label{external_links}$$To link outside of this particular module we still use bracket parentheses \[ \]() pairings. Since the links are not internal, we no longer need the symbol and anchor tags. Instead, you need an actual link. For instance, look at your Markdown code to see how we link this [website](https://medium.com/@sambozek/ipython-er-jupyter-table-of-contents-69bb72cf39d3) to a line of text. Of course, web links will simply work on there own as a hyperlink, but often you may need to link to multiple external sources and do not want all of the individual addresses clogging up the body of your text. ###Code # This is the code block for Step 1.b: External linking outside of Jupyter notebook print("Be efficient in how you link external sources, utilize []() pairs!!!") ###Output Be efficient in how you link external sources, utilize []() pairs!!! ###Markdown Step 1.b.i: Linking to other files/modules within NRPy+ \[Back to [top](toc)\]$$\label{nrpy_links}$$Other useful extranal sources we would like to link to are the existing files/moudles within NRPy+. To do this we again resort to the \[ \]() pair. By simply typing the file name into the parentheses, you can connect to another [Tutorial module](Tutorial-Template_Style_Guide.ipynb) (see Markdown). To access a .py file, you want to type the command ../edit/followed by the file location. For instance, here is the [.py file](../edit/Template_Style_Guide.py) for this notebook (see Markdown). ###Code # This is the code block for Step 1.b.i: Linking to other files/modules within NRPy+ print("Template_Style_Guide.py is an empty file...") ###Output Template_Style_Guide.py is an empty file... ###Markdown Step 2: Output this notebook to $\LaTeX$-formatted PDF file \[Back to [top](toc)\]$$\label{latex_pdf_output}$$The following code cell converts this Jupyter notebook into a proper, clickable $\LaTeX$-formatted PDF file. After the cell is successfully run, the generated PDF may be found in the root NRPy+ tutorial directory, with filename[Tutorial-Template_Style_Guide.pdf](Tutorial-Template_Style_Guide.pdf) (Note that clicking on this link may not work; you may need to open the PDF file through another means.)**Important Note**: Make sure that the file name is right in all six locations, two here in the Markdown, four in the code below. * Tutorial-Template_Style_Guide.pdf* Tutorial-Template_Style_Guide.ipynb* Tutorial-Template_Style_Guide.tex ###Code import cmdline_helper as cmd # NRPy+: Multi-platform Python command-line interface cmd.output_Jupyter_notebook_to_LaTeXed_PDF("Tutorial-Template_Style_Guide") ###Output Created Tutorial-Template_Style_Guide.tex, and compiled LaTeX file to PDF file Tutorial-Template_Style_Guide.pdf ###Markdown window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-59152712-8'); The NRPy+ Jupyter Tutorial Style Guide / Template Authors: Brandon Clark, Zach Etienne, & First Last Formatting improvements courtesy Brandon Clark **This is a warning message, in red text and bolded, to warn anyone using the module that it is, for example, actively in development, not yet validated, etc. Warning messages are optional.** This module implements a template designed by Brandon Clark to be used as a style guide for all tutorial notebooks within NRPy+. Items in Markdown code contained within "" are not included within the output (double click this box to see what I mean). To the run Markdown code simply hit "Shift + Enter" or the "Run" button above. **This text discusses how a module has been validated against other existing code or modules. This text is given a green font color and bolded. See how to bold and make text different colors in the Markdown code.** NRPy+ Source Code for this module:1. [Template_Style_Guide.py](../edit/Template_Style_Guide.py); [\[**tutorial**\]](Tutorial-Template_Style_Guide.ipynb) This is where you would describe what purpose this source code serves in this module. Read how to correctly link to these source code files/tutorial notebooks later in []. 1. Introduction:Here you write an introduction that discusses in slight detail the framework of this tutorial notebook. Here you may reference external works or websites on which pieces of your module rely. It is often helpful to include an enumerated algorihtm to highlight this modules processes. Within the algortihm you may refer to where source code is implemeted as a part of this module. The entire algorithm is outlined below, with NRPy+-based components highlighted in green.1. Constructing a Table of Contents1. 1. Discussing [Markdown Linking Protocol](https://medium.com/@sambozek/ipython-er-jupyter-table-of-contents-69bb72cf39d3) 1. Linking to sections internally within the module 1. Linking to external sources1. No parts of this template tutorial notebook rely on NRPy+-based components1. Converting Jupyter notebook to output LaTex PDFYou could also write your introduction to include subsections preceded by . introduction subsection:Include information relevant to this subsection here. Other (Optional): You may include any number of items here within the first box of the tutorial notebook, but I suggest being minimalistic when you can. Other sections that have been included in other tutorial moudles are as follows Note on Notation:When using a new type of notation for the first time within the NRPy+ tutorial, you may want to include some notes on that here. Citations:This is a great place to list out the references you link to within the module with actual citations. Table of Contents$$\label{toc}$$This notebook is organized as follows0. [Preliminaries](prelim): This is an optional section1. [Step 1](linking): The Markdown Linking Protocol 1. [Step 1.a](internal_links) Internal linking with the Jupyter notebook, Table of Contents 1. [Step 1.b](external_links): External linking outside of Jupyter notebook 1. [Step 1.b.i](nrpy_links): Linking to other files/modules within NRPy+ 1. [Step 2](latex_pdf_output): Output this notebook to $\LaTeX$-formatted PDF fileThe Table of Contents (ToC) plays a significant role in the formatting of your module. The above ToC is for this module, but I have constructed it in a way such that you should see all of the important details for any module you need to write. If you choose to include a preliminaries section, enumerate it with the "0." All other sections, subsections, and sub-subsections can be enumerated with the 1. Jupyter/LaTex will handle there own numerbing/lettering scheme. It is important when creating subsections and sub-subsections that you indent seen in the Markdown code. The text colors vary for the level section you're assigning within the Markdown code. When writing within the brackets to specify a step number, the following scheme is to be used:* Header Sections: Step 1, Step 2, Step 3* Subsections: Step 1.a, Step 1.b, Step 1.c* Sub-subsections: Step 1.a.i, 1.a.ii, 1.a.iii If for some reason you go more then three levels deep in your sectioning, I would suggest finding a way to reorganize your sectioning to prevent that, or ask Zach Etienne what the next level of labelling for Steps should be. We will talk about the other components within the Markdown Code for the ToC in [Step 1.a](internal_links). The only text within the ToC section of this module should be the ToC code itself and what precedes it.I also suggest that the titles for the Steps you include here following the ":" match the titles you use throughout your module. Preliminaries: This is an optional section \[Back to [top](toc)\]$$\label{prelim}$$ This section is a great chance to include textual verbage that might have been too specific for the introduction section, but serves as a beneficial setup to the remainder of the module. For instance, you may want to define quantities here, express important equations, and so on. I suggest that the Preliminaries section is not followed by any Python code blocks, and remains simply a block of information for users to refer back to. Step 1: The Markdown Linking Protocol \[Back to [top](toc)\]$$\label{linking}$$We have already within this template had to link to sources both internally within this module, exteranlly to other components of the NRPy+ tutorial, as well as externally to additional web sources. The next few sections discuss how this is done. It is important to know that any linking is down by combining brackets and parentheses "\[ \]()" with the desired input in each. On another note, main sections like this have their titles preoceed by a single . As you will see, for every deeper layer of sectioning, an addiotnal is appended on, reducing the size of the text. Step 1.a: Internal linking with the Jupyter notebook, Table of Contents \[Back to [top](toc)\]$$\label{internal_links}$$A great resource for how to construct a Table of Contents is:https://medium.com/@sambozek/ipython-er-jupyter-table-of-contents-69bb72cf39d3The Table of Contents is a family of internal links. To link internally we first have to specify an ***anchor tag*** which is the text within the parenthese of preceded by a (See ToC Markdown code). For instance, the anchor tag for this subsection is "internal_links". So, for a particular Step within the Table of Contents you specify the Step title in brackets (e.g., [Step 1.a]), appended by the anchor tag in parentheses preced by a (e.g., (internal_links)), followed by a ":" and the Step description (e.g., : Internal linking with the Jupyter notebook, Table of Contents). Look at the Markdown code for the Table of Contents for a few examples. **Important Note**: The anchor tags cannot be anything that you want. Anchor tags must be entirely lowercase and contain no spaces. Numbers are fine as well as underscores, but not capitalization. I suggest making the anchor tags have siginificant meaning to the section there tied to, instead of making one that reads "step1a". The reason I say this, is because if you ever need to resection your module, the tags won't all need to be chnaged as well if you give each one a unqiue name. All we have done so far is establish anchor tags and clickable links within the Table of Contents, but how do we establish the link to the specific section within the module. Opening up the Markdown code for this section you will see a line of code above the title, and a line of code directly below the title. These are the answers to the question. Each section requires these components to be included for both the Jupyter notebook and LaTex internal linking. Make sure the top line of the Markdown code has a space between it and the title. Similarly, the code directly beneath the title needs space below it as well, separated from the main body of text (see above in Markdown code).**Important Note**: Links do not work unless the two sections which are linked have been run.The Table of Contents is now linked to this section and you may have already noticed but this section, and all others, are linked back to the Table of Contents using the Markdown code in line at the end of the section title. This is exceedingly convenient for modules of great length. It may also be convenient when you're in a particular subsection and you wish to just return to the header section. This is accomplished using a bracket parentheses \[\]() pairing like so (see this in Markdown code). Go back to [Step 1](linking)Lastly, you would more often than not write a code block below implementing what was discussed in this section. This isn't always necessary, some header sections plainly serve as a set up for subsections that will contain all of the necessary coding components. ###Code # This is the code block corresponding to Step 1.a: Internal linking within the Jupyter notebook, Table of Contents print("We have successfully learned how to code internal links using Markdown Linking Protocol!!!") ###Output We have successfully learned how to code internal links using Markdown Linking Protocol!!! ###Markdown Step 1.b: External linking outside of this module \[Back to [top](toc)\]$$\label{external_links}$$To link outside of this particular module we still use bracket parentheses \[ \]() pairings. Since the links are not internal, we no longer need the symbol and anchor tags. Instead, you need an actual link. For instance, look at your Markdown code to see how we link this [website](https://medium.com/@sambozek/ipython-er-jupyter-table-of-contents-69bb72cf39d3) to a line of text. Of course, web links will simply work on there own as a hyperlink, but often you may need to link to multiple external sources and do not want all of the individual addresses clogging up the body of your text. ###Code # This is the code block for Step 1.b: External linking outside of Jupyter notebook print("Be efficient in how you link external sources, utilize []() pairs!!!") ###Output Be efficient in how you link external sources, utilize []() pairs!!! ###Markdown Step 1.b.i: Linking to other files/modules within NRPy+ \[Back to [top](toc)\]$$\label{nrpy_links}$$Other useful extranal sources we would like to link to are the existing files/moudles within NRPy+. To do this we again resort to the \[ \]() pair. By simply typing the file name into the parentheses, you can connect to another [Tutorial module](Tutorial-Template_Style_Guide.ipynb) (see Markdown). To access a .py file, you want to type the command ../edit/followed by the file location. For instance, here is the [.py file](../edit/Template_Style_Guide.py) for this notebook (see Markdown). ###Code # This is the code block for Step 1.b.i: Linking to other files/modules within NRPy+ print("Template_Style_Guide.py is an empty file...") ###Output Template_Style_Guide.py is an empty file... ###Markdown Step 2: Output this notebook to $\LaTeX$-formatted PDF file \[Back to [top](toc)\]$$\label{latex_pdf_output}$$The following code cell converts this Jupyter notebook into a proper, clickable $\LaTeX$-formatted PDF file. After the cell is successfully run, the generated PDF may be found in the root NRPy+ tutorial directory, with filename[Tutorial-Template_Style_Guide.pdf](Tutorial-Template_Style_Guide.pdf) (Note that clicking on this link may not work; you may need to open the PDF file through another means.)**Important Note**: Make sure that the file name is right in all six locations, two here in the Markdown, four in the code below. * Tutorial-Template_Style_Guide.pdf* Tutorial-Template_Style_Guide.ipynb* Tutorial-Template_Style_Guide.tex ###Code !jupyter nbconvert --to latex --template latex_nrpy_style.tplx --log-level='WARN' Tutorial-Template_Style_Guide.ipynb !pdflatex -interaction=batchmode Tutorial-Template_Style_Guide.tex !pdflatex -interaction=batchmode Tutorial-Template_Style_Guide.tex !pdflatex -interaction=batchmode Tutorial-Template_Style_Guide.tex !rm -f Tut*.out Tut*.aux Tut*.log ###Output This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) (preloaded format=pdflatex) restricted \write18 enabled. entering extended mode This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) (preloaded format=pdflatex) restricted \write18 enabled. entering extended mode This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) (preloaded format=pdflatex) restricted \write18 enabled. entering extended mode ###Markdown window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-59152712-8'); The NRPy+ Jupyter Tutorial Style Guide / Template Authors: Brandon Clark, Zach Etienne, & First Last Formatting improvements courtesy Brandon Clark **This is a warning message, in red text and bolded, to warn anyone using the module that it is, for example, actively in development, not yet validated, etc. Warning messages are optional.** This module implements a template designed by Brandon Clark to be used as a style guide for all tutorial modules within NRPy+. Items in Markdown code contained within "" are not included within the output (double click this box to see what I mean). To the run Markdown code simply hit "Shift + Enter" or the "Run" button above. **This text discusses how a module has been validated against other existing code or modules. This text is given a green font color and bolded. See how to bold and make text different colors in the Markdown code.** NRPy+ Source Code for this module:1. [Template_Style_Guide.py](../edit/Template_Style_Guide.py); [\[**tutorial**\]](Tutorial-Template_Style_Guide.ipynb) This is where you would describe what purpose this source code serves in this module. Read how to correctly link to these source code files/tutorial modules later in []. 1. Introduction:Here you write an introduction that discusses in slight detail the framework of this tutorial module. Here you may reference external works or websites on which pieces of your module rely. It is often helpful to include an enumerated algorihtm to highlight this modules processes. Within the algortihm you may refer to where source code is implemeted as a part of this module. The entire algorithm is outlined below, with NRPy+-based components highlighted in green.1. Constructing a Table of Contents1. 1. Discussing [Markdown Linking Protocol](https://medium.com/@sambozek/ipython-er-jupyter-table-of-contents-69bb72cf39d3) 1. Linking to sections internally within the the module 1. Linking to external sources1. No parts of this template tutorial module rely on NRPy+-based components1. Converting Jupyter notebook to output LaTex PDFYou could also write your introduction to include subsections preceded by . introduction subsection:Include information relevant to this subsection here. Other (Optional): You may include any number of items here within the first box of the tutorial module, but I suggest being minimalistic when you can. Other sections that have been included in other tutorial moudles are as follows Note on Notation:When using a new type of notation for the first time within the NRPy+ tutorial, you may want to include some notes on that here. Citations:This is a great place to list out the references you link to within the module with actual citations. Table of Contents$$\label{toc}$$This module is organized as follows0. [Preliminaries](prelim): This is an optional section1. [Step 1](linking): The Markdown Linking Protocol 1. [Step 1.a](internal_links) Internal linking with the Jupyter notebook, Table of Contents 1. [Step 1.b](external_links): External linking outside of Jupyter notebook 1. [Step 1.b.i](nrpy_links): Linking to other files/modules within NRPy+ 1. [Step 2](latex_pdf_output): Output this module to $\LaTeX$-formatted PDF fileThe Table of Contents (ToC) plays a significant role in the formatting of your module. The above ToC is for this module, but I have constructed it in a way such that you should see all of the important details for any module you need to write. If you choose to include a preliminaries section, enumerate it with the "0." All other sections, subsections, and sub-subsections can be enumerated with the 1. Jupyter/LaTex will handle there own numerbing/lettering scheme. It is important when creating subsections and sub-subsections that you indent seen in the Markdown code. The text colors vary for the level section you're assigning within the Markdown code. When writing within the brackets to specify a step number, the following scheme is to be used:* Header Sections: Step 1, Step 2, Step 3* Subsections: Step 1.a, Step 1.b, Step 1.c* Sub-subsections: Step 1.a.i, 1.a.ii, 1.a.iii If for some reason you go more then three levels deep in your sectioning, I would suggest finding a way to reorganize your sectioning to prevent that, or ask Zach Etienne what the next level of labelling for Steps should be. We will talk about the other components within the Markdown Code for the ToC in [Step 1.a](internal_links). The only text within the ToC section of this module should be the ToC code itself and what precedes it.I also suggest that the titles for the Steps you include here following the ":" match the titles you use throughout your module. Preliminaries: This is an optional section \[Back to [top](toc)\]$$\label{prelim}$$ This section is a great chance to include textual verbage that might have been too specific for the introduction section, but serves as a beneficial setup to the remainder of the module. For instance, you may want to define quantities here, express important equations, and so on. I suggest that the Preliminaries section is not followed by any Python code blocks, and remains simply a block of information for users to refer back to. Step 1: The Markdown Linking Protocol \[Back to [top](toc)\]$$\label{linking}$$We have already within this template had to link to sources both internally within this module, exteranlly to other components of the NRPy+ tutorial, as well as externally to additional web sources. The next few sections discuss how this is done. It is important to know that any linking is down by combining brackets and parentheses "\[ \]()" with the desired input in each. On another note, main sections like this have their titles preoceed by a single . As you will see, for every deeper layer of sectioning, an addiotnal is appended on, reducing the size of the text. Step 1.a: Internal linking with the Jupyter notebook, Table of Contents \[Back to [top](toc)\]$$\label{internal_links}$$A great resource for how to construct a Table of Contents is:https://medium.com/@sambozek/ipython-er-jupyter-table-of-contents-69bb72cf39d3The Table of Contents is a family of internal links. To link internally we first have to specify an ***anchor tag*** which is the text within the parenthese of preceded by a (See ToC Markdown code). For instance, the anchor tag for this subsection is "internal_links". So, for a particular Step within the Table of Contents you specify the Step title in brackets (e.g., [Step 1.a]), appended by the anchor tag in parentheses preced by a (e.g., (internal_links)), followed by a ":" and the Step description (e.g., : Internal linking with the Jupyter notebook, Table of Contents). Look at the Markdown code for the Table of Contents for a few examples. **Important Note**: The anchor tags cannot be anything that you want. Anchor tags must be entirely lowercase and contain no spaces. Numbers are fine as well as underscores, but not capitalization. I suggest making the anchor tags have siginificant meaning to the section there tied to, instead of making one that reads "step1a". The reason I say this, is because if you ever need to resection your module, the tags won't all need to be chnaged as well if you give each one a unqiue name. All we have done so far is establish anchor tags and clickable links within the Table of Contents, but how do we establish the link to the specific section within the module. Opening up the Markdown code for this section you will see a line of code above the title, and a line of code directly below the title. These are the answers to the question. Each section requires these components to be included for both the Jupyter notebook and LaTex internal linking. Make sure the top line of the Markdown code has a space between it and the title. Similarly, the code directly beneath the title needs space below it as well, separated from the main body of text (see above in Markdown code).**Important Note**: Links do not work unless the two sections which are linked have been run.The Table of Contents is now linked to this section and you may have already noticed but this section, and all others, are linked back to the Table of Contents using the Markdown code in line at the end of the section title. This is exceedingly convenient for modules of great length. It may also be convenient when you're in a particular subsection and you wish to just return to the header section. This is accomplished using a bracket parentheses \[\]() pairing like so (see this in Markdown code). Go back to [Step 1](linking)Lastly, you would more often than not write a code block below implementing what was discussed in this section. This isn't always necessary, some header sections plainly serve as a set up for subsections that will contain all of the necessary coding components. ###Code # This is the code block corresponding to Step 1.a: Internal linking within the Jupyter notebook, Table of Contents print("We have successfully learned how to code internal links using Markdown Linking Protocol!!!") ###Output We have successfully learned how to code internal links using Markdown Linking Protocol!!! ###Markdown Step 1.b: External linking outside of this module \[Back to [top](toc)\]$$\label{external_links}$$To link outside of this particular module we still use bracket parentheses \[ \]() pairings. Since the links are not internal, we no longer need the symbol and anchor tags. Instead, you need an actual link. For instance, look at your Markdown code to see how we link this [website](https://medium.com/@sambozek/ipython-er-jupyter-table-of-contents-69bb72cf39d3) to a line of text. Of course, web links will simply work on there own as a hyperlink, but often you may need to link to multiple external sources and do not want all of the individual addresses clogging up the body of your text. ###Code # This is the code block for Step 1.b: External linking outside of Jupyter notebook print("Be efficient in how you link external sources, utilize []() pairs!!!") ###Output Be effcient in how you link external sources, utilize []() pairs!!! ###Markdown Step 1.b.i: Linking to other files/modules within NRPy+ \[Back to [top](toc)\]$$\label{nrpy_links}$$Other useful extranal sources we would like to link to are the existing files/moudles within NRPy+. To do this we again resort to the \[ \]() pair. By simply typing the file name into the parentheses, you can connect to another [Tutorial module](Tutorial-Template_Style_Guide.ipynb) (see Markdown). To access a .py file, you want to type the command ../edit/followed by the file location. For instance, here is the [.py file](../edit/Template_Style_Guide.py) for this notebook (see Markdown). ###Code # This is the code block for Step 1.b.i: Linking to other files/modules within NRPy+ print("Template_Style_Guide.py is an empty file...") ###Output Template_Style_Guide.py is an empty file... ###Markdown Step 2: Output this module to $\LaTeX$-formatted PDF file \[Back to [top](toc)\]$$\label{latex_pdf_output}$$The following code cell converts this Jupyter notebook into a proper, clickable $\LaTeX$-formatted PDF file. After the cell is successfully run, the generated PDF may be found in the root NRPy+ tutorial directory, with filename[Tutorial-Template_Style_Guide.pdf](Tutorial-Template_Style_Guide.pdf) (Note that clicking on this link may not work; you may need to open the PDF file through another means.)**Important Note**: Make sure that the file name is right in all six locations, two here in the Markdown, four in the code below. * Tutorial-Template_Style_Guide.pdf* Tutorial-Template_Style_Guide.ipynb* Tutorial-Template_Style_Guide.tex ###Code !jupyter nbconvert --to latex --template latex_nrpy_style.tplx Tutorial-Template_Style_Guide.ipynb !pdflatex -interaction=batchmode Tutorial-Template_Style_Guide.tex !pdflatex -interaction=batchmode Tutorial-Template_Style_Guide.tex !pdflatex -interaction=batchmode Tutorial-Template_Style_Guide.tex !rm -f Tut*.out Tut*.aux Tut*.log ###Output [NbConvertApp] Converting notebook Tutorial-Template_Style_Guide.ipynb to latex [NbConvertApp] Writing 37801 bytes to Tutorial-Template_Style_Guide.tex This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) (preloaded format=pdflatex) restricted \write18 enabled. entering extended mode This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) (preloaded format=pdflatex) restricted \write18 enabled. entering extended mode This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) (preloaded format=pdflatex) restricted \write18 enabled. entering extended mode
1. Mapping ribosome profiling and RNA-seq data.ipynb
###Markdown 1. Mapping ribosome profiling and RNA-seq dataThese steps collate information from transcriptome assemblies, RNA-seq and ribosome profiling raw data to produce ".trpedf" files (details described below) which will be used in all subsequent data preprocessing steps. General Software RequirementsA \*nix-based system: Bowtie2, Tophat, Cufflinks, BedtoolsPython 2.7 (with Numpy, Scipy, Pandas, ViennaRNA, Statsmodels, Biopython; everything but ViennaRNA can also be run on Windows) Raw Data SourceRibosome profiling and RNA-seq data obtained from NCBI's Sequence Read Archive (SRA) by downloading the corresponding .SRA files. Genome and transcriptome annotations were obtained from Illumina iGenomes.**Sample****Ribosome Profiling Data****RNA-Seq Data****Genome Assembly****Transcriptome**Human HeLa cellsSRR970587, SRR970588SRR970592, SRR970593GRCh37Ensembl 70Mouse ES cellsSRR315616, SRR315617, SRR315618, SRR315619SRR315595, SRR315596GRCm38Ensembl 70Zebrafish Shield stageSRR836196SRR2047225Zv9Ensembl 70 SRA files were converted to fastq files and clipped of 3' ligation adapter sequences "CTGTAGGCACCATCAAT", retaining reads >= 25 nucleotides. Mapping Ribosome Profiling DataRibosome profiling reads were first depleted of abundent sequences such as rRNA using Bowtie2. Abundant sequences were compiled from the AbundantSequences directory from Illumina iGenomes, and built into a Bowtie2 index. Additional manually-curated rRNA sequences for zebrafish were used, and are included in the supplementary data files.Example using Mouse ES cell ribosome profiling data below: ###Code %%bash cat *.fa > ./annotations/GRCm38_Abundant.fa bowtie2-build ./annotations/GRCm38_Abundant.fa GRCm38_Abundant OPTIONS="-N 0 -L 23 --norc" bowtie2 $OPTIONS --un ribo_mES_sub_abund.fastq -x GRCm38_Abundant -U ribo_mES.fastq -S /dev/null ###Output _____no_output_____ ###Markdown Remaining reads were mapped to the Ensembl 70 transcriptome using Tophat, allowing no indels, junctions only from gene annotations, max 10 multihits, with multihit pre-filtering. Use the .gtf files and Bowtie2 indices ("genome") from the corresponding iGenomes compilation. ###Code %%bash OPTIONS="--max-insertion-length 0 --max-deletion-length 0\ --no-novel-juncs -g 10 --prefilter-multihits\ --library-type fr-secondstrand" tophat -o ribo_mES $OPTIONS -G genes.gtf genome ribo_mES_sub_abund.fastq ###Output _____no_output_____ ###Markdown Mapping RNA-Seq DataRNA-seq reads (when libraries were constructed by 3' ligation) were mapped by Tophat using the following parameters: ###Code %%bash OPTIONS="--no-novel-juncs --library-type=fr-secondstrand" tophat -o mRNA_mES $OPTIONS -G genes.gtf genome mRNA_mES.fastq ###Output _____no_output_____ ###Markdown Quantification of RNA-seq data was done using Cufflinks; accepted_hits.bam is from the Tophat output: ###Code %%bash OPTIONS="-b genome.fa --multi-read-correct --library-type=fr-secondstrand" cufflinks ${OPTIONS} -o cuffdiff/ -G genes.gtf accepted_hits.bam ###Output _____no_output_____ ###Markdown Assembling Canonical TranscriptomeTo generate a list of transcripts that only use one "canonical" transcript isoform per gene, ensGtp tables for each vertebrate species were retrieved from the UCSC genome browser. BED files were generated from the refFlat files in the iGenomes compilation, using the following awk script: ###Code # ASSEMBLY="GRCm38_ens" # Save following script as file [refFlat_to_bed12.awk] # run as 'refFlat_to_bed12.awk refFlat.txt > ./annotations/$ASSEMBLY_genes.bed' #!/bin/awk -f BEGIN {FS="\t"; OFS="\t"} { blockSizes=""; blockStarts=""; split($10,exonStarts,","); split($11,exonEnds,","); for (i=1; i<=$9; i++) { blockSizes=blockSizes exonEnds[i]-exonStarts[i] ","; blockStarts=blockStarts exonStarts[i]-$5 ","; } blockSizes = substr(blockSizes,1,length(blockSizes)-1); blockStarts = substr(blockStarts,1,length(blockStarts)-1); print $3,$5,$6,$2,0,$4,$7,$8,"0,0,0",$9,blockSizes,blockStarts; } ###Output _____no_output_____ ###Markdown Canonical transcriptome contain one transcript per gene: the transcript with the longest CDS, then longest 5' UTR, then longest transcript length.With the BED file and ensGtp file in the same directory, the following python script was run to generate "\$ASSEMBLY_genes_canonical.bed", which is the transcript subset of \$ASSEMBLY_genes.bed with one transcript per gene.Upload the file to UCSC as a custom track and use it to obtain the corresponding fasta file. Alternatively, the transcriptome fasta file can be obtained from a local whole genome fasta file using bedtools getfasta (a.k.a. getFastaFromBed) ###Code ANNOTATIONS_DIR = "./annotations/" DATA_DIR = "./data/" ASSEMBLY = "GRCm38_ens" def transcript_position(exons, c_intron_lengths, genomic_pos): for exon, c_intron_length in zip(exons, c_intron_lengths): if genomic_pos >= exon[0] and genomic_pos <= exon[1]: return genomic_pos - exons[0][0] - c_intron_length def read_Gtp_file(Gtp_file): transcript_to_gene = {} gene_to_transcript = {} with open(Gtp_file, "r+") as f: for line in f: entry = line.strip().split("\t") transcript_to_gene[entry[1]] = entry[0] gene_to_transcript.setdefault(entry[0], []).append(entry[1]) return transcript_to_gene, gene_to_transcript #%% OPEN FILES with open(ANNOTATIONS_DIR + ASSEMBLY + "_genes.bed", "r+") as in_bed, \ open(ANNOTATIONS_DIR + ASSEMBLY + "_genes_canonical.bed", "w+") as out_bed: #%% READ GTP FILE transcript_to_gene, gene_to_transcript = read_Gtp_file(ANNOTATIONS_DIR + ASSEMBLY + "Gtp") #%% READ BED FILES bed_store = {} for line in in_bed: _, chromStart, chromEnd, name, \ _, strand, thickStart, thickEnd, \ _, blockCount, blockSizes, blockStarts = line.split("\t") if name not in transcript_to_gene: continue #%% CONVERT ENTRY TO INTEGERS chromStart, chromEnd, thickStart, thickEnd, blockCount = map(int, (chromStart, chromEnd, thickStart, thickEnd, blockCount)) blockSizes = map(int, blockSizes.split(",")) blockStarts = map(int, blockStarts.split(",")) #%% SECONDARY DATA FOR CALCULATIONS intron_lengths = [(blockStarts[i+1]-blockStarts[i]-blockSizes[i]) for i in xrange(blockCount-1)] c_intron_lengths = [sum(intron_lengths[:i]) for i in xrange(blockCount)] exons = [[i[0] + chromStart, sum(i) + chromStart] for i in zip(blockStarts, blockSizes)] plus_strand = (strand == "+") #%% CALCULATE LENGTHS: TRANSCRIPT, 5'LEADER, CDS, 3'UTR transcript_length = sum(blockSizes) if plus_strand: UTR5_length = abs(transcript_position(exons, c_intron_lengths, thickStart)\ - transcript_position(exons, c_intron_lengths, chromStart)) UTR3_length = abs(transcript_position(exons, c_intron_lengths, chromEnd)\ - transcript_position(exons, c_intron_lengths, thickEnd)) else: UTR5_length = abs(transcript_position(exons, c_intron_lengths, chromEnd)\ - transcript_position(exons, c_intron_lengths, thickEnd)) UTR3_length = abs(transcript_position(exons, c_intron_lengths, thickStart)\ - transcript_position(exons, c_intron_lengths, chromStart)) CDS_length = abs(transcript_position(exons, c_intron_lengths, thickEnd)\ - transcript_position(exons, c_intron_lengths, thickStart)) bed_store[name] = [line, CDS_length, UTR5_length, transcript_length] #%% FIND TRANSCRIPT WITH LONGEST CDS, THEN LONGEST 5' LEADER, THEN LONGEST TRANSCRIPT LENGTH, PER GENE, OUTPUT for gene in gene_to_transcript: try: canonical_transcript = sorted([[transcript, bed_store[transcript][1], bed_store[transcript][2], bed_store[transcript][3]] \ for transcript in gene_to_transcript[gene] \ if transcript in bed_store], key=lambda i: (i[1], i[2], i[3]))[-1][0] except IndexError: continue out_bed.write(bed_store[canonical_transcript][0]) ###Output _____no_output_____ ###Markdown Integrating ribosome profiling, RNA-seq data in transcript coordinatesFor data analysis, a custom file-format is used that integrates RNA-seq and ribosome profiling data in the context of a defined transcriptome.Ribosome profiling data first needs to be assembled at nucleotide resolution. Note that the offsets correspond to P-site, rather than A-site.Use either of the following awk scripts as part of the conversion of .bam files (accepted_hits.bam from Tophat). ###Code # Create file as bed12_to_bedpoint_mammal.awk, for use with human and mouse ribosome profiling data #!/bin/awk -f BEGIN {OFS="\t"} {if ($10 != 1){ split($11,a,",");\ split($12,b,",");\ len=0;\ for (i in a){len+= a[i]} } else {len=$11} out=(len>=29 && len<=35);\ strand=$6;\ if (out){ if(strand=="+"){ if(len == 29) offset = 12;\ else if(len == 30) offset = 12;\ else if(len == 31) offset = 13;\ else if(len == 32) offset = 13;\ else if(len == 33) offset = 13;\ else if(len == 34) offset = 14;\ else if(len == 35) offset = 14;\ } else{ if(len == 29) offset = 16;\ else if(len == 30) offset = 17;\ else if(len == 31) offset = 17;\ else if(len == 32) offset = 18;\ else if(len == 33) offset = 19;\ else if(len == 34) offset = 19;\ else if(len == 35) offset = 20;\ } } if(out && ($10 == 1)){print $1, $2+offset, $2+offset+1, $4, $5, $6} else if(out){ for (i in a){ if (offset <= a[i] && offset > 0){print $1, $2+offset+b[i], $2+offset+b[i]+1, $4, $5, $6} offset -= a[i];\ } } } # Create file as bed12_to_bedpoint_zf.awk, for use with zebrafish ribosome profiling data #!/bin/awk -f BEGIN {OFS="\t"} {if ($10 != 1){ split($11,a,",");\ split($12,b,",");\ len=0;\ for (i in a){len+= a[i]} } else {len=$11} out=(len>=27 && len<=32);\ strand=$6;\ if (out){ if(strand=="+"){ if(len == 27) offset = 11;\ else if(len == 28) offset = 11;\ else if(len == 29) offset = 12;\ else if(len == 30) offset = 12;\ else if(len == 31) offset = 12;\ else if(len == 32) offset = 13;\ } else{ if(len == 27) offset = 15;\ else if(len == 28) offset = 16;\ else if(len == 29) offset = 16;\ else if(len == 30) offset = 17;\ else if(len == 31) offset = 18;\ else if(len == 32) offset = 18;\ } } if(out && ($10 == 1)){print $1, $2+offset, $2+offset+1, $4, $5, $6} else if(out){ for (i in a){ if (offset <= a[i] && offset > 0){print $1, $2+offset+b[i], $2+offset+b[i]+1, $4, $5, $6} offset -= a[i];\ } } } ###Output _____no_output_____ ###Markdown Running the following commands (from BedTools) generates the ".in" files that will be used for creating the ".trpedf" files in subsequent analyses, as well as strand-specific bedgraph files (can be converted to binary .bw files using bedgraphToBigWig from UCSC, for easy viewing in most genome browsers). ".bg.bed" files may be deleted following execution of these commands. The respective "ChromInfo.txt" files can be found in the iGenomes compilations. ###Code %%bash ASSEMBLY="GRCm38_ens" bamToBed -bed12 -i accepted_hits.bam | bed12_to_bedpoint_mammal.awk |\ tee >(genomeCoverageBed -bg -i stdin -g ChromInfo.txt -strand + > mES_fwd.bedgraph) \ >(genomeCoverageBed -bg -i stdin -g ChromInfo.txt -strand - > mES_rev.bedgraph) \ >/dev/null awk 'BEGIN{FS="\t";OFS="\t"}{print $1,$2,$3,".",$4,"+"}' mES_fwd.bedgraph > mES_fwd.bg.bed awk 'BEGIN{FS="\t";OFS="\t"}{print $1,$2,$3,".",-$4,"-"}' mES_rev.bedgraph > mES_rev.bg.bed cat mES_fwd.bg.bed mES_rev.bg.bed | sort -k1,1 -k2,2n > mES.bg.bed intersectBed -wa -wb -s -split -a $ASSEMBLY_genes_canonical.bed -b mES_rev.bg.bed | \ awk 'BEGIN{FS="\t"; OFS="\t"}\ {if ($4==curr) print $14,$15,$17;\ else {print $1,$2,$3,$4,$5,$6,$7,$8,$9,$10,$11,$12; print $14,$15,$17; curr=$4}}'\ > mES_canonical.in ###Output _____no_output_____ ###Markdown The following python script integrates mRNA expression data from cufflinks (genes.fpkm_tracking files from the cufflinks output), ribosome profiling data from ".in" files, and sequence data (from genes_canonical.fasta, derived from genes_canonical.bed; to define all ORFs).gene_canonical.fasta file can be generated from genes_canonical.bed either by uploading the .bed file to UCSC and downloading the fasta, or by using Bedtools getfasta.Data was organized in a tab-separated custom ASCII file format (.trpedf) for subsequent processing.(N.B. trpedf ~ **t**ranscript **r**ibosome **p**rofile **e**xtended, **D**ata**F**rame compatible)**Column****Description**TranscriptTranscript IDGeneGene IDGene_NameGene NameGene_Expression_FPKMExpression at gene level (from corresponding RNA-seq data; Tophat + Cufflinks)ORF_startsORF starts (comma-separated values in transcript coordinates, 0-based)ORF_endsORF ends (as above)RPF_csvProfileRibosome profiling reads at nucleotide resolution in transcript coordinates, for length of transcript, comma-separated valuesCDSAnnotated CDS".in" files may be deleted following execution of these commands. ###Code ASSEMBLY = "GRCm38_ens" stage = "mES" from Bio import SeqIO from ast import literal_eval import hmm_for_RPF_Seq as h def read_genes_tracking_file(tracking_file, stages): expected_line_length = 9 + 4 * len(stages) ensg_expression = {stage:{} for stage in stages} ensg_name = {} with open(tracking_file, "r+") as f: for line in f: entry = line.strip().split("\t") if entry[0] == "tracking_id" or len(entry) != expected_line_length: continue for i, stage in enumerate(stages): expression = 4 * i + 9 status = 4 * i + 12 if entry[status] != "OK": continue ensg_expression[stage][entry[0]] = float(entry[(expression)]) ensg_name[entry[0]] = entry[4] return ensg_expression, ensg_name def read_Gtp_file(Gtp_file): transcript_to_gene = {} gene_to_transcript = {} with open(Gtp_file, "r+") as f: for line in f: entry = line.strip().split("\t") transcript_to_gene[entry[1]] = entry[0] gene_to_transcript.setdefault(entry[0], []).append(entry[1]) return transcript_to_gene, gene_to_transcript def csv(list): return ",".join(map(str, list)) def tsv_line(*list): return "\t".join(map(str, list)) + "\n" def ORF_start_end(seq): ORF_list = [] seq_len = len(seq) for frame in xrange(3): trans = str(seq[frame:].translate(1)) trans_len = len(trans) aa_start, aa_end = [0 for i in xrange(2)] while aa_start < trans_len: aa_start = trans.find("M", aa_start) if aa_start == -1: break aa_end = trans.find("*", aa_start) ORF_start = frame + aa_start * 3 ORF_end = frame + aa_end * 3 + 3 if aa_end == -1: ORF_end = seq_len ORF_list.append((ORF_start, ORF_end)) aa_start = aa_start + 1 return zip(*tuple(sorted(ORF_list))) def transcript_position(exons, c_intron_lengths, genomic_pos): for exon, c_intron_length in zip(exons, c_intron_lengths): if genomic_pos >= exon[0] and genomic_pos <= exon[1]: return genomic_pos - exons[0][0] - c_intron_length return def parse_in_file(f, prev_entry_pos): f.seek(prev_entry_pos) while 1: line = f.readline() entry = line.split() if len(entry) != 3: try: if thick_start == thick_end: transcript_CDS = [0,0] else: # assume strand is "+" first transcript_CDS = [transcript_position(exons, c_intron_lengths, thick_start), transcript_position(exons, c_intron_lengths, thick_end)] if strand == "-": transcript_bedgraph.reverse() transcript_CDS[0], transcript_CDS[1] = (transcript_length - transcript_CDS[1], transcript_length - transcript_CDS[0]) return transcript_ID, transcript_CDS, transcript_bedgraph, prev_entry_pos except UnboundLocalError: pass transcript_ID, strand = (entry[3], entry[5]) transcript_start, thick_start, thick_end, block_count = map(int, (entry[1], entry[6], entry[7], entry[9])) block_sizes = literal_eval(entry[10]) genome_block_starts = literal_eval(entry[11]) transcript_length = sum(block_sizes) transcript_bedgraph = [0] * transcript_length #introns and exons below in *GENOMIC* coordinates (i.e. not strand-specific) intron_lengths = [(genome_block_starts[i+1]-genome_block_starts[i]-block_sizes[i]) for i in xrange(block_count-1)] c_intron_lengths = [sum(intron_lengths[:i]) for i in xrange(block_count)] exons = [[i[0], sum(i)] for i in zip(genome_block_starts, block_sizes)] prev_entry = entry else: prev_entry_pos = f.tell() transcript_pos = transcript_position(exons, c_intron_lengths, int(entry[1])) if transcript_pos != None: for i in xrange(int(entry[1])-int(entry[0])): if transcript_pos + i < transcript_length: transcript_bedgraph[transcript_pos + i] = abs(int(entry[2])) #%% Files, Stages ensg_expression, ensg_name = read_genes_tracking_file(DATA_DIR + stage + "_genes.fpkm_tracking", stages) seqs = SeqIO.index(ANNOTATIONS_DIR + ASSEMBLY + "_genes_canonical.fasta", "fasta") enst_to_ensg, ensg_to_enst = read_Gtp_file(ANNOTATIONS_DIR + ASSEMBLY + "Gtp") in_file = stage + ".in" trpedf_file = DATA_DIR + stage + "_canonical.trpedf" #%% DEFINE ORFs in seqs ORF_starts_ends = {} for seq in seqs: ORF_starts_ends[seq] = ORF_start_end(seqs[seq].seq) with open(in_file, 'rb+') as f, open(trpedf_file, 'w+') as out: out.write(tsv_line("Transcript", "Gene", "Gene_Name", "Gene_Expression_FPKM", "ORF_starts", "ORF_ends", "RPF_csvProfile", "CDS")) prev_entry_pos = 0 while 1: try: ID,transcript_CDS, transcript_bedgraph, prev_entry_pos = parse_in_file(f, prev_entry_pos) except IndexError: break try: expression = ensg_expression[stage][enst_to_ensg[ID]] except KeyError: continue try: name = ensg_name[enst_to_ensg[ID]] except KeyError: name = enst_to_ensg[ID] if len(ORF_starts_ends[ID]) == 0: continue out.write(tsv_line(ID, enst_to_ensg[ID], name, expression, csv(ORF_starts_ends[ID][0]), csv(ORF_starts_ends[ID][1]), csv(transcript_bedgraph), csv(transcript_CDS))) ###Output _____no_output_____
nepremicnine.ipynb
###Markdown Analiza trga nepremičninV nalogi analiziramo trg nepremičnin na podlagi oglasov zajetih iz največjega slovenskega nepremičninskega portala [nepremicnine.net](nepremicnine.net). Predvsem nas bo zanimalo, kako različni dejavniki (lokacija, starost, ...) vplivajo na ceno nepremičnine.Odgovorili bomo na sledeča vprašanja in komentirali hipoteze, ki smo si jih zadali pred začetkom dela:* kako lokacija vpliva na ceno nepremičnine?* kako velikost vpliva na ceno na kvadratni meter?* kako starost nepremičnine vpliva na ceno?* cene nepremičnin na kvadratni meter so v Ljubljani bistveno višje kot drugod,in še na kakšno več, ki se nam je porodilo med raziskovanjem.Iz oglasov smo zajeli sledeče podatke:* id oglasa* regija* ime oglasa* vrsta nepremičnine (stanovanje, hiša, posest, ...)* tip nepremičnine (podrobnejša razčlenitev vrste - garsonjera, kmetijsko zemljišče, ...)* velikost zemljišča* velikost nepremičnine* cena* agencijaNajprej smo si uvozili podatke in vsa potrebna orodja za delo. ###Code import pandas as pd import os.path import matplotlib.pyplot as plt %matplotlib inline nepr_file = os.path.join('podatki/obdelani_podatki', 'nepremicnine_1.csv') nepr_z_dvojniki = pd.read_csv(nepr_file) ###Output _____no_output_____ ###Markdown Oglejmo si, kako je v sledeči analizi razdeljena Slovenija, saj je to za razumevanje ključnega pomena. Podatki so razvrščeni po (sedaj zelo aktualnih) statističnih regijah, le Osrednjeslovenska statistična regija je razdeljena na *ljubljana mesto* (označeno z rdečo) in *ljubljana okolica*. Ta delitev je, kot bomo videli, zelo smiselna saj se nepremičninska trga precej razlikujeta.![Regije](regije.png) Pregled podatkovPreden smo začeli z delom, smo opazili, da se nekateri oglasi ponovijo v več regijah. Vzorca, kako se ponavljajo nismo opazili in smo jih kar izpustili (s tem si nismo pokvarili podatkov, saj je takih oglasov malo). ###Code pd.concat(g for _, g in nepr_z_dvojniki.groupby("id") if len(g) > 1) ###Output _____no_output_____ ###Markdown Spodaj odstranimo dvojnike, dodamo pa stolpce, ki nam bodo v sledeči analizi koristili: *cena_m2*, ki predstavlja ceno na kvadratni meter, *desetletje* za primerjavo starosti nepremičnin in navzdol na 100 m2 zaokroženo velikost. ###Code nepr_brez_dvojnikov = nepr_z_dvojniki.drop_duplicates('id') nepr = nepr_brez_dvojnikov.set_index('id') nepr['cena_m2'] = nepr['cena'] / nepr['velikost'] nepr['desetletje'] = (nepr['leto'] // 10) * 10 nepr['zaokrozena_velikost'] = (nepr['velikost'] // 100) * 100 ###Output _____no_output_____ ###Markdown Spodaj so prikazane vse vrste nepremičnin, ki so bile oktobra na voljo. Vidimo, da prevladujejo stanovanja in hiše. ###Code vrste = nepr.groupby('vrsta_nepremicnine') vrste.size() ###Output _____no_output_____ ###Markdown Kot vidimo, je velik del nepremičnin *posesti* - v glavnem gre tu za kmetijska in zazidljiva zemljišča, običajno velike parcele z relativno nizko ceno. Kot take jih je težko primerjati z ostalimi. Njihovi analizi se bomo posvetili kasneje. Pripravimo si tabelo nepremičnin, ki jih ne vključuje. ###Code brez_posesti = nepr[nepr.vrsta_nepremicnine != "Posest"] ###Output _____no_output_____ ###Markdown Cena na kvadratni meter po regijah Prikazan je stolpični diagram povprečnih cen na kvadratni meter po posamezni statistični regiji. Po pričakovanjih, je povprečna cena v Ljubljani precej višja kot drugod. Sledi ji južna Primorska in tako zaželjena stanovanja ob morju, ostale regije pa si sledijo v relativno ozkem intervalu. ###Code po_regijah = brez_posesti.groupby('regija').mean('cena_m2').sort_values('cena_m2', ascending = False)[['cena_m2']] gr1 = po_regijah.cena_m2.plot.bar() gr1.set_title("Povprečna cena po regijah") gr1.set_xlabel('Regija') gr1.set_ylabel('Cena na m2') ###Output _____no_output_____ ###Markdown Vpliv starosti nepremičnine na cenoZanimalo nas bo, kako starost nepremičnine vpliva na njeno ceno - torej kdaj je bila zgrajena. Vidimo, da je nepremičnina v Ljubljani dražja od ostalih, ne glede na njeno starost. Pričakovali smo, da bodo cene stavb iz prve polovice 20. stoletja nižje zaradi slabše potresne gradnje - kot vemo, se je nadzor v Jugoslaviji močno poostril po potresu v Skopju leta 1963 - vendar očitnejšega trenda v tej smeri ni opaziti.V skoraj vseh regijah pa so cene najnovejših zgradb višje (zopet je ta razlika najočitnejša v Ljubljani).Na spodnjem grafu je prikazano spreminjanje cene, glede na leto izgradnje po posamezni regiji. ###Code grupiran = brez_posesti[(brez_posesti.desetletje >= 1900) & (brez_posesti.cena_m2 <= 80000)][['regija','cena_m2','desetletje']] gr2 = grupiran.groupby(['regija','desetletje'])["cena_m2"].mean().unstack(level = 0).plot() gr2.legend(loc='center left', bbox_to_anchor=(1.0, 0.5)) gr2.set_ylabel('Cena na m2') gr2.set_xlabel('Desetletje izgradnje') gr2.set_title('Cena po regijah glede na desetletje izgradnje') ###Output _____no_output_____ ###Markdown Cene po vrsti nepremičninOglejmo si, kako vrsta nepremičnine vpliva na ceno. Tu jemljemo povprečja po vseh regijah in vseh starostih. Vidimo, da je stanovanje povprečno najdražje, presenetljivo pa je nižja povprečna cena hiše. To si lahko razlagamo s tem, da je veliko hiš na prodaj v regijah izven Ljubljane, kjer je cena občutno nižja, stanovanj pa je v Ljubljani na prodaj več. To se precej jasno vidi v spodnjem grafu. ###Code st_po_regijah = brez_posesti.groupby(['regija','vrsta_nepremicnine']) st_po_regijah_graf = st_po_regijah.size().unstack(level = 1).plot.bar() st_po_regijah_graf.set_ylabel('Število') st_po_regijah_graf.set_xlabel('Regija') st_po_regijah_graf.legend() st_po_regijah_graf.set_title('Število vrst nepremičnin po regijah') gr3 = brez_posesti.groupby('vrsta_nepremicnine').mean('cena_m2').sort_values('cena_m2',ascending = False).cena_m2.plot.bar() gr3.set_ylabel('Cena na m2') gr3.set_xlabel('Vrsta nepremičnine') gr3.set_title('Cena po vrsti nepremičnine') ###Output _____no_output_____ ###Markdown Spodaj je vsaka od zgornjih kategorij razdeljena na manjše dele. Zopet preseneča cena najmanjše stanovanjske enote - garsonjere, kar pa lahko razlagamo z njihovo koncentracijo v središču Ljubljane. Visoko na lestvici so tudi pisarne. ###Code gr4 = brez_posesti.groupby('tip_nepremicnine').mean('cena_m2').sort_values('cena_m2',ascending = False).cena_m2.plot.bar() gr4.set_ylabel('Cena na m2') gr4.set_xlabel('Tip nepremičnine') gr4.set_title('Cena po tipu nepremičnine') ###Output _____no_output_____ ###Markdown Vpliv velikosti na cenoPodrobneje si oglejmo še, kako velikost (zaokrožena na 100 kvadratnih metrov) vpliva na ceno na kvadratni meter. Kot smo videli zgoraj so garsonjere povprečno najdražje, kar se precej jasno odraža tudi na spodnjem grafu. Pri večjih nepremičninah jasnih trendov ni - verjetno tudi zaradi relativno manjšega vzorca. ###Code gr5 = brez_posesti[brez_posesti.zaokrozena_velikost < 10000].groupby('zaokrozena_velikost').mean('cena_m2').cena_m2.plot() gr5.set_ylabel('Cena na m2') gr5.set_xlabel("Navzdol na 100m2 zaokrožena velikost") gr5.set_title('Vpliv velikosti nepremičnine na njeno ceno') ###Output _____no_output_____ ###Markdown Nezazidane posestiZa konec preglejmo še prej izpuščene posesti. Najprej opazimo, da so cene pogosto navedene narobe - za primer si oglejmo primer tega zapisa: ![cena](napacna_cena.png)Cene posesti so, iz meni neznanega razloga, navedene kar direktno v ceni na kvadratni meter (ne tako kot ostale nepremičnine, kjer je bilo to ceno še potrebno izračunati). Pri tem pa se nekajkrat pojavi težava v zapisu decimalnih številk, saj računalnik primer zgoraj prebere kot 208500€ na kvadratni meter, cena celotne posesti pa bi tako bila skoraj 500 000 000€ - očitna napaka. Na srečo pa takih primerov ni prav dosti in se nam vzorec zato ne bo pokvaril.Zato si bomo cene navzgor omejili s 1000€ na kvadratni meter, saj se s tem izognemo takim izjemam. ###Code posesti = nepr[(nepr.vrsta_nepremicnine == "Posest") & (nepr.cena_m2 < 1000)] posesti ###Output _____no_output_____ ###Markdown Podobno kot zgoraj, so tudi v tem razdelku cene v regiji *ljubljana mesto* daleč najvišje - tu gre v večini sicer za zazidljive in ne kmetijske parcele. Prikazana je cena na kvadratni meter, pa tudi število posameznih posesti na prodaj po regijah. ###Code posesti_po_regijah = posesti.groupby('regija') gr6 = posesti_po_regijah.mean('cena_m2').sort_values('cena_m2', ascending = False).cena_m2.plot.bar() gr6.set_title('Cena posesti po regijah') gr6.set_xlabel('Regija') gr6.set_ylabel('Cena na m2') posesti_po_regijah.size() ###Output _____no_output_____ ###Markdown Kot vidimo imajo najvišjo ceno zemljišča *Za investicijo* - prazne parcele, ki pa imajo že urejeno neko osnovno dokumentacijo. Morda presenetljivo, saj je v *Kmetija* vključena tudi hiša. Daleč najnižjo ceno imajo *Kmetijska zemljišča*, torej parcele namenjene kmetovanju brez zgrajene ifrastrukture.Iz spodnjega grafa se tudi vidi bistveno nižje cene posesti od ostalih nepremičnin. ###Code posesti_po_tipu = posesti.groupby('tip_nepremicnine') gr7 = posesti_po_tipu.mean('cena_m2').sort_values('cena_m2', ascending = False).cena_m2.plot.bar() gr7.set_title('Cena posesti po namenu') gr7.set_xlabel('Tip posesti') gr7.set_ylabel('Cena na m2') ###Output _____no_output_____ ###Markdown So cene skozi agencije višje?Za konec si poglejmo še, če so cene nepremičnin, ki se prodajajo skozi agencije kaj drugačne od zasebnih ponudb. ###Code delo_z_agencijami = brez_posesti[['cena_m2','agencija']] zasebniki = delo_z_agencijami[delo_z_agencijami.agencija == "Zasebna ponudba"] agencije = delo_z_agencijami[delo_z_agencijami.agencija != "Zasebna ponudba"] z = zasebniki[['cena_m2']].mean() a = agencije[['cena_m2']].mean() print("Povprečna cena zasebnikov: ",z) print("Povprečna cena agencij: ", a) ###Output Povprečna cena zasebnikov: cena_m2 1716.404217 dtype: float64 Povprečna cena agencij: cena_m2 1723.108856 dtype: float64
Transfer Learning/ClassifyFlowers_DL (TransferLearning_InceptionV3).ipynb
###Markdown Libraries ###Code ### Uncomment the next two lines to, ### install tensorflow_hub and tensorflow datasets #!pip install tensorflow_hub #!pip install tensorflow_datasets import numpy as np import tensorflow as tf import matplotlib.pyplot as plt import tensorflow_hub as hub import tensorflow_datasets as tfds from tensorflow.keras import layers ###Output _____no_output_____ ###Markdown Download and Split data into Train and Validation ###Code def get_data(): (train_set, validation_set), info = tfds.load( 'tf_flowers', with_info=True, as_supervised=True, split=['train[:70%]', 'train[70%:]'], ) return train_set, validation_set, info train_set, validation_set, info = get_data() num_examples = info.splits['train'].num_examples num_classes = info.features['label'].num_classes print('Total Number of Classes: {}'.format(num_classes)) print('Total Number of Training Images: {}'.format(len(train_set))) print('Total Number of Validation Images: {} \n'.format(len(validation_set))) img_shape = 299 batch_size = 32 def format_image(image, label): image = tf.image.resize(image, (img_shape, img_shape))/255.0 return image, label train_batches = train_set.shuffle(num_examples//4).map(format_image).batch(batch_size).prefetch(1) validation_batches = validation_set.map(format_image).batch(batch_size).prefetch(1) ###Output _____no_output_____ ###Markdown Getting Inception model learned features ###Code def get_mobilenet_features(): URL = "https://tfhub.dev/google/tf2-preview/inception_v3/feature_vector/4" global img_shape feature_extractor = hub.KerasLayer(URL, input_shape=(img_shape, img_shape,3)) return feature_extractor ### Freezing the layers of transferred model (InceptionV3 Model) feature_extractor = get_mobilenet_features() feature_extractor.trainable = False ###Output _____no_output_____ ###Markdown Deep Learning Model - Transfer Learning using InceptionV3 ###Code def create_transfer_learned_model(feature_extractor): global num_classes model = tf.keras.Sequential([ feature_extractor, tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dropout(0.4), layers.Dense(num_classes, activation='softmax') ]) model.compile( optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) model.summary() return model ###Output _____no_output_____ ###Markdown Training the last classification layer of the model Achieved Validation Accuracy: 92.10% (significant improvement over simple architecture) ###Code epochs = 10 model = create_transfer_learned_model(feature_extractor) history = model.fit(train_batches, epochs=epochs, validation_data=validation_batches) ###Output _____no_output_____ ###Markdown Plotting Accuracy and Loss Curves ###Code def create_plots(history): acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] global epochs epochs_range = range(epochs) plt.figure(figsize=(8, 8)) plt.subplot(1, 2, 1) plt.plot(epochs_range, acc, label='Training Accuracy') plt.plot(epochs_range, val_acc, label='Validation Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(1, 2, 2) plt.plot(epochs_range, loss, label='Training Loss') plt.plot(epochs_range, val_loss, label='Validation Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show() create_plots(history) ###Output _____no_output_____ ###Markdown Prediction ###Code def predict(): global train_batches, info image_batch, label_batch = next(iter(train_batches.take(1))) image_batch = image_batch.numpy() label_batch = label_batch.numpy() predicted_batch = model.predict(image_batch) predicted_batch = tf.squeeze(predicted_batch).numpy() class_names = np.array(info.features['label'].names) predicted_ids = np.argmax(predicted_batch, axis=-1) predicted_class_names = class_names[predicted_ids] return image_batch, label_batch, predicted_ids, predicted_class_names image_batch, label_batch, predicted_ids, predicted_class_names = predict() print("Labels: ", label_batch) print("Predicted labels: ", predicted_ids) def plot_figures(): global image_batch, predicted_ids, label_batch plt.figure(figsize=(10,9)) for n in range(30): plt.subplot(6,5,n+1) plt.subplots_adjust(hspace = 0.3) plt.imshow(image_batch[n]) color = "blue" if predicted_ids[n] == label_batch[n] else "red" plt.title(predicted_class_names[n].title(), color=color) plt.axis('off') _ = plt.suptitle("Model predictions (blue: correct, red: incorrect)") plot_figures() ###Output _____no_output_____
solutions_do_not_open/Lab_23_DL Sequence Generation_solution.ipynb
###Markdown Sequence GenerationIn this exercise, you will design an RNN to generate baby names! You will design an RNN to learn to predict the next letter of a name given the preceding letters. This is a character-level RNN rather than a word-level RNN.This idea comes from this excellent blog post: http://karpathy.github.io/2015/05/21/rnn-effectiveness/ ###Code %matplotlib inline import numpy as np from keras.preprocessing import sequence from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Embedding from keras.layers import LSTM, SimpleRNN, GRU ###Output Using TensorFlow backend. ###Markdown Training DataThe training data we will use comes from this corpus:http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/nlp/corpora/names/Take a look at the training data in `data/names.txt`, which includes both boy and girl names. Below we load the file and convert it to all lower-case for simplicity.Note that we also add a special "end" character (in this case a period) to allow the model to learn to predict the end of a name. ###Code with open('../data/names.txt') as f: names = f.readlines() names = [name.lower().strip() + '.' for name in names] print('Loaded %d names' % len(names)) names[:10] ###Output _____no_output_____ ###Markdown We need to count all of the characters in our "vocabulary" and build a dictionary that translates between the character and its assigned index (and vice versa). ###Code chars = set() for name in names: chars.update(name) vocab_size = len(chars) print('Vocabulary size:', vocab_size) char_inds = dict((c, i) for i, c in enumerate(chars)) inds_char = dict((i, c) for i, c in enumerate(chars)) char_inds ###Output _____no_output_____ ###Markdown Exercise 1 - translate chars to indexesMost of the work of preparing the data is taken care of, but it is important to know the steps because they will be needed anytime you want to train an RNN. Use the dictionary created above to translate each example in `names` to its number format in `int_names`. ###Code # Translate names to their number format in int_names int_names = [[char_inds[x] for x in name] for name in names] # for name in names: # int_names.append() ###Output _____no_output_____ ###Markdown The `create_matrix_from_sequences` will take the examples and create training data by cutting up names into input sequence of length `maxlen` and training labels, which are the following character. Make sure you understand this procedure because it is what will actually go into the network! ###Code def create_matrix_from_sequences(int_names, maxlen, step=1): name_parts = [] next_chars = [] for name in int_names: for i in range(0, len(name) - maxlen, step): name_parts.append(name[i: i + maxlen]) next_chars.append(name[i + maxlen]) return name_parts, next_chars maxlen = 3 name_parts, next_chars = create_matrix_from_sequences(int_names, maxlen) print('Created %d name segments' % len(name_parts)) X_train = sequence.pad_sequences(name_parts, maxlen=maxlen) y_train = np_utils.to_categorical(next_chars, vocab_size) X_train.shape X_train[:5] ###Output _____no_output_____ ###Markdown Exercise 2 - design a modelDesign your model below. Like before, you will need to set up the embedding layer, the recurrent layer, a dense connection and a softmax to predict the next character.Fit the model by running at least 10 epochs. Later you will generate names with the model. Getting around 30% accuracy will usually result in decent generations. What is the accuracy you would expect for random guessing? ###Code # Design an RNN model model = Sequential() model.add(Embedding(vocab_size, 32, input_length=maxlen)) model.add(LSTM(32, dropout=0.2, recurrent_dropout=0.2)) model.add(Dense(vocab_size)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X_train, y_train, batch_size=32, epochs=10, verbose=1) ###Output Epoch 1/10 32016/32016 [==============================] - 32s 993us/step - loss: 2.4909 - acc: 0.2643 Epoch 2/10 32016/32016 [==============================] - 30s 934us/step - loss: 2.2727 - acc: 0.2901 Epoch 3/10 32016/32016 [==============================] - 29s 904us/step - loss: 2.1985 - acc: 0.3024 Epoch 4/10 32016/32016 [==============================] - 29s 906us/step - loss: 2.1440 - acc: 0.3165 Epoch 5/10 32016/32016 [==============================] - 28s 869us/step - loss: 2.1091 - acc: 0.3228 Epoch 6/10 32016/32016 [==============================] - 22s 674us/step - loss: 2.0836 - acc: 0.3330 Epoch 7/10 32016/32016 [==============================] - 14s 426us/step - loss: 2.0616 - acc: 0.3397 Epoch 8/10 32016/32016 [==============================] - 27s 853us/step - loss: 2.0286 - acc: 0.3489 Epoch 10/10 32016/32016 [==============================] - 27s 838us/step - loss: 2.0136 - acc: 0.3522 ###Markdown Sampling from the modelWe can sample the model by feeding in a few letters and using the model's prediction for the next letter. Then we feed the model's prediction back in to get the next letter, etc.The `sample` function is a helper to allow you to adjust the diversity of the samples. You can read more [here](https://en.wikipedia.org/wiki/Softmax_functionReinforcement_learning).Read the `gen_name` function to understand how the model is sampled. ###Code def sample(p, diversity=1.0): p1 = np.asarray(p).astype('float64') p1 = np.log(p1) / diversity e_p1 = np.exp(p1) s = np.sum(e_p1) p1 = e_p1 / s return np.argmax(np.random.multinomial(1, p1, 1)) def gen_name(seed, length=1, diversity=1.0, maxlen=3): """ seed - the start of the name to sample length - the number of letters to sample; if None then samples are generated until the model generates a '.' character diversity - a knob to increase or decrease the randomness of the samples; higher = more random, lower = closer to the model's prediction maxlen - the size of the model's input """ # Prepare input array x = np.zeros((1, maxlen), dtype=int) # Generate samples out = seed while length is None or len(out) < len(seed) + length: # Add the last chars so far for the next input for i, c in enumerate(out[-maxlen:]): x[0, i] = char_inds[c] # Get softmax for next character preds = model.predict(x, verbose=0)[0] # Sample the network output with diversity c = sample(preds, diversity) # Choose to end if the model generated an end token if c == char_inds['.']: if length is None: return out else: continue # Build up output out += inds_char[c] return out ###Output _____no_output_____ ###Markdown Exercise 3 - sample the modelUse the `gen_name` function above to sample some names from your model.1. Try generating a few characters by setting the `length` argument.2. Try different diversities. Start with 1.0 and vary it up and down.3. Try using `length=None`, allowing the model to choose when to end a name.4. What happens when `length=None` and the diversity is high? How do samples change in this case staring from beginning to end? Why do you think this is?5. With `length=None` and a "good" diversity, can you tell if the model has learned a repertoire of "endings"? What are some of them? 6. Find some good names. What are you favorites? :D ###Code gen_name('', length=10, diversity=1.0) ###Output _____no_output_____ ###Markdown Sequence GenerationIn this exercise, you will design an RNN to generate baby names! You will design an RNN to learn to predict the next letter of a name given the preceding letters. This is a character-level RNN rather than a word-level RNN.This idea comes from this excellent blog post: http://karpathy.github.io/2015/05/21/rnn-effectiveness/ ###Code %matplotlib inline import numpy as np from keras.preprocessing import sequence from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Embedding from keras.layers import LSTM, SimpleRNN, GRU ###Output _____no_output_____ ###Markdown Training DataThe training data we will use comes from this corpus:http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/nlp/corpora/names/Take a look at the training data in `data/names.txt`, which includes both boy and girl names. Below we load the file and convert it to all lower-case for simplicity.Note that we also add a special "end" character (in this case a period) to allow the model to learn to predict the end of a name. ###Code with open('../data/names.txt') as f: names = f.readlines() names = [name.lower().strip() + '.' for name in names] print('Loaded %d names' % len(names)) names[:10] ###Output _____no_output_____ ###Markdown We need to count all of the characters in our "vocabulary" and build a dictionary that translates between the character and its assigned index (and vice versa). ###Code chars = set() for name in names: chars.update(name) vocab_size = len(chars) print('Vocabulary size:', vocab_size) char_inds = dict((c, i) for i, c in enumerate(chars)) inds_char = dict((i, c) for i, c in enumerate(chars)) char_inds ###Output _____no_output_____ ###Markdown Exercise 1 - translate chars to indexesMost of the work of preparing the data is taken care of, but it is important to know the steps because they will be needed anytime you want to train an RNN. Use the dictionary created above to translate each example in `names` to its number format in `int_names`. ###Code # Translate names to their number format in int_names int_names = [[char_inds[x] for x in name] for name in names] # for name in names: # int_names.append() ###Output _____no_output_____ ###Markdown The `create_matrix_from_sequences` will take the examples and create training data by cutting up names into input sequence of length `maxlen` and training labels, which are the following character. Make sure you understand this procedure because it is what will actually go into the network! ###Code def create_matrix_from_sequences(int_names, maxlen, step=1): name_parts = [] next_chars = [] for name in int_names: for i in range(0, len(name) - maxlen, step): name_parts.append(name[i: i + maxlen]) next_chars.append(name[i + maxlen]) return name_parts, next_chars maxlen = 3 name_parts, next_chars = create_matrix_from_sequences(int_names, maxlen) print('Created %d name segments' % len(name_parts)) X_train = sequence.pad_sequences(name_parts, maxlen=maxlen) y_train = np_utils.to_categorical(next_chars, vocab_size) X_train.shape X_train[:5] ###Output _____no_output_____ ###Markdown Exercise 2 - design a modelDesign your model below. Like before, you will need to set up the embedding layer, the recurrent layer, a dense connection and a softmax to predict the next character.Fit the model by running at least 10 epochs. Later you will generate names with the model. Getting around 30% accuracy will usually result in decent generations. What is the accuracy you would expect for random guessing? ###Code # Design an RNN model model = Sequential() model.add(Embedding(vocab_size, 32, input_length=maxlen)) model.add(LSTM(32, dropout=0.2, recurrent_dropout=0.2)) model.add(Dense(vocab_size)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X_train, y_train, batch_size=32, epochs=10, verbose=1) ###Output _____no_output_____ ###Markdown Sampling from the modelWe can sample the model by feeding in a few letters and using the model's prediction for the next letter. Then we feed the model's prediction back in to get the next letter, etc.The `sample` function is a helper to allow you to adjust the diversity of the samples. You can read more [here](https://en.wikipedia.org/wiki/Softmax_functionReinforcement_learning).Read the `gen_name` function to understand how the model is sampled. ###Code def sample(p, diversity=1.0): p1 = np.asarray(p).astype('float64') p1 = np.log(p1) / diversity e_p1 = np.exp(p1) s = np.sum(e_p1) p1 = e_p1 / s return np.argmax(np.random.multinomial(1, p1, 1)) def gen_name(seed, length=1, diversity=1.0, maxlen=3): """ seed - the start of the name to sample length - the number of letters to sample; if None then samples are generated until the model generates a '.' character diversity - a knob to increase or decrease the randomness of the samples; higher = more random, lower = closer to the model's prediction maxlen - the size of the model's input """ # Prepare input array x = np.zeros((1, maxlen), dtype=int) # Generate samples out = seed while length is None or len(out) < len(seed) + length: # Add the last chars so far for the next input for i, c in enumerate(out[-maxlen:]): x[0, i] = char_inds[c] # Get softmax for next character preds = model.predict(x, verbose=0)[0] # Sample the network output with diversity c = sample(preds, diversity) # Choose to end if the model generated an end token if c == char_inds['.']: if length is None: return out else: continue # Build up output out += inds_char[c] return out ###Output _____no_output_____ ###Markdown Exercise 3 - sample the modelUse the `gen_name` function above to sample some names from your model.1. Try generating a few characters by setting the `length` argument.2. Try different diversities. Start with 1.0 and vary it up and down.3. Try using `length=None`, allowing the model to choose when to end a name.4. What happens when `length=None` and the diversity is high? How do samples change in this case staring from beginning to end? Why do you think this is?5. With `length=None` and a "good" diversity, can you tell if the model has learned a repertoire of "endings"? What are some of them? 6. Find some good names. What are you favorites? :D ###Code gen_name('', length=10, diversity=1.0) ###Output _____no_output_____ ###Markdown Sequence GenerationIn this exercise, you will design an RNN to generate baby names! You will design an RNN to learn to predict the next letter of a name given the preceding letters. This is a character-level RNN rather than a word-level RNN.This idea comes from this excellent blog post: http://karpathy.github.io/2015/05/21/rnn-effectiveness/ ###Code %matplotlib inline import numpy as np from keras.preprocessing import sequence from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Embedding from keras.layers import LSTM, SimpleRNN, GRU ###Output _____no_output_____ ###Markdown Training DataThe training data we will use comes from this corpus:http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/nlp/corpora/names/Take a look at the training data in `data/names.txt`, which includes both boy and girl names. Below we load the file and convert it to all lower-case for simplicity.Note that we also add a special "end" character (in this case a period) to allow the model to learn to predict the end of a name. ###Code with open('../data/names.txt') as f: names = f.readlines() names = [name.lower().strip() + '.' for name in names] print('Loaded %d names' % len(names)) names[:10] ###Output _____no_output_____ ###Markdown We need to count all of the characters in our "vocabulary" and build a dictionary that translates between the character and its assigned index (and vice versa). ###Code chars = set() for name in names: chars.update(name) vocab_size = len(chars) print('Vocabulary size:', vocab_size) char_inds = dict((c, i) for i, c in enumerate(chars)) inds_char = dict((i, c) for i, c in enumerate(chars)) char_inds ###Output _____no_output_____ ###Markdown Exercise 1 - translate chars to indexesMost of the work of preparing the data is taken care of, but it is important to know the steps because they will be needed anytime you want to train an RNN. Use the dictionary created above to translate each example in `names` to its number format in `int_names`. ###Code # Translate names to their number format in int_names int_names = [[char_inds[x] for x in name] for name in names] # for name in names: # int_names.append() ###Output _____no_output_____ ###Markdown The `create_matrix_from_sequences` will take the examples and create training data by cutting up names into input sequence of length `maxlen` and training labels, which are the following character. Make sure you understand this procedure because it is what will actually go into the network! ###Code def create_matrix_from_sequences(int_names, maxlen, step=1): name_parts = [] next_chars = [] for name in int_names: for i in range(0, len(name) - maxlen, step): name_parts.append(name[i: i + maxlen]) next_chars.append(name[i + maxlen]) return name_parts, next_chars maxlen = 3 name_parts, next_chars = create_matrix_from_sequences(int_names, maxlen) print('Created %d name segments' % len(name_parts)) X_train = sequence.pad_sequences(name_parts, maxlen=maxlen) y_train = np_utils.to_categorical(next_chars, vocab_size) X_train.shape X_train[:5] ###Output _____no_output_____ ###Markdown Exercise 2 - design a modelDesign your model below. Like before, you will need to set up the embedding layer, the recurrent layer, a dense connection and a softmax to predict the next character.Fit the model by running at least 10 epochs. Later you will generate names with the model. Getting around 30% accuracy will usually result in decent generations. What is the accuracy you would expect for random guessing? ###Code # Design an RNN model model = Sequential() model.add(Embedding(vocab_size, 32, input_length=maxlen)) model.add(LSTM(32, dropout=0.2, recurrent_dropout=0.2)) model.add(Dense(vocab_size)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X_train, y_train, batch_size=32, epochs=10, verbose=1) ###Output _____no_output_____ ###Markdown Sampling from the modelWe can sample the model by feeding in a few letters and using the model's prediction for the next letter. Then we feed the model's prediction back in to get the next letter, etc.The `sample` function is a helper to allow you to adjust the diversity of the samples. You can read more [here](https://en.wikipedia.org/wiki/Softmax_functionReinforcement_learning).Read the `gen_name` function to understand how the model is sampled. ###Code def sample(p, diversity=1.0): p1 = np.asarray(p).astype('float64') p1 = np.log(p1) / diversity e_p1 = np.exp(p1) s = np.sum(e_p1) p1 = e_p1 / s return np.argmax(np.random.multinomial(1, p1, 1)) def gen_name(seed, length=1, diversity=1.0, maxlen=3): """ seed - the start of the name to sample length - the number of letters to sample; if None then samples are generated until the model generates a '.' character diversity - a knob to increase or decrease the randomness of the samples; higher = more random, lower = closer to the model's prediction maxlen - the size of the model's input """ # Prepare input array x = np.zeros((1, maxlen), dtype=int) # Generate samples out = seed while length is None or len(out) < len(seed) + length: # Add the last chars so far for the next input for i, c in enumerate(out[-maxlen:]): x[0, i] = char_inds[c] # Get softmax for next character preds = model.predict(x, verbose=0)[0] # Sample the network output with diversity c = sample(preds, diversity) # Choose to end if the model generated an end token if c == char_inds['.']: if length is None: return out else: continue # Build up output out += inds_char[c] return out ###Output _____no_output_____ ###Markdown Exercise 3 - sample the modelUse the `gen_name` function above to sample some names from your model.1. Try generating a few characters by setting the `length` argument.2. Try different diversities. Start with 1.0 and vary it up and down.3. Try using `length=None`, allowing the model to choose when to end a name.4. What happens when `length=None` and the diversity is high? How do samples change in this case staring from beginning to end? Why do you think this is?5. With `length=None` and a "good" diversity, can you tell if the model has learned a repertoire of "endings"? What are some of them? 6. Find some good names. What are you favorites? :D ###Code gen_name('', length=10, diversity=1.0) ###Output _____no_output_____ ###Markdown Sequence GenerationIn this exercise, you will design an RNN to generate baby names! You will design an RNN to learn to predict the next letter of a name given the preceding letters. This is a character-level RNN rather than a word-level RNN.This idea comes from this excellent blog post: http://karpathy.github.io/2015/05/21/rnn-effectiveness/ ###Code %matplotlib inline import numpy as np from tensorflow.keras.preprocessing import sequence from tensorflow.keras.utils import to_categorical from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Activation, Embedding from tensorflow.keras.layers import LSTM, SimpleRNN, GRU ###Output _____no_output_____ ###Markdown Training DataThe training data we will use comes from this corpus:http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/nlp/corpora/names/Take a look at the training data in `data/names.txt`, which includes both boy and girl names. Below we load the file and convert it to all lower-case for simplicity.Note that we also add a special "end" character (in this case a period) to allow the model to learn to predict the end of a name. ###Code with open('../data/names.txt') as f: names = f.readlines() names = [name.lower().strip() + '.' for name in names] print('Loaded %d names' % len(names)) names[:10] ###Output _____no_output_____ ###Markdown We need to count all of the characters in our "vocabulary" and build a dictionary that translates between the character and its assigned index (and vice versa). ###Code chars = set() for name in names: chars.update(name) vocab_size = len(chars) print('Vocabulary size:', vocab_size) char_inds = dict((c, i) for i, c in enumerate(chars)) inds_char = dict((i, c) for i, c in enumerate(chars)) char_inds ###Output _____no_output_____ ###Markdown Exercise 1 - translate chars to indexesMost of the work of preparing the data is taken care of, but it is important to know the steps because they will be needed anytime you want to train an RNN. Use the dictionary created above to translate each example in `names` to its number format in `int_names`. ###Code # Translate names to their number format in int_names int_names = [[char_inds[x] for x in name] for name in names] # for name in names: # int_names.append() ###Output _____no_output_____ ###Markdown The `create_matrix_from_sequences` will take the examples and create training data by cutting up names into input sequence of length `maxlen` and training labels, which are the following character. Make sure you understand this procedure because it is what will actually go into the network! ###Code def create_matrix_from_sequences(int_names, maxlen, step=1): name_parts = [] next_chars = [] for name in int_names: for i in range(0, len(name) - maxlen, step): name_parts.append(name[i: i + maxlen]) next_chars.append(name[i + maxlen]) return name_parts, next_chars maxlen = 3 name_parts, next_chars = create_matrix_from_sequences(int_names, maxlen) print('Created %d name segments' % len(name_parts)) X_train = sequence.pad_sequences(name_parts, maxlen=maxlen) y_train = to_categorical(next_chars, vocab_size) X_train.shape X_train[:5] ###Output _____no_output_____ ###Markdown Exercise 2 - design a modelDesign your model below. Like before, you will need to set up the embedding layer, the recurrent layer, a dense connection and a softmax to predict the next character.Fit the model by running at least 10 epochs. Later you will generate names with the model. Getting around 30% accuracy will usually result in decent generations. What is the accuracy you would expect for random guessing? ###Code # Design an RNN model model = Sequential() model.add(Embedding(vocab_size, 10, input_length=maxlen)) model.add(LSTM(32, dropout=0.2)) model.add(Dense(vocab_size)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X_train, y_train, batch_size=32, epochs=10, verbose=1) ###Output _____no_output_____ ###Markdown Sampling from the modelWe can sample the model by feeding in a few letters and using the model's prediction for the next letter. Then we feed the model's prediction back in to get the next letter, etc.The `sample` function is a helper to allow you to adjust the diversity of the samples. You can read more [here](https://en.wikipedia.org/wiki/Softmax_functionReinforcement_learning).Read the `gen_name` function to understand how the model is sampled. ###Code def sample(p, diversity=1.0): p1 = np.asarray(p).astype('float64') p1 = np.log(p1) / diversity e_p1 = np.exp(p1) s = np.sum(e_p1) p1 = e_p1 / s return np.argmax(np.random.multinomial(1, p1, 1)) def gen_name(seed, length=1, diversity=1.0, maxlen=3): """ seed - the start of the name to sample length - the number of letters to sample; if None then samples are generated until the model generates a '.' character diversity - a knob to increase or decrease the randomness of the samples; higher = more random, lower = closer to the model's prediction maxlen - the size of the model's input """ # Prepare input array x = np.zeros((1, maxlen), dtype=int) # Generate samples out = seed while length is None or len(out) < len(seed) + length: # Add the last chars so far for the next input for i, c in enumerate(out[-maxlen:]): x[0, i] = char_inds[c] # Get softmax for next character preds = model.predict(x, verbose=0)[0] # Sample the network output with diversity c = sample(preds, diversity) # Choose to end if the model generated an end token if c == char_inds['.']: if length is None: return out else: continue # Build up output out += inds_char[c] return out ###Output _____no_output_____ ###Markdown Exercise 3 - sample the modelUse the `gen_name` function above to sample some names from your model.1. Try generating a few characters by setting the `length` argument.2. Try different diversities. Start with 1.0 and vary it up and down.3. Try using `length=None`, allowing the model to choose when to end a name.4. What happens when `length=None` and the diversity is high? How do samples change in this case staring from beginning to end? Why do you think this is?5. With `length=None` and a "good" diversity, can you tell if the model has learned a repertoire of "endings"? What are some of them? 6. Find some good names. What are you favorites? :D ###Code gen_name('jen', length=8, diversity=1.0) ###Output _____no_output_____
docs/40_tabular_data_wrangling/introduction_dataframes.ipynb
###Markdown Introduction to working with DataFramesIn basic python, we often use dictionaries containing our measurements as vectors. While these basic structures are handy for collecting data, they are suboptimal for further data processing. For that we introduce [panda DataFrames](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html) which are more handy in the next steps. In Python, scientists often call tables "DataFrames". ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Creating DataFrames from a dictionary of listsAssume we did some image processing and have some results in available in a dictionary that contains lists of numbers: ###Code measurements = { "labels": [1, 2, 3], "area": [45, 23, 68], "minor_axis": [2, 4, 4], "major_axis": [3, 4, 5], } ###Output _____no_output_____ ###Markdown This data structure can be nicely visualized using a DataFrame: ###Code df = pd.DataFrame(measurements) df ###Output _____no_output_____ ###Markdown Using these DataFrames, data modification is straighforward. For example one can append a new column and compute its values from existing columns: ###Code df["aspect_ratio"] = df["major_axis"] / df["minor_axis"] df ###Output _____no_output_____ ###Markdown We can also save this table for continuing to work with it. ###Code df.to_csv("../../data/short_table.csv") ###Output _____no_output_____ ###Markdown Creating DataFrames from lists of listsSometimes, we are confronted to data in form of lists of lists. To make pandas understand that form of data correctly, we also need to provide the headers in the same order as the lists ###Code header = ['labels', 'area', 'minor_axis', 'major_axis'] data = [ [1, 2, 3], [45, 23, 68], [2, 4, 4], [3, 4, 5], ] # convert the data and header arrays in a pandas data frame data_frame = pd.DataFrame(data, header) # show it data_frame ###Output _____no_output_____ ###Markdown As you can see, this tabls is _rotated_. We can bring it in the usual form like this: ###Code # rotate/flip it data_frame = data_frame.transpose() # show it data_frame ###Output _____no_output_____ ###Markdown Introduction to working with DataFramesIn basic python, we often use dictionaries containing our measurements as vectors. While these basic structures are handy for collecting data, they are suboptimal for further data processing. For that we introduce [panda DataFrames](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html) which are more handy in the next steps. In Python, scientists often call tables "DataFrames". ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Creating DataFrames from a dictionary of listsAssume we did some image processing and have some results in available in a dictionary that contains lists of numbers: ###Code measurements = { "labels": [1, 2, 3], "area": [45, 23, 68], "minor_axis": [2, 4, 4], "major_axis": [3, 4, 5], } ###Output _____no_output_____ ###Markdown This data structure can be nicely visualized using a DataFrame: ###Code df = pd.DataFrame(measurements) df ###Output _____no_output_____ ###Markdown Using these DataFrames, data modification is straighforward. For example one can append a new column and compute its values from existing columns: ###Code df["aspect_ratio"] = df["major_axis"] / df["minor_axis"] df ###Output _____no_output_____ ###Markdown Saving data framesWe can also save this table for continuing to work with it. ###Code df.to_csv("../../data/short_table.csv") ###Output _____no_output_____ ###Markdown Creating DataFrames from lists of listsSometimes, we are confronted to data in form of lists of lists. To make pandas understand that form of data correctly, we also need to provide the headers in the same order as the lists ###Code header = ['labels', 'area', 'minor_axis', 'major_axis'] data = [ [1, 2, 3], [45, 23, 68], [2, 4, 4], [3, 4, 5], ] # convert the data and header arrays in a pandas data frame data_frame = pd.DataFrame(data, header) # show it data_frame ###Output _____no_output_____ ###Markdown As you can see, this tabls is _rotated_. We can bring it in the usual form like this: ###Code # rotate/flip it data_frame = data_frame.transpose() # show it data_frame ###Output _____no_output_____ ###Markdown Loading data framesTables can also be read from CSV files. ###Code df_csv = pd.read_csv('../../data/blobs_statistics.csv') df_csv ###Output _____no_output_____ ###Markdown Typically, we don't need all the information in these tables and thus, it makes sense to reduce the table. For that, we print out the column names first. ###Code df_csv.keys() ###Output _____no_output_____ ###Markdown We can then copy&paste the colum names we're interested in and create a new data frame. ###Code df_analysis = df_csv[['area', 'mean_intensity']] df_analysis ###Output _____no_output_____ ###Markdown You can then access columns and add new columns. ###Code df_analysis['total_intensity'] = df_analysis['area'] * df_analysis['mean_intensity'] df_analysis ###Output C:\Users\rober\AppData\Local\Temp/ipykernel_20588/206920941.py:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df_analysis['total_intensity'] = df_analysis['area'] * df_analysis['mean_intensity'] ###Markdown ExerciseFor the loaded CSV file, create a table that only contains these columns:* `minor_axis_length`* `major_axis_length`* `aspect_ratio` ###Code df_shape = pd.read_csv('../../data/blobs_statistics.csv') ###Output _____no_output_____
Curso Tensorflow/Curso3-NaturalLanguageProcessing/semana3/Course_3_Week_3_Lesson_1c.ipynb
###Markdown Multiple Layer GRU ###Code from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow_datasets as tfds import tensorflow as tf print(tf.__version__) import tensorflow_datasets as tfds import tensorflow as tf print(tf.__version__) # Get the data dataset, info = tfds.load('imdb_reviews/subwords8k', with_info=True, as_supervised=True) train_dataset, test_dataset = dataset['train'], dataset['test'] tokenizer = info.features['text'].encoder BUFFER_SIZE = 10000 BATCH_SIZE = 64 train_dataset = train_dataset.shuffle(BUFFER_SIZE) train_dataset = train_dataset.padded_batch(BATCH_SIZE, train_dataset.output_shapes) test_dataset = test_dataset.padded_batch(BATCH_SIZE, test_dataset.output_shapes) model = tf.keras.Sequential([ tf.keras.layers.Embedding(tokenizer.vocab_size, 64), tf.keras.layers.Conv1D(128, 5, activation='relu'), tf.keras.layers.GlobalAveragePooling1D(), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) model.summary() model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) NUM_EPOCHS = 10 history = model.fit(train_dataset, epochs=NUM_EPOCHS, validation_data=test_dataset) import matplotlib.pyplot as plt def plot_graphs(history, string): plt.plot(history.history[string]) plt.plot(history.history['val_'+string]) plt.xlabel("Epochs") plt.ylabel(string) plt.legend([string, 'val_'+string]) plt.show() plot_graphs(history, 'accuracy') plot_graphs(history, 'loss') ###Output _____no_output_____
wine_classification.ipynb
###Markdown Dataset Load ###Code import pandas as pd import numpy as np arquivo = pd.read_csv('wine_dataset.csv') arquivo.head() arquivo['style'] = arquivo['style'].replace('red', 0) arquivo['style'] = arquivo['style'].replace('white', 1) ###Output _____no_output_____ ###Markdown Separating Variables between Predictors and Target ###Code y = arquivo['style'] x = arquivo.drop('style', axis = 1) from sklearn.model_selection import train_test_split #test dataset and train dataset x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3) from sklearn.ensemble import ExtraTreesClassifier #model creation model = ExtraTreesClassifier(n_estimators = 100) model.fit(x_train, y_train) ###Output _____no_output_____ ###Markdown Evaluation and Show Results ###Code #showing results results = model.score(x_test, y_test) print("Accuracy:", results) y_test[400:410] x_test[400:410] predictions = model.predict(x_test[400:410]) predictions ###Output _____no_output_____ ###Markdown ###Code from sklearn import datasets wine = datasets.load_wine() wine.keys() x_data = wine['data'] x_data.shape y_data = wine['target'] y_data wine quality datasets ###Output _____no_output_____ ###Markdown Training ###Code model.fit(x_data, y_data, epochs= 50, validation_split= 0.3) ###Output Epoch 1/50 4/4 [==============================] - 1s 61ms/step - loss: 187.8489 - acc: 0.0000e+00 - val_loss: 79.6541 - val_acc: 0.0000e+00 Epoch 2/50 4/4 [==============================] - 0s 8ms/step - loss: 103.6071 - acc: 0.0000e+00 - val_loss: 52.8413 - val_acc: 0.0000e+00 Epoch 3/50 4/4 [==============================] - 0s 8ms/step - loss: 38.4694 - acc: 0.0323 - val_loss: 47.9590 - val_acc: 0.0000e+00 Epoch 4/50 4/4 [==============================] - 0s 8ms/step - loss: 11.2578 - acc: 0.4435 - val_loss: 59.2932 - val_acc: 0.0000e+00 Epoch 5/50 4/4 [==============================] - 0s 8ms/step - loss: 11.2262 - acc: 0.1371 - val_loss: 67.7191 - val_acc: 0.0000e+00 Epoch 6/50 4/4 [==============================] - 0s 9ms/step - loss: 10.4958 - acc: 0.2581 - val_loss: 81.0860 - val_acc: 0.0000e+00 Epoch 7/50 4/4 [==============================] - 0s 8ms/step - loss: 9.4065 - acc: 0.3871 - val_loss: 80.2390 - val_acc: 0.0000e+00 Epoch 8/50 4/4 [==============================] - 0s 9ms/step - loss: 8.3128 - acc: 0.1210 - val_loss: 83.4695 - val_acc: 0.0000e+00 Epoch 9/50 4/4 [==============================] - 0s 11ms/step - loss: 6.8257 - acc: 0.3065 - val_loss: 86.6589 - val_acc: 0.0000e+00 Epoch 10/50 4/4 [==============================] - 0s 9ms/step - loss: 5.6796 - acc: 0.2984 - val_loss: 84.8092 - val_acc: 0.0000e+00 Epoch 11/50 4/4 [==============================] - 0s 10ms/step - loss: 4.7022 - acc: 0.2097 - val_loss: 86.1862 - val_acc: 0.0000e+00 Epoch 12/50 4/4 [==============================] - 0s 9ms/step - loss: 3.5400 - acc: 0.2097 - val_loss: 85.9222 - val_acc: 0.0000e+00 Epoch 13/50 4/4 [==============================] - 0s 9ms/step - loss: 2.3589 - acc: 0.2984 - val_loss: 84.7075 - val_acc: 0.0000e+00 Epoch 14/50 4/4 [==============================] - 0s 9ms/step - loss: 1.3187 - acc: 0.3306 - val_loss: 84.1312 - val_acc: 0.1111 Epoch 15/50 4/4 [==============================] - 0s 10ms/step - loss: 0.6171 - acc: 0.6935 - val_loss: 84.4679 - val_acc: 0.1111 Epoch 16/50 4/4 [==============================] - 0s 8ms/step - loss: 0.3382 - acc: 0.8468 - val_loss: 84.8933 - val_acc: 0.0926 Epoch 17/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2922 - acc: 0.8629 - val_loss: 84.9553 - val_acc: 0.1111 Epoch 18/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2541 - acc: 0.9032 - val_loss: 85.0100 - val_acc: 0.1111 Epoch 19/50 4/4 [==============================] - 0s 10ms/step - loss: 0.2429 - acc: 0.8952 - val_loss: 85.1109 - val_acc: 0.1111 Epoch 20/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2581 - acc: 0.9113 - val_loss: 85.1603 - val_acc: 0.1111 Epoch 21/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2587 - acc: 0.8710 - val_loss: 85.2129 - val_acc: 0.1111 Epoch 22/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2494 - acc: 0.9032 - val_loss: 85.2242 - val_acc: 0.1111 Epoch 23/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2333 - acc: 0.8952 - val_loss: 85.2936 - val_acc: 0.1111 Epoch 24/50 4/4 [==============================] - 0s 10ms/step - loss: 0.2406 - acc: 0.9032 - val_loss: 85.2686 - val_acc: 0.1111 Epoch 25/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2594 - acc: 0.8871 - val_loss: 85.2778 - val_acc: 0.1111 Epoch 26/50 4/4 [==============================] - 0s 8ms/step - loss: 0.2802 - acc: 0.8871 - val_loss: 85.2615 - val_acc: 0.1111 Epoch 27/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2732 - acc: 0.8790 - val_loss: 85.2610 - val_acc: 0.1111 Epoch 28/50 4/4 [==============================] - 0s 9ms/step - loss: 0.3175 - acc: 0.8871 - val_loss: 85.2607 - val_acc: 0.1111 Epoch 29/50 4/4 [==============================] - 0s 13ms/step - loss: 0.3396 - acc: 0.8548 - val_loss: 85.2888 - val_acc: 0.1111 Epoch 30/50 4/4 [==============================] - 0s 9ms/step - loss: 0.3503 - acc: 0.8952 - val_loss: 85.2845 - val_acc: 0.0926 Epoch 31/50 4/4 [==============================] - 0s 10ms/step - loss: 0.3767 - acc: 0.8548 - val_loss: 85.3539 - val_acc: 0.1111 Epoch 32/50 4/4 [==============================] - 0s 11ms/step - loss: 0.3308 - acc: 0.9032 - val_loss: 85.3112 - val_acc: 0.0926 Epoch 33/50 4/4 [==============================] - 0s 9ms/step - loss: 0.3390 - acc: 0.8548 - val_loss: 85.2755 - val_acc: 0.1111 Epoch 34/50 4/4 [==============================] - 0s 10ms/step - loss: 0.2402 - acc: 0.9032 - val_loss: 85.2429 - val_acc: 0.1111 Epoch 35/50 4/4 [==============================] - 0s 11ms/step - loss: 0.2315 - acc: 0.9032 - val_loss: 85.2327 - val_acc: 0.1111 Epoch 36/50 4/4 [==============================] - 0s 10ms/step - loss: 0.2150 - acc: 0.9032 - val_loss: 85.2302 - val_acc: 0.1111 Epoch 37/50 4/4 [==============================] - 0s 10ms/step - loss: 0.2163 - acc: 0.9032 - val_loss: 85.2398 - val_acc: 0.1111 Epoch 38/50 4/4 [==============================] - 0s 10ms/step - loss: 0.2147 - acc: 0.9194 - val_loss: 85.2333 - val_acc: 0.1111 Epoch 39/50 4/4 [==============================] - 0s 12ms/step - loss: 0.2144 - acc: 0.9194 - val_loss: 85.2159 - val_acc: 0.1111 Epoch 40/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2102 - acc: 0.9032 - val_loss: 85.2586 - val_acc: 0.1111 Epoch 41/50 4/4 [==============================] - 0s 14ms/step - loss: 0.2522 - acc: 0.9032 - val_loss: 85.2341 - val_acc: 0.1111 Epoch 42/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2769 - acc: 0.8952 - val_loss: 85.2138 - val_acc: 0.1111 Epoch 43/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2953 - acc: 0.8629 - val_loss: 85.2929 - val_acc: 0.1111 Epoch 44/50 4/4 [==============================] - 0s 10ms/step - loss: 0.2455 - acc: 0.9113 - val_loss: 85.2324 - val_acc: 0.1111 Epoch 45/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2553 - acc: 0.8952 - val_loss: 85.3395 - val_acc: 0.1111 Epoch 46/50 4/4 [==============================] - 0s 13ms/step - loss: 0.2718 - acc: 0.9032 - val_loss: 85.2272 - val_acc: 0.1111 Epoch 47/50 4/4 [==============================] - 0s 11ms/step - loss: 0.2202 - acc: 0.9032 - val_loss: 85.2929 - val_acc: 0.1111 Epoch 48/50 4/4 [==============================] - 0s 12ms/step - loss: 0.2507 - acc: 0.8871 - val_loss: 85.3058 - val_acc: 0.0926 Epoch 49/50 4/4 [==============================] - 0s 11ms/step - loss: 0.2605 - acc: 0.8952 - val_loss: 85.3099 - val_acc: 0.1111 Epoch 50/50 4/4 [==============================] - 0s 11ms/step - loss: 0.2033 - acc: 0.8952 - val_loss: 85.2963 - val_acc: 0.0926 ###Markdown Evaluation ###Code model.evaluate(x_data, y_data) ###Output 6/6 [==============================] - 0s 3ms/step - loss: 26.0794 - acc: 0.6348 ###Markdown Service ###Code x_data[25], y_data[25] pred = model.predict([[1.305e+01, 2.050e+00, 3.220e+00, 2.500e+01, 1.240e+02, 2.630e+00, 2.680e+00, 4.700e-01, 1.920e+00, 3.580e+00, 1.130e+00, 3.200e+00, 8.300e+02]]) pred import numpy as np np.argmax(pred) ###Output _____no_output_____ ###Markdown ###Code from sklearn import datasets wine = datasets.load_wine() wine.keys() x_data = wine['data'] x_data.shape y_data = wine['target'] y_data import pandas as pd df_wine = pd.DataFrame(wine.data) df_wine.info() df_twine = pd.DataFrame(wine.target) df_twine df_wine['y_col'] = df_twine import sqlite3 connect = sqlite3.connect('./db.sqlite3') df_wine.to_sql('datax_resource', connect, if_exists='append', index=False) df_twine.to_sql('datay_resource', connect, if_exists='append', index=False) db_wine = pd.read_sql_query('select * from datax_resource',connect) db_wine.head(4) # x_data = wine['data'] # x_data.shape dfnpx = df_wine.iloc[:,[0,1,2,3,4,5,6,7,8,9,10,11,12]].to_numpy() #dfnpx = df_wine.drop('y_col',axis=1).to_numpy() dfnpx.shape dfnpy = df_wine.loc[:,'y_col'] dfnpy import numpy as np # y_data # y_data, np.unique(y_data) dfnpy, np.unique(dfnpy) import tensorflow as tf model = tf.keras.Sequential() model.add(tf.keras.Input(shape=(13,))) # input layer model.add(tf.keras.layers.Dense(64, activation='relu')) # hidden layer model.add(tf.keras.layers.Dense(64, activation='relu')) # hidden layer model.add(tf.keras.layers.Dense(3, activation='softmax')) # output layer model.compile(optimizer='adam', loss = 'sparse_categorical_crossentropy',metrics=['acc']) model.summary() model.fit(dfnpx, dfnpy, epochs=50, validation_split=0.3) ###Output Epoch 1/50 4/4 [==============================] - 1s 63ms/step - loss: 223.9878 - acc: 0.4194 - val_loss: 0.4822 - val_acc: 0.8889 Epoch 2/50 4/4 [==============================] - 0s 8ms/step - loss: 158.6598 - acc: 0.1855 - val_loss: 9.2015 - val_acc: 0.1111 Epoch 3/50 4/4 [==============================] - 0s 11ms/step - loss: 96.0259 - acc: 0.5242 - val_loss: 2.1362 - val_acc: 0.1111 Epoch 4/50 4/4 [==============================] - 0s 8ms/step - loss: 35.0275 - acc: 0.1774 - val_loss: 6.4503 - val_acc: 0.0000e+00 Epoch 5/50 4/4 [==============================] - 0s 9ms/step - loss: 10.4022 - acc: 0.4355 - val_loss: 57.2656 - val_acc: 0.0000e+00 Epoch 6/50 4/4 [==============================] - 0s 8ms/step - loss: 17.6420 - acc: 0.4758 - val_loss: 79.3170 - val_acc: 0.0000e+00 Epoch 7/50 4/4 [==============================] - 0s 50ms/step - loss: 11.2841 - acc: 0.4758 - val_loss: 82.4853 - val_acc: 0.0000e+00 Epoch 8/50 4/4 [==============================] - 0s 9ms/step - loss: 6.3667 - acc: 0.5242 - val_loss: 96.7073 - val_acc: 0.1111 Epoch 9/50 4/4 [==============================] - 0s 8ms/step - loss: 3.9942 - acc: 0.4516 - val_loss: 103.1479 - val_acc: 0.0000e+00 Epoch 10/50 4/4 [==============================] - 0s 8ms/step - loss: 6.2383 - acc: 0.4758 - val_loss: 107.3301 - val_acc: 0.0000e+00 Epoch 11/50 4/4 [==============================] - 0s 8ms/step - loss: 2.5474 - acc: 0.5645 - val_loss: 109.6605 - val_acc: 0.1111 Epoch 12/50 4/4 [==============================] - 0s 8ms/step - loss: 2.6263 - acc: 0.5645 - val_loss: 109.6625 - val_acc: 0.0000e+00 Epoch 13/50 4/4 [==============================] - 0s 9ms/step - loss: 2.6345 - acc: 0.4839 - val_loss: 109.9138 - val_acc: 0.0370 Epoch 14/50 4/4 [==============================] - 0s 11ms/step - loss: 0.9100 - acc: 0.6371 - val_loss: 111.6703 - val_acc: 0.1111 Epoch 15/50 4/4 [==============================] - 0s 10ms/step - loss: 0.6129 - acc: 0.7419 - val_loss: 111.1160 - val_acc: 0.0926 Epoch 16/50 4/4 [==============================] - 0s 10ms/step - loss: 0.4698 - acc: 0.7984 - val_loss: 113.1865 - val_acc: 0.1111 Epoch 17/50 4/4 [==============================] - 0s 16ms/step - loss: 0.3478 - acc: 0.8468 - val_loss: 112.0447 - val_acc: 0.0926 Epoch 18/50 4/4 [==============================] - 0s 9ms/step - loss: 0.4489 - acc: 0.8387 - val_loss: 112.9501 - val_acc: 0.1111 Epoch 19/50 4/4 [==============================] - 0s 9ms/step - loss: 0.3390 - acc: 0.8710 - val_loss: 113.5653 - val_acc: 0.1111 Epoch 20/50 4/4 [==============================] - 0s 10ms/step - loss: 0.2806 - acc: 0.8952 - val_loss: 112.6982 - val_acc: 0.0926 Epoch 21/50 4/4 [==============================] - 0s 9ms/step - loss: 0.3031 - acc: 0.8790 - val_loss: 113.8590 - val_acc: 0.1111 Epoch 22/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2611 - acc: 0.9113 - val_loss: 112.7779 - val_acc: 0.1111 Epoch 23/50 4/4 [==============================] - 0s 8ms/step - loss: 0.2790 - acc: 0.8387 - val_loss: 113.1525 - val_acc: 0.1111 Epoch 24/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2321 - acc: 0.9113 - val_loss: 112.9618 - val_acc: 0.1111 Epoch 25/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2363 - acc: 0.8710 - val_loss: 112.8883 - val_acc: 0.1111 Epoch 26/50 4/4 [==============================] - 0s 14ms/step - loss: 0.2530 - acc: 0.9113 - val_loss: 112.9004 - val_acc: 0.1111 Epoch 27/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2776 - acc: 0.8548 - val_loss: 112.7781 - val_acc: 0.1111 Epoch 28/50 4/4 [==============================] - 0s 10ms/step - loss: 0.2319 - acc: 0.9032 - val_loss: 113.2516 - val_acc: 0.1111 Epoch 29/50 4/4 [==============================] - 0s 11ms/step - loss: 0.2434 - acc: 0.8952 - val_loss: 112.7431 - val_acc: 0.1111 Epoch 30/50 4/4 [==============================] - 0s 10ms/step - loss: 0.2701 - acc: 0.8952 - val_loss: 112.8836 - val_acc: 0.1111 Epoch 31/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2560 - acc: 0.8629 - val_loss: 112.9641 - val_acc: 0.1111 Epoch 32/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2356 - acc: 0.8952 - val_loss: 112.9692 - val_acc: 0.1111 Epoch 33/50 4/4 [==============================] - 0s 11ms/step - loss: 0.2294 - acc: 0.8710 - val_loss: 112.8882 - val_acc: 0.1111 Epoch 34/50 4/4 [==============================] - 0s 11ms/step - loss: 0.2270 - acc: 0.8952 - val_loss: 113.0159 - val_acc: 0.1111 Epoch 35/50 4/4 [==============================] - 0s 10ms/step - loss: 0.2562 - acc: 0.8548 - val_loss: 113.0069 - val_acc: 0.1111 Epoch 36/50 4/4 [==============================] - 0s 8ms/step - loss: 0.2601 - acc: 0.8952 - val_loss: 113.0844 - val_acc: 0.1111 Epoch 37/50 4/4 [==============================] - 0s 10ms/step - loss: 0.2204 - acc: 0.8710 - val_loss: 112.7568 - val_acc: 0.1111 Epoch 38/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2508 - acc: 0.9032 - val_loss: 113.4738 - val_acc: 0.1111 Epoch 39/50 4/4 [==============================] - 0s 10ms/step - loss: 0.2124 - acc: 0.8790 - val_loss: 112.6100 - val_acc: 0.1111 Epoch 40/50 4/4 [==============================] - 0s 10ms/step - loss: 0.2670 - acc: 0.8548 - val_loss: 113.7163 - val_acc: 0.1111 Epoch 41/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2652 - acc: 0.8790 - val_loss: 112.5699 - val_acc: 0.1111 Epoch 42/50 4/4 [==============================] - 0s 10ms/step - loss: 0.2544 - acc: 0.8871 - val_loss: 113.1320 - val_acc: 0.1111 Epoch 43/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2346 - acc: 0.8871 - val_loss: 113.1256 - val_acc: 0.1111 Epoch 44/50 4/4 [==============================] - 0s 12ms/step - loss: 0.2591 - acc: 0.9194 - val_loss: 112.8154 - val_acc: 0.1111 Epoch 45/50 4/4 [==============================] - 0s 10ms/step - loss: 0.2482 - acc: 0.8710 - val_loss: 112.9925 - val_acc: 0.1111 Epoch 46/50 4/4 [==============================] - 0s 10ms/step - loss: 0.2384 - acc: 0.9194 - val_loss: 112.9531 - val_acc: 0.1111 Epoch 47/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2321 - acc: 0.8629 - val_loss: 112.9210 - val_acc: 0.1111 Epoch 48/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2210 - acc: 0.9194 - val_loss: 112.8476 - val_acc: 0.1111 Epoch 49/50 4/4 [==============================] - 0s 9ms/step - loss: 0.2437 - acc: 0.8548 - val_loss: 113.0876 - val_acc: 0.1111 Epoch 50/50 4/4 [==============================] - 0s 8ms/step - loss: 0.2582 - acc: 0.9032 - val_loss: 112.6023 - val_acc: 0.1111 ###Markdown Evaluation ###Code model.evaluate(dfnpx, dfnpy) ###Output 6/6 [==============================] - 0s 2ms/step - loss: 34.3256 - acc: 0.6348 ###Markdown Service ###Code dfnpx[25], dfnpy[25] pred = model.predict([[1.305e+01, 2.050e+00, 3.220e+00, 2.500e+01, 1.240e+02, 2.630e+00, 2.680e+00, 4.700e-01, 1.920e+00, 3.580e+00, 1.130e+00, 3.200e+00, 8.300e+02]]) pred np.argmax(pred) ###Output _____no_output_____ ###Markdown 교육단계 ###Code import tensorflow as tf model = tf.keras.Sequential() model.add(tf.keras.Input(shape=13,)) model.add(tf.keras.layers.Dense(64, activation='relu')) model.add(tf.keras.layers.Dense(36, activation='relu')) model.add(tf.keras.layers.Dense(3, activation='softmax')) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['acc']) model.summary() model.fit(x_data, y_data, epochs=500, validation_split=0.3) ###Output Epoch 1/500 4/4 [==============================] - 1s 49ms/step - loss: 88.0895 - acc: 0.5242 - val_loss: 44.9187 - val_acc: 0.1111 Epoch 2/500 4/4 [==============================] - 0s 10ms/step - loss: 27.8121 - acc: 0.5323 - val_loss: 17.4869 - val_acc: 0.0000e+00 Epoch 3/500 4/4 [==============================] - 0s 9ms/step - loss: 11.2875 - acc: 0.4758 - val_loss: 28.0420 - val_acc: 0.0000e+00 Epoch 4/500 4/4 [==============================] - 0s 8ms/step - loss: 19.7956 - acc: 0.4758 - val_loss: 29.3293 - val_acc: 0.0000e+00 Epoch 5/500 4/4 [==============================] - 0s 9ms/step - loss: 16.6995 - acc: 0.4758 - val_loss: 25.2862 - val_acc: 0.0000e+00 Epoch 6/500 4/4 [==============================] - 0s 10ms/step - loss: 6.7616 - acc: 0.5081 - val_loss: 19.3403 - val_acc: 0.0926 Epoch 7/500 4/4 [==============================] - 0s 13ms/step - loss: 3.5058 - acc: 0.6371 - val_loss: 26.2689 - val_acc: 0.1111 Epoch 8/500 4/4 [==============================] - 0s 10ms/step - loss: 2.9290 - acc: 0.6613 - val_loss: 20.4616 - val_acc: 0.0926 Epoch 9/500 4/4 [==============================] - 0s 9ms/step - loss: 2.0040 - acc: 0.7177 - val_loss: 21.5534 - val_acc: 0.0926 Epoch 10/500 4/4 [==============================] - 0s 9ms/step - loss: 1.9496 - acc: 0.7258 - val_loss: 21.1141 - val_acc: 0.0926 Epoch 11/500 4/4 [==============================] - 0s 8ms/step - loss: 0.4554 - acc: 0.8871 - val_loss: 25.0250 - val_acc: 0.1111 Epoch 12/500 4/4 [==============================] - 0s 9ms/step - loss: 0.7784 - acc: 0.7984 - val_loss: 22.3460 - val_acc: 0.1111 Epoch 13/500 4/4 [==============================] - 0s 9ms/step - loss: 0.3494 - acc: 0.9113 - val_loss: 21.3864 - val_acc: 0.0926 Epoch 14/500 4/4 [==============================] - 0s 9ms/step - loss: 0.6451 - acc: 0.8468 - val_loss: 21.8175 - val_acc: 0.1111 Epoch 15/500 4/4 [==============================] - 0s 13ms/step - loss: 0.3166 - acc: 0.9113 - val_loss: 23.5334 - val_acc: 0.1111 Epoch 16/500 4/4 [==============================] - 0s 10ms/step - loss: 0.4590 - acc: 0.9032 - val_loss: 23.5305 - val_acc: 0.1111 Epoch 17/500 4/4 [==============================] - 0s 9ms/step - loss: 0.3305 - acc: 0.9274 - val_loss: 22.2175 - val_acc: 0.1111 Epoch 18/500 4/4 [==============================] - 0s 9ms/step - loss: 0.3197 - acc: 0.8790 - val_loss: 21.9743 - val_acc: 0.1111 Epoch 19/500 4/4 [==============================] - 0s 9ms/step - loss: 0.3193 - acc: 0.8952 - val_loss: 22.5763 - val_acc: 0.1111 Epoch 20/500 4/4 [==============================] - 0s 9ms/step - loss: 0.2884 - acc: 0.9194 - val_loss: 22.8109 - val_acc: 0.1111 Epoch 21/500 4/4 [==============================] - 0s 8ms/step - loss: 0.3256 - acc: 0.9113 - val_loss: 22.2631 - val_acc: 0.1111 Epoch 22/500 4/4 [==============================] - 0s 9ms/step - loss: 0.2850 - acc: 0.8952 - val_loss: 22.3036 - val_acc: 0.1111 Epoch 23/500 4/4 [==============================] - 0s 10ms/step - loss: 0.2718 - acc: 0.9194 - val_loss: 22.7040 - val_acc: 0.1111 Epoch 24/500 4/4 [==============================] - 0s 9ms/step - loss: 0.2841 - acc: 0.9113 - val_loss: 22.3723 - val_acc: 0.1111 Epoch 25/500 4/4 [==============================] - 0s 10ms/step - loss: 0.2682 - acc: 0.9194 - val_loss: 22.1579 - val_acc: 0.1111 Epoch 26/500 4/4 [==============================] - 0s 12ms/step - loss: 0.2616 - acc: 0.9194 - val_loss: 22.3841 - val_acc: 0.1111 Epoch 27/500 4/4 [==============================] - 0s 12ms/step - loss: 0.2578 - acc: 0.9194 - val_loss: 22.3705 - val_acc: 0.1111 Epoch 28/500 4/4 [==============================] - 0s 12ms/step - loss: 0.2498 - acc: 0.9194 - val_loss: 22.0826 - val_acc: 0.1111 Epoch 29/500 4/4 [==============================] - 0s 13ms/step - loss: 0.2496 - acc: 0.9113 - val_loss: 22.1504 - val_acc: 0.1111 Epoch 30/500 4/4 [==============================] - 0s 13ms/step - loss: 0.2387 - acc: 0.9274 - val_loss: 22.4263 - val_acc: 0.1111 Epoch 31/500 4/4 [==============================] - 0s 19ms/step - loss: 0.2609 - acc: 0.9194 - val_loss: 22.3894 - val_acc: 0.1111 Epoch 32/500 4/4 [==============================] - 0s 13ms/step - loss: 0.2433 - acc: 0.9032 - val_loss: 21.7623 - val_acc: 0.1111 Epoch 33/500 4/4 [==============================] - 0s 11ms/step - loss: 0.2756 - acc: 0.8629 - val_loss: 22.2146 - val_acc: 0.1111 Epoch 34/500 4/4 [==============================] - 0s 11ms/step - loss: 0.2810 - acc: 0.9274 - val_loss: 22.6072 - val_acc: 0.1111 Epoch 35/500 4/4 [==============================] - 0s 12ms/step - loss: 0.2426 - acc: 0.9113 - val_loss: 21.8536 - val_acc: 0.1111 Epoch 36/500 4/4 [==============================] - 0s 19ms/step - loss: 0.2707 - acc: 0.8871 - val_loss: 22.0383 - val_acc: 0.1111 Epoch 37/500 4/4 [==============================] - 0s 13ms/step - loss: 0.2273 - acc: 0.9355 - val_loss: 22.0788 - val_acc: 0.1111 Epoch 38/500 4/4 [==============================] - 0s 16ms/step - loss: 0.2278 - acc: 0.9274 - val_loss: 22.1174 - val_acc: 0.1111 Epoch 39/500 4/4 [==============================] - 0s 13ms/step - loss: 0.2225 - acc: 0.9355 - val_loss: 21.9247 - val_acc: 0.1111 Epoch 40/500 4/4 [==============================] - 0s 13ms/step - loss: 0.2328 - acc: 0.9113 - val_loss: 21.9102 - val_acc: 0.1111 Epoch 41/500 4/4 [==============================] - 0s 17ms/step - loss: 0.2565 - acc: 0.9194 - val_loss: 22.2888 - val_acc: 0.1111 Epoch 42/500 4/4 [==============================] - 0s 11ms/step - loss: 0.2202 - acc: 0.9274 - val_loss: 21.7074 - val_acc: 0.1111 Epoch 43/500 4/4 [==============================] - 0s 11ms/step - loss: 0.2309 - acc: 0.9113 - val_loss: 21.9712 - val_acc: 0.1111 Epoch 44/500 4/4 [==============================] - 0s 13ms/step - loss: 0.2240 - acc: 0.9194 - val_loss: 21.9916 - val_acc: 0.1111 Epoch 45/500 4/4 [==============================] - 0s 11ms/step - loss: 0.2141 - acc: 0.9194 - val_loss: 21.7766 - val_acc: 0.1111 Epoch 46/500 4/4 [==============================] - 0s 12ms/step - loss: 0.2539 - acc: 0.8871 - val_loss: 21.5833 - val_acc: 0.1111 Epoch 47/500 4/4 [==============================] - 0s 11ms/step - loss: 0.1858 - acc: 0.9194 - val_loss: 22.2768 - val_acc: 0.1111 Epoch 48/500 4/4 [==============================] - 0s 11ms/step - loss: 0.2482 - acc: 0.9194 - val_loss: 21.9953 - val_acc: 0.1111 Epoch 49/500 4/4 [==============================] - 0s 12ms/step - loss: 0.2246 - acc: 0.9355 - val_loss: 21.5596 - val_acc: 0.1111 Epoch 50/500 4/4 [==============================] - 0s 14ms/step - loss: 0.2282 - acc: 0.9113 - val_loss: 21.7962 - val_acc: 0.1111 Epoch 51/500 4/4 [==============================] - 0s 12ms/step - loss: 0.2043 - acc: 0.9355 - val_loss: 21.6658 - val_acc: 0.1111 Epoch 52/500 4/4 [==============================] - 0s 15ms/step - loss: 0.2107 - acc: 0.9355 - val_loss: 21.7480 - val_acc: 0.1111 Epoch 53/500 4/4 [==============================] - 0s 13ms/step - loss: 0.2152 - acc: 0.9194 - val_loss: 21.5078 - val_acc: 0.1111 Epoch 54/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1992 - acc: 0.9194 - val_loss: 21.6189 - val_acc: 0.1111 Epoch 55/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1939 - acc: 0.9355 - val_loss: 21.7133 - val_acc: 0.1111 Epoch 56/500 4/4 [==============================] - 0s 13ms/step - loss: 0.2061 - acc: 0.9194 - val_loss: 21.6238 - val_acc: 0.1111 Epoch 57/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1962 - acc: 0.9113 - val_loss: 21.3574 - val_acc: 0.1111 Epoch 58/500 4/4 [==============================] - 0s 17ms/step - loss: 0.2105 - acc: 0.9194 - val_loss: 21.9298 - val_acc: 0.1111 Epoch 59/500 4/4 [==============================] - 0s 18ms/step - loss: 0.2122 - acc: 0.9274 - val_loss: 21.5102 - val_acc: 0.1111 Epoch 60/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1924 - acc: 0.9274 - val_loss: 21.4772 - val_acc: 0.1111 Epoch 61/500 4/4 [==============================] - 0s 11ms/step - loss: 0.2099 - acc: 0.9194 - val_loss: 21.6222 - val_acc: 0.1111 Epoch 62/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1713 - acc: 0.9274 - val_loss: 21.2601 - val_acc: 0.1111 Epoch 63/500 4/4 [==============================] - 0s 14ms/step - loss: 0.2026 - acc: 0.8952 - val_loss: 21.5318 - val_acc: 0.1111 Epoch 64/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1883 - acc: 0.9274 - val_loss: 21.6434 - val_acc: 0.1111 Epoch 65/500 4/4 [==============================] - 0s 13ms/step - loss: 0.2078 - acc: 0.8952 - val_loss: 21.2435 - val_acc: 0.1111 Epoch 66/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1931 - acc: 0.9355 - val_loss: 21.8218 - val_acc: 0.1111 Epoch 67/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1805 - acc: 0.9274 - val_loss: 21.2533 - val_acc: 0.1111 Epoch 68/500 4/4 [==============================] - 0s 12ms/step - loss: 0.2351 - acc: 0.8790 - val_loss: 21.5504 - val_acc: 0.1111 Epoch 69/500 4/4 [==============================] - 0s 11ms/step - loss: 0.2886 - acc: 0.9032 - val_loss: 21.5441 - val_acc: 0.1111 Epoch 70/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1786 - acc: 0.8952 - val_loss: 21.1444 - val_acc: 0.1111 Epoch 71/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1697 - acc: 0.9274 - val_loss: 21.6692 - val_acc: 0.1111 Epoch 72/500 4/4 [==============================] - 0s 13ms/step - loss: 0.2074 - acc: 0.9274 - val_loss: 21.3092 - val_acc: 0.1111 Epoch 73/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1749 - acc: 0.9274 - val_loss: 21.5006 - val_acc: 0.1111 Epoch 74/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1754 - acc: 0.9194 - val_loss: 21.2028 - val_acc: 0.1111 Epoch 75/500 4/4 [==============================] - 0s 11ms/step - loss: 0.1780 - acc: 0.9274 - val_loss: 21.4099 - val_acc: 0.1111 Epoch 76/500 4/4 [==============================] - 0s 11ms/step - loss: 0.1729 - acc: 0.9355 - val_loss: 21.5081 - val_acc: 0.1111 Epoch 77/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1703 - acc: 0.9355 - val_loss: 21.2298 - val_acc: 0.1111 Epoch 78/500 4/4 [==============================] - 0s 14ms/step - loss: 0.2058 - acc: 0.9032 - val_loss: 21.6193 - val_acc: 0.1111 Epoch 79/500 4/4 [==============================] - 0s 18ms/step - loss: 0.1737 - acc: 0.9274 - val_loss: 21.5686 - val_acc: 0.1111 Epoch 80/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1558 - acc: 0.9194 - val_loss: 21.1619 - val_acc: 0.1111 Epoch 81/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1916 - acc: 0.9194 - val_loss: 21.3106 - val_acc: 0.1111 Epoch 82/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1760 - acc: 0.9274 - val_loss: 21.3294 - val_acc: 0.1111 Epoch 83/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1937 - acc: 0.9435 - val_loss: 21.4200 - val_acc: 0.1111 Epoch 84/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1792 - acc: 0.9274 - val_loss: 21.2477 - val_acc: 0.1111 Epoch 85/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1954 - acc: 0.9355 - val_loss: 21.4327 - val_acc: 0.1111 Epoch 86/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1867 - acc: 0.9194 - val_loss: 21.3561 - val_acc: 0.1111 Epoch 87/500 4/4 [==============================] - 0s 12ms/step - loss: 0.2196 - acc: 0.9194 - val_loss: 21.5218 - val_acc: 0.1111 Epoch 88/500 4/4 [==============================] - 0s 12ms/step - loss: 0.2235 - acc: 0.8871 - val_loss: 21.3326 - val_acc: 0.1111 Epoch 89/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1612 - acc: 0.9274 - val_loss: 21.5469 - val_acc: 0.1111 Epoch 90/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1380 - acc: 0.9355 - val_loss: 21.1777 - val_acc: 0.1111 Epoch 91/500 4/4 [==============================] - 0s 11ms/step - loss: 0.1856 - acc: 0.9113 - val_loss: 21.7477 - val_acc: 0.1111 Epoch 92/500 4/4 [==============================] - 0s 11ms/step - loss: 0.2432 - acc: 0.9194 - val_loss: 21.1925 - val_acc: 0.1111 Epoch 93/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1797 - acc: 0.9274 - val_loss: 21.4856 - val_acc: 0.1111 Epoch 94/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1582 - acc: 0.9355 - val_loss: 21.4970 - val_acc: 0.1111 Epoch 95/500 4/4 [==============================] - 0s 18ms/step - loss: 0.1725 - acc: 0.9194 - val_loss: 21.5384 - val_acc: 0.1111 Epoch 96/500 4/4 [==============================] - 0s 11ms/step - loss: 0.1683 - acc: 0.9355 - val_loss: 21.5464 - val_acc: 0.1111 Epoch 97/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1557 - acc: 0.9274 - val_loss: 21.2838 - val_acc: 0.1111 Epoch 98/500 4/4 [==============================] - 0s 19ms/step - loss: 0.1795 - acc: 0.8952 - val_loss: 21.4964 - val_acc: 0.1111 Epoch 99/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1475 - acc: 0.9355 - val_loss: 21.4035 - val_acc: 0.1111 Epoch 100/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1673 - acc: 0.9274 - val_loss: 21.9672 - val_acc: 0.1111 Epoch 101/500 4/4 [==============================] - 0s 14ms/step - loss: 0.2314 - acc: 0.9194 - val_loss: 21.3069 - val_acc: 0.1111 Epoch 102/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1781 - acc: 0.9113 - val_loss: 22.0357 - val_acc: 0.1111 Epoch 103/500 4/4 [==============================] - 0s 11ms/step - loss: 0.2647 - acc: 0.9194 - val_loss: 21.2363 - val_acc: 0.1111 Epoch 104/500 4/4 [==============================] - 0s 12ms/step - loss: 0.2162 - acc: 0.8790 - val_loss: 22.1087 - val_acc: 0.1111 Epoch 105/500 4/4 [==============================] - 0s 11ms/step - loss: 0.2112 - acc: 0.9032 - val_loss: 21.4087 - val_acc: 0.1111 Epoch 106/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1993 - acc: 0.8952 - val_loss: 22.0718 - val_acc: 0.1111 Epoch 107/500 4/4 [==============================] - 0s 14ms/step - loss: 0.2573 - acc: 0.9113 - val_loss: 21.4072 - val_acc: 0.1111 Epoch 108/500 4/4 [==============================] - 0s 13ms/step - loss: 0.3091 - acc: 0.8710 - val_loss: 22.2220 - val_acc: 0.1111 Epoch 109/500 4/4 [==============================] - 0s 13ms/step - loss: 0.2545 - acc: 0.9113 - val_loss: 21.4955 - val_acc: 0.1111 Epoch 110/500 4/4 [==============================] - 0s 12ms/step - loss: 0.3231 - acc: 0.8790 - val_loss: 21.9732 - val_acc: 0.1111 Epoch 111/500 4/4 [==============================] - 0s 13ms/step - loss: 0.3219 - acc: 0.9032 - val_loss: 21.7197 - val_acc: 0.1111 Epoch 112/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1993 - acc: 0.9113 - val_loss: 21.8521 - val_acc: 0.1111 Epoch 113/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1821 - acc: 0.9274 - val_loss: 22.3063 - val_acc: 0.1111 Epoch 114/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1785 - acc: 0.9355 - val_loss: 21.8370 - val_acc: 0.1111 Epoch 115/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1460 - acc: 0.9355 - val_loss: 22.2894 - val_acc: 0.1111 Epoch 116/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1918 - acc: 0.9032 - val_loss: 21.8155 - val_acc: 0.1111 Epoch 117/500 4/4 [==============================] - 0s 11ms/step - loss: 0.1279 - acc: 0.9597 - val_loss: 22.5263 - val_acc: 0.1111 Epoch 118/500 4/4 [==============================] - 0s 11ms/step - loss: 0.1772 - acc: 0.9355 - val_loss: 21.8381 - val_acc: 0.1111 Epoch 119/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1576 - acc: 0.9274 - val_loss: 22.4176 - val_acc: 0.1111 Epoch 120/500 4/4 [==============================] - 0s 11ms/step - loss: 0.1707 - acc: 0.9355 - val_loss: 21.7391 - val_acc: 0.1111 Epoch 121/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1938 - acc: 0.9113 - val_loss: 22.9078 - val_acc: 0.1111 Epoch 122/500 4/4 [==============================] - 0s 14ms/step - loss: 0.2612 - acc: 0.9113 - val_loss: 21.6676 - val_acc: 0.1111 Epoch 123/500 4/4 [==============================] - 0s 12ms/step - loss: 0.2580 - acc: 0.9032 - val_loss: 22.5915 - val_acc: 0.1111 Epoch 124/500 4/4 [==============================] - 0s 14ms/step - loss: 0.2431 - acc: 0.9274 - val_loss: 21.8023 - val_acc: 0.1111 Epoch 125/500 4/4 [==============================] - 0s 13ms/step - loss: 0.2169 - acc: 0.9194 - val_loss: 22.4423 - val_acc: 0.1111 Epoch 126/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1774 - acc: 0.9274 - val_loss: 22.1615 - val_acc: 0.1111 Epoch 127/500 4/4 [==============================] - 0s 11ms/step - loss: 0.1551 - acc: 0.9194 - val_loss: 22.0160 - val_acc: 0.1111 Epoch 128/500 4/4 [==============================] - 0s 9ms/step - loss: 0.1338 - acc: 0.9435 - val_loss: 22.4843 - val_acc: 0.1111 Epoch 129/500 4/4 [==============================] - 0s 10ms/step - loss: 0.1544 - acc: 0.9435 - val_loss: 21.9855 - val_acc: 0.1111 Epoch 130/500 4/4 [==============================] - 0s 9ms/step - loss: 0.1621 - acc: 0.9355 - val_loss: 22.2915 - val_acc: 0.1111 Epoch 131/500 4/4 [==============================] - 0s 10ms/step - loss: 0.1284 - acc: 0.9516 - val_loss: 21.9777 - val_acc: 0.1111 Epoch 132/500 4/4 [==============================] - 0s 11ms/step - loss: 0.1731 - acc: 0.9355 - val_loss: 22.2912 - val_acc: 0.1111 Epoch 133/500 4/4 [==============================] - 0s 10ms/step - loss: 0.1477 - acc: 0.9435 - val_loss: 21.9856 - val_acc: 0.1111 Epoch 134/500 4/4 [==============================] - 0s 9ms/step - loss: 0.1864 - acc: 0.9113 - val_loss: 22.3778 - val_acc: 0.1111 Epoch 135/500 4/4 [==============================] - 0s 8ms/step - loss: 0.1695 - acc: 0.9194 - val_loss: 22.0602 - val_acc: 0.1111 Epoch 136/500 4/4 [==============================] - 0s 9ms/step - loss: 0.1317 - acc: 0.9435 - val_loss: 22.6160 - val_acc: 0.1111 Epoch 137/500 4/4 [==============================] - 0s 10ms/step - loss: 0.1366 - acc: 0.9435 - val_loss: 22.0511 - val_acc: 0.1111 Epoch 138/500 4/4 [==============================] - 0s 10ms/step - loss: 0.1661 - acc: 0.9194 - val_loss: 22.6566 - val_acc: 0.1111 Epoch 139/500 4/4 [==============================] - 0s 10ms/step - loss: 0.1641 - acc: 0.9032 - val_loss: 22.0480 - val_acc: 0.1111 Epoch 140/500 4/4 [==============================] - 0s 10ms/step - loss: 0.1191 - acc: 0.9516 - val_loss: 22.5797 - val_acc: 0.1111 Epoch 141/500 4/4 [==============================] - 0s 9ms/step - loss: 0.1450 - acc: 0.9435 - val_loss: 21.9700 - val_acc: 0.1111 Epoch 142/500 4/4 [==============================] - 0s 9ms/step - loss: 0.1604 - acc: 0.9274 - val_loss: 22.5089 - val_acc: 0.1111 Epoch 143/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1668 - acc: 0.9274 - val_loss: 22.1091 - val_acc: 0.1111 Epoch 144/500 4/4 [==============================] - 0s 10ms/step - loss: 0.2306 - acc: 0.9032 - val_loss: 22.7334 - val_acc: 0.1111 Epoch 145/500 4/4 [==============================] - 0s 9ms/step - loss: 0.1943 - acc: 0.9194 - val_loss: 22.0690 - val_acc: 0.1111 Epoch 146/500 4/4 [==============================] - 0s 10ms/step - loss: 0.2046 - acc: 0.8952 - val_loss: 22.4677 - val_acc: 0.1111 Epoch 147/500 4/4 [==============================] - 0s 10ms/step - loss: 0.1217 - acc: 0.9516 - val_loss: 22.1848 - val_acc: 0.1111 Epoch 148/500 4/4 [==============================] - 0s 11ms/step - loss: 0.1528 - acc: 0.9435 - val_loss: 22.2960 - val_acc: 0.1111 Epoch 149/500 4/4 [==============================] - 0s 9ms/step - loss: 0.1503 - acc: 0.9355 - val_loss: 22.7332 - val_acc: 0.1111 Epoch 150/500 4/4 [==============================] - 0s 9ms/step - loss: 0.1553 - acc: 0.9274 - val_loss: 22.0712 - val_acc: 0.1111 Epoch 151/500 4/4 [==============================] - 0s 10ms/step - loss: 0.2565 - acc: 0.8790 - val_loss: 23.3065 - val_acc: 0.1111 Epoch 152/500 4/4 [==============================] - 0s 9ms/step - loss: 0.3083 - acc: 0.8871 - val_loss: 22.0743 - val_acc: 0.0926 Epoch 153/500 4/4 [==============================] - 0s 10ms/step - loss: 0.3026 - acc: 0.8790 - val_loss: 23.5144 - val_acc: 0.1111 Epoch 154/500 4/4 [==============================] - 0s 12ms/step - loss: 0.2379 - acc: 0.9274 - val_loss: 22.2403 - val_acc: 0.1111 Epoch 155/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1605 - acc: 0.9274 - val_loss: 22.7736 - val_acc: 0.1111 Epoch 156/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1413 - acc: 0.9516 - val_loss: 22.6307 - val_acc: 0.1111 Epoch 157/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1474 - acc: 0.9355 - val_loss: 22.4105 - val_acc: 0.1111 Epoch 158/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1992 - acc: 0.9113 - val_loss: 22.9889 - val_acc: 0.1111 Epoch 159/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1656 - acc: 0.9435 - val_loss: 22.6298 - val_acc: 0.1111 Epoch 160/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1253 - acc: 0.9597 - val_loss: 22.4341 - val_acc: 0.1111 Epoch 161/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1335 - acc: 0.9355 - val_loss: 23.0030 - val_acc: 0.1111 Epoch 162/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1517 - acc: 0.9355 - val_loss: 22.2569 - val_acc: 0.1111 Epoch 163/500 4/4 [==============================] - 0s 14ms/step - loss: 0.2304 - acc: 0.8952 - val_loss: 23.4000 - val_acc: 0.1111 Epoch 164/500 4/4 [==============================] - 0s 11ms/step - loss: 0.1990 - acc: 0.9274 - val_loss: 22.2835 - val_acc: 0.1111 Epoch 165/500 4/4 [==============================] - 0s 15ms/step - loss: 0.2109 - acc: 0.9113 - val_loss: 23.1646 - val_acc: 0.1111 Epoch 166/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1927 - acc: 0.9113 - val_loss: 22.5001 - val_acc: 0.1111 Epoch 167/500 4/4 [==============================] - 0s 13ms/step - loss: 0.2279 - acc: 0.8952 - val_loss: 23.2451 - val_acc: 0.1111 Epoch 168/500 4/4 [==============================] - 0s 13ms/step - loss: 0.3415 - acc: 0.8871 - val_loss: 22.2797 - val_acc: 0.0926 Epoch 169/500 4/4 [==============================] - 0s 12ms/step - loss: 0.3525 - acc: 0.8629 - val_loss: 23.4190 - val_acc: 0.1111 Epoch 170/500 4/4 [==============================] - 0s 16ms/step - loss: 0.2217 - acc: 0.9113 - val_loss: 22.4278 - val_acc: 0.1111 Epoch 171/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1649 - acc: 0.9113 - val_loss: 23.2902 - val_acc: 0.1111 Epoch 172/500 4/4 [==============================] - 0s 14ms/step - loss: 0.2113 - acc: 0.9274 - val_loss: 22.6000 - val_acc: 0.1111 Epoch 173/500 4/4 [==============================] - 0s 18ms/step - loss: 0.1438 - acc: 0.9516 - val_loss: 22.9299 - val_acc: 0.1111 Epoch 174/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1395 - acc: 0.9274 - val_loss: 22.4793 - val_acc: 0.1111 Epoch 175/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1496 - acc: 0.9194 - val_loss: 23.6067 - val_acc: 0.1111 Epoch 176/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1984 - acc: 0.9355 - val_loss: 22.4492 - val_acc: 0.1111 Epoch 177/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1912 - acc: 0.9032 - val_loss: 23.1109 - val_acc: 0.1111 Epoch 178/500 4/4 [==============================] - 0s 13ms/step - loss: 0.2017 - acc: 0.9194 - val_loss: 22.4997 - val_acc: 0.1111 Epoch 179/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1545 - acc: 0.9194 - val_loss: 23.0039 - val_acc: 0.1111 Epoch 180/500 4/4 [==============================] - 0s 11ms/step - loss: 0.1356 - acc: 0.9677 - val_loss: 22.7180 - val_acc: 0.1111 Epoch 181/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1522 - acc: 0.9435 - val_loss: 22.8532 - val_acc: 0.1111 Epoch 182/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1458 - acc: 0.9435 - val_loss: 22.5491 - val_acc: 0.1111 Epoch 183/500 4/4 [==============================] - 0s 15ms/step - loss: 0.2183 - acc: 0.9113 - val_loss: 23.1870 - val_acc: 0.1111 Epoch 184/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1743 - acc: 0.9194 - val_loss: 22.5879 - val_acc: 0.1111 Epoch 185/500 4/4 [==============================] - 0s 12ms/step - loss: 0.2094 - acc: 0.9113 - val_loss: 23.2739 - val_acc: 0.1111 Epoch 186/500 4/4 [==============================] - 0s 12ms/step - loss: 0.2012 - acc: 0.9194 - val_loss: 22.5629 - val_acc: 0.1111 Epoch 187/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1318 - acc: 0.9355 - val_loss: 22.9632 - val_acc: 0.1111 Epoch 188/500 4/4 [==============================] - 0s 18ms/step - loss: 0.1200 - acc: 0.9597 - val_loss: 22.6164 - val_acc: 0.1111 Epoch 189/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1812 - acc: 0.9274 - val_loss: 23.3753 - val_acc: 0.1111 Epoch 190/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1580 - acc: 0.9435 - val_loss: 22.4254 - val_acc: 0.1111 Epoch 191/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1680 - acc: 0.9516 - val_loss: 23.2273 - val_acc: 0.1111 Epoch 192/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1692 - acc: 0.9113 - val_loss: 22.7857 - val_acc: 0.1111 Epoch 193/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1325 - acc: 0.9435 - val_loss: 22.7859 - val_acc: 0.1111 Epoch 194/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1194 - acc: 0.9516 - val_loss: 22.6508 - val_acc: 0.1111 Epoch 195/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1279 - acc: 0.9516 - val_loss: 22.6849 - val_acc: 0.1111 Epoch 196/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1207 - acc: 0.9597 - val_loss: 22.7846 - val_acc: 0.1111 Epoch 197/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1118 - acc: 0.9597 - val_loss: 22.6760 - val_acc: 0.1111 Epoch 198/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1139 - acc: 0.9516 - val_loss: 22.8497 - val_acc: 0.1111 Epoch 199/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1493 - acc: 0.9597 - val_loss: 22.6349 - val_acc: 0.1111 Epoch 200/500 4/4 [==============================] - 0s 14ms/step - loss: 0.2225 - acc: 0.9113 - val_loss: 23.2259 - val_acc: 0.1111 Epoch 201/500 4/4 [==============================] - 0s 13ms/step - loss: 0.2458 - acc: 0.9194 - val_loss: 22.5024 - val_acc: 0.1111 Epoch 202/500 4/4 [==============================] - 0s 12ms/step - loss: 0.2163 - acc: 0.9032 - val_loss: 23.5023 - val_acc: 0.1111 Epoch 203/500 4/4 [==============================] - 0s 15ms/step - loss: 0.2484 - acc: 0.8952 - val_loss: 22.5074 - val_acc: 0.1111 Epoch 204/500 4/4 [==============================] - 0s 13ms/step - loss: 0.3535 - acc: 0.8871 - val_loss: 23.7548 - val_acc: 0.1111 Epoch 205/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1661 - acc: 0.9516 - val_loss: 22.6044 - val_acc: 0.1111 Epoch 206/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1773 - acc: 0.9355 - val_loss: 23.3055 - val_acc: 0.1111 Epoch 207/500 4/4 [==============================] - 0s 11ms/step - loss: 0.1315 - acc: 0.9435 - val_loss: 22.8491 - val_acc: 0.1111 Epoch 208/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1289 - acc: 0.9516 - val_loss: 23.3147 - val_acc: 0.1111 Epoch 209/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1425 - acc: 0.9516 - val_loss: 22.8767 - val_acc: 0.1111 Epoch 210/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1427 - acc: 0.9435 - val_loss: 22.9283 - val_acc: 0.1111 Epoch 211/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1185 - acc: 0.9516 - val_loss: 22.8638 - val_acc: 0.1111 Epoch 212/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1022 - acc: 0.9597 - val_loss: 23.1521 - val_acc: 0.1111 Epoch 213/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1249 - acc: 0.9597 - val_loss: 22.6956 - val_acc: 0.1111 Epoch 214/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1908 - acc: 0.9194 - val_loss: 23.2083 - val_acc: 0.1111 Epoch 215/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1476 - acc: 0.9435 - val_loss: 23.1025 - val_acc: 0.1111 Epoch 216/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1359 - acc: 0.9597 - val_loss: 22.8059 - val_acc: 0.1111 Epoch 217/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1427 - acc: 0.9516 - val_loss: 23.1882 - val_acc: 0.1111 Epoch 218/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1158 - acc: 0.9516 - val_loss: 22.7635 - val_acc: 0.1111 Epoch 219/500 4/4 [==============================] - 0s 19ms/step - loss: 0.2279 - acc: 0.9274 - val_loss: 23.4922 - val_acc: 0.1111 Epoch 220/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1392 - acc: 0.9435 - val_loss: 22.8583 - val_acc: 0.1111 Epoch 221/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1048 - acc: 0.9677 - val_loss: 23.3020 - val_acc: 0.1111 Epoch 222/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1117 - acc: 0.9597 - val_loss: 22.7855 - val_acc: 0.1111 Epoch 223/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1322 - acc: 0.9435 - val_loss: 23.2608 - val_acc: 0.1111 Epoch 224/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1082 - acc: 0.9758 - val_loss: 22.8300 - val_acc: 0.1111 Epoch 225/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1507 - acc: 0.9274 - val_loss: 23.1843 - val_acc: 0.1111 Epoch 226/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1183 - acc: 0.9597 - val_loss: 23.1208 - val_acc: 0.1111 Epoch 227/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1323 - acc: 0.9516 - val_loss: 22.8034 - val_acc: 0.1111 Epoch 228/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1603 - acc: 0.9194 - val_loss: 23.7321 - val_acc: 0.1111 Epoch 229/500 4/4 [==============================] - 0s 13ms/step - loss: 0.2189 - acc: 0.9274 - val_loss: 22.7453 - val_acc: 0.1111 Epoch 230/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1775 - acc: 0.9194 - val_loss: 24.1227 - val_acc: 0.1111 Epoch 231/500 4/4 [==============================] - 0s 13ms/step - loss: 0.2208 - acc: 0.9113 - val_loss: 22.7973 - val_acc: 0.1111 Epoch 232/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1985 - acc: 0.9194 - val_loss: 23.6276 - val_acc: 0.1111 Epoch 233/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1823 - acc: 0.9274 - val_loss: 22.9089 - val_acc: 0.1111 Epoch 234/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1924 - acc: 0.8871 - val_loss: 23.3485 - val_acc: 0.1111 Epoch 235/500 4/4 [==============================] - 0s 11ms/step - loss: 0.1371 - acc: 0.9597 - val_loss: 23.0399 - val_acc: 0.1111 Epoch 236/500 4/4 [==============================] - 0s 13ms/step - loss: 0.0942 - acc: 0.9677 - val_loss: 23.6487 - val_acc: 0.1111 Epoch 237/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1251 - acc: 0.9597 - val_loss: 23.0142 - val_acc: 0.1111 Epoch 238/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1210 - acc: 0.9516 - val_loss: 23.5063 - val_acc: 0.1111 Epoch 239/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1239 - acc: 0.9597 - val_loss: 23.0078 - val_acc: 0.1111 Epoch 240/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1644 - acc: 0.9435 - val_loss: 23.3756 - val_acc: 0.1111 Epoch 241/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1056 - acc: 0.9597 - val_loss: 23.1459 - val_acc: 0.1111 Epoch 242/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1118 - acc: 0.9597 - val_loss: 23.3176 - val_acc: 0.1111 Epoch 243/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1057 - acc: 0.9677 - val_loss: 23.1028 - val_acc: 0.1111 Epoch 244/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1417 - acc: 0.9435 - val_loss: 23.3592 - val_acc: 0.1111 Epoch 245/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1509 - acc: 0.9355 - val_loss: 23.4411 - val_acc: 0.1111 Epoch 246/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1591 - acc: 0.9435 - val_loss: 23.1200 - val_acc: 0.1111 Epoch 247/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1720 - acc: 0.9274 - val_loss: 23.8807 - val_acc: 0.1111 Epoch 248/500 4/4 [==============================] - 0s 13ms/step - loss: 0.2047 - acc: 0.9194 - val_loss: 23.0054 - val_acc: 0.1111 Epoch 249/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1207 - acc: 0.9435 - val_loss: 24.2574 - val_acc: 0.1111 Epoch 250/500 4/4 [==============================] - 0s 14ms/step - loss: 0.2305 - acc: 0.9113 - val_loss: 22.9995 - val_acc: 0.1111 Epoch 251/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1628 - acc: 0.9355 - val_loss: 23.7382 - val_acc: 0.1111 Epoch 252/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1862 - acc: 0.9194 - val_loss: 23.5683 - val_acc: 0.1111 Epoch 253/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1351 - acc: 0.9516 - val_loss: 23.3187 - val_acc: 0.1111 Epoch 254/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1037 - acc: 0.9597 - val_loss: 23.4282 - val_acc: 0.1111 Epoch 255/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1342 - acc: 0.9597 - val_loss: 23.1191 - val_acc: 0.1111 Epoch 256/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1418 - acc: 0.9355 - val_loss: 23.6649 - val_acc: 0.1111 Epoch 257/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1271 - acc: 0.9516 - val_loss: 23.2220 - val_acc: 0.1111 Epoch 258/500 4/4 [==============================] - 0s 19ms/step - loss: 0.1213 - acc: 0.9758 - val_loss: 23.4739 - val_acc: 0.1111 Epoch 259/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1337 - acc: 0.9516 - val_loss: 23.4479 - val_acc: 0.1111 Epoch 260/500 4/4 [==============================] - 0s 17ms/step - loss: 0.1251 - acc: 0.9677 - val_loss: 23.3798 - val_acc: 0.1111 Epoch 261/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1008 - acc: 0.9597 - val_loss: 23.3336 - val_acc: 0.1111 Epoch 262/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1073 - acc: 0.9597 - val_loss: 23.5531 - val_acc: 0.1111 Epoch 263/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1057 - acc: 0.9758 - val_loss: 23.3584 - val_acc: 0.1111 Epoch 264/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1072 - acc: 0.9597 - val_loss: 23.4649 - val_acc: 0.1111 Epoch 265/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1189 - acc: 0.9597 - val_loss: 23.1721 - val_acc: 0.1111 Epoch 266/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1496 - acc: 0.9274 - val_loss: 24.0132 - val_acc: 0.1111 Epoch 267/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1573 - acc: 0.9597 - val_loss: 23.2103 - val_acc: 0.1111 Epoch 268/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1166 - acc: 0.9516 - val_loss: 23.4713 - val_acc: 0.1111 Epoch 269/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1008 - acc: 0.9758 - val_loss: 23.4554 - val_acc: 0.1111 Epoch 270/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1098 - acc: 0.9677 - val_loss: 23.3176 - val_acc: 0.1111 Epoch 271/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1338 - acc: 0.9435 - val_loss: 23.7195 - val_acc: 0.1111 Epoch 272/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1398 - acc: 0.9355 - val_loss: 23.6044 - val_acc: 0.1111 Epoch 273/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1238 - acc: 0.9516 - val_loss: 23.3157 - val_acc: 0.1111 Epoch 274/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1191 - acc: 0.9435 - val_loss: 23.6524 - val_acc: 0.1111 Epoch 275/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1013 - acc: 0.9677 - val_loss: 23.2708 - val_acc: 0.1111 Epoch 276/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1109 - acc: 0.9435 - val_loss: 23.7140 - val_acc: 0.1111 Epoch 277/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1137 - acc: 0.9677 - val_loss: 23.2920 - val_acc: 0.1111 Epoch 278/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1511 - acc: 0.9435 - val_loss: 23.8772 - val_acc: 0.1111 Epoch 279/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1322 - acc: 0.9516 - val_loss: 23.3137 - val_acc: 0.1111 Epoch 280/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1191 - acc: 0.9435 - val_loss: 23.5295 - val_acc: 0.1111 Epoch 281/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1131 - acc: 0.9597 - val_loss: 23.4659 - val_acc: 0.1111 Epoch 282/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1031 - acc: 0.9677 - val_loss: 23.5454 - val_acc: 0.1111 Epoch 283/500 4/4 [==============================] - 0s 20ms/step - loss: 0.1107 - acc: 0.9677 - val_loss: 23.5292 - val_acc: 0.1111 Epoch 284/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1156 - acc: 0.9677 - val_loss: 23.3897 - val_acc: 0.1111 Epoch 285/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1468 - acc: 0.9435 - val_loss: 23.8304 - val_acc: 0.1111 Epoch 286/500 4/4 [==============================] - 0s 14ms/step - loss: 0.0979 - acc: 0.9516 - val_loss: 23.3852 - val_acc: 0.1111 Epoch 287/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1598 - acc: 0.9435 - val_loss: 23.5881 - val_acc: 0.1111 Epoch 288/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1364 - acc: 0.9194 - val_loss: 23.8109 - val_acc: 0.1111 Epoch 289/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1498 - acc: 0.9516 - val_loss: 23.3443 - val_acc: 0.1111 Epoch 290/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1234 - acc: 0.9355 - val_loss: 24.3042 - val_acc: 0.1111 Epoch 291/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1712 - acc: 0.9597 - val_loss: 23.3505 - val_acc: 0.1111 Epoch 292/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1456 - acc: 0.9113 - val_loss: 25.2982 - val_acc: 0.1111 Epoch 293/500 4/4 [==============================] - 0s 13ms/step - loss: 0.3571 - acc: 0.8548 - val_loss: 23.5393 - val_acc: 0.0926 Epoch 294/500 4/4 [==============================] - 0s 14ms/step - loss: 0.3942 - acc: 0.8629 - val_loss: 26.2457 - val_acc: 0.1111 Epoch 295/500 4/4 [==============================] - 0s 16ms/step - loss: 0.4796 - acc: 0.8952 - val_loss: 23.4475 - val_acc: 0.0926 Epoch 296/500 4/4 [==============================] - 0s 15ms/step - loss: 0.4293 - acc: 0.8629 - val_loss: 24.3166 - val_acc: 0.1111 Epoch 297/500 4/4 [==============================] - 0s 17ms/step - loss: 0.4386 - acc: 0.8790 - val_loss: 23.9550 - val_acc: 0.1111 Epoch 298/500 4/4 [==============================] - 0s 13ms/step - loss: 0.2617 - acc: 0.9194 - val_loss: 23.9968 - val_acc: 0.1111 Epoch 299/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1356 - acc: 0.9274 - val_loss: 23.6447 - val_acc: 0.1111 Epoch 300/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1256 - acc: 0.9355 - val_loss: 24.7169 - val_acc: 0.1111 Epoch 301/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1590 - acc: 0.9516 - val_loss: 23.6936 - val_acc: 0.1111 Epoch 302/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1387 - acc: 0.9435 - val_loss: 24.1227 - val_acc: 0.1111 Epoch 303/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1511 - acc: 0.9435 - val_loss: 23.8965 - val_acc: 0.1111 Epoch 304/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1406 - acc: 0.9597 - val_loss: 24.0299 - val_acc: 0.1111 Epoch 305/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1177 - acc: 0.9677 - val_loss: 23.7355 - val_acc: 0.1111 Epoch 306/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1259 - acc: 0.9516 - val_loss: 23.7459 - val_acc: 0.1111 Epoch 307/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1216 - acc: 0.9597 - val_loss: 23.7725 - val_acc: 0.1111 Epoch 308/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1292 - acc: 0.9597 - val_loss: 23.8597 - val_acc: 0.1111 Epoch 309/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1100 - acc: 0.9597 - val_loss: 23.6322 - val_acc: 0.1111 Epoch 310/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1115 - acc: 0.9597 - val_loss: 23.6761 - val_acc: 0.1111 Epoch 311/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1299 - acc: 0.9516 - val_loss: 23.4234 - val_acc: 0.1111 Epoch 312/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1386 - acc: 0.9516 - val_loss: 23.6813 - val_acc: 0.1111 Epoch 313/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1265 - acc: 0.9516 - val_loss: 23.5849 - val_acc: 0.1111 Epoch 314/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1002 - acc: 0.9677 - val_loss: 23.6324 - val_acc: 0.1111 Epoch 315/500 4/4 [==============================] - 0s 17ms/step - loss: 0.1146 - acc: 0.9597 - val_loss: 23.5858 - val_acc: 0.1111 Epoch 316/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1062 - acc: 0.9758 - val_loss: 23.3732 - val_acc: 0.1111 Epoch 317/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1121 - acc: 0.9516 - val_loss: 23.5813 - val_acc: 0.1111 Epoch 318/500 4/4 [==============================] - 0s 17ms/step - loss: 0.1126 - acc: 0.9758 - val_loss: 23.5084 - val_acc: 0.1111 Epoch 319/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1295 - acc: 0.9516 - val_loss: 23.8757 - val_acc: 0.1111 Epoch 320/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1829 - acc: 0.9274 - val_loss: 23.2878 - val_acc: 0.1111 Epoch 321/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1144 - acc: 0.9677 - val_loss: 23.4708 - val_acc: 0.1111 Epoch 322/500 4/4 [==============================] - 0s 14ms/step - loss: 0.0987 - acc: 0.9677 - val_loss: 23.3341 - val_acc: 0.1111 Epoch 323/500 4/4 [==============================] - 0s 15ms/step - loss: 0.0957 - acc: 0.9677 - val_loss: 23.5208 - val_acc: 0.1111 Epoch 324/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1140 - acc: 0.9758 - val_loss: 23.5207 - val_acc: 0.1111 Epoch 325/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1070 - acc: 0.9677 - val_loss: 23.1933 - val_acc: 0.1111 Epoch 326/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1291 - acc: 0.9516 - val_loss: 23.3896 - val_acc: 0.1111 Epoch 327/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1332 - acc: 0.9516 - val_loss: 23.5311 - val_acc: 0.1111 Epoch 328/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1431 - acc: 0.9516 - val_loss: 23.1808 - val_acc: 0.1111 Epoch 329/500 4/4 [==============================] - 0s 13ms/step - loss: 0.2193 - acc: 0.8952 - val_loss: 24.3842 - val_acc: 0.1111 Epoch 330/500 4/4 [==============================] - 0s 15ms/step - loss: 0.4301 - acc: 0.8710 - val_loss: 23.2780 - val_acc: 0.0926 Epoch 331/500 4/4 [==============================] - 0s 15ms/step - loss: 0.6971 - acc: 0.8468 - val_loss: 24.3606 - val_acc: 0.1111 Epoch 332/500 4/4 [==============================] - 0s 16ms/step - loss: 1.0037 - acc: 0.8306 - val_loss: 23.6043 - val_acc: 0.1111 Epoch 333/500 4/4 [==============================] - 0s 19ms/step - loss: 0.6777 - acc: 0.8629 - val_loss: 23.6994 - val_acc: 0.1111 Epoch 334/500 4/4 [==============================] - 0s 15ms/step - loss: 0.5580 - acc: 0.8306 - val_loss: 24.1181 - val_acc: 0.1111 Epoch 335/500 4/4 [==============================] - 0s 13ms/step - loss: 0.3854 - acc: 0.8871 - val_loss: 22.9688 - val_acc: 0.0926 Epoch 336/500 4/4 [==============================] - 0s 13ms/step - loss: 0.6197 - acc: 0.8548 - val_loss: 24.2677 - val_acc: 0.1111 Epoch 337/500 4/4 [==============================] - 0s 14ms/step - loss: 0.2698 - acc: 0.9032 - val_loss: 23.1685 - val_acc: 0.1111 Epoch 338/500 4/4 [==============================] - 0s 18ms/step - loss: 0.2653 - acc: 0.8871 - val_loss: 23.7592 - val_acc: 0.1111 Epoch 339/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1443 - acc: 0.9677 - val_loss: 23.5637 - val_acc: 0.1111 Epoch 340/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1139 - acc: 0.9516 - val_loss: 23.2435 - val_acc: 0.1111 Epoch 341/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1421 - acc: 0.9435 - val_loss: 23.3380 - val_acc: 0.1111 Epoch 342/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1503 - acc: 0.9435 - val_loss: 23.5158 - val_acc: 0.1111 Epoch 343/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1246 - acc: 0.9516 - val_loss: 23.1765 - val_acc: 0.1111 Epoch 344/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1264 - acc: 0.9597 - val_loss: 23.0789 - val_acc: 0.1111 Epoch 345/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1226 - acc: 0.9597 - val_loss: 23.2588 - val_acc: 0.1111 Epoch 346/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1090 - acc: 0.9597 - val_loss: 23.2376 - val_acc: 0.1111 Epoch 347/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1079 - acc: 0.9677 - val_loss: 23.1331 - val_acc: 0.1111 Epoch 348/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1136 - acc: 0.9516 - val_loss: 23.2845 - val_acc: 0.1111 Epoch 349/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1186 - acc: 0.9597 - val_loss: 23.0903 - val_acc: 0.1111 Epoch 350/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1118 - acc: 0.9516 - val_loss: 23.0281 - val_acc: 0.1111 Epoch 351/500 4/4 [==============================] - 0s 18ms/step - loss: 0.1076 - acc: 0.9758 - val_loss: 22.8920 - val_acc: 0.1111 Epoch 352/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1161 - acc: 0.9597 - val_loss: 22.9751 - val_acc: 0.1111 Epoch 353/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1095 - acc: 0.9677 - val_loss: 22.8231 - val_acc: 0.1111 Epoch 354/500 4/4 [==============================] - 0s 19ms/step - loss: 0.1871 - acc: 0.9032 - val_loss: 23.4554 - val_acc: 0.1111 Epoch 355/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1667 - acc: 0.9435 - val_loss: 22.7717 - val_acc: 0.1111 Epoch 356/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1068 - acc: 0.9435 - val_loss: 22.8119 - val_acc: 0.1111 Epoch 357/500 4/4 [==============================] - 0s 14ms/step - loss: 0.0941 - acc: 0.9758 - val_loss: 23.0294 - val_acc: 0.1111 Epoch 358/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1219 - acc: 0.9597 - val_loss: 23.0359 - val_acc: 0.1111 Epoch 359/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1362 - acc: 0.9597 - val_loss: 22.6603 - val_acc: 0.1111 Epoch 360/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1787 - acc: 0.9274 - val_loss: 23.2020 - val_acc: 0.1111 Epoch 361/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1759 - acc: 0.9435 - val_loss: 22.5643 - val_acc: 0.1111 Epoch 362/500 4/4 [==============================] - 0s 15ms/step - loss: 0.2591 - acc: 0.8952 - val_loss: 23.3079 - val_acc: 0.1111 Epoch 363/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1773 - acc: 0.9516 - val_loss: 22.6940 - val_acc: 0.1111 Epoch 364/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1323 - acc: 0.9274 - val_loss: 23.3494 - val_acc: 0.1111 Epoch 365/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1270 - acc: 0.9597 - val_loss: 22.8959 - val_acc: 0.1111 Epoch 366/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1060 - acc: 0.9597 - val_loss: 22.8525 - val_acc: 0.1111 Epoch 367/500 4/4 [==============================] - 0s 17ms/step - loss: 0.0935 - acc: 0.9677 - val_loss: 23.0385 - val_acc: 0.1111 Epoch 368/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1047 - acc: 0.9758 - val_loss: 22.7066 - val_acc: 0.1111 Epoch 369/500 4/4 [==============================] - 0s 17ms/step - loss: 0.1565 - acc: 0.9194 - val_loss: 23.3360 - val_acc: 0.1111 Epoch 370/500 4/4 [==============================] - 0s 14ms/step - loss: 0.2052 - acc: 0.9516 - val_loss: 22.6202 - val_acc: 0.1111 Epoch 371/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1175 - acc: 0.9516 - val_loss: 22.8594 - val_acc: 0.1111 Epoch 372/500 4/4 [==============================] - 0s 14ms/step - loss: 0.0986 - acc: 0.9516 - val_loss: 23.0136 - val_acc: 0.1111 Epoch 373/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1045 - acc: 0.9597 - val_loss: 22.7756 - val_acc: 0.1111 Epoch 374/500 4/4 [==============================] - 0s 17ms/step - loss: 0.1045 - acc: 0.9758 - val_loss: 22.8384 - val_acc: 0.1111 Epoch 375/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1329 - acc: 0.9355 - val_loss: 22.9049 - val_acc: 0.1111 Epoch 376/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1122 - acc: 0.9758 - val_loss: 22.9546 - val_acc: 0.1111 Epoch 377/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1053 - acc: 0.9597 - val_loss: 22.5753 - val_acc: 0.1111 Epoch 378/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1304 - acc: 0.9435 - val_loss: 23.1421 - val_acc: 0.1111 Epoch 379/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1603 - acc: 0.9435 - val_loss: 22.8544 - val_acc: 0.1111 Epoch 380/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1365 - acc: 0.9597 - val_loss: 22.6235 - val_acc: 0.1111 Epoch 381/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1077 - acc: 0.9435 - val_loss: 23.1235 - val_acc: 0.1111 Epoch 382/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1196 - acc: 0.9758 - val_loss: 22.6663 - val_acc: 0.1111 Epoch 383/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1430 - acc: 0.9274 - val_loss: 23.0961 - val_acc: 0.1111 Epoch 384/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1269 - acc: 0.9435 - val_loss: 22.8348 - val_acc: 0.1111 Epoch 385/500 4/4 [==============================] - 0s 18ms/step - loss: 0.1013 - acc: 0.9597 - val_loss: 22.7799 - val_acc: 0.1111 Epoch 386/500 4/4 [==============================] - 0s 15ms/step - loss: 0.0961 - acc: 0.9597 - val_loss: 22.8906 - val_acc: 0.1111 Epoch 387/500 4/4 [==============================] - 0s 20ms/step - loss: 0.1220 - acc: 0.9758 - val_loss: 22.6870 - val_acc: 0.1111 Epoch 388/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1026 - acc: 0.9355 - val_loss: 23.1471 - val_acc: 0.1111 Epoch 389/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1512 - acc: 0.9597 - val_loss: 22.6410 - val_acc: 0.1111 Epoch 390/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1469 - acc: 0.9355 - val_loss: 23.3292 - val_acc: 0.1111 Epoch 391/500 4/4 [==============================] - 0s 15ms/step - loss: 0.0839 - acc: 0.9677 - val_loss: 22.5535 - val_acc: 0.1111 Epoch 392/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1123 - acc: 0.9677 - val_loss: 23.2854 - val_acc: 0.1111 Epoch 393/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1066 - acc: 0.9677 - val_loss: 22.6559 - val_acc: 0.1111 Epoch 394/500 4/4 [==============================] - 0s 16ms/step - loss: 0.0970 - acc: 0.9597 - val_loss: 22.9524 - val_acc: 0.1111 Epoch 395/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1034 - acc: 0.9758 - val_loss: 22.6434 - val_acc: 0.1111 Epoch 396/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1321 - acc: 0.9355 - val_loss: 23.1117 - val_acc: 0.1111 Epoch 397/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1108 - acc: 0.9677 - val_loss: 22.6222 - val_acc: 0.1111 Epoch 398/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1221 - acc: 0.9355 - val_loss: 23.2697 - val_acc: 0.1111 Epoch 399/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1336 - acc: 0.9597 - val_loss: 22.5971 - val_acc: 0.1111 Epoch 400/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1473 - acc: 0.9355 - val_loss: 23.5644 - val_acc: 0.1111 Epoch 401/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1166 - acc: 0.9677 - val_loss: 22.7911 - val_acc: 0.1111 Epoch 402/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1242 - acc: 0.9435 - val_loss: 23.4126 - val_acc: 0.1111 Epoch 403/500 4/4 [==============================] - 0s 20ms/step - loss: 0.1157 - acc: 0.9435 - val_loss: 22.7714 - val_acc: 0.1111 Epoch 404/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1025 - acc: 0.9758 - val_loss: 23.2145 - val_acc: 0.1111 Epoch 405/500 4/4 [==============================] - 0s 15ms/step - loss: 0.0968 - acc: 0.9758 - val_loss: 22.8985 - val_acc: 0.1111 Epoch 406/500 4/4 [==============================] - 0s 13ms/step - loss: 0.0865 - acc: 0.9758 - val_loss: 23.0441 - val_acc: 0.1111 Epoch 407/500 4/4 [==============================] - 0s 13ms/step - loss: 0.0923 - acc: 0.9839 - val_loss: 23.0963 - val_acc: 0.1111 Epoch 408/500 4/4 [==============================] - 0s 15ms/step - loss: 0.0880 - acc: 0.9758 - val_loss: 22.9003 - val_acc: 0.1111 Epoch 409/500 4/4 [==============================] - 0s 16ms/step - loss: 0.0935 - acc: 0.9597 - val_loss: 23.1993 - val_acc: 0.1111 Epoch 410/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1080 - acc: 0.9435 - val_loss: 23.1260 - val_acc: 0.1111 Epoch 411/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1130 - acc: 0.9677 - val_loss: 22.7842 - val_acc: 0.1111 Epoch 412/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1128 - acc: 0.9597 - val_loss: 23.4000 - val_acc: 0.1111 Epoch 413/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1088 - acc: 0.9677 - val_loss: 22.7554 - val_acc: 0.1111 Epoch 414/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1766 - acc: 0.9194 - val_loss: 23.4285 - val_acc: 0.1111 Epoch 415/500 4/4 [==============================] - 0s 18ms/step - loss: 0.1102 - acc: 0.9435 - val_loss: 23.1443 - val_acc: 0.1111 Epoch 416/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1154 - acc: 0.9677 - val_loss: 23.3544 - val_acc: 0.1111 Epoch 417/500 4/4 [==============================] - 0s 15ms/step - loss: 0.0883 - acc: 0.9597 - val_loss: 23.1959 - val_acc: 0.1111 Epoch 418/500 4/4 [==============================] - 0s 14ms/step - loss: 0.0893 - acc: 0.9677 - val_loss: 23.6052 - val_acc: 0.1111 Epoch 419/500 4/4 [==============================] - 0s 14ms/step - loss: 0.0845 - acc: 0.9839 - val_loss: 23.1814 - val_acc: 0.1111 Epoch 420/500 4/4 [==============================] - 0s 15ms/step - loss: 0.0926 - acc: 0.9677 - val_loss: 23.5272 - val_acc: 0.1111 Epoch 421/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1336 - acc: 0.9597 - val_loss: 22.8701 - val_acc: 0.1111 Epoch 422/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1030 - acc: 0.9435 - val_loss: 23.4018 - val_acc: 0.1111 Epoch 423/500 4/4 [==============================] - 0s 19ms/step - loss: 0.1165 - acc: 0.9677 - val_loss: 22.8822 - val_acc: 0.1111 Epoch 424/500 4/4 [==============================] - 0s 14ms/step - loss: 0.0996 - acc: 0.9355 - val_loss: 23.6344 - val_acc: 0.1111 Epoch 425/500 4/4 [==============================] - 0s 14ms/step - loss: 0.0990 - acc: 0.9758 - val_loss: 22.9401 - val_acc: 0.1111 Epoch 426/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1426 - acc: 0.9355 - val_loss: 23.9520 - val_acc: 0.1111 Epoch 427/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1292 - acc: 0.9435 - val_loss: 23.1695 - val_acc: 0.1111 Epoch 428/500 4/4 [==============================] - 0s 20ms/step - loss: 0.1820 - acc: 0.9355 - val_loss: 23.3348 - val_acc: 0.1111 Epoch 429/500 4/4 [==============================] - 0s 17ms/step - loss: 0.1555 - acc: 0.9194 - val_loss: 23.3582 - val_acc: 0.1111 Epoch 430/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1807 - acc: 0.9355 - val_loss: 22.8922 - val_acc: 0.1111 Epoch 431/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1794 - acc: 0.9194 - val_loss: 23.9570 - val_acc: 0.1111 Epoch 432/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1294 - acc: 0.9597 - val_loss: 22.9627 - val_acc: 0.1111 Epoch 433/500 4/4 [==============================] - 0s 17ms/step - loss: 0.1563 - acc: 0.9194 - val_loss: 24.6522 - val_acc: 0.1111 Epoch 434/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1654 - acc: 0.9274 - val_loss: 22.8452 - val_acc: 0.0926 Epoch 435/500 4/4 [==============================] - 0s 15ms/step - loss: 0.2285 - acc: 0.9032 - val_loss: 24.8117 - val_acc: 0.1111 Epoch 436/500 4/4 [==============================] - 0s 14ms/step - loss: 0.2553 - acc: 0.9194 - val_loss: 22.9794 - val_acc: 0.1111 Epoch 437/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1673 - acc: 0.9516 - val_loss: 23.8507 - val_acc: 0.1111 Epoch 438/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1522 - acc: 0.9435 - val_loss: 23.3858 - val_acc: 0.1111 Epoch 439/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1162 - acc: 0.9677 - val_loss: 23.7112 - val_acc: 0.1111 Epoch 440/500 4/4 [==============================] - 0s 15ms/step - loss: 0.0613 - acc: 0.9839 - val_loss: 22.8955 - val_acc: 0.1111 Epoch 441/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1986 - acc: 0.9194 - val_loss: 24.0132 - val_acc: 0.1111 Epoch 442/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1002 - acc: 0.9677 - val_loss: 23.0541 - val_acc: 0.1111 Epoch 443/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1226 - acc: 0.9516 - val_loss: 24.0349 - val_acc: 0.1111 Epoch 444/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1380 - acc: 0.9516 - val_loss: 23.1683 - val_acc: 0.1111 Epoch 445/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1296 - acc: 0.9677 - val_loss: 23.4324 - val_acc: 0.1111 Epoch 446/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1145 - acc: 0.9355 - val_loss: 23.3625 - val_acc: 0.1111 Epoch 447/500 4/4 [==============================] - 0s 20ms/step - loss: 0.0952 - acc: 0.9758 - val_loss: 23.1775 - val_acc: 0.1111 Epoch 448/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1233 - acc: 0.9355 - val_loss: 23.6297 - val_acc: 0.1111 Epoch 449/500 4/4 [==============================] - 0s 15ms/step - loss: 0.0994 - acc: 0.9839 - val_loss: 22.9401 - val_acc: 0.1111 Epoch 450/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1284 - acc: 0.9435 - val_loss: 23.6238 - val_acc: 0.1111 Epoch 451/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1732 - acc: 0.9355 - val_loss: 23.3320 - val_acc: 0.1111 Epoch 452/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1135 - acc: 0.9597 - val_loss: 23.2497 - val_acc: 0.1111 Epoch 453/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1197 - acc: 0.9516 - val_loss: 23.5210 - val_acc: 0.1111 Epoch 454/500 4/4 [==============================] - 0s 15ms/step - loss: 0.0908 - acc: 0.9758 - val_loss: 23.0503 - val_acc: 0.1111 Epoch 455/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1057 - acc: 0.9355 - val_loss: 23.8890 - val_acc: 0.1111 Epoch 456/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1478 - acc: 0.9274 - val_loss: 22.7271 - val_acc: 0.1111 Epoch 457/500 4/4 [==============================] - 0s 18ms/step - loss: 0.1430 - acc: 0.9355 - val_loss: 23.8116 - val_acc: 0.1111 Epoch 458/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1397 - acc: 0.9597 - val_loss: 22.7251 - val_acc: 0.1111 Epoch 459/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1309 - acc: 0.9516 - val_loss: 23.5237 - val_acc: 0.1111 Epoch 460/500 4/4 [==============================] - 0s 14ms/step - loss: 0.0873 - acc: 0.9677 - val_loss: 22.7880 - val_acc: 0.1111 Epoch 461/500 4/4 [==============================] - 0s 17ms/step - loss: 0.1045 - acc: 0.9516 - val_loss: 24.2939 - val_acc: 0.1111 Epoch 462/500 4/4 [==============================] - 0s 18ms/step - loss: 0.1805 - acc: 0.9274 - val_loss: 22.8714 - val_acc: 0.1111 Epoch 463/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1306 - acc: 0.9435 - val_loss: 23.8546 - val_acc: 0.1111 Epoch 464/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1184 - acc: 0.9677 - val_loss: 22.9326 - val_acc: 0.1111 Epoch 465/500 4/4 [==============================] - 0s 18ms/step - loss: 0.1473 - acc: 0.9516 - val_loss: 23.2812 - val_acc: 0.1111 Epoch 466/500 4/4 [==============================] - 0s 18ms/step - loss: 0.0904 - acc: 0.9516 - val_loss: 22.7908 - val_acc: 0.1111 Epoch 467/500 4/4 [==============================] - 0s 14ms/step - loss: 0.2752 - acc: 0.8871 - val_loss: 22.7266 - val_acc: 0.1111 Epoch 468/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1516 - acc: 0.9274 - val_loss: 23.0679 - val_acc: 0.1111 Epoch 469/500 4/4 [==============================] - 0s 14ms/step - loss: 0.2015 - acc: 0.9435 - val_loss: 22.7514 - val_acc: 0.1111 Epoch 470/500 4/4 [==============================] - 0s 17ms/step - loss: 0.2574 - acc: 0.8871 - val_loss: 23.9754 - val_acc: 0.1111 Epoch 471/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1217 - acc: 0.9677 - val_loss: 22.9429 - val_acc: 0.1111 Epoch 472/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1507 - acc: 0.9355 - val_loss: 24.5729 - val_acc: 0.1111 Epoch 473/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1513 - acc: 0.9355 - val_loss: 22.8511 - val_acc: 0.1111 Epoch 474/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1190 - acc: 0.9435 - val_loss: 24.1421 - val_acc: 0.1111 Epoch 475/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1284 - acc: 0.9677 - val_loss: 22.7238 - val_acc: 0.1111 Epoch 476/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1671 - acc: 0.9274 - val_loss: 24.0004 - val_acc: 0.1111 Epoch 477/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1287 - acc: 0.9597 - val_loss: 23.0066 - val_acc: 0.1111 Epoch 478/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1525 - acc: 0.9516 - val_loss: 23.4313 - val_acc: 0.1111 Epoch 479/500 4/4 [==============================] - 0s 16ms/step - loss: 0.1107 - acc: 0.9516 - val_loss: 22.9600 - val_acc: 0.1111 Epoch 480/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1025 - acc: 0.9677 - val_loss: 23.4529 - val_acc: 0.1111 Epoch 481/500 4/4 [==============================] - 0s 15ms/step - loss: 0.1056 - acc: 0.9597 - val_loss: 23.0562 - val_acc: 0.1111 Epoch 482/500 4/4 [==============================] - 0s 14ms/step - loss: 0.1335 - acc: 0.9435 - val_loss: 23.1963 - val_acc: 0.1111 Epoch 483/500 4/4 [==============================] - 0s 13ms/step - loss: 0.0949 - acc: 0.9516 - val_loss: 23.0667 - val_acc: 0.1111 Epoch 484/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1045 - acc: 0.9677 - val_loss: 23.1125 - val_acc: 0.1111 Epoch 485/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1124 - acc: 0.9516 - val_loss: 23.3626 - val_acc: 0.1111 Epoch 486/500 4/4 [==============================] - 0s 11ms/step - loss: 0.1123 - acc: 0.9677 - val_loss: 23.1211 - val_acc: 0.1111 Epoch 487/500 4/4 [==============================] - 0s 11ms/step - loss: 0.1261 - acc: 0.9758 - val_loss: 22.9302 - val_acc: 0.1111 Epoch 488/500 4/4 [==============================] - 0s 12ms/step - loss: 0.0967 - acc: 0.9516 - val_loss: 23.2112 - val_acc: 0.1111 Epoch 489/500 4/4 [==============================] - 0s 10ms/step - loss: 0.1019 - acc: 0.9516 - val_loss: 23.1375 - val_acc: 0.1111 Epoch 490/500 4/4 [==============================] - 0s 11ms/step - loss: 0.1025 - acc: 0.9758 - val_loss: 22.8641 - val_acc: 0.1111 Epoch 491/500 4/4 [==============================] - 0s 13ms/step - loss: 0.1538 - acc: 0.9516 - val_loss: 23.2745 - val_acc: 0.1111 Epoch 492/500 4/4 [==============================] - 0s 12ms/step - loss: 0.0703 - acc: 0.9839 - val_loss: 22.7327 - val_acc: 0.1111 Epoch 493/500 4/4 [==============================] - 0s 12ms/step - loss: 0.1116 - acc: 0.9516 - val_loss: 23.2708 - val_acc: 0.1111 Epoch 494/500 4/4 [==============================] - 0s 12ms/step - loss: 0.0927 - acc: 0.9758 - val_loss: 22.8425 - val_acc: 0.1111 Epoch 495/500 4/4 [==============================] - 0s 11ms/step - loss: 0.0986 - acc: 0.9597 - val_loss: 23.1908 - val_acc: 0.1111 Epoch 496/500 4/4 [==============================] - 0s 10ms/step - loss: 0.1041 - acc: 0.9435 - val_loss: 23.2221 - val_acc: 0.1111 Epoch 497/500 4/4 [==============================] - 0s 11ms/step - loss: 0.0922 - acc: 0.9839 - val_loss: 23.1020 - val_acc: 0.1111 Epoch 498/500 4/4 [==============================] - 0s 13ms/step - loss: 0.0914 - acc: 0.9758 - val_loss: 23.0827 - val_acc: 0.1111 Epoch 499/500 4/4 [==============================] - 0s 19ms/step - loss: 0.0845 - acc: 0.9758 - val_loss: 22.8367 - val_acc: 0.1111 Epoch 500/500 4/4 [==============================] - 0s 12ms/step - loss: 0.0900 - acc: 0.9677 - val_loss: 22.9039 - val_acc: 0.1111 ###Markdown evaluation ###Code model.evaluate(x_data, y_data) ###Output 6/6 [==============================] - 0s 2ms/step - loss: 7.0011 - acc: 0.7191 ###Markdown * dense : 64, dense1 : 24, epochs : 50 --> loss: 8.3743 - acc: 0.6629 [8.374309539794922, 0.6629213690757751]* dense : 64, dense1 : 24, epochs : 100 --> loss: 7.7834 - acc: 0.6910 [7.783389091491699, 0.6910112500190735] val_loss: 25.3287 - val_acc: 0.1111* dense : 48, dense1 : 24, epochs : 500 --> loss: 22.7629 - acc: 0.7079 [22.76287841796875, 0.7078651785850525] acc: 0.9677 - val_loss: 74.8429 - val_acc: 0.1111* dense : 64, dense1 : 48, epochs : 500 --> loss: 11.5153 - acc: 0.7191 [11.515317916870117, 0.7191011309623718] acc: 0.9516 - val_loss: 37.7901 - val_acc: 0.1111* dense : 64, dense1 : 48, epochs : 1000 --> loss: 13.2306 - acc: 0.7135 [13.230615615844727, 0.7134831547737122] acc: 0.9839 - val_loss: 43.4997 - val_acc: 0.1111* dense : 64, dense1 : 36, epochs : 500 --> loss: 7.0011 - acc: 0.7191 [7.001112461090088, 0.7191011309623718] acc: 0.9677 - val_loss: 22.9039 - val_acc: 0.1111* dense : 64, dense1 : 24, epochs : 500 --> loss: 6.9521 - acc: 0.7191 [6.952107906341553, 0.7191011309623718] val_loss: 22.7861 - val_acc: 0.1111* dense : 64, dense1 : 24, dense2 : 64 epochs : 100 --> loss: 2.0083 - acc: 0.7022 [2.008345365524292, 0.7022472023963928] acc: 0.9839 - val_loss: 6.3024 - val_acc: 0.* dense : 64, dense1 : 24, dense2 : 64 dense3 : 24 epochs : 100 --> loss: 1.6846 - acc: 0.5506 [1.6846214532852173, 0.550561785697937] acc: 0.7500 - val_loss: 4.4220 - val_acc: 0.0926 ###Code x_data[38] y_data[38] pred = model.predict([[1.307e+01, 1.500e+00, 2.100e+00, 1.550e+01, 9.800e+01, 2.400e+00, 2.640e+00, 2.800e-01, 1.370e+00, 3.700e+00, 1.180e+00, 2.690e+00, 1.020e+03]]) pred np.argmax(pred) ###Output _____no_output_____ ###Markdown ###Code from sklearn import datasets import matplotlib.pyplot as plt import math wine = datasets.load_wine() #print(wine.DESCR) print(len(wine.data)) print(len(wine.data[0])) # Select all rows and only first two columns (sepal length/width) X = wine.data[:,2:4] # Target will be used to plot samples in different colors for different species Y = wine.target plt.scatter(X[:,0], X[:,1], c=Y) plt.xlabel('Sepal Length (cm)') plt.ylabel('Sepal Width (cm)') plt.title('Sepal size distribution') def sigmoid(z): return 1.0/(1 + math.e ** (-z)) def predict(sample): result = 0.0 for i in range(len(sample)): result = result + weights[i] * sample[i] result = result + bias return sigmoid(result) def loss(y_train, y_predicted): return -(y_train * math.log(y_predicted) + (1.0 - y_train) * math.log(1 - y_predicted)) num_features = wine.data.shape[1] def train_one_epoch(x_train_samples, y_train_samples): cost = 0.0 dw = [0.0] * num_features db = 0.0 global bias, weights m = len(x_train_samples) for i in range(m): x_sample = x_train_samples[i] y_sample = y_train_samples[i] predicted = predict(x_sample) cost = cost + loss(y_sample, predicted) # dz is the derivative of the loss function dz = predicted - y_sample for j in range(len(weights)): dw[j] = dw[j] + x_sample[j] * dz db = db + dz cost = cost / m db = db / m bias = bias - learning_rate*db for j in range(len(weights)): dw[j] = dw[j] / m weights[j] = weights[j] - learning_rate*dw[j] return cost # Model will "learn" values for the weights and biases weights = [0.0] * num_features bias = 0.0 learning_rate = 0.4 epochs = 5000 x_train_samples = wine.data / wine.data.max() y_train_samples = [1 if y == 2 else 0 for y in wine.target] loss_array = [] for epoch in range(epochs): loss_value = train_one_epoch(x_train_samples, y_train_samples) loss_array.append(loss_value) plt.plot(range(epochs), loss_array) plt.ylabel('Loss') plt.xlabel('Epoch') plt.title('Loss vs. Epoch') plt.show() predictions = [] m = len(x_train_samples) correct = 0 for i in range(m): sample = x_train_samples[i] value = predict(sample) predictions.append(value) if value >= 0.5: value = 1 else: value = 0 if value == y_train_samples[i]: correct = correct + 1.0 plt.plot(range(m), predictions, label='Predicted') plt.plot(range(m), y_train_samples, label='Ground truth') plt.ylabel('Prediction') plt.xlabel('Sample') plt.legend(loc='best') plt.show() print('Accuracy: %.2f %%' % (100 * correct/m)) ###Output _____no_output_____
doc/source/tutorials/pyam_logo.ipynb
###Markdown Make our Logo!The logo combines a number of fun **pyam** features, including- line plots- filling data between lines- adding ranges of final-year data ###Code import itertools import pyam import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.style.use('seaborn-deep') def func(x, factor): return np.sin(x) + factor * x x = np.linspace(0, 4, 100) combinations = itertools.product(['m1', 'm2', 'm3', 'm4'], ['s1', 's2', 's3']) data = [[m, s] + ['r', 'v', 'u'] + list(func(x, 0.5 + 0.1 * i)) for i, (m, s) in enumerate(combinations)] df = pyam.IamDataFrame(pd.DataFrame(data, columns=pyam.IAMC_IDX + list(range(len(x))))) df.head() fig, ax = plt.subplots() df.filter(scenario='s2').plot(ax=ax, color='model', legend=False, title=False) df.filter(scenario='s2', keep=False).plot(ax=ax, linewidth=0.5, color='model', legend=False, title=False) df.plot(ax=ax, alpha=0, color='model', fill_between=True, final_ranges=dict(linewidth=4), legend=False, title=False) plt.axis('off') plt.tight_layout() fig.savefig('logo.pdf', bbox_inches='tight', transparent=True, pad_inches=0) ###Output _____no_output_____ ###Markdown Make our Logo!The logo combines a number of fun **pyam** features, including- line plots- filling data between lines- adding ranges of final-year data ###Code import itertools import pyam import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.style.use('seaborn-deep') def func(x, factor): return np.sin(x) + factor * x x = np.linspace(0, 4, 100) combinations = itertools.product(['m1', 'm2', 'm3', 'm4'], ['s1', 's2', 's3']) data = [[m, s] + ['r', 'v', 'u'] + list(func(x, 0.5 + 0.1 * i)) for i, (m, s) in enumerate(combinations)] df = pyam.IamDataFrame(pd.DataFrame(data, columns=pyam.IAMC_IDX + list(range(len(x))))) df.head() fig, ax = plt.subplots() df.filter(scenario='s2').line_plot(ax=ax, color='model', legend=False, title=False) df.filter(scenario='s2', keep=False).line_plot(ax=ax, linewidth=0.5, color='model', legend=False, title=False) df.line_plot(ax=ax, alpha=0, color='model', fill_between=True, final_ranges=dict(linewidth=4), legend=False, title=False) plt.axis('off') plt.tight_layout() fig.savefig('logo.pdf', bbox_inches='tight', transparent=True, pad_inches=0) ###Output _____no_output_____ ###Markdown Make our Logo!The logo combines a number of fun `pyam` features, including- line plots- filling data between lines- adding ranges of final-year data ###Code import itertools import pyam import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.style.use('seaborn-deep') def func(x, factor): return np.sin(x) + factor * x x = np.linspace(0, 4, 100) combinations = itertools.product(['m1', 'm2', 'm3', 'm4'], ['s1', 's2', 's3']) data = [[m, s] + ['r', 'v', 'u'] + list(func(x, 0.5 + 0.1 * i)) for i, (m, s) in enumerate(combinations)] df = pyam.IamDataFrame(pd.DataFrame(data, columns=pyam.IAMC_IDX + list(range(len(x))))) df.head() fig, ax = plt.subplots() df.filter(scenario='s2').line_plot(ax=ax, color='model', legend=False, title=False) df.filter(scenario='s2', keep=False).line_plot(ax=ax, linewidth=0.5, color='model', legend=False, title=False) df.line_plot(ax=ax, alpha=0, color='model', fill_between=True, final_ranges=dict(linewidth=4), legend=False, title=False) plt.axis('off') plt.tight_layout() fig.savefig('logo.pdf', bbox_inches='tight', transparent=True, pad_inches=0) ###Output _____no_output_____
Jupyter/KitchenSinkCSharpQuantBookTemplate.ipynb
###Markdown ![QuantConnect Logo](https://cdn.quantconnect.com/web/i/logo-small.png) Welcome to The QuantConnect Research Page Refer to this page for documentation https://www.quantconnect.com/docsIntroduction-to-Jupyter Contribute to this template file https://github.com/QuantConnect/Lean/blob/master/Jupyter/BasicCSharpQuantBookTemplate.ipynb QuantBook Basics Start QuantBook- Load "QuantConnect.csx" with all the basic imports- Create a QuantBook instance ###Code #load "QuantConnect.csx" using QuantConnect.Data.Custom; using QuantConnect.Data.Market; var qb = new QuantBook(); ###Output _____no_output_____ ###Markdown Selecting Asset DataCheckout the QuantConnect [docs](https://www.quantconnect.com/docsInitializing-Algorithms-Selecting-Asset-Data) to learn how to select asset data. ###Code var spy = qb.AddEquity("SPY"); var eur = qb.AddForex("EURUSD"); var btc = qb.AddCrypto("BTCUSD"); var fxv = qb.AddData<FxcmVolume>("EURUSD_Vol", Resolution.Hour); ###Output _____no_output_____ ###Markdown Historical Data RequestsWe can use the QuantConnect API to make Historical Data Requests. The data will be presented as multi-index pandas.DataFrame where the first index is the Symbol.For more information, please follow the [link](https://www.quantconnect.com/docsHistorical-Data-Historical-Data-Requests). ###Code // Gets historical data from the subscribed assets, the last 360 datapoints with daily resolution var h1 = qb.History(qb.Securities.Keys, 360, Resolution.Daily); // Gets historical data from the subscribed assets, from the last 30 days with daily resolution var h2 = qb.History(qb.Securities.Keys, TimeSpan.FromDays(360), Resolution.Daily); // Gets historical data from the subscribed assets, between two dates with daily resolution var h3 = qb.History(btc.Symbol, new DateTime(2014,1,1), DateTime.Now, Resolution.Daily); // Only fetchs historical data from a desired symbol var h4 = qb.History(spy.Symbol, 360, Resolution.Daily); // Only fetchs historical data from a desired symbol var h5 = qb.History<QuoteBar>(eur.Symbol, TimeSpan.FromDays(360), Resolution.Daily); // Fetchs custom data var h6 = qb.History<FxcmVolume>(fxv.Symbol, TimeSpan.FromDays(360)); ###Output _____no_output_____ ###Markdown ![QuantConnect Logo](https://cdn.quantconnect.com/web/i/qc_notebook_logo_rev0.png) Welcome to The QuantConnect Research Page Refer to this page for documentation https://www.quantconnect.com/docsIntroduction-to-Jupyter Contribute to this template file https://github.com/QuantConnect/Lean/blob/master/Jupyter/BasicCSharpQuantBookTemplate.ipynb QuantBook Basics Start QuantBook- Load "QuantConnect.csx" with all the basic imports- Create a QuantBook instance ###Code #load "QuantConnect.csx" using QuantConnect.Data.Custom; using QuantConnect.Data.Market; var qb = new QuantBook(); ###Output _____no_output_____ ###Markdown Selecting Asset DataCheckout the QuantConnect [docs](https://www.quantconnect.com/docsInitializing-Algorithms-Selecting-Asset-Data) to learn how to select asset data. ###Code var spy = qb.AddEquity("SPY"); var eur = qb.AddForex("EURUSD"); var btc = qb.AddCrypto("BTCUSD"); var fxv = qb.AddData<FxcmVolume>("EURUSD_Vol", Resolution.Hour); ###Output _____no_output_____ ###Markdown Historical Data RequestsWe can use the QuantConnect API to make Historical Data Requests. The data will be presented as multi-index pandas.DataFrame where the first index is the Symbol.For more information, please follow the [link](https://www.quantconnect.com/docsHistorical-Data-Historical-Data-Requests). ###Code // Gets historical data from the subscribed assets, the last 360 datapoints with daily resolution var h1 = qb.History(qb.Securities.Keys, 360, Resolution.Daily); // Gets historical data from the subscribed assets, from the last 30 days with daily resolution var h2 = qb.History(qb.Securities.Keys, TimeSpan.FromDays(360), Resolution.Daily); // Gets historical data from the subscribed assets, between two dates with daily resolution var h3 = qb.History(btc.Symbol, new DateTime(2014,1,1), DateTime.Now, Resolution.Daily); // Only fetchs historical data from a desired symbol var h4 = qb.History(spy.Symbol, 360, Resolution.Daily); // Only fetchs historical data from a desired symbol var h5 = qb.History<QuoteBar>(eur.Symbol, TimeSpan.FromDays(360), Resolution.Daily); // Fetchs custom data var h6 = qb.History<FxcmVolume>(fxv.Symbol, TimeSpan.FromDays(360)); ###Output _____no_output_____
18_tfagents/6_reinforce_tutorial.ipynb
###Markdown Copyright 2021 The TF-Agents Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown REINFORCE agent View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook Introduction This example shows how to train a [REINFORCE](https://www-anw.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf) agent on the Cartpole environment using the TF-Agents library, similar to the [DQN tutorial](1_dqn_tutorial.ipynb).![Cartpole environment](images/cartpole.png)We will walk you through all the components in a Reinforcement Learning (RL) pipeline for training, evaluation and data collection. Setup If you haven't installed the following dependencies, run: ###Code !sudo apt-get install -y xvfb ffmpeg !pip install -q 'imageio==2.4.0' !pip install -q pyvirtualdisplay !pip install -q tf-agents from __future__ import absolute_import from __future__ import division from __future__ import print_function import base64 import imageio import IPython import matplotlib import matplotlib.pyplot as plt import numpy as np import PIL.Image import pyvirtualdisplay import tensorflow as tf from tf_agents.agents.reinforce import reinforce_agent from tf_agents.drivers import dynamic_step_driver from tf_agents.environments import suite_gym from tf_agents.environments import tf_py_environment from tf_agents.eval import metric_utils from tf_agents.metrics import tf_metrics from tf_agents.networks import actor_distribution_network from tf_agents.replay_buffers import tf_uniform_replay_buffer from tf_agents.trajectories import trajectory from tf_agents.utils import common tf.compat.v1.enable_v2_behavior() # Set up a virtual display for rendering OpenAI gym environments. display = pyvirtualdisplay.Display(visible=0, size=(1400, 900)).start() ###Output _____no_output_____ ###Markdown Hyperparameters ###Code env_name = "CartPole-v0" # @param {type:"string"} num_iterations = 250 # @param {type:"integer"} collect_episodes_per_iteration = 2 # @param {type:"integer"} replay_buffer_capacity = 2000 # @param {type:"integer"} fc_layer_params = (100,) learning_rate = 1e-3 # @param {type:"number"} log_interval = 25 # @param {type:"integer"} num_eval_episodes = 10 # @param {type:"integer"} eval_interval = 50 # @param {type:"integer"} ###Output _____no_output_____ ###Markdown EnvironmentEnvironments in RL represent the task or problem that we are trying to solve. Standard environments can be easily created in TF-Agents using `suites`. We have different `suites` for loading environments from sources such as the OpenAI Gym, Atari, DM Control, etc., given a string environment name.Now let us load the CartPole environment from the OpenAI Gym suite. ###Code env = suite_gym.load(env_name) ###Output _____no_output_____ ###Markdown We can render this environment to see how it looks. A free-swinging pole is attached to a cart. The goal is to move the cart right or left in order to keep the pole pointing up. ###Code #@test {"skip": true} env.reset() PIL.Image.fromarray(env.render()) ###Output _____no_output_____ ###Markdown The `time_step = environment.step(action)` statement takes `action` in the environment. The `TimeStep` tuple returned contains the environment's next observation and reward for that action. The `time_step_spec()` and `action_spec()` methods in the environment return the specifications (types, shapes, bounds) of the `time_step` and `action` respectively. ###Code print('Observation Spec:') print(env.time_step_spec().observation) print('Action Spec:') print(env.action_spec()) ###Output Observation Spec: BoundedArraySpec(shape=(4,), dtype=dtype('float32'), name='observation', minimum=[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38], maximum=[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]) Action Spec: BoundedArraySpec(shape=(), dtype=dtype('int64'), name='action', minimum=0, maximum=1) ###Markdown So, we see that observation is an array of 4 floats: the position and velocity of the cart, and the angular position and velocity of the pole. Since only two actions are possible (move left or move right), the `action_spec` is a scalar where 0 means "move left" and 1 means "move right." ###Code time_step = env.reset() print('Time step:') print(time_step) action = np.array(1, dtype=np.int32) next_time_step = env.step(action) print('Next time step:') print(next_time_step) ###Output Time step: TimeStep(step_type=array(0, dtype=int32), reward=array(0., dtype=float32), discount=array(1., dtype=float32), observation=array([ 0.03037029, -0.02667559, 0.00637377, -0.03489717], dtype=float32)) Next time step: TimeStep(step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32), observation=array([ 0.02983678, 0.16835438, 0.00567583, -0.3255623 ], dtype=float32)) ###Markdown Usually we create two environments: one for training and one for evaluation. Most environments are written in pure python, but they can be easily converted to TensorFlow using the `TFPyEnvironment` wrapper. The original environment's API uses numpy arrays, the `TFPyEnvironment` converts these to/from `Tensors` for you to more easily interact with TensorFlow policies and agents. ###Code train_py_env = suite_gym.load(env_name) eval_py_env = suite_gym.load(env_name) train_env = tf_py_environment.TFPyEnvironment(train_py_env) eval_env = tf_py_environment.TFPyEnvironment(eval_py_env) ###Output _____no_output_____ ###Markdown AgentThe algorithm that we use to solve an RL problem is represented as an `Agent`. In addition to the REINFORCE agent, TF-Agents provides standard implementations of a variety of `Agents` such as [DQN](https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf), [DDPG](https://arxiv.org/pdf/1509.02971.pdf), [TD3](https://arxiv.org/pdf/1802.09477.pdf), [PPO](https://arxiv.org/abs/1707.06347) and [SAC](https://arxiv.org/abs/1801.01290).To create a REINFORCE Agent, we first need an `Actor Network` that can learn to predict the action given an observation from the environment.We can easily create an `Actor Network` using the specs of the observations and actions. We can specify the layers in the network which, in this example, is the `fc_layer_params` argument set to a tuple of `ints` representing the sizes of each hidden layer (see the Hyperparameters section above). ###Code actor_net = actor_distribution_network.ActorDistributionNetwork( train_env.observation_spec(), train_env.action_spec(), fc_layer_params=fc_layer_params) ###Output _____no_output_____ ###Markdown We also need an `optimizer` to train the network we just created, and a `train_step_counter` variable to keep track of how many times the network was updated. ###Code optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate) train_step_counter = tf.compat.v2.Variable(0) tf_agent = reinforce_agent.ReinforceAgent( train_env.time_step_spec(), train_env.action_spec(), actor_network=actor_net, optimizer=optimizer, normalize_returns=True, train_step_counter=train_step_counter) tf_agent.initialize() ###Output _____no_output_____ ###Markdown PoliciesIn TF-Agents, policies represent the standard notion of policies in RL: given a `time_step` produce an action or a distribution over actions. The main method is `policy_step = policy.step(time_step)` where `policy_step` is a named tuple `PolicyStep(action, state, info)`. The `policy_step.action` is the `action` to be applied to the environment, `state` represents the state for stateful (RNN) policies and `info` may contain auxiliary information such as log probabilities of the actions.Agents contain two policies: the main policy that is used for evaluation/deployment (agent.policy) and another policy that is used for data collection (agent.collect_policy). ###Code eval_policy = tf_agent.policy collect_policy = tf_agent.collect_policy ###Output _____no_output_____ ###Markdown Metrics and EvaluationThe most common metric used to evaluate a policy is the average return. The return is the sum of rewards obtained while running a policy in an environment for an episode, and we usually average this over a few episodes. We can compute the average return metric as follows. ###Code #@test {"skip": true} def compute_avg_return(environment, policy, num_episodes=10): total_return = 0.0 for _ in range(num_episodes): time_step = environment.reset() episode_return = 0.0 while not time_step.is_last(): action_step = policy.action(time_step) time_step = environment.step(action_step.action) episode_return += time_step.reward total_return += episode_return avg_return = total_return / num_episodes return avg_return.numpy()[0] # Please also see the metrics module for standard implementations of different # metrics. ###Output _____no_output_____ ###Markdown Replay BufferIn order to keep track of the data collected from the environment, we will use the TFUniformReplayBuffer. This replay buffer is constructed using specs describing the tensors that are to be stored, which can be obtained from the agent using `tf_agent.collect_data_spec`. ###Code replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer( data_spec=tf_agent.collect_data_spec, batch_size=train_env.batch_size, max_length=replay_buffer_capacity) ###Output _____no_output_____ ###Markdown For most agents, the `collect_data_spec` is a `Trajectory` named tuple containing the observation, action, reward etc. Data CollectionAs REINFORCE learns from whole episodes, we define a function to collect an episode using the given data collection policy and save the data (observations, actions, rewards etc.) as trajectories in the replay buffer. ###Code #@test {"skip": true} def collect_episode(environment, policy, num_episodes): episode_counter = 0 environment.reset() while episode_counter < num_episodes: time_step = environment.current_time_step() action_step = policy.action(time_step) next_time_step = environment.step(action_step.action) traj = trajectory.from_transition(time_step, action_step, next_time_step) # Add trajectory to the replay buffer replay_buffer.add_batch(traj) if traj.is_boundary(): episode_counter += 1 # This loop is so common in RL, that we provide standard implementations of # these. For more details see the drivers module. ###Output _____no_output_____ ###Markdown Training the agentThe training loop involves both collecting data from the environment and optimizing the agent's networks. Along the way, we will occasionally evaluate the agent's policy to see how we are doing.The following will take ~3 minutes to run. ###Code #@test {"skip": true} try: %%time except: pass # (Optional) Optimize by wrapping some of the code in a graph using TF function. tf_agent.train = common.function(tf_agent.train) # Reset the train step tf_agent.train_step_counter.assign(0) # Evaluate the agent's policy once before training. avg_return = compute_avg_return(eval_env, tf_agent.policy, num_eval_episodes) returns = [avg_return] for _ in range(num_iterations): # Collect a few episodes using collect_policy and save to the replay buffer. collect_episode( train_env, tf_agent.collect_policy, collect_episodes_per_iteration) # Use data from the buffer and update the agent's network. experience = replay_buffer.gather_all() train_loss = tf_agent.train(experience) replay_buffer.clear() step = tf_agent.train_step_counter.numpy() if step % log_interval == 0: print('step = {0}: loss = {1}'.format(step, train_loss.loss)) if step % eval_interval == 0: avg_return = compute_avg_return(eval_env, tf_agent.policy, num_eval_episodes) print('step = {0}: Average Return = {1}'.format(step, avg_return)) returns.append(avg_return) ###Output WARNING:tensorflow:From <ipython-input-1-235ae48023f9>:24: ReplayBuffer.gather_all (from tf_agents.replay_buffers.replay_buffer) is deprecated and will be removed in a future version. Instructions for updating: Use `as_dataset(..., single_deterministic_pass=True)` instead. ###Markdown Visualization PlotsWe can plot return vs global steps to see the performance of our agent. In `Cartpole-v0`, the environment gives a reward of +1 for every time step the pole stays up, and since the maximum number of steps is 200, the maximum possible return is also 200. ###Code #@test {"skip": true} steps = range(0, num_iterations + 1, eval_interval) plt.plot(steps, returns) plt.ylabel('Average Return') plt.xlabel('Step') plt.ylim(top=250) ###Output _____no_output_____ ###Markdown Videos It is helpful to visualize the performance of an agent by rendering the environment at each step. Before we do that, let us first create a function to embed videos in this colab. ###Code def embed_mp4(filename): """Embeds an mp4 file in the notebook.""" video = open(filename,'rb').read() b64 = base64.b64encode(video) tag = ''' <video width="640" height="480" controls> <source src="data:video/mp4;base64,{0}" type="video/mp4"> Your browser does not support the video tag. </video>'''.format(b64.decode()) return IPython.display.HTML(tag) ###Output _____no_output_____ ###Markdown The following code visualizes the agent's policy for a few episodes: ###Code num_episodes = 3 video_filename = 'imageio.mp4' with imageio.get_writer(video_filename, fps=60) as video: for _ in range(num_episodes): time_step = eval_env.reset() video.append_data(eval_py_env.render()) while not time_step.is_last(): action_step = tf_agent.policy.action(time_step) time_step = eval_env.step(action_step.action) video.append_data(eval_py_env.render()) embed_mp4(video_filename) ###Output WARNING:root:IMAGEIO FFMPEG_WRITER WARNING: input image is not divisible by macro_block_size=16, resizing from (400, 600) to (400, 608) to ensure video compatibility with most codecs and players. To prevent resizing, make your input image divisible by the macro_block_size or set the macro_block_size to None (risking incompatibility). You may also see a FFMPEG warning concerning speedloss due to data not being aligned.
week3_model_free/qlearning.ipynb
###Markdown Q-learningThis notebook will guide you through implementation of vanilla Q-learning algorithm.You need to implement QLearningAgent (follow instructions for each method) and use it on a number of tests below. ###Code #XVFB will be launched if you run on a server import os if type(os.environ.get("DISPLAY")) is not str or len(os.environ.get("DISPLAY"))==0: !bash ../xvfb start %env DISPLAY=:1 import numpy as np import matplotlib.pyplot as plt %matplotlib inline %load_ext autoreload %autoreload 2 %%writefile qlearning.py from collections import defaultdict import random, math import numpy as np class QLearningAgent: def __init__(self, alpha, epsilon, discount, get_legal_actions): """ Q-Learning Agent based on http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html Instance variables you have access to - self.epsilon (exploration prob) - self.alpha (learning rate) - self.discount (discount rate aka gamma) Functions you should use - self.get_legal_actions(state) {state, hashable -> list of actions, each is hashable} which returns legal actions for a state - self.get_qvalue(state,action) which returns Q(state,action) - self.set_qvalue(state,action,value) which sets Q(state,action) := value !!!Important!!! Note: please avoid using self._qValues directly. There's a special self.get_qvalue/set_qvalue for that. """ self.get_legal_actions = get_legal_actions self._qvalues = defaultdict(lambda: defaultdict(lambda: 0)) self.alpha = alpha self.epsilon = epsilon self.discount = discount def get_qvalue(self, state, action): """ Returns Q(state,action) """ return self._qvalues[state][action] def set_qvalue(self,state,action,value): """ Sets the Qvalue for [state,action] to the given value """ self._qvalues[state][action] = value #---------------------START OF YOUR CODE---------------------# def get_value(self, state): """ Compute your agent's estimate of V(s) using current q-values V(s) = max_over_action Q(state,action) over possible actions. Note: please take into account that q-values can be negative. """ possible_actions = self.get_legal_actions(state) #If there are no legal actions, return 0.0 if len(possible_actions) == 0: return 0.0 return max([self.get_qvalue(state, action) for action in possible_actions]) # return value def update(self, state, action, reward, next_state): """ You should do your Q-Value update here: Q(s,a) := (1 - alpha) * Q(s,a) + alpha * (r + gamma * V(s')) """ #agent parameters gamma = self.discount learning_rate = self.alpha Q = (1 - learning_rate) * self.get_qvalue(state, action) + \ learning_rate * (reward + gamma * self.get_value(next_state)) self.set_qvalue(state, action, Q) def get_best_action(self, state): """ Compute the best action to take in a state (using current q-values). """ possible_actions = self.get_legal_actions(state) #If there are no legal actions, return None if len(possible_actions) == 0: return None best_action = None highest_Q = 0 for action in possible_actions: Q = self.get_qvalue(state, action) if best_action is None or Q > highest_Q: highest_Q = Q best_action = action return best_action def get_action(self, state): """ Compute the action to take in the current state, including exploration. With probability self.epsilon, we should take a random action. otherwise - the best policy action (self.getPolicy). Note: To pick randomly from a list, use random.choice(list). To pick True or False with a given probablity, generate uniform number in [0, 1] and compare it with your probability """ # Pick Action possible_actions = self.get_legal_actions(state) action = None #If there are no legal actions, return None if len(possible_actions) == 0: return None #agent parameters: epsilon = self.epsilon if random.random() < epsilon: return random.choice(possible_actions) else: return self.get_best_action(state) # return chosen_action ###Output Overwriting qlearning.py ###Markdown Try it on taxiHere we use the qlearning agent on taxi env from openai gym.You will need to insert a few agent functions here. ###Code import gym env = gym.make("Taxi-v2") n_actions = env.action_space.n from qlearning import QLearningAgent agent = QLearningAgent(alpha=0.5, epsilon=0.25, discount=0.99, get_legal_actions = lambda s: range(n_actions)) def play_and_train(env,agent,t_max=10**4, fig=None, ax=None): """ This function should - run a full game, actions given by agent's e-greedy policy - train agent using agent.update(...) whenever it is possible - return total reward """ total_reward = 0.0 s = env.reset() for t in range(t_max): # get agent to pick action given state s. a = agent.get_action(s) next_s, r, done, _ = env.step(a) if fig is not None and ax is not None: ax.clear() ax.imshow(env.render('rgb_array')) fig.canvas.draw() # train (update) agent for state s agent.update(s, a, r, next_s) s = next_s total_reward +=r if done: if fig is not None and ax is not None: print('Done', done, t) break else: if fig is not None and ax is not None: print('Lost', t) return total_reward from IPython.display import clear_output rewards = [] for i in range(1000): rewards.append(play_and_train(env, agent)) agent.epsilon *= 0.99 if i %100 ==0: clear_output(True) print('eps =', agent.epsilon, 'mean reward =', np.mean(rewards[-10:])) plt.plot(rewards) plt.show() ###Output eps = 2.9191091959171894e-05 mean reward = 8.1 ###Markdown Submit to Coursera I: Preparation ###Code #from submit import submit_qlearning1 #submit_qlearning1(rewards, '[email protected]', 'hiOAcihu5hKcEvsh') submit_rewards1 = rewards.copy() ###Output _____no_output_____ ###Markdown Binarized state spacesUse agent to train efficiently on CartPole-v0.This environment has a continuous set of possible states, so you will have to group them into bins somehow.The simplest way is to use `round(x,n_digits)` (or numpy round) to round real number to a given amount of digits.The tricky part is to get the n_digits right for each state to train effectively.Note that you don't need to convert state to integers, but to __tuples__ of any kind of values. ###Code env = gym.make("CartPole-v0") n_actions = env.action_space.n print("first state:%s" % (env.reset())) plt.imshow(env.render('rgb_array')) ###Output first state:[0.01830095 0.03724055 0.02582129 0.04906594] ###Markdown Play a few gamesWe need to estimate observation distributions. To do so, we'll play a few games and record all states. ###Code %matplotlib inline all_states = [] for _ in range(1000): all_states.append(env.reset()) done = False while not done: s, r, done, _ = env.step(env.action_space.sample()) all_states.append(s) if done: break all_states = np.array(all_states) for obs_i in range(env.observation_space.shape[0]): plt.hist(all_states[:, obs_i], bins=20) plt.show() ###Output _____no_output_____ ###Markdown Binarize environment ###Code from gym.core import ObservationWrapper class Binarizer(ObservationWrapper): # pass def _observation(self, state): # return tuple(state) #state = <round state to some amount digits.> #hint: you can do that with round(x,n_digits) #you will need to pick a different n_digits for each dimension state = np.round(state*2, 1)/2 return tuple(state) env = Binarizer(gym.make("CartPole-v0")) all_states = [] for _ in range(1000): all_states.append(env.reset()) done = False while not done: s, r, done, _ = env.step(env.action_space.sample()) all_states.append(s) if done: break print("States number: ", len(set(all_states))) all_states = np.array(all_states) for obs_i in range(env.observation_space.shape[0]): plt.hist(all_states[:,obs_i],bins=20) plt.show() ###Output States number: 7552 ###Markdown Learn binarized policyNow let's train a policy that uses binarized state space.__Tips:__ * If your binarization is too coarse, your agent may fail to find optimal policy. In that case, change binarization. * If your binarization is too fine-grained, your agent will take much longer than 1000 steps to converge. You can either increase number of iterations and decrease epsilon decay or change binarization.* Having 10^3 ~ 10^4 distinct states is recommended (`len(QLearningAgent._qvalues)`), but not required. ###Code agent = QLearningAgent(alpha=0.5, epsilon=0.25, discount=0.99, get_legal_actions = lambda s: range(n_actions)) %matplotlib inline rewards = [] for i in range(10000): rewards.append(play_and_train(env,agent)) #OPTIONAL YOUR CODE: adjust epsilon if i %100 ==0: clear_output(True) print('eps =', agent.epsilon, 'mean reward =', np.mean(rewards[-10:])) plt.plot(rewards) plt.show() ###Output eps = 0 mean reward = 126.4 ###Markdown Visualization ###Code %matplotlib notebook fig = plt.figure() ax = fig.add_subplot(111) fig.show() eps = agent.epsilon agent.epsilon = 0 play_and_train(env, agent, fig=fig, ax=ax) agent.epsilon = eps ###Output _____no_output_____ ###Markdown Submit to Coursera II: Submission ###Code # from submit import submit_qlearning2 # submit_qlearning2(rewards, <EMAIL>, <TOKEN>) submit_rewards2 = rewards.copy() from submit import submit_qlearning_all submit_qlearning_all(submit_rewards1, submit_rewards2, '[email protected]', 'lbW65gWwyOQHjgzU') ###Output Submitted to Coursera platform. See results on assignment page! ###Markdown Q-learningThis notebook will guide you through implementation of vanilla Q-learning algorithm.You need to implement QLearningAgent (follow instructions for each method) and use it on a number of tests below. ###Code import sys, os if 'google.colab' in sys.modules and not os.path.exists('.setup_complete'): !wget -q https://raw.githubusercontent.com/yandexdataschool/Practical_RL/master/setup_colab.sh -O- | bash !wget -q https://raw.githubusercontent.com/yandexdataschool/Practical_RL/coursera/grading.py -O ../grading.py !wget -q https://raw.githubusercontent.com/yandexdataschool/Practical_RL/coursera/week3_model_free/submit.py !touch .setup_complete # This code creates a virtual display to draw game images on. # It will have no effect if your machine has a monitor. if type(os.environ.get("DISPLAY")) is not str or len(os.environ.get("DISPLAY")) == 0: !bash ../xvfb start os.environ['DISPLAY'] = ':1' import numpy as np import matplotlib.pyplot as plt %matplotlib inline from collections import defaultdict import random import math import numpy as np class QLearningAgent: def __init__(self, alpha, epsilon, discount, get_legal_actions): """ Q-Learning Agent based on https://inst.eecs.berkeley.edu/~cs188/sp19/projects.html Instance variables you have access to - self.epsilon (exploration prob) - self.alpha (learning rate) - self.discount (discount rate aka gamma) Functions you should use - self.get_legal_actions(state) {state, hashable -> list of actions, each is hashable} which returns legal actions for a state - self.get_qvalue(state,action) which returns Q(state,action) - self.set_qvalue(state,action,value) which sets Q(state,action) := value !!!Important!!! Note: please avoid using self._qValues directly. There's a special self.get_qvalue/set_qvalue for that. """ self.get_legal_actions = get_legal_actions self._qvalues = defaultdict(lambda: defaultdict(lambda: 0)) self.alpha = alpha self.epsilon = epsilon self.discount = discount def get_qvalue(self, state, action): """ Returns Q(state,action) """ return self._qvalues[state][action] def set_qvalue(self, state, action, value): """ Sets the Qvalue for [state,action] to the given value """ self._qvalues[state][action] = value #---------------------START OF YOUR CODE---------------------# def get_value(self, state): """ Compute your agent's estimate of V(s) using current q-values V(s) = max_over_action Q(state,action) over possible actions. Note: please take into account that q-values can be negative. """ possible_actions = self.get_legal_actions(state) # If there are no legal actions, return 0.0 if len(possible_actions) == 0: return 0.0 action_values = [self.get_qvalue(state, action) for action in possible_actions] value = np.max(action_values) return value def update(self, state, action, reward, next_state): """ You should do your Q-Value update here: Q(s,a) := (1 - alpha) * Q(s,a) + alpha * (r + gamma * V(s')) """ # agent parameters gamma = self.discount learning_rate = self.alpha q_value = self.get_qvalue(state, action) q_value = (1 - learning_rate) * q_value\ + learning_rate * (reward + gamma * self.get_value(next_state)) self.set_qvalue(state, action, q_value) def get_best_action(self, state): """ Compute the best action to take in a state (using current q-values). """ possible_actions = self.get_legal_actions(state) # If there are no legal actions, return None if len(possible_actions) == 0: return None action_values = {action : self.get_qvalue(state, action) for action in possible_actions} best_action = max(action_values, key=action_values.get) return best_action def get_action(self, state): """ Compute the action to take in the current state, including exploration. With probability self.epsilon, we should take a random action. otherwise - the best policy action (self.get_best_action). Note: To pick randomly from a list, use random.choice(list). To pick True or False with a given probablity, generate uniform number in [0, 1] and compare it with your probability """ # Pick Action possible_actions = self.get_legal_actions(state) action = None # If there are no legal actions, return None if len(possible_actions) == 0: return None # agent parameters: epsilon = self.epsilon if np.random.rand() < self.epsilon: chosen_action = np.random.choice(possible_actions) else: chosen_action = self.get_best_action(state) return chosen_action ###Output _____no_output_____ ###Markdown Try it on taxiHere we use the qlearning agent on taxi env from openai gym.You will need to insert a few agent functions here. ###Code import gym env = gym.make("Taxi-v3") n_actions = env.action_space.n agent = QLearningAgent( alpha=0.5, epsilon=0.25, discount=0.99, get_legal_actions=lambda s: range(n_actions)) def play_and_train(env, agent, t_max=10**4): """ This function should - run a full game, actions given by agent's e-greedy policy - train agent using agent.update(...) whenever it is possible - return total reward """ total_reward = 0.0 s = env.reset() for t in range(t_max): # get agent to pick action given state s. a = agent.get_action(s) next_s, r, done, _ = env.step(a) # train (update) agent for state s agent.update(s, a, r, next_s) s = next_s total_reward += r if done: break return total_reward from IPython.display import clear_output rewards = [] for i in range(1000): rewards.append(play_and_train(env, agent)) agent.epsilon *= 0.99 if i % 100 == 0: clear_output(True) plt.title('eps = {:e}, mean reward = {:.1f}'.format(agent.epsilon, np.mean(rewards[-10:]))) plt.plot(rewards) plt.show() ###Output _____no_output_____ ###Markdown Submit to Coursera I: Preparation ###Code submit_rewards1 = rewards.copy() ###Output _____no_output_____ ###Markdown Binarized state spacesUse agent to train efficiently on `CartPole-v0`. This environment has a continuous set of possible states, so you will have to group them into bins somehow.The simplest way is to use `round(x, n_digits)` (or `np.round`) to round a real number to a given amount of digits. The tricky part is to get the `n_digits` right for each state to train effectively.Note that you don't need to convert state to integers, but to __tuples__ of any kind of values. ###Code def make_env(): return gym.make('CartPole-v0').env # .env unwraps the TimeLimit wrapper env = make_env() n_actions = env.action_space.n print("first state: %s" % (env.reset())) plt.imshow(env.render('rgb_array')) ###Output first state: [ 0.00912112 -0.01625993 -0.00136323 0.00312888] ###Markdown Play a few gamesWe need to estimate observation distributions. To do so, we'll play a few games and record all states. ###Code def visualize_cartpole_observation_distribution(seen_observations): seen_observations = np.array(seen_observations) # The meaning of the observations is documented in # https://github.com/openai/gym/blob/master/gym/envs/classic_control/cartpole.py f, axarr = plt.subplots(2, 2, figsize=(16, 9), sharey=True) for i, title in enumerate(['Cart Position', 'Cart Velocity', 'Pole Angle', 'Pole Velocity At Tip']): ax = axarr[i // 2, i % 2] ax.hist(seen_observations[:, i], bins=20) ax.set_title(title) xmin, xmax = ax.get_xlim() ax.set_xlim(min(xmin, -xmax), max(-xmin, xmax)) ax.grid() f.tight_layout() seen_observations = [] for _ in range(1000): seen_observations.append(env.reset()) done = False while not done: s, r, done, _ = env.step(env.action_space.sample()) seen_observations.append(s) visualize_cartpole_observation_distribution(seen_observations) ###Output _____no_output_____ ###Markdown Binarize environment ###Code from gym.core import ObservationWrapper class Binarizer(ObservationWrapper): def observation(self, state): # Hint: you can do that with round(x, n_digits). # You may pick a different n_digits for each dimension. state = round(state[0], 0), round(state[1], 1), round(state[2], 1), round(state[3], 1) return tuple(state) env = Binarizer(make_env()) seen_observations = [] for _ in range(1000): seen_observations.append(env.reset()) done = False while not done: s, r, done, _ = env.step(env.action_space.sample()) seen_observations.append(s) if done: break visualize_cartpole_observation_distribution(seen_observations) ###Output _____no_output_____ ###Markdown Learn binarized policyNow let's train a policy that uses binarized state space.__Tips:__* Note that increasing the number of digits for one dimension of the observations increases your state space by a factor of $10$.* If your binarization is too fine-grained, your agent will take much longer than 10000 steps to converge. You can either increase the number of iterations and reduce epsilon decay or change binarization. In practice we found that this kind of mistake is rather frequent.* If your binarization is too coarse, your agent may fail to find the optimal policy. In practice we found that on this particular environment this kind of mistake is rare.* **Start with a coarse binarization** and make it more fine-grained if that seems necessary.* Having $10^3$–$10^4$ distinct states is recommended (`len(agent._qvalues)`), but not required.* If things don't work without annealing $\varepsilon$, consider adding that, but make sure that it doesn't go to zero too quickly.A reasonable agent should attain an average reward of at least 50. ###Code import pandas as pd def moving_average(x, span=100): return pd.DataFrame({'x': np.asarray(x)}).x.ewm(span=span).mean().values agent = QLearningAgent( alpha=0.5, epsilon=0.25, discount=0.99, get_legal_actions=lambda s: range(n_actions)) rewards = [] epsilons = [] N = 5000 epsilon_start = 0.25 epsilon_end = 0.05 for i in range(N): reward = play_and_train(env, agent) rewards.append(reward) epsilons.append(agent.epsilon) if i % 100 == 0: rewards_ewma = moving_average(rewards) clear_output(True) plt.plot(rewards, label='rewards') plt.plot(rewards_ewma, label='rewards ewma@100') plt.legend() plt.grid() plt.title('eps = {:e}, rewards ewma@100 = {:.1f}'.format(agent.epsilon, rewards_ewma[-1])) plt.show() # update epsilon smooth = max((N - i) / N, 0) agent.epsilon = (epsilon_start - epsilon_end) * smooth + epsilon_end ###Output _____no_output_____ ###Markdown Submit to Coursera II: Submission ###Code submit_rewards2 = rewards.copy() from submit import submit_qlearning submit_qlearning(submit_rewards1, submit_rewards2, '[email protected]', 'lkMPdXUqKXP6ikJI') ###Output Submitted to Coursera platform. See results on assignment page! ###Markdown Q-learningThis notebook will guide you through implementation of vanilla Q-learning algorithm.You need to implement QLearningAgent (follow instructions for each method) and use it on a number of tests below. ###Code #XVFB will be launched if you run on a server import os if type(os.environ.get("DISPLAY")) is not str or len(os.environ.get("DISPLAY"))==0: !bash ../xvfb start %env DISPLAY=:1 import numpy as np import matplotlib.pyplot as plt %matplotlib inline %load_ext autoreload %autoreload 2 %%writefile qlearning.py from collections import defaultdict import random, math import numpy as np class QLearningAgent: def __init__(self, alpha, epsilon, discount, get_legal_actions): """ Q-Learning Agent based on http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html Instance variables you have access to - self.epsilon (exploration prob) - self.alpha (learning rate) - self.discount (discount rate aka gamma) Functions you should use - self.get_legal_actions(state) {state, hashable -> list of actions, each is hashable} which returns legal actions for a state - self.get_qvalue(state,action) which returns Q(state,action) - self.set_qvalue(state,action,value) which sets Q(state,action) := value !!!Important!!! Note: please avoid using self._qValues directly. There's a special self.get_qvalue/set_qvalue for that. """ self.get_legal_actions = get_legal_actions self._qvalues = defaultdict(lambda: defaultdict(lambda: 0)) self.alpha = alpha self.epsilon = epsilon self.discount = discount def get_qvalue(self, state, action): """ Returns Q(state,action) """ return self._qvalues[state][action] def set_qvalue(self,state,action,value): """ Sets the Qvalue for [state,action] to the given value """ self._qvalues[state][action] = value #---------------------START OF YOUR CODE---------------------# def get_value(self, state): """ Compute your agent's estimate of V(s) using current q-values V(s) = max_over_action Q(state,action) over possible actions. Note: please take into account that q-values can be negative. """ possible_actions = self.get_legal_actions(state) #If there are no legal actions, return 0.0 if len(possible_actions) == 0: return 0.0 <YOUR CODE HERE> return value def update(self, state, action, reward, next_state): """ You should do your Q-Value update here: Q(s,a) := (1 - alpha) * Q(s,a) + alpha * (r + gamma * V(s')) """ #agent parameters gamma = self.discount learning_rate = self.alpha <YOUR CODE HERE> self.set_qvalue(state, action, <YOUR_QVALUE>) def get_best_action(self, state): """ Compute the best action to take in a state (using current q-values). """ possible_actions = self.get_legal_actions(state) #If there are no legal actions, return None if len(possible_actions) == 0: return None <YOUR CODE HERE> return best_action def get_action(self, state): """ Compute the action to take in the current state, including exploration. With probability self.epsilon, we should take a random action. otherwise - the best policy action (self.getPolicy). Note: To pick randomly from a list, use random.choice(list). To pick True or False with a given probablity, generate uniform number in [0, 1] and compare it with your probability """ # Pick Action possible_actions = self.get_legal_actions(state) action = None #If there are no legal actions, return None if len(possible_actions) == 0: return None #agent parameters: epsilon = self.epsilon <YOUR CODE HERE> return chosen_action ###Output Overwriting qlearning.py ###Markdown Try it on taxiHere we use the qlearning agent on taxi env from openai gym.You will need to insert a few agent functions here. ###Code import gym env = gym.make("Taxi-v2") n_actions = env.action_space.n from qlearning import QLearningAgent agent = QLearningAgent(alpha=0.5, epsilon=0.25, discount=0.99, get_legal_actions = lambda s: range(n_actions)) def play_and_train(env,agent,t_max=10**4): """ This function should - run a full game, actions given by agent's e-greedy policy - train agent using agent.update(...) whenever it is possible - return total reward """ total_reward = 0.0 s = env.reset() for t in range(t_max): # get agent to pick action given state s. a = <YOUR CODE> next_s, r, done, _ = env.step(a) # train (update) agent for state s <YOUR CODE HERE> s = next_s total_reward +=r if done: break return total_reward from IPython.display import clear_output rewards = [] for i in range(1000): rewards.append(play_and_train(env, agent)) agent.epsilon *= 0.99 if i %100 ==0: clear_output(True) print('eps =', agent.epsilon, 'mean reward =', np.mean(rewards[-10:])) plt.plot(rewards) plt.show() ###Output eps = 2.9191091959171894e-05 mean reward = 8.5 ###Markdown Submit to Coursera I ###Code from submit import submit_qlearning1 submit_qlearning1(rewards, <EMAIL>, <TOKEN>) ###Output _____no_output_____ ###Markdown Binarized state spacesUse agent to train efficiently on CartPole-v0.This environment has a continuous set of possible states, so you will have to group them into bins somehow.The simplest way is to use `round(x,n_digits)` (or numpy round) to round real number to a given amount of digits.The tricky part is to get the n_digits right for each state to train effectively.Note that you don't need to convert state to integers, but to __tuples__ of any kind of values. ###Code env = gym.make("CartPole-v0") n_actions = env.action_space.n print("first state:%s" % (env.reset())) plt.imshow(env.render('rgb_array')) ###Output _____no_output_____ ###Markdown Play a few gamesWe need to estimate observation distributions. To do so, we'll play a few games and record all states. ###Code all_states = [] for _ in range(1000): all_states.append(env.reset()) done = False while not done: s, r, done, _ = env.step(env.action_space.sample()) all_states.append(s) if done: break all_states = np.array(all_states) for obs_i in range(env.observation_space.shape[0]): plt.hist(all_states[:, obs_i], bins=20) plt.show() ###Output _____no_output_____ ###Markdown Binarize environment ###Code from gym.core import ObservationWrapper class Binarizer(ObservationWrapper): def _observation(self, state): #state = <round state to some amount digits.> #hint: you can do that with round(x,n_digits) #you will need to pick a different n_digits for each dimension return tuple(state) env = Binarizer(gym.make("CartPole-v0")) all_states = [] for _ in range(1000): all_states.append(env.reset()) done = False while not done: s, r, done, _ = env.step(env.action_space.sample()) all_states.append(s) if done: break all_states = np.array(all_states) for obs_i in range(env.observation_space.shape[0]): plt.hist(all_states[:,obs_i],bins=20) plt.show() ###Output _____no_output_____ ###Markdown Learn binarized policyNow let's train a policy that uses binarized state space.__Tips:__ * If your binarization is too coarse, your agent may fail to find optimal policy. In that case, change binarization. * If your binarization is too fine-grained, your agent will take much longer than 1000 steps to converge. You can either increase number of iterations and decrease epsilon decay or change binarization.* Having 10^3 ~ 10^4 distinct states is recommended (`len(QLearningAgent._qvalues)`), but not required. ###Code agent = QLearningAgent(alpha=0.5, epsilon=0.25, discount=0.99, getLegalActions = lambda s: range(n_actions)) rewards = [] for i in range(1000): rewards.append(play_and_train(env,agent)) #OPTIONAL YOUR CODE: adjust epsilon if i %100 ==0: clear_output(True) print('eps =', agent.epsilon, 'mean reward =', np.mean(rewards[-10:])) plt.plot(rewards) plt.show() ###Output _____no_output_____ ###Markdown Submit to Coursera II ###Code from submit import submit_qlearning2 submit_qlearning2(rewards, <EMAIL>, <TOKEN>) ###Output _____no_output_____ ###Markdown Q-learningThis notebook will guide you through implementation of vanilla Q-learning algorithm.You need to implement QLearningAgent (follow instructions for each method) and use it on a number of tests below. ###Code import sys, os if 'google.colab' in sys.modules and not os.path.exists('.setup_complete'): !wget -q https://raw.githubusercontent.com/yandexdataschool/Practical_RL/master/setup_colab.sh -O- | bash !wget -q https://raw.githubusercontent.com/yandexdataschool/Practical_RL/coursera/grading.py -O ../grading.py !wget -q https://raw.githubusercontent.com/yandexdataschool/Practical_RL/coursera/week3_model_free/submit.py !touch .setup_complete # This code creates a virtual display to draw game images on. # It will have no effect if your machine has a monitor. if type(os.environ.get("DISPLAY")) is not str or len(os.environ.get("DISPLAY")) == 0: !bash ../xvfb start os.environ['DISPLAY'] = ':1' import numpy as np import matplotlib.pyplot as plt %matplotlib inline from collections import defaultdict import random import math import numpy as np class QLearningAgent: def __init__(self, alpha, epsilon, discount, get_legal_actions): """ Q-Learning Agent based on https://inst.eecs.berkeley.edu/~cs188/sp19/projects.html Instance variables you have access to - self.epsilon (exploration prob) - self.alpha (learning rate) - self.discount (discount rate aka gamma) Functions you should use - self.get_legal_actions(state) {state, hashable -> list of actions, each is hashable} which returns legal actions for a state - self.get_qvalue(state,action) which returns Q(state,action) - self.set_qvalue(state,action,value) which sets Q(state,action) := value !!!Important!!! Note: please avoid using self._qValues directly. There's a special self.get_qvalue/set_qvalue for that. """ self.get_legal_actions = get_legal_actions self._qvalues = defaultdict(lambda: defaultdict(lambda: 0)) self.alpha = alpha self.epsilon = epsilon self.discount = discount def get_qvalue(self, state, action): """ Returns Q(state,action) """ return self._qvalues[state][action] def set_qvalue(self, state, action, value): """ Sets the Qvalue for [state,action] to the given value """ self._qvalues[state][action] = value #---------------------START OF YOUR CODE---------------------# def get_value(self, state): """ Compute your agent's estimate of V(s) using current q-values V(s) = max_over_action Q(state,action) over possible actions. Note: please take into account that q-values can be negative. """ possible_actions = self.get_legal_actions(state) # If there are no legal actions, return 0.0 if len(possible_actions) == 0: return 0.0 value = [] for a in possible_actions: value.append( self.get_qvalue(state,a) ) return max(value) def update(self, state, action, reward, next_state): """ You should do your Q-Value update here: Q(s,a) := (1 - alpha) * Q(s,a) + alpha * (r + gamma * V(s')) """ # agent parameters gamma = self.discount learning_rate = self.alpha q_new = (1-learning_rate) * self.get_qvalue(state,action) + learning_rate *(reward + gamma * self.get_value(next_state)) self.set_qvalue(state, action, q_new ) def get_best_action(self, state): """ Compute the best action to take in a state (using current q-values). """ possible_actions = self.get_legal_actions(state) # If there are no legal actions, return None if len(possible_actions) == 0: return None value, best_action = None, None for a in possible_actions: if value == None or value < self.get_qvalue(state,a): value = self.get_qvalue(state,a) best_action = a return best_action def get_action(self, state): """ Compute the action to take in the current state, including exploration. With probability self.epsilon, we should take a random action. otherwise - the best policy action (self.get_best_action). Note: To pick randomly from a list, use random.choice(list). To pick True or False with a given probablity, generate uniform number in [0, 1] and compare it with your probability """ # Pick Action possible_actions = self.get_legal_actions(state) action = None # If there are no legal actions, return None if len(possible_actions) == 0: return None # agent parameters: epsilon = self.epsilon chosen_action = None if random.random()< epsilon: chosen_action = random.choice(possible_actions) else: chosen_action = self.get_best_action(state) return chosen_action ###Output _____no_output_____ ###Markdown Try it on taxiHere we use the qlearning agent on taxi env from openai gym.You will need to insert a few agent functions here. ###Code import gym env = gym.make("Taxi-v3") n_actions = env.action_space.n agent = QLearningAgent( alpha=0.5, epsilon=0.25, discount=0.99, get_legal_actions=lambda s: range(n_actions)) def play_and_train(env, agent, t_max=10**4): """ This function should - run a full game, actions given by agent's e-greedy policy - train agent using agent.update(...) whenever it is possible - return total reward """ total_reward = 0.0 s = env.reset() for t in range(t_max): # get agent to pick action given state s. a = agent.get_action(s) next_s, r, done, _ = env.step(a) # train (update) agent for state s agent.update(s,a,r,next_s) s = next_s total_reward += r if done: break return total_reward from IPython.display import clear_output rewards = [] for i in range(1000): rewards.append(play_and_train(env, agent)) agent.epsilon *= 0.99 if i % 100 == 0: clear_output(True) plt.title('eps = {:e}, mean reward = {:.1f}'.format(agent.epsilon, np.mean(rewards[-10:]))) plt.plot(rewards) plt.show() ###Output _____no_output_____ ###Markdown Submit to Coursera I: Preparation ###Code submit_rewards1 = rewards.copy() ###Output _____no_output_____ ###Markdown Binarized state spacesUse agent to train efficiently on `CartPole-v0`. This environment has a continuous set of possible states, so you will have to group them into bins somehow.The simplest way is to use `round(x, n_digits)` (or `np.round`) to round a real number to a given amount of digits. The tricky part is to get the `n_digits` right for each state to train effectively.Note that you don't need to convert state to integers, but to __tuples__ of any kind of values. ###Code def make_env(): return gym.make('CartPole-v0').env # .env unwraps the TimeLimit wrapper env = make_env() n_actions = env.action_space.n print("first state: %s" % (env.reset())) plt.imshow(env.render('rgb_array')) ###Output first state: [-0.00207288 -0.01012714 -0.03260051 -0.01736818] ###Markdown Play a few gamesWe need to estimate observation distributions. To do so, we'll play a few games and record all states. ###Code def visualize_cartpole_observation_distribution(seen_observations): seen_observations = np.array(seen_observations) # The meaning of the observations is documented in # https://github.com/openai/gym/blob/master/gym/envs/classic_control/cartpole.py f, axarr = plt.subplots(2, 2, figsize=(16, 9), sharey=True) for i, title in enumerate(['Cart Position', 'Cart Velocity', 'Pole Angle', 'Pole Velocity At Tip']): ax = axarr[i // 2, i % 2] ax.hist(seen_observations[:, i], bins=20) ax.set_title(title) xmin, xmax = ax.get_xlim() ax.set_xlim(min(xmin, -xmax), max(-xmin, xmax)) ax.grid() f.tight_layout() seen_observations = [] for _ in range(1000): seen_observations.append(env.reset()) done = False while not done: s, r, done, _ = env.step(env.action_space.sample()) seen_observations.append(s) visualize_cartpole_observation_distribution(seen_observations) ###Output _____no_output_____ ###Markdown Binarize environment ###Code from gym.core import ObservationWrapper class Binarizer(ObservationWrapper): def observation(self, state): # Hint: you can do that with round(x, n_digits). # You may pick a different n_digits for each dimension. round_para = [1,1,2,1] state = [ round(s,p) for s,p in zip(state,round_para)] return tuple(state) env = Binarizer(make_env()) seen_observations = [] for _ in range(1000): seen_observations.append(env.reset()) done = False while not done: s, r, done, _ = env.step(env.action_space.sample()) seen_observations.append(s) if done: break visualize_cartpole_observation_distribution(seen_observations) so = np.array(seen_observations) print(seen_observations[1]) print(seen_observations[10]) for i in range(len(so[0])): print(len(set(so[:,i])),":",set(so[:,i])) ###Output (-0.0, 0.2, 0.05, -0.3) (-0.0, 0.0, 0.06, 0.1) 16 : {-0.0, 0.4, 0.1, 0.3, 0.2, -0.1, -0.2, -0.3, -0.4, -0.5, 0.5, -0.6, -0.9, -0.7, -0.8, 0.6} 46 : {0.0, 0.4, 0.6, -0.2, 0.2, 0.8, 1.0, 1.2, 1.4, 1.1, 0.5, -0.5, 1.5, 2.0, 2.5, -0.4, -0.9, -1.4, -1.9, 1.6, -1.3, -1.8, 2.1, 0.7, -0.8, -0.3, -2.3, 1.7, -0.1, 0.1, -1.7, 2.3, 0.3, -0.7, 1.3, 1.8, -2.1, -1.6, -1.1, 1.9, -0.6, 0.9, -2.0, -1.5, -1.0, -1.2} 53 : {0.07, 0.06, 0.0, -0.06, -0.12, -0.19, -0.07, -0.14, -0.2, -0.24, 0.21, -0.25, 0.25, 0.26, 0.22, -0.01, 0.18, 0.05, -0.08, 0.11, 0.23, 0.19, 0.15, -0.02, 0.04, 0.2, 0.16, -0.13, 0.12, 0.09, -0.03, -0.1, -0.15, -0.22, -0.09, -0.17, -0.23, 0.03, -0.16, 0.13, 0.17, -0.04, 0.02, 0.14, 0.1, 0.08, -0.05, -0.11, 0.01, -0.18, 0.24, -0.26, -0.21} 61 : {-0.0, 0.4, 0.3, -0.3, 0.5, 0.2, -0.5, -0.8, -0.2, -0.7, 1.2, 1.0, 1.5, 2.0, 2.5, -2.4, -2.9, -0.4, -0.9, -1.4, -1.9, 0.6, 1.6, 1.1, -1.3, -1.8, 2.1, 2.6, 0.7, -2.3, 1.7, -2.2, -2.7, -2.8, 0.1, -0.1, -1.7, -1.2, 2.8, 2.2, 2.3, 2.7, 0.8, -3.1, 1.3, 1.8, -2.1, -2.6, -1.1, -1.6, 1.4, 1.9, -0.6, 0.9, 2.4, 2.9, -2.0, -2.5, -3.0, -1.0, -1.5} ###Markdown Learn binarized policyNow let's train a policy that uses binarized state space.__Tips:__* Note that increasing the number of digits for one dimension of the observations increases your state space by a factor of $10$.* If your binarization is too fine-grained, your agent will take much longer than 10000 steps to converge. You can either increase the number of iterations and reduce epsilon decay or change binarization. In practice we found that this kind of mistake is rather frequent.* If your binarization is too coarse, your agent may fail to find the optimal policy. In practice we found that on this particular environment this kind of mistake is rare.* **Start with a coarse binarization** and make it more fine-grained if that seems necessary.* Having $10^3$–$10^4$ distinct states is recommended (`len(agent._qvalues)`), but not required.* If things don't work without annealing $\varepsilon$, consider adding that, but make sure that it doesn't go to zero too quickly.A reasonable agent should attain an average reward of at least 50. ###Code import pandas as pd def moving_average(x, span=100): return pd.DataFrame({'x': np.asarray(x)}).x.ewm(span=span).mean().values agent = QLearningAgent( alpha=0.5, epsilon=0.25, discount=0.99, get_legal_actions=lambda s: range(n_actions)) rewards = [] epsilons = [] for i in range(10000): reward = play_and_train(env, agent) rewards.append(reward) epsilons.append(agent.epsilon) # OPTIONAL: <YOUR CODE: adjust epsilon> if i % 100 == 0: rewards_ewma = moving_average(rewards) agent.epsilon *= 0.99 clear_output(True) plt.plot(rewards, label='rewards') plt.plot(rewards_ewma, label='rewards ewma@100') plt.legend() plt.grid() plt.title('eps = {:e}, rewards ewma@100 = {:.1f}'.format(agent.epsilon, rewards_ewma[-1])) plt.show() len(agent._qvalues) ###Output _____no_output_____ ###Markdown Submit to Coursera II: Submission ###Code submit_rewards2 = rewards.copy() from submit import submit_qlearning submit_qlearning(submit_rewards1, submit_rewards2, '[email protected]', 'E8NnjUX37pBhu0Uq') ###Output Submitted to Coursera platform. See results on assignment page! ###Markdown Q-learningThis notebook will guide you through implementation of vanilla Q-learning algorithm.You need to implement QLearningAgent (follow instructions for each method) and use it on a number of tests below. ###Code #XVFB will be launched if you run on a server import os if type(os.environ.get("DISPLAY")) is not str or len(os.environ.get("DISPLAY"))==0: !bash ../xvfb start %env DISPLAY=:1 import numpy as np import matplotlib.pyplot as plt %matplotlib inline %load_ext autoreload %autoreload 2 %%writefile qlearning.py from collections import defaultdict import random, math import numpy as np class QLearningAgent: def __init__(self, alpha, epsilon, discount, get_legal_actions): """ Q-Learning Agent based on http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html Instance variables you have access to - self.epsilon (exploration prob) - self.alpha (learning rate) - self.discount (discount rate aka gamma) Functions you should use - self.get_legal_actions(state) {state, hashable -> list of actions, each is hashable} which returns legal actions for a state - self.get_qvalue(state,action) which returns Q(state,action) - self.set_qvalue(state,action,value) which sets Q(state,action) := value !!!Important!!! Note: please avoid using self._qValues directly. There's a special self.get_qvalue/set_qvalue for that. """ self.get_legal_actions = get_legal_actions self._qvalues = defaultdict(lambda: defaultdict(lambda: 0)) self.alpha = alpha self.epsilon = epsilon self.discount = discount def get_qvalue(self, state, action): """ Returns Q(state,action) """ return self._qvalues[state][action] def set_qvalue(self,state,action,value): """ Sets the Qvalue for [state,action] to the given value """ self._qvalues[state][action] = value #---------------------START OF YOUR CODE---------------------# def get_value(self, state): """ Compute your agent's estimate of V(s) using current q-values V(s) = max_over_action Q(state,action) over possible actions. Note: please take into account that q-values can be negative. """ possible_actions = self.get_legal_actions(state) #If there are no legal actions, return 0.0 if len(possible_actions) == 0: return 0.0 <YOUR CODE HERE> return value def update(self, state, action, reward, next_state): """ You should do your Q-Value update here: Q(s,a) := (1 - alpha) * Q(s,a) + alpha * (r + gamma * V(s')) """ #agent parameters gamma = self.discount learning_rate = self.alpha <YOUR CODE HERE> self.set_qvalue(state, action, <YOUR_QVALUE>) def get_best_action(self, state): """ Compute the best action to take in a state (using current q-values). """ possible_actions = self.get_legal_actions(state) #If there are no legal actions, return None if len(possible_actions) == 0: return None <YOUR CODE HERE> return best_action def get_action(self, state): """ Compute the action to take in the current state, including exploration. With probability self.epsilon, we should take a random action. otherwise - the best policy action (self.getPolicy). Note: To pick randomly from a list, use random.choice(list). To pick True or False with a given probablity, generate uniform number in [0, 1] and compare it with your probability """ # Pick Action possible_actions = self.get_legal_actions(state) action = None #If there are no legal actions, return None if len(possible_actions) == 0: return None #agent parameters: epsilon = self.epsilon <YOUR CODE HERE> return chosen_action ###Output Overwriting qlearning.py ###Markdown Try it on taxiHere we use the qlearning agent on taxi env from openai gym.You will need to insert a few agent functions here. ###Code import gym env = gym.make("Taxi-v2") n_actions = env.action_space.n from qlearning import QLearningAgent agent = QLearningAgent(alpha=0.5, epsilon=0.25, discount=0.99, get_legal_actions = lambda s: range(n_actions)) def play_and_train(env,agent,t_max=10**4): """ This function should - run a full game, actions given by agent's e-greedy policy - train agent using agent.update(...) whenever it is possible - return total reward """ total_reward = 0.0 s = env.reset() for t in range(t_max): # get agent to pick action given state s. a = <YOUR CODE> next_s, r, done, _ = env.step(a) # train (update) agent for state s <YOUR CODE HERE> s = next_s total_reward +=r if done: break return total_reward from IPython.display import clear_output rewards = [] for i in range(1000): rewards.append(play_and_train(env, agent)) agent.epsilon *= 0.99 if i %100 ==0: clear_output(True) print('eps =', agent.epsilon, 'mean reward =', np.mean(rewards[-10:])) plt.plot(rewards) plt.show() ###Output eps = 2.9191091959171894e-05 mean reward = 8.5 ###Markdown Submit to Coursera I: Preparation ###Code # from submit import submit_qlearning1 # submit_qlearning1(rewards, <EMAIL>, <TOKEN>) submit_rewards1 = rewards.copy() ###Output _____no_output_____ ###Markdown Binarized state spacesUse agent to train efficiently on CartPole-v0.This environment has a continuous set of possible states, so you will have to group them into bins somehow.The simplest way is to use `round(x,n_digits)` (or numpy round) to round real number to a given amount of digits.The tricky part is to get the n_digits right for each state to train effectively.Note that you don't need to convert state to integers, but to __tuples__ of any kind of values. ###Code env = gym.make("CartPole-v0") n_actions = env.action_space.n print("first state:%s" % (env.reset())) plt.imshow(env.render('rgb_array')) ###Output _____no_output_____ ###Markdown Play a few gamesWe need to estimate observation distributions. To do so, we'll play a few games and record all states. ###Code all_states = [] for _ in range(1000): all_states.append(env.reset()) done = False while not done: s, r, done, _ = env.step(env.action_space.sample()) all_states.append(s) if done: break all_states = np.array(all_states) for obs_i in range(env.observation_space.shape[0]): plt.hist(all_states[:, obs_i], bins=20) plt.show() ###Output _____no_output_____ ###Markdown Binarize environment ###Code from gym.core import ObservationWrapper class Binarizer(ObservationWrapper): def _observation(self, state): #state = <round state to some amount digits.> #hint: you can do that with round(x,n_digits) #you will need to pick a different n_digits for each dimension return tuple(state) env = Binarizer(gym.make("CartPole-v0")) all_states = [] for _ in range(1000): all_states.append(env.reset()) done = False while not done: s, r, done, _ = env.step(env.action_space.sample()) all_states.append(s) if done: break all_states = np.array(all_states) for obs_i in range(env.observation_space.shape[0]): plt.hist(all_states[:,obs_i],bins=20) plt.show() ###Output _____no_output_____ ###Markdown Learn binarized policyNow let's train a policy that uses binarized state space.__Tips:__ * If your binarization is too coarse, your agent may fail to find optimal policy. In that case, change binarization. * If your binarization is too fine-grained, your agent will take much longer than 1000 steps to converge. You can either increase number of iterations and decrease epsilon decay or change binarization.* Having 10^3 ~ 10^4 distinct states is recommended (`len(QLearningAgent._qvalues)`), but not required. ###Code agent = QLearningAgent(alpha=0.5, epsilon=0.25, discount=0.99, getLegalActions = lambda s: range(n_actions)) rewards = [] for i in range(1000): rewards.append(play_and_train(env,agent)) #OPTIONAL YOUR CODE: adjust epsilon if i %100 ==0: clear_output(True) print('eps =', agent.epsilon, 'mean reward =', np.mean(rewards[-10:])) plt.plot(rewards) plt.show() ###Output _____no_output_____ ###Markdown Submit to Coursera II: Submission ###Code # from submit import submit_qlearning2 # submit_qlearning2(rewards, <EMAIL>, <TOKEN>) submit_rewards2 = rewards.copy() from submit import submit_qlearning_all submit_qlearning_all(submit_rewards1, submit_rewards2, <EMAIL>, <TOKEN>) ###Output _____no_output_____ ###Markdown Q-learningThis notebook will guide you through implementation of vanilla Q-learning algorithm.You need to implement QLearningAgent (follow instructions for each method) and use it on a number of tests below. ###Code #XVFB will be launched if you run on a server import os if type(os.environ.get("DISPLAY")) is not str or len(os.environ.get("DISPLAY"))==0: !bash ../xvfb start %env DISPLAY=:1 import numpy as np import matplotlib.pyplot as plt %matplotlib inline %load_ext autoreload %autoreload 2 ###Output The autoreload extension is already loaded. To reload it, use: %reload_ext autoreload ###Markdown Q-Learning$$Q(s, a)\leftarrow \alpha\cdot \hat Q(s, a) + (1-\alpha)Q(s,a)$$$$\hat Q(s, a)=r(s, a)+\gamma\cdot max_{a'}Q(s', a')$$ ###Code %%writefile qlearning.py from collections import defaultdict import random, math import numpy as np class QLearningAgent: def __init__(self, alpha, epsilon, discount, get_legal_actions): """ Q-Learning Agent based on http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html Instance variables you have access to - self.epsilon (exploration prob) - self.alpha (learning rate) - self.discount (discount rate aka gamma) Functions you should use - self.get_legal_actions(state) {state, hashable -> list of actions, each is hashable} which returns legal actions for a state - self.get_qvalue(state,action) which returns Q(state,action) - self.set_qvalue(state,action,value) which sets Q(state,action) := value !!!Important!!! Note: please avoid using self._qValues directly. There's a special self.get_qvalue/set_qvalue for that. """ self.get_legal_actions = get_legal_actions self._qvalues = defaultdict(lambda: defaultdict(lambda: 0)) self.alpha = alpha self.epsilon = epsilon self.discount = discount def get_qvalue(self, state, action): """ Returns Q(state,action) """ return self._qvalues[state][action] def set_qvalue(self,state,action,value): """ Sets the Qvalue for [state,action] to the given value """ self._qvalues[state][action] = value #---------------------START OF YOUR CODE---------------------# def get_value(self, state): """ Compute your agent's estimate of V(s) using current q-values V(s) = max_over_action Q(state,action) over possible actions. Note: please take into account that q-values can be negative. """ possible_actions = self.get_legal_actions(state) #If there are no legal actions, return 0.0 if len(possible_actions) == 0: return 0.0 value = max([self.get_qvalue(state, action) for action in possible_actions]) return value def update(self, state, action, reward, next_state): """ You should do your Q-Value update here: Q(s,a) := (1 - alpha) * Q(s,a) + alpha * (r + gamma * V(s')) """ #agent parameters gamma = self.discount learning_rate = self.alpha q_value = self.get_qvalue(state, action) V = self.get_value(next_state) q_value = (1-learning_rate)*q_value + learning_rate*(reward + gamma*V) self.set_qvalue(state, action, q_value) def get_best_action(self, state): """ Compute the best action to take in a state (using current q-values). """ possible_actions = self.get_legal_actions(state) #If there are no legal actions, return None if len(possible_actions) == 0: return None q_action_dct = {action:self.get_qvalue(state, action) for action in possible_actions} best_action = max(q_action_dct, key=q_action_dct.get) return best_action def get_action(self, state): """ Compute the action to take in the current state, including exploration. With probability self.epsilon, we should take a random action. otherwise - the best policy action (self.getPolicy). Note: To pick randomly from a list, use random.choice(list). To pick True or False with a given probablity, generate uniform number in [0, 1] and compare it with your probability """ # Pick Action possible_actions = self.get_legal_actions(state) action = None #If there are no legal actions, return None if len(possible_actions) == 0: return None #agent parameters: epsilon = self.epsilon best_action = self.get_best_action(state) p = np.random.uniform() chosen_action = best_action if epsilon < p else np.random.choice(possible_actions) return chosen_action dct = {'a':1, 'b':100, 'c':4} max(dct, key=dct.get) ###Output _____no_output_____ ###Markdown Try it on taxiHere we use the qlearning agent on taxi env from openai gym.You will need to insert a few agent functions here. ###Code import gym env = gym.make("Taxi-v2") n_actions = env.action_space.n from qlearning import QLearningAgent agent = QLearningAgent(alpha=0.5, epsilon=0.25, discount=0.99, get_legal_actions = lambda s: range(n_actions)) def play_and_train(env,agent,t_max=10**4): """ This function should - run a full game, actions given by agent's e-greedy policy - train agent using agent.update(...) whenever it is possible - return total reward """ total_reward = 0.0 s = env.reset() for t in range(t_max): # get agent to pick action given state s. a = agent.get_action(s) next_s, r, done, _ = env.step(a) # train (update) agent for state s agent.update(s, a, r, next_s) s = next_s total_reward +=r if done: break return total_reward from IPython.display import clear_output rewards = [] for i in range(1000): rewards.append(play_and_train(env, agent)) agent.epsilon *= 0.99 if i %100 ==0: clear_output(True) print('eps =', agent.epsilon, 'mean reward =', np.mean(rewards[-10:])) plt.plot(rewards) plt.show() ###Output eps = 2.9191091959171894e-05 mean reward = 8.6 ###Markdown Submit to Coursera I: Preparation ###Code # from submit import submit_qlearning1 # submit_qlearning1(rewards, '[email protected]', 'Huu92iEvA0q4MRaR') submit_rewards1 = rewards.copy() ###Output _____no_output_____ ###Markdown Binarized state spacesUse agent to train efficiently on CartPole-v0.This environment has a continuous set of possible states, so you will have to group them into bins somehow.The simplest way is to use `round(x,n_digits)` (or numpy round) to round real number to a given amount of digits.The tricky part is to get the n_digits right for each state to train effectively.Note that you don't need to convert state to integers, but to __tuples__ of any kind of values. ###Code env = gym.make("CartPole-v0") n_actions = env.action_space.n print("first state:%s" % (env.reset())) plt.imshow(env.render('rgb_array')) ###Output first state:[ 0.00597526 0.04529618 -0.03786077 -0.02361543] ###Markdown Play a few gamesWe need to estimate observation distributions. To do so, we'll play a few games and record all states. ###Code all_states = [] for _ in range(1000): all_states.append(env.reset()) done = False while not done: s, r, done, _ = env.step(env.action_space.sample()) all_states.append(s) if done: break all_states = np.array(all_states) for obs_i in range(env.observation_space.shape[0]): plt.hist(all_states[:, obs_i], bins=20) plt.show() ###Output _____no_output_____ ###Markdown Binarize environment ###Code from gym.core import ObservationWrapper class Binarizer(ObservationWrapper): def _observation(self, state): #state = <round state to some amount digits.> #hint: you can do that with round(x,n_digits) #you will need to pick a different n_digits for each dimension # the length of the states is 4 # the range of each state is: # 0: -0.5~0.5 # 1: -2~2 # 2: -0.2~0.2 # 3: -3~3 state[0] = round(state[0], 0) state[1] = round(state[1], 1) state[2] = round(state[2], 2) state[3] = round(state[3], 1) return tuple(state) round(3.23, 0) env = Binarizer(gym.make("CartPole-v0")) all_states = [] for _ in range(1000): all_states.append(env.reset()) done = False while not done: s, r, done, _ = env.step(env.action_space.sample()) all_states.append(s) if done: break all_states = np.array(all_states) for obs_i in range(env.observation_space.shape[0]): plt.hist(all_states[:,obs_i],bins=20) plt.show() ###Output _____no_output_____ ###Markdown Learn binarized policyNow let's train a policy that uses binarized state space.__Tips:__ * If your binarization is too coarse, your agent may fail to find optimal policy. In that case, change binarization. * If your binarization is too fine-grained, your agent will take much longer than 1000 steps to converge. You can either increase number of iterations and decrease epsilon decay or change binarization.* Having 10^3 ~ 10^4 distinct states is recommended (`len(QLearningAgent._qvalues)`), but not required. ###Code agent = QLearningAgent(alpha=0.5, epsilon=0.2, discount=0.99, get_legal_actions = lambda s: range(n_actions)) rewards = [] for i in range(1000): rewards.append(play_and_train(env,agent)) #OPTIONAL YOUR CODE: adjust epsilon agent.epsilon *= 0.99 if i %100 ==0: clear_output(True) print('eps =', agent.epsilon, 'mean reward =', np.mean(rewards[-10:])) plt.plot(rewards) plt.show() ###Output eps = 8.11182771568148e-23 mean reward = 16.5 ###Markdown Submit to Coursera II: Submission ###Code # from submit import submit_qlearning2 # submit_qlearning2(rewards, <EMAIL>, <TOKEN>) submit_rewards2 = rewards.copy() from submit import submit_qlearning_all submit_qlearning_all(submit_rewards1, submit_rewards2, '[email protected]', 'A1BY5s3VxpF4jaGI') ###Output Submitted to Coursera platform. See results on assignment page! ###Markdown Q-learningThis notebook will guide you through implementation of vanilla Q-learning algorithm.You need to implement QLearningAgent (follow instructions for each method) and use it on a number of tests below. ###Code #XVFB will be launched if you run on a server import os if type(os.environ.get("DISPLAY")) is not str or len(os.environ.get("DISPLAY"))==0: !bash ../xvfb start %env DISPLAY=:1 import numpy as np import matplotlib.pyplot as plt %matplotlib inline %load_ext autoreload %autoreload 2 %%writefile qlearning.py from collections import defaultdict import random, math import numpy as np class QLearningAgent: def __init__(self, alpha, epsilon, discount, get_legal_actions): """ Q-Learning Agent based on http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html Instance variables you have access to - self.epsilon (exploration prob) - self.alpha (learning rate) - self.discount (discount rate aka gamma) Functions you should use - self.get_legal_actions(state) {state, hashable -> list of actions, each is hashable} which returns legal actions for a state - self.get_qvalue(state,action) which returns Q(state,action) - self.set_qvalue(state,action,value) which sets Q(state,action) := value !!!Important!!! Note: please avoid using self._qValues directly. There's a special self.get_qvalue/set_qvalue for that. """ self.get_legal_actions = get_legal_actions self._qvalues = defaultdict(lambda: defaultdict(lambda: 0)) self.alpha = alpha self.epsilon = epsilon self.discount = discount def get_qvalue(self, state, action): """ Returns Q(state,action) """ return self._qvalues[state][action] def set_qvalue(self,state,action,value): """ Sets the Qvalue for [state,action] to the given value """ self._qvalues[state][action] = value #---------------------START OF YOUR CODE---------------------# def get_value(self, state): """ Compute your agent's estimate of V(s) using current q-values V(s) = max_over_action Q(state,action) over possible actions. Note: please take into account that q-values can be negative. """ possible_actions = self.get_legal_actions(state) #If there are no legal actions, return 0.0 if len(possible_actions) == 0: return 0.0 #<YOUR CODE HERE> value = max(self.get_qvalue(state,action) for action in possible_actions) return value def update(self, state, action, reward, next_state): """ You should do your Q-Value update here: Q(s,a) := (1 - alpha) * Q(s,a) + alpha * (r + gamma * V(s')) """ #agent parameters gamma = self.discount learning_rate = self.alpha #<YOUR CODE HERE> value = (1-learning_rate) * self.get_qvalue(state,action) + learning_rate * (reward + gamma * self.get_value(next_state)) self.set_qvalue(state, action, value) def get_best_action(self, state): """ Compute the best action to take in a state (using current q-values). """ possible_actions = self.get_legal_actions(state) #If there are no legal actions, return None if len(possible_actions) == 0: return None #<YOUR CODE HERE> best_acton = None best_q = float("-inf") for action in possible_actions: cur_q = self.get_qvalue(state,action) if cur_q > best_q: best_q = cur_q best_action = action return best_action def get_action(self, state): """ Compute the action to take in the current state, including exploration. With probability self.epsilon, we should take a random action. otherwise - the best policy action (self.getPolicy). Note: To pick randomly from a list, use random.choice(list). To pick True or False with a given probablity, generate uniform number in [0, 1] and compare it with your probability """ # Pick Action possible_actions = self.get_legal_actions(state) action = random.choice(possible_actions) #If there are no legal actions, return None if len(possible_actions) == 0: return None #agent parameters: epsilon = self.epsilon #<YOUR CODE HERE> if random.random() > epsilon: chosen_action = self.get_best_action(state) else: chosen_action = action return chosen_action ###Output Overwriting qlearning.py ###Markdown Try it on taxiHere we use the qlearning agent on taxi env from openai gym.You will need to insert a few agent functions here. ###Code import gym env = gym.make("Taxi-v2") n_actions = env.action_space.n from qlearning import QLearningAgent agent = QLearningAgent(alpha=0.5, epsilon=0.25, discount=0.99, get_legal_actions = lambda s: range(n_actions)) def play_and_train(env,agent,t_max=10**4): """ This function should - run a full game, actions given by agent's e-greedy policy - train agent using agent.update(...) whenever it is possible - return total reward """ total_reward = 0.0 s = env.reset() for t in range(t_max): # get agent to pick action given state s. a = agent.get_action(s)#<YOUR CODE> next_s, r, done, _ = env.step(a) # train (update) agent for state s #<YOUR CODE HERE> agent.update(s, a, r, next_s) s = next_s total_reward +=r if done: break return total_reward from IPython.display import clear_output rewards = [] for i in range(1000): rewards.append(play_and_train(env, agent)) agent.epsilon *= 0.99 if i %100 ==0: clear_output(True) print('eps =', agent.epsilon, 'mean reward =', np.mean(rewards[-10:])) plt.plot(rewards) plt.show() ###Output eps = 2.9191091959171894e-05 mean reward = 7.3 ###Markdown Submit to Coursera I ###Code #from submit import submit_qlearning1 #submit_qlearning1(rewards, <EMAIL>, <TOKEN>) ###Output _____no_output_____ ###Markdown Binarized state spacesUse agent to train efficiently on CartPole-v0.This environment has a continuous set of possible states, so you will have to group them into bins somehow.The simplest way is to use `round(x,n_digits)` (or numpy round) to round real number to a given amount of digits.The tricky part is to get the n_digits right for each state to train effectively.Note that you don't need to convert state to integers, but to __tuples__ of any kind of values. ###Code env = gym.make("CartPole-v0") n_actions = env.action_space.n print("first state:%s" % (env.reset())) plt.imshow(env.render('rgb_array')) ###Output first state:[ 0.01355154 0.02373539 0.02998196 -0.03050007] ###Markdown Play a few gamesWe need to estimate observation distributions. To do so, we'll play a few games and record all states. ###Code all_states = [] for _ in range(1000): all_states.append(env.reset()) done = False while not done: s, r, done, _ = env.step(env.action_space.sample()) all_states.append(s) if done: break all_states = np.array(all_states) for obs_i in range(env.observation_space.shape[0]): plt.hist(all_states[:, obs_i], bins=20) plt.show() ###Output _____no_output_____ ###Markdown Binarize environment ###Code from gym.core import ObservationWrapper class Binarizer(ObservationWrapper): def _observation(self, state): #state = <round state to some amount digits.> #hint: you can do that with round(x,n_digits) #you will need to pick a different n_digits for each dimension state = [round(v,dig) for v,dig in zip(state,[1,1,2,0])] return tuple(state) env = Binarizer(gym.make("CartPole-v0")) all_states = [] for _ in range(1000): all_states.append(env.reset()) done = False while not done: s, r, done, _ = env.step(env.action_space.sample()) all_states.append(s) if done: break all_states = np.array(all_states) for obs_i in range(env.observation_space.shape[0]): plt.hist(all_states[:,obs_i],bins=20) plt.show() ###Output WARN: <class '__main__.Binarizer'> doesn't implement 'observation' method. Maybe it implements deprecated '_observation' method. ###Markdown Learn binarized policyNow let's train a policy that uses binarized state space.__Tips:__ * If your binarization is too coarse, your agent may fail to find optimal policy. In that case, change binarization. * If your binarization is too fine-grained, your agent will take much longer than 1000 steps to converge. You can either increase number of iterations and decrease epsilon decay or change binarization.* Having 10^3 ~ 10^4 distinct states is recommended (`len(QLearningAgent._qvalues)`), but not required. ###Code agent = QLearningAgent(alpha=0.5, epsilon=0.25, discount=0.99, get_legal_actions= lambda s: range(n_actions)) rewards = [] for i in range(3000): rewards.append(play_and_train(env,agent)) #OPTIONAL YOUR CODE: adjust epsilon if i %20 ==0: agent.epsilon *= 0.99 clear_output(True) print('eps =', agent.epsilon, 'mean reward =', np.mean(rewards[-10:])) plt.plot(rewards) plt.show() ###Output eps = 0.055362946809715236 mean reward = 87.2 ###Markdown Submit to Coursera II ###Code #from submit import submit_qlearning2 #submit_qlearning2(rewards, <EMAIL>, <TOKEN>) ###Output _____no_output_____ ###Markdown Q-learningThis notebook will guide you through implementation of vanilla Q-learning algorithm.You need to implement QLearningAgent (follow instructions for each method) and use it on a number of tests below. ###Code #XVFB will be launched if you run on a server import os if type(os.environ.get("DISPLAY")) is not str or len(os.environ.get("DISPLAY")) == 0: !bash ../xvfb start os.environ['DISPLAY'] = ':1' import numpy as np import matplotlib.pyplot as plt %matplotlib inline %load_ext autoreload %autoreload 2 %%writefile qlearning.py from collections import defaultdict import random, math import numpy as np class QLearningAgent: def __init__(self, alpha, epsilon, discount, get_legal_actions): """ Q-Learning Agent based on http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html Instance variables you have access to - self.epsilon (exploration prob) - self.alpha (learning rate) - self.discount (discount rate aka gamma) Functions you should use - self.get_legal_actions(state) {state, hashable -> list of actions, each is hashable} which returns legal actions for a state - self.get_qvalue(state,action) which returns Q(state,action) - self.set_qvalue(state,action,value) which sets Q(state,action) := value !!!Important!!! Note: please avoid using self._qValues directly. There's a special self.get_qvalue/set_qvalue for that. """ self.get_legal_actions = get_legal_actions self._qvalues = defaultdict(lambda: defaultdict(lambda: 0)) self.alpha = alpha self.epsilon = epsilon self.discount = discount def get_qvalue(self, state, action): """ Returns Q(state,action) """ return self._qvalues[state][action] def set_qvalue(self,state,action,value): """ Sets the Qvalue for [state,action] to the given value """ self._qvalues[state][action] = value #---------------------START OF YOUR CODE---------------------# def get_value(self, state): """ Compute your agent's estimate of V(s) using current q-values V(s) = max_over_action Q(state,action) over possible actions. Note: please take into account that q-values can be negative. """ possible_actions = self.get_legal_actions(state) #If there are no legal actions, return 0.0 if len(possible_actions) == 0: return 0.0 values = [self.get_qvalue(state, action) for action in possible_actions] return np.max(values) def update(self, state, action, reward, next_state): """ You should do your Q-Value update here: Q(s,a) := (1 - alpha) * Q(s,a) + alpha * (r + gamma * V(s')) """ #agent parameters gamma = self.discount learning_rate = self.alpha qvalue = self.get_qvalue(state, action) new_qvalue = (1 - learning_rate) * qvalue + learning_rate * (reward + gamma * self.get_value(next_state)) self.set_qvalue(state, action, new_qvalue) def get_best_action(self, state): """ Compute the best action to take in a state (using current q-values). """ possible_actions = self.get_legal_actions(state) #If there are no legal actions, return None if len(possible_actions) == 0: return None qvalues = [self.get_qvalue(state, possible_actions[i]) for i in range(len(possible_actions))] best_action_idx = np.argmax(qvalues) return possible_actions[best_action_idx] def get_action(self, state): """ Compute the action to take in the current state, including exploration. With probability self.epsilon, we should take a random action. otherwise - the best policy action (self.getPolicy). Note: To pick randomly from a list, use random.choice(list). To pick True or False with a given probablity, generate uniform number in [0, 1] and compare it with your probability """ # Pick Action possible_actions = self.get_legal_actions(state) action = np.random.choice(possible_actions) #If there are no legal actions, return None if len(possible_actions) == 0: return None #agent parameters: epsilon = self.epsilon prob = np.random.uniform(low = 0, high = 1) if epsilon >= prob: chosen_action = action else: chosen_action = self.get_best_action(state) return chosen_action ###Output UsageError: Line magic function `%%writefile` not found. ###Markdown Try it on taxiHere we use the qlearning agent on taxi env from openai gym.You will need to insert a few agent functions here. ###Code import gym env = gym.make("Taxi-v2") n_actions = env.action_space.n from qlearning import QLearningAgent agent = QLearningAgent(alpha=0.5, epsilon=0.25, discount=0.99, get_legal_actions = lambda s: range(n_actions)) def play_and_train(env,agent,t_max=10**4): """ This function should - run a full game, actions given by agent's e-greedy policy - train agent using agent.update(...) whenever it is possible - return total reward """ total_reward = 0.0 s = env.reset() for t in range(t_max): # get agent to pick action given state s. a = agent.get_action(s) next_s, r, done, _ = env.step(a) # train (update) agent for state s agent.update(s, a, r, next_s) s = next_s total_reward +=r if done: break return total_reward from IPython.display import clear_output rewards = [] for i in range(1000): rewards.append(play_and_train(env, agent)) agent.epsilon *= 0.99 if i %100 ==0: clear_output(True) print('eps =', agent.epsilon, 'mean reward =', np.mean(rewards[-10:])) plt.plot(rewards) plt.show() ###Output eps = 1.260215853156675e-09 mean reward = -2000.0 [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] [-2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0, -2000.0] ###Markdown Submit to Coursera I: Preparation ###Code submit_rewards1 = rewards.copy() ###Output _____no_output_____ ###Markdown Binarized state spacesUse agent to train efficiently on CartPole-v0.This environment has a continuous set of possible states, so you will have to group them into bins somehow.The simplest way is to use `round(x,n_digits)` (or numpy round) to round real number to a given amount of digits.The tricky part is to get the n_digits right for each state to train effectively.Note that you don't need to convert state to integers, but to __tuples__ of any kind of values. ###Code env = gym.make("CartPole-v0") n_actions = env.action_space.n print("first state:%s" % (env.reset())) plt.imshow(env.render('rgb_array')) ###Output _____no_output_____ ###Markdown Play a few gamesWe need to estimate observation distributions. To do so, we'll play a few games and record all states. ###Code all_states = [] for _ in range(1000): all_states.append(env.reset()) done = False while not done: s, r, done, _ = env.step(env.action_space.sample()) all_states.append(s) if done: break all_states = np.array(all_states) for obs_i in range(env.observation_space.shape[0]): plt.hist(all_states[:, obs_i], bins=20) plt.show() ###Output _____no_output_____ ###Markdown Binarize environment ###Code from gym.core import ObservationWrapper class Binarizer(ObservationWrapper): def observation(self, state): #state = <round state to some amount digits.> #hint: you can do that with round(x,n_digits) #you will need to pick a different n_digits for each dimension return tuple(state) env = Binarizer(gym.make("CartPole-v0")) all_states = [] for _ in range(1000): all_states.append(env.reset()) done = False while not done: s, r, done, _ = env.step(env.action_space.sample()) all_states.append(s) if done: break all_states = np.array(all_states) for obs_i in range(env.observation_space.shape[0]): plt.hist(all_states[:,obs_i],bins=20) plt.show() ###Output _____no_output_____ ###Markdown Learn binarized policyNow let's train a policy that uses binarized state space.__Tips:__ * If your binarization is too coarse, your agent may fail to find optimal policy. In that case, change binarization. * If your binarization is too fine-grained, your agent will take much longer than 1000 steps to converge. You can either increase number of iterations and decrease epsilon decay or change binarization.* Having 10^3 ~ 10^4 distinct states is recommended (`len(QLearningAgent._qvalues)`), but not required. ###Code agent = QLearningAgent(alpha=0.5, epsilon=0.25, discount=0.99, get_legal_actions=lambda s: range(n_actions)) rewards = [] for i in range(1000): rewards.append(play_and_train(env,agent)) #OPTIONAL YOUR CODE: adjust epsilon if i %100 ==0: clear_output(True) print('eps =', agent.epsilon, 'mean reward =', np.mean(rewards[-10:])) plt.plot(rewards) plt.show() ###Output _____no_output_____ ###Markdown Submit to Coursera II: Submission ###Code submit_rewards2 = rewards.copy() from submit import submit_qlearning submit_qlearning(submit_rewards1, submit_rewards2, <EMAIL>, <TOKEN>) ###Output _____no_output_____
Image classification using SVM's.ipynb
###Markdown Importing modules ###Code import numpy as np import os from pathlib import Path from keras.preprocessing import image from matplotlib import pyplot as plt labels_dict = {'cat':0,'dog':1,'horse':2,'human':3} dirs = os.listdir('Images1') dirs ###Output _____no_output_____ ###Markdown Creating a features array and labels array for all the images ###Code p = Path('Images1') dirs = p.glob('*') labels_dict = {'cat':0,'dog':1,'horse':2,'human':3} images_data = [] labels = [] for folder_dir in dirs: label = str(folder_dir).split('\\')[-1][:-1] for img_path in folder_dir.glob('*.jpg'): img = image.load_img(img_path,target_size = (32,32)) img_array = image.img_to_array(img) images_data.append(img_array) labels.append(labels_dict[label]) images_data = np.array(images_data,dtype='float32')/255.0 labels = np.array(labels) print(images_data.shape) print(labels.shape) import random data = list(zip(images_data,labels)) random.shuffle(data) images_data[:],labels[:] = zip(*data) ###Output _____no_output_____ ###Markdown Visualising some random images ###Code def plotimg(img): from matplotlib import pyplot as plt plt.imshow(img) plt.axis('off') plt.show() return for i in range(10): plotimg(images_data[i]) images_data = images_data.reshape(images_data.shape[0],-1) images_data.shape ###Output _____no_output_____ ###Markdown SVM classifier ###Code class MySVM(): def __init__(self,C=1.0): self.C = C self.W = 0 self.b = 0 def hingeLoss(self,W,b,X,Y): loss = 0.0 loss += .5*np.dot(W,W.T) m = X.shape[0] for i in range(m): ti = Y[i]*(np.dot(W,X[i].T)+b) loss += self.C *max(0,(1-ti)) return loss[0][0] def fit(self,X,Y,batch_size=32,learning_rate=0.0001,maxItr=100): no_of_features = X.shape[1] no_of_samples = X.shape[0] n = learning_rate c = self.C #Init the model parameters W = np.zeros((1,no_of_features)) bias = 0 losses = [] for i in range(maxItr): #Training Loop l = self.hingeLoss(W,bias,X,Y) losses.append(l) ids = np.arange(no_of_samples) np.random.shuffle(ids) #Batch Gradient Descent(Paper) with random shuffling for batch_start in range(0,no_of_samples,batch_size): #Assume 0 gradient for the batch gradw = 0 gradb = 0 #Iterate over all examples in the mini batch for j in range(batch_start,batch_start+batch_size): if j<no_of_samples: i = ids[j] ti = Y[i]*(np.dot(W,X[i].T)+bias) if ti>1: gradw += 0 gradb += 0 else: gradw += c*Y[i]*X[i] gradb += c*Y[i] #Gradient for the batch is ready! Update W,B W = W - n*W + n*gradw bias = bias + n*gradb self.W = W self.b = bias return W,bias,losses classes = np.unique(labels) classes def class_wisedata(x,y): data = {} for i in range(len(classes)): data[i] = [] for i in range(x.shape[0]): data[y[i]].append(x[i]) for k in data.keys(): data[k] = np.array(data[k]) return data data = class_wisedata(images_data,labels) print(data[0].shape) print(data[1].shape) print(data[2].shape) print(data[3].shape) ###Output (202, 3072) (202, 3072) (202, 3072) (202, 3072) ###Markdown For one vs one claasification if we have n classes then we require nc2 classifiers.So in our case we have 4 classes therefore we need 6 classifiers. ###Code #Function for getting data for two classes at a time. def pair_data(d1,d2): l1 = d1.shape[0] l2 = d2.shape[0] samples = l1+l2 features = d1.shape[1] data_pair = np.zeros((samples,features)) data_labels = np.zeros((samples)) data_pair[:l1,:] = d1 data_pair[l1:,:] = d2 data_labels[:l1] = -1 data_labels[l1:] = 1 return data_pair,data_labels ###Output _____no_output_____ ###Markdown Training nc2 SVM classifiers ###Code svm = MySVM() xp, yp = pair_data(data[0], data[1]) w,b,loss = svm.fit(xp,yp,learning_rate=0.0001,maxItr=1000) plt.plot(loss) def train_svms(X,Y): svm_classifiers = {} for i in range(len(classes)): svm_classifiers[i] = {} for j in range(i+1,len(classes)): svm = MySVM() x,y = pair_data(data[i],data[j]) w,b,loss = svm.fit(x,y,learning_rate=0.00001,maxItr=1000) svm_classifiers[i][j] = (w,b) plt.plot(loss) plt.show() return svm_classifiers svm_classifiers = train_svms(images_data,labels) svm_classifiers def binaryPredict(X,w,b): z = np.dot(X,w.T)+b if z>=0: return 1 else: return -1 ###Output _____no_output_____ ###Markdown Creating a predict function for making predictions ###Code def predict(X): counts = np.zeros((len(classes))) for i in range(len(classes)): for j in range(i+1,len(classes)): w,b = svm_classifiers[i][j] z = binaryPredict(X,w,b) if z==-1: counts[i]+=1 else: counts[j]+=1 final_prediction = np.argmax(counts) return final_prediction r = predict(images_data[4]) r labels[4] ###Output _____no_output_____ ###Markdown Defining an accuracy function ###Code def accuracy(x,y): pred = [] count=0 for i in range(x.shape[0]): prediction = predict(x[i]) pred.append(prediction) if prediction==y[i]: count += 1 return count/x.shape[0], pred acc, ypred = accuracy(images_data, labels) print(acc) ###Output 0.6101485148514851
AI for Medical Prognosis/Week3/C2M3_Assignment.ipynb
###Markdown Survival Estimates that Vary with TimeWelcome to the third assignment of Course 2. In this assignment, we'll use Python to build some of the statistical models we learned this past week to analyze surivival estimates for a dataset of lymphoma patients. We'll also evaluate these models and interpret their outputs. Along the way, you will be learning about the following: - Censored Data- Kaplan-Meier Estimates- Subgroup Analysis Outline- [1. Import Packages](1)- [2. Load the Dataset](2)- [3. Censored Data]() - [Exercise 1](Ex-1)- [4. Survival Estimates](4) - [Exercise 2](Ex-2) - [Exercise 3](Ex-3)- [5. Subgroup Analysis](5) - [5.1 Bonus: Log Rank Test](5-1) 1. Import PackagesWe'll first import all the packages that we need for this assignment. - `lifelines` is an open-source library for data analysis.- `numpy` is the fundamental package for scientific computing in python.- `pandas` is what we'll use to manipulate our data.- `matplotlib` is a plotting library. ###Code import lifelines import numpy as np import pandas as pd import matplotlib.pyplot as plt from util import load_data from lifelines import KaplanMeierFitter as KM from lifelines.statistics import logrank_test ###Output _____no_output_____ ###Markdown 2. Load the Dataset Run the next cell to load the lymphoma data set. ###Code data = load_data() ###Output _____no_output_____ ###Markdown As always, you first look over your data. ###Code print("data shape: {}".format(data.shape)) data.head() ###Output data shape: (80, 3) ###Markdown The column `Time` states how long the patient lived before they died or were censored.The column `Event` says whether a death was observed or not. `Event` is 1 if the event is observed (i.e. the patient died) and 0 if data was censored.Censorship here means that the observation has ended without any observed event.For example, let a patient be in a hospital for 100 days at most. If a patient dies after only 44 days, their event will be recorded as `Time = 44` and `Event = 1`. If a patient walks out after 100 days and dies 3 days later (103 days total), this event is not observed in our process and the corresponding row has `Time = 100` and `Event = 0`. If a patient survives for 25 years after being admitted, their data for are still `Time = 100` and `Event = 0`. 3. Censored DataWe can plot a histogram of the survival times to see in general how long cases survived before censorship or events. ###Code data.Time.hist(); plt.xlabel("Observation time before death or censorship (days)"); plt.ylabel("Frequency (number of patients)"); # Note that the semicolon at the end of the plotting line # silences unnecessary textual output - try removing it # to observe its effect ###Output _____no_output_____ ###Markdown Exercise 1In the next cell, write a function to compute the fraction ($\in [0, 1]$) of observations which were censored. Hints Summing up the 'Event' column will give you the number of observations where censorship has NOT occurred. ###Code # UNQ_C1 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def frac_censored(df): """ Return percent of observations which were censored. Args: df (dataframe): dataframe which contains column 'Event' which is 1 if an event occurred (death) 0 if the event did not occur (censored) Returns: frac_censored (float): fraction of cases which were censored. """ result = sum(df['Event']==0)/df.shape[0] ### START CODE HERE ### ### END CODE HERE ### return result print(frac_censored(data)) ###Output 0.325 ###Markdown Expected Output:```CPP0.325``` Run the next cell to see the distributions of survival times for censored and uncensored examples. ###Code df_censored = data[data.Event == 0] df_uncensored = data[data.Event == 1] df_censored.Time.hist() plt.title("Censored") plt.xlabel("Time (days)") plt.ylabel("Frequency") plt.show() df_uncensored.Time.hist() plt.title("Uncensored") plt.xlabel("Time (days)") plt.ylabel("Frequency") plt.show() ###Output _____no_output_____ ###Markdown 4. Survival EstimatesWe'll now try to estimate the survival function:$$S(t) = P(T > t)$$To illustrate the strengths of Kaplan Meier, we'll start with a naive estimator of the above survival function. To estimate this quantity, we'll divide the number of people who we know lived past time $t$ by the number of people who were not censored before $t$.Formally, let $i$ = 1, ..., $n$ be the cases, and let $t_i$ be the time when $i$ was censored or an event happened. Let $e_i= 1$ if an event was observed for $i$ and 0 otherwise. Then let $X_t = \{i : T_i > t\}$, and let $M_t = \{i : e_i = 1 \text{ or } T_i > t\}$. The estimator you will compute will be:$$\hat{S}(t) = \frac{|X_t|}{|M_t|}$$ Exercise 2Write a function to compute this estimate for arbitrary $t$ in the cell below. ###Code # UNQ_C2 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def naive_estimator(t, df): """ Return naive estimate for S(t), the probability of surviving past time t. Given by number of cases who survived past time t divided by the number of cases who weren't censored before time t. Args: t (int): query time df (dataframe): survival data. Has a Time column, which says how long until that case experienced an event or was censored, and an Event column, which is 1 if an event was observed and 0 otherwise. Returns: S_t (float): estimator for survival function evaluated at t. """ S_t = 0.0 X_t = sum(df['Time'] > t) M_t = sum( (df['Time'] > t) | (df['Event'] == 1) ) S_t = X_t / M_t ### START CODE HERE ### ### END CODE HERE ### return S_t print("Test Cases") sample_df = pd.DataFrame(columns = ["Time", "Event"]) sample_df.Time = [5, 10, 15] sample_df.Event = [0, 1, 0] print("Sample dataframe for testing code:") print(sample_df) print("\n") print("Test Case 1: S(3)") print("Output: {}, Expected: {}\n".format(naive_estimator(3, sample_df), 1.0)) print("Test Case 2: S(12)") print("Output: {}, Expected: {}\n".format(naive_estimator(12, sample_df), 0.5)) print("Test Case 3: S(20)") print("Output: {}, Expected: {}\n".format(naive_estimator(20, sample_df), 0.0)) # Test case 4 sample_df = pd.DataFrame({'Time': [5,5,10], 'Event': [0,1,0] }) print("Test case 4: S(5)") print(f"Output: {naive_estimator(5, sample_df)}, Expected: 0.5") ###Output Test Cases Sample dataframe for testing code: Time Event 0 5 0 1 10 1 2 15 0 Test Case 1: S(3) Output: 1.0, Expected: 1.0 Test Case 2: S(12) Output: 0.5, Expected: 0.5 Test Case 3: S(20) Output: 0.0, Expected: 0.0 Test case 4: S(5) Output: 0.5, Expected: 0.5 ###Markdown In the next cell, we will plot the naive estimator using the real data up to the maximum time in the dataset. ###Code max_time = data.Time.max() x = range(0, max_time+1) y = np.zeros(len(x)) for i, t in enumerate(x): y[i] = naive_estimator(t, data) plt.plot(x, y) plt.title("Naive Survival Estimate") plt.xlabel("Time") plt.ylabel("Estimated cumulative survival rate") plt.show() ###Output _____no_output_____ ###Markdown Exercise 3Next let's compare this with the Kaplan Meier estimate. In the cell below, write a function that computes the Kaplan Meier estimate of $S(t)$ at every distinct time in the dataset. Recall the Kaplan-Meier estimate:$$S(t) = \prod_{t_i \leq t} (1 - \frac{d_i}{n_i})$$where $t_i$ are the events observed in the dataset and $d_i$ is the number of deaths at time $t_i$ and $n_i$ is the number of people who we know have survived up to time $t_i$. Hints Try sorting by Time. Use pandas.Series.unique If you get a division by zero error, please double-check how you calculated `n_t` ###Code # UNQ_C3 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def HomemadeKM(df): """ Return KM estimate evaluated at every distinct time (event or censored) recorded in the dataset. Event times and probabilities should begin with time 0 and probability 1. Example: input: Time Censor 0 5 0 1 10 1 2 15 0 correct output: event_times: [0, 5, 10, 15] S: [1.0, 1.0, 0.5, 0.5] Args: df (dataframe): dataframe which has columns for Time and Event, defined as usual. Returns: event_times (list of ints): array of unique event times (begins with 0). S (list of floats): array of survival probabilites, so that S[i] = P(T > event_times[i]). This begins with 1.0 (since no one dies at time 0). """ # individuals are considered to have survival probability 1 # at time 0 event_times = [0] p = 1.0 S = [p] ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # get collection of unique observed event times observed_event_times = df.Time.unique() # sort event times observed_event_times = sorted(observed_event_times) # iterate through event times for t in observed_event_times: # compute n_t, number of people who survive to time t n_t = len(df[df.Time >= t]) # compute d_t, number of people who die at time t d_t = len(df[(df.Time == t) & (df.Event == 1)]) # update p p = p*(1 - (float(d_t)/float(n_t))) # update S and event_times (ADD code below) # hint: use append event_times.append(t) S.append(p) ### END CODE HERE ### return event_times, S print("TEST CASES:\n") print("Test Case 1\n") print("Test DataFrame:") sample_df = pd.DataFrame(columns = ["Time", "Event"]) sample_df.Time = [5, 10, 15] sample_df.Event = [0, 1, 0] print(sample_df.head()) print("\nOutput:") x, y = HomemadeKM(sample_df) print("Event times: {}, Survival Probabilities: {}".format(x, y)) print("\nExpected:") print("Event times: [0, 5, 10, 15], Survival Probabilities: [1.0, 1.0, 0.5, 0.5]") print("\nTest Case 2\n") print("Test DataFrame:") sample_df = pd.DataFrame(columns = ["Time", "Event"]) sample_df.loc[:, "Time"] = [2, 15, 12, 10, 20] sample_df.loc[:, "Event"] = [0, 0, 1, 1, 1] print(sample_df.head()) print("\nOutput:") x, y = HomemadeKM(sample_df) print("Event times: {}, Survival Probabilities: {}".format(x, y)) print("\nExpected:") print("Event times: [0, 2, 10, 12, 15, 20], Survival Probabilities: [1.0, 1.0, 0.75, 0.5, 0.5, 0.0]") ###Output TEST CASES: Test Case 1 Test DataFrame: Time Event 0 5 0 1 10 1 2 15 0 Output: Event times: [0, 5, 10, 15], Survival Probabilities: [1.0, 1.0, 0.5, 0.5] Expected: Event times: [0, 5, 10, 15], Survival Probabilities: [1.0, 1.0, 0.5, 0.5] Test Case 2 Test DataFrame: Time Event 0 2 0 1 15 0 2 12 1 3 10 1 4 20 1 Output: Event times: [0, 2, 10, 12, 15, 20], Survival Probabilities: [1.0, 1.0, 0.75, 0.5, 0.5, 0.0] Expected: Event times: [0, 2, 10, 12, 15, 20], Survival Probabilities: [1.0, 1.0, 0.75, 0.5, 0.5, 0.0] ###Markdown Now let's plot the two against each other on the data to see the difference. ###Code max_time = data.Time.max() x = range(0, max_time+1) y = np.zeros(len(x)) for i, t in enumerate(x): y[i] = naive_estimator(t, data) plt.plot(x, y, label="Naive") x, y = HomemadeKM(data) plt.step(x, y, label="Kaplan-Meier") plt.xlabel("Time") plt.ylabel("Survival probability estimate") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown QuestionWhat differences do you observe between the naive estimator and Kaplan-Meier estimator? Do any of our earlier explorations of the dataset help to explain these differences? 5. Subgroup AnalysisWe see that along with Time and Censor, we have a column called `Stage_group`. - A value of 1 in this column denotes a patient with stage III cancer- A value of 2 denotes stage IV. We want to compare the survival functions of these two groups.This time we'll use the `KaplanMeierFitter` class from `lifelines`. Run the next cell to fit and plot the Kaplan Meier curves for each group. ###Code S1 = data[data.Stage_group == 1] km1 = KM() km1.fit(S1.loc[:, 'Time'], event_observed = S1.loc[:, 'Event'], label = 'Stage III') S2 = data[data.Stage_group == 2] km2 = KM() km2.fit(S2.loc[:, "Time"], event_observed = S2.loc[:, 'Event'], label = 'Stage IV') ax = km1.plot(ci_show=False) km2.plot(ax = ax, ci_show=False) plt.xlabel('time') plt.ylabel('Survival probability estimate') plt.savefig('two_km_curves', dpi=300) ###Output _____no_output_____ ###Markdown Let's compare the survival functions at 90, 180, 270, and 360 days ###Code survivals = pd.DataFrame([90, 180, 270, 360], columns = ['time']) survivals.loc[:, 'Group 1'] = km1.survival_function_at_times(survivals['time']).values survivals.loc[:, 'Group 2'] = km2.survival_function_at_times(survivals['time']).values survivals ###Output _____no_output_____ ###Markdown This makes clear the difference in survival between the Stage III and IV cancer groups in the dataset. 5.1 Bonus: Log-Rank TestTo say whether there is a statistical difference between the survival curves we can run the log-rank test. This test tells us the probability that we could observe this data if the two curves were the same. The derivation of the log-rank test is somewhat complicated, but luckily `lifelines` has a simple function to compute it. Run the next cell to compute a p-value using `lifelines.statistics.logrank_test`. ###Code def logrank_p_value(group_1_data, group_2_data): result = logrank_test(group_1_data.Time, group_2_data.Time, group_1_data.Event, group_2_data.Event) return result.p_value logrank_p_value(S1, S2) ###Output _____no_output_____ ###Markdown Survival Estimates that Vary with TimeWelcome to the third assignment of Course 2. In this assignment, we'll use Python to build some of the statistical models we learned this past week to analyze surivival estimates for a dataset of lymphoma patients. We'll also evaluate these models and interpret their outputs. Along the way, you will be learning about the following: - Censored Data- Kaplan-Meier Estimates- Subgroup Analysis Outline- [1. Import Packages](1)- [2. Load the Dataset](2)- [3. Censored Data]() - [Exercise 1](Ex-1)- [4. Survival Estimates](4) - [Exercise 2](Ex-2) - [Exercise 3](Ex-3)- [5. Subgroup Analysis](5) - [5.1 Bonus: Log Rank Test](5-1) 1. Import PackagesWe'll first import all the packages that we need for this assignment. - `lifelines` is an open-source library for data analysis.- `numpy` is the fundamental package for scientific computing in python.- `pandas` is what we'll use to manipulate our data.- `matplotlib` is a plotting library. ###Code import lifelines import numpy as np import pandas as pd import matplotlib.pyplot as plt from util import load_data from lifelines import KaplanMeierFitter as KM from lifelines.statistics import logrank_test ###Output _____no_output_____ ###Markdown 2. Load the Dataset Run the next cell to load the lymphoma data set. ###Code data = load_data() ###Output _____no_output_____ ###Markdown As always, you first look over your data. ###Code print("data shape: {}".format(data.shape)) data.head() ###Output data shape: (80, 3) ###Markdown The column `Time` states how long the patient lived before they died or were censored.The column `Event` says whether a death was observed or not. `Event` is 1 if the event is observed (i.e. the patient died) and 0 if data was censored.Censorship here means that the observation has ended without any observed event.For example, let a patient be in a hospital for 100 days at most. If a patient dies after only 44 days, their event will be recorded as `Time = 44` and `Event = 1`. If a patient walks out after 100 days and dies 3 days later (103 days total), this event is not observed in our process and the corresponding row has `Time = 100` and `Event = 0`. If a patient survives for 25 years after being admitted, their data for are still `Time = 100` and `Event = 0`. 3. Censored DataWe can plot a histogram of the survival times to see in general how long cases survived before censorship or events. ###Code data.Time.hist(); plt.xlabel("Observation time before death or censorship (days)"); plt.ylabel("Frequency (number of patients)"); # Note that the semicolon at the end of the plotting line # silences unnecessary textual output - try removing it # to observe its effect ###Output _____no_output_____ ###Markdown Exercise 1In the next cell, write a function to compute the fraction ($\in [0, 1]$) of observations which were censored. Hints Summing up the 'Event' column will give you the number of observations where censorship has NOT occurred. ###Code # UNQ_C1 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def frac_censored(df): """ Return percent of observations which were censored. Args: df (dataframe): dataframe which contains column 'Event' which is 1 if an event occurred (death) 0 if the event did not occur (censored) Returns: frac_censored (float): fraction of cases which were censored. """ result = 0.0 ### START CODE HERE ### result = 1 - df["Event"].sum(axis=0) / df.shape[0] ### END CODE HERE ### return result print(frac_censored(data)) ###Output 0.32499999999999996 ###Markdown Expected Output:```CPP0.325``` Run the next cell to see the distributions of survival times for censored and uncensored examples. ###Code df_censored = data[data.Event == 0] df_uncensored = data[data.Event == 1] df_censored.Time.hist() plt.title("Censored") plt.xlabel("Time (days)") plt.ylabel("Frequency") plt.show() df_uncensored.Time.hist() plt.title("Uncensored") plt.xlabel("Time (days)") plt.ylabel("Frequency") plt.show() ###Output _____no_output_____ ###Markdown 4. Survival EstimatesWe'll now try to estimate the survival function:$$S(t) = P(T > t)$$To illustrate the strengths of Kaplan Meier, we'll start with a naive estimator of the above survival function. To estimate this quantity, we'll divide the number of people who we know lived past time $t$ by the number of people who were not censored before $t$.Formally, let $i$ = 1, ..., $n$ be the cases, and let $t_i$ be the time when $i$ was censored or an event happened. Let $e_i= 1$ if an event was observed for $i$ and 0 otherwise. Then let $X_t = \{i : T_i > t\}$, and let $M_t = \{i : e_i = 1 \text{ or } T_i > t\}$. The estimator you will compute will be:$$\hat{S}(t) = \frac{|X_t|}{|M_t|}$$ Exercise 2Write a function to compute this estimate for arbitrary $t$ in the cell below. ###Code # UNQ_C2 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def naive_estimator(t, df): """ Return naive estimate for S(t), the probability of surviving past time t. Given by number of cases who survived past time t divided by the number of cases who weren't censored before time t. Args: t (int): query time df (dataframe): survival data. Has a Time column, which says how long until that case experienced an event or was censored, and an Event column, which is 1 if an event was observed and 0 otherwise. Returns: S_t (float): estimator for survival function evaluated at t. """ S_t = 0.0 ### START CODE HERE ### S_t = df[df["Time"] > t].shape[0] / df[(df["Event"] == 1) | (df["Time"] > t )].shape[0] ### END CODE HERE ### return S_t print("Test Cases") sample_df = pd.DataFrame(columns = ["Time", "Event"]) sample_df.Time = [5, 10, 15] sample_df.Event = [0, 1, 0] print("Sample dataframe for testing code:") print(sample_df) print("\n") print("Test Case 1: S(3)") print("Output: {}, Expected: {}\n".format(naive_estimator(3, sample_df), 1.0)) print("Test Case 2: S(12)") print("Output: {}, Expected: {}\n".format(naive_estimator(12, sample_df), 0.5)) print("Test Case 3: S(20)") print("Output: {}, Expected: {}\n".format(naive_estimator(20, sample_df), 0.0)) # Test case 4 sample_df = pd.DataFrame({'Time': [5,5,10], 'Event': [0,1,0] }) print("Test case 4: S(5)") print(f"Output: {naive_estimator(5, sample_df)}, Expected: 0.5") ###Output Test Cases Sample dataframe for testing code: Time Event 0 5 0 1 10 1 2 15 0 Test Case 1: S(3) Output: 1.0, Expected: 1.0 Test Case 2: S(12) Output: 0.5, Expected: 0.5 Test Case 3: S(20) Output: 0.0, Expected: 0.0 Test case 4: S(5) Output: 0.5, Expected: 0.5 ###Markdown In the next cell, we will plot the naive estimator using the real data up to the maximum time in the dataset. ###Code max_time = data.Time.max() x = range(0, max_time+1) y = np.zeros(len(x)) for i, t in enumerate(x): y[i] = naive_estimator(t, data) plt.plot(x, y) plt.title("Naive Survival Estimate") plt.xlabel("Time") plt.ylabel("Estimated cumulative survival rate") plt.show() ###Output _____no_output_____ ###Markdown Exercise 3Next let's compare this with the Kaplan Meier estimate. In the cell below, write a function that computes the Kaplan Meier estimate of $S(t)$ at every distinct time in the dataset. Recall the Kaplan-Meier estimate:$$S(t) = \prod_{t_i \leq t} (1 - \frac{d_i}{n_i})$$where $t_i$ are the events observed in the dataset and $d_i$ is the number of deaths at time $t_i$ and $n_i$ is the number of people who we know have survived up to time $t_i$. Hints Try sorting by Time. Use pandas.Series.unique If you get a division by zero error, please double-check how you calculated `n_t` ###Code # UNQ_C3 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def HomemadeKM(df): """ Return KM estimate evaluated at every distinct time (event or censored) recorded in the dataset. Event times and probabilities should begin with time 0 and probability 1. Example: input: Time Censor 0 5 0 1 10 1 2 15 0 correct output: event_times: [0, 5, 10, 15] S: [1.0, 1.0, 0.5, 0.5] Args: df (dataframe): dataframe which has columns for Time and Event, defined as usual. Returns: event_times (list of ints): array of unique event times (begins with 0). S (list of floats): array of survival probabilites, so that S[i] = P(T > event_times[i]). This begins with 1.0 (since no one dies at time 0). """ # individuals are considered to have survival probability 1 # at time 0 event_times = [0] p = 1.0 S = [p] ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # get collection of unique observed event times observed_event_times = df["Time"].unique().tolist() # sort event times observed_event_times = sorted(observed_event_times) # iterate through event times for t in observed_event_times: # compute n_t, number of people who survive to time t n_t = df[df["Time"] >= t].shape[0] # compute d_t, number of people who die at time t d_t = df[(df["Time"] == t) & (df["Event"] == 1)].shape[0] # update p p = p * (1 - d_t / n_t) # update S and event_times (ADD code below) # hint: use append S.append(p) event_times.append(t) ### END CODE HERE ### return event_times, S print("TEST CASES:\n") print("Test Case 1\n") print("Test DataFrame:") sample_df = pd.DataFrame(columns = ["Time", "Event"]) sample_df.Time = [5, 10, 15] sample_df.Event = [0, 1, 0] print(sample_df.head()) print("\nOutput:") x, y = HomemadeKM(sample_df) print("Event times: {}, Survival Probabilities: {}".format(x, y)) print("\nExpected:") print("Event times: [0, 5, 10, 15], Survival Probabilities: [1.0, 1.0, 0.5, 0.5]") print("\nTest Case 2\n") print("Test DataFrame:") sample_df = pd.DataFrame(columns = ["Time", "Event"]) sample_df.loc[:, "Time"] = [2, 15, 12, 10, 20] sample_df.loc[:, "Event"] = [0, 0, 1, 1, 1] print(sample_df.head()) print("\nOutput:") x, y = HomemadeKM(sample_df) print("Event times: {}, Survival Probabilities: {}".format(x, y)) print("\nExpected:") print("Event times: [0, 2, 10, 12, 15, 20], Survival Probabilities: [1.0, 1.0, 0.75, 0.5, 0.5, 0.0]") ###Output TEST CASES: Test Case 1 Test DataFrame: Time Event 0 5 0 1 10 1 2 15 0 Output: Event times: [0, 5, 10, 15], Survival Probabilities: [1.0, 1.0, 0.5, 0.5] Expected: Event times: [0, 5, 10, 15], Survival Probabilities: [1.0, 1.0, 0.5, 0.5] Test Case 2 Test DataFrame: Time Event 0 2 0 1 15 0 2 12 1 3 10 1 4 20 1 Output: Event times: [0, 2, 10, 12, 15, 20], Survival Probabilities: [1.0, 1.0, 0.75, 0.5, 0.5, 0.0] Expected: Event times: [0, 2, 10, 12, 15, 20], Survival Probabilities: [1.0, 1.0, 0.75, 0.5, 0.5, 0.0] ###Markdown Now let's plot the two against each other on the data to see the difference. ###Code max_time = data.Time.max() x = range(0, max_time+1) y = np.zeros(len(x)) for i, t in enumerate(x): y[i] = naive_estimator(t, data) plt.plot(x, y, label="Naive") x, y = HomemadeKM(data) plt.step(x, y, label="Kaplan-Meier") plt.xlabel("Time") plt.ylabel("Survival probability estimate") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown QuestionWhat differences do you observe between the naive estimator and Kaplan-Meier estimator? Do any of our earlier explorations of the dataset help to explain these differences? 5. Subgroup AnalysisWe see that along with Time and Censor, we have a column called `Stage_group`. - A value of 1 in this column denotes a patient with stage III cancer- A value of 2 denotes stage IV. We want to compare the survival functions of these two groups.This time we'll use the `KaplanMeierFitter` class from `lifelines`. Run the next cell to fit and plot the Kaplan Meier curves for each group. ###Code S1 = data[data.Stage_group == 1] km1 = KM() km1.fit(S1.loc[:, 'Time'], event_observed = S1.loc[:, 'Event'], label = 'Stage III') S2 = data[data.Stage_group == 2] km2 = KM() km2.fit(S2.loc[:, "Time"], event_observed = S2.loc[:, 'Event'], label = 'Stage IV') ax = km1.plot(ci_show=False) km2.plot(ax = ax, ci_show=False) plt.xlabel('time') plt.ylabel('Survival probability estimate') plt.savefig('two_km_curves', dpi=300) ###Output _____no_output_____ ###Markdown Let's compare the survival functions at 90, 180, 270, and 360 days ###Code survivals = pd.DataFrame([90, 180, 270, 360], columns = ['time']) survivals.loc[:, 'Group 1'] = km1.survival_function_at_times(survivals['time']).values survivals.loc[:, 'Group 2'] = km2.survival_function_at_times(survivals['time']).values survivals ###Output _____no_output_____ ###Markdown This makes clear the difference in survival between the Stage III and IV cancer groups in the dataset. 5.1 Bonus: Log-Rank TestTo say whether there is a statistical difference between the survival curves we can run the log-rank test. This test tells us the probability that we could observe this data if the two curves were the same. The derivation of the log-rank test is somewhat complicated, but luckily `lifelines` has a simple function to compute it. Run the next cell to compute a p-value using `lifelines.statistics.logrank_test`. ###Code def logrank_p_value(group_1_data, group_2_data): result = logrank_test(group_1_data.Time, group_2_data.Time, group_1_data.Event, group_2_data.Event) return result.p_value logrank_p_value(S1, S2) ###Output _____no_output_____
notebooks/MODIS Smoke Classifier.ipynb
###Markdown ObjectivesIn this notebook various approaches for classifying smoke in multispectral MODIS images are investigated. This evluation of the classification is being performed on a manually labelled dataset taken from MODIS observations over North and South America during the fire seasons of 2014. In each image pixel samples were taken from smoke and smoke free areas, with both being labelled separately. Using this labelled data we hope to generate a suitable classifier.The classifier will be applied in the generation of smoke plume masks, which in turn will be used to find conincidences between MODIS pixels and either AERONET of CALIOP observations of smoke. Using these collocated data we can then perform an evaluation of the ORAC AOD retrieval LUTS and determine which is most appropriate and provide an indication of how well it performs. Furthermore, we can potentially use the collocated AERONET observations to provide an improved LUT for smoke, which would be ideal. The initial classifier that will be tested in the random forest approach (an ensemble of decision trees). This approach has a number of benefits, one of the main ones being that it does relatively well out of the box and there are not many hyperparemters to tune in order to get a good fit. It is also rather fast to train, and apply (check this!). ###Code # add the working code to path import sys sys.path.append("/Users/dnf/Projects/kcl-fire-aot/src") import os import pickle import pandas as pd import numpy as np from pyhdf.SD import SD, SDC import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn import metrics from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from scipy import ndimage import config.filepaths as filepaths import GLCM.Textures as textures import config.sensor as sensor %matplotlib inline ###Output _____no_output_____ ###Markdown Data SetupFirst lets read in the dataframe containing the labelled channels, and then pare these channels down to an initial set that likely contain the most useful information. Attempted PCA and led to a significant degradation in the qaulity of the results. Also, the trained random forest is fast to apply to all channels, faster even than the PCA compute time. So no point in playing around to try and make it work. ###Code # set region based on sensor MAKE SURE TO UPDATE SENSOR IN THE CODE (i.e. sensor.sensor file variable) if sensor.sensor == 'goes': region = 'Americas' elif sensor.sensor == 'himawari': region = 'Asia' # the filepath on this may need hardcoding as what if we change sensor in this notebook, but have not changed # sensor in the code! df = pd.read_pickle('/Users/dnf/Projects/kcl-fire-aot/data/Americas/interim/classification_features.pickle') df.head() channels = [1,2,3,4,5,7,20,22,23,31,32,33,34,35, 'glcm_correlation', 'glcm_dissimilarity', 'glcm_variance'] X = df[channels] y = df["smoke_flag"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) ###Output _____no_output_____ ###Markdown Model setup ###Code # Initialize our model with 32 trees rf = RandomForestClassifier(n_estimators=500, oob_score=True, n_jobs=3) # Fit our model to training data rf = rf.fit(X_train, y_train) pickle.dump(rf, open('/Users/dnf/Projects/kcl-fire-aot/data/{0}/models/rf_model_500_trees.pickle'.format(region), 'wb')) rf = pickle.load(open('/Users/dnf/Projects/kcl-fire-aot/data/Americas/models/rf_model_32_trees.pickle', 'rb')) ###Output _____no_output_____ ###Markdown Model evaluation ###Code print('Our OOB prediction of accuracy is: {oob}%'.format(oob=rf.oob_score_ * 100)) for c, imp in zip(channels, rf.feature_importances_): print('Band {c} importance: {imp}'.format(c=c, imp=imp)) # Setup a dataframe -- just like R n_est = 32, max_d = None df = pd.DataFrame() df['truth'] = y_test df['predict'] = rf.predict(X_test) # Cross-tabulate predictions print(pd.crosstab(df['truth'], df['predict'], margins=True)) # testing score score = metrics.f1_score(y_test, rf.predict(X_test)) # training score score_train = metrics.f1_score(y_train, rf.predict(X_train)) print score, score_train pscore = metrics.accuracy_score(y_test, rf.predict(X_test)) pscore_train = metrics.accuracy_score(y_train, rf.predict(X_train)) print pscore, pscore_train ###Output 0.999528931177 0.999521738857 ###Markdown Some key outcomes: The fewer the trees the quicker the application. There is not much difference between having 32 and 200+ trees, perhaps at most a few percent, which is not important for our application, rather speed is. Hence, 32 is preferred over larger numbers of tree so that we can process the images in a more timely fashion. The key parameter is the max depth of the trees, limiting the max depth really affects the classification accuracy on the test data. So, best to let the random forest figure out the number of trees to use and not to mess around with it too much Image testLets test in on some MODIS scenes and see what outcomes we get. ###Code def generate_textures(mod_chan_data, i): image = mod_chan_data[i, :, :] texture_generator = textures.CooccurenceMatrixTextures(image) measures = [] names = ['glcm_dissimilarity', 'glcm_correlation', 'glcm_variance', 'glcm_mean'] diss = texture_generator.getDissimlarity() print 'dis shape', diss.shape corr, var, mean = texture_generator.getCorrVarMean() for measure in [diss, corr, var, mean]: measures.append(measure.flatten()) return measures, names mod_path = '/Users/dnf/Projects/kcl-fire-aot/data/Americas/raw/modis/l1b/' #mod_file = 'MYD021KM.A2014126.1855.006.2014127191958.hdf' mod_file = 'MYD021KM.A2014217.2020.006.2014218152754.hdf' #mod_file = 'MYD021KM.A2014231.1655.006.2014232153729.hdf' #mod_file = 'MYD021KM.A2014236.1710.006.2014237152811.hdf' #mod_file = 'MYD021KM.A2014252.1710.006.2014253145416.hdf' #mod_file = 'MYD021KM.A2014257.2105.006.2014268131515.hdf' path_mod_data = os.path.join(mod_path, mod_file) modis_data = SD(path_mod_data, SDC.READ) holding_dict = dict() for chan_band_name, chan_data_name in zip(['Band_250M', 'Band_500M', 'Band_1KM_Emissive'], ['EV_250_Aggr1km_RefSB', 'EV_500_Aggr1km_RefSB', 'EV_1KM_Emissive']): mod_chan_band = modis_data.select(chan_band_name).get() mod_chan_data = modis_data.select(chan_data_name).get() for i, band in enumerate(mod_chan_band): if band == 3: im_for_show = mod_chan_data[i, :, :] print 'im shape', im_for_show.shape # let generate GLCM texture measures for MODIS band 8 texture_measure, keys = generate_textures(mod_chan_data, i) for i, k in enumerate(keys): if k in holding_dict: holding_dict[k].extend(list(texture_measure[i])) else: holding_dict[k] = list(texture_measure[i]) # check to see if we are working with a plume subset or an entire image data_for_band = mod_chan_data[i, :, :] data_for_band = data_for_band.flatten() if band in holding_dict: holding_dict[band].extend(list(data_for_band)) else: holding_dict[band] = list(data_for_band) test_df = pd.DataFrame.from_dict(holding_dict) test_df = test_df[channels] test_df.shape smoke_mask = rf.predict(test_df) smoke_mask = smoke_mask.reshape((2030, 1354)) ###Output _____no_output_____ ###Markdown Last thing - do an erosion dilation to get rid of the single pixel noise in the scene. ###Code smoke_mask = ndimage.binary_erosion(smoke_mask) smoke_mask = ndimage.binary_dilation(smoke_mask) fig = plt.figure(figsize=(25,12)) plt.imshow(smoke_mask, cmap='gray', interpolation='none') plt.savefig('smoke_mask.png', bbox_inches='tight') plt.imshow(im_for_show, cmap='gray', interpolation='none') plt.show() ###Output _____no_output_____ ###Markdown References Image classification with Random Forests: http://ceholden.github.io/open-geo-tutorial/python/chapter_5_classification.htmlClassification Score on random forests: https://stats.stackexchange.com/questions/125756/classification-score-for-random-forestParameter tuning in random forests: https://stackoverflow.com/questions/36107820/how-to-tune-parameters-in-random-forest-using-scikit-learnSplitting datasets for cross validation: https://stats.stackexchange.com/questions/95797/how-to-split-the-dataset-for-cross-validation-learning-curve-and-final-evaluat ###Code ###Output _____no_output_____
Pandas to Spark.ipynb
###Markdown 前言本文主要讨论如何把pandas移植到spark, 他们的dataframe共有一些特性如操作方法和模式。pandas的灵活性比spark强, 但是经过一些改动spark基本上能完成相同的工作。同时又兼具了扩展性的优势,当然他们的语法和用法稍稍有些不同。 主要不同处: 分布式处理pandas只能单机处理, 把dataframe放进内存计算。spark是集群分布式地,可以处理的数据可以大大超出集群的内存数。 懒执行spark不执行任何`transformation`直到需要运行`action`方法,`action`一般是存储或者展示数据的操作。这种将`transformation`延后的做法可以让spark调度知道所有的执行情况,用于优化执行顺序和读取需要的数据。懒执行也是scala的特性之一。通常,在pandas我们总是和数据打交道, 而在spark,我们总是在改变产生数据的执行计划。 数据不可变scala的函数式编程通常倾向使用不可变对象, 每一个spark transformation会返回一个新的dataframe(除了一些meta info会改变) 没有索引spark是没有索引概念的. 单条数据索引不方便pandas可以快速使用索引找到数据,spark没有这个功能,因为在spark主要操作的是执行计划来展示数据, 而不是数据本身。 spark sql因为有了SQL功能的支持, spark更接近关系型数据库。 pandas和pyspark使用的一些例子 ###Code import pandas as pd import pyspark.sql import pyspark.sql.functions as sf from pyspark.sql import SparkSession ###Output _____no_output_____ ###Markdown Projectionspandas的投影可以直接通过[]操作 ###Code person_pd = pd.read_csv('data/persons.csv') person_pd[["name", "sex", "age"]] ###Output _____no_output_____ ###Markdown pyspark也可以直接`[]`来选取投影, 但是这是一个语法糖, 实际是用了`select`方法 ###Code spark = SparkSession.builder \ .master("local[*]") \ .config("spark.driver.memory","6G") \ .getOrCreate() #person_pd[['age','name']] person_sp = spark.read.option("inferSchema", True) \ .option("header", True) \ .csv('data/persons.csv') person_sp.show() person_sp[['age', 'name']].show() ###Output +---+-------+ |age| name| +---+-------+ | 23| Alice| | 21| Bob| | 27|Charlie| | 24| Eve| | 19|Frances| | 31| George| +---+-------+ ###Markdown 简单transformation spark的`dataframe.select`实际上接受任何column对象, 一个column对象概念上是dataframe的一列。一列可以是dataframe的一列输入,也可以是一个计算结果或者多个列的transformation结果。 以改变一列为大写为例: ###Code ret = pd.DataFrame(person_pd['name'].apply(lambda x: x.upper())) ret result = person_sp.select( sf.upper(person_sp.name) ) result.show() ###Output +-----------+ |upper(name)| +-----------+ | ALICE| | BOB| | CHARLIE| | EVE| | FRANCES| | GEORGE| +-----------+ ###Markdown 给dataframe增加一列 pandas给dataframe增加一列很方便,直接给df赋值就行了。spark需要使用`withColumn`函数。 ###Code def create_salutation(row): sex = row[0] name = row[1] if sex == 'male': return 'Mr '+name else: return "Mrs "+name result = person_pd.copy() result['salutation'] = result[['sex','name']].apply(create_salutation, axis=1, result_type='expand') result result = person_sp.withColumn( "salutation", sf.concat(sf.when(person_sp.sex == 'male', "Mr ").otherwise("Mrs "), person_sp.name) ) result.show() ###Output +---+------+-------+------+-----------+ |age|height| name| sex| salutation| +---+------+-------+------+-----------+ | 23| 156| Alice|female| Mrs Alice| | 21| 181| Bob| male| Mr Bob| | 27| 176|Charlie| male| Mr Charlie| | 24| 167| Eve|female| Mrs Eve| | 19| 172|Frances|female|Mrs Frances| | 31| 191| George| male| Mr George| +---+------+-------+------+-----------+ ###Markdown 过滤 ###Code result = person_pd[person_pd['age'] > 20] result ###Output _____no_output_____ ###Markdown spark支持三种过滤写法 ###Code person_sp.filter(person_sp['age'] > 20).show() person_sp[person_sp['age'] > 20].show() person_sp.filter('age > 20').show() ###Output +---+------+-------+------+ |age|height| name| sex| +---+------+-------+------+ | 23| 156| Alice|female| | 21| 181| Bob| male| | 27| 176|Charlie| male| | 24| 167| Eve|female| | 31| 191| George| male| +---+------+-------+------+ ###Markdown 分组和聚合 类似sql中的`select aggregation Group by grouping`语句功能,pandas和spark都定义了一些聚合函数,如:- count- sum- avg- corr- first- last可以具体查看[PySpark Function Documentation](http://spark.apache.org/docs/latest/api/python/pyspark.sql.htmlmodule-pyspark.sql.functions) ###Code result = person_pd.groupby('sex').agg({'age': 'mean', 'height':['min', 'max']}) result from pyspark.sql.functions import avg, min, max result = person_sp.groupBy(person_sp.sex).agg(min(person_sp.height).alias('min height'), max(person_sp.height).alias('max height'), avg(person_sp.age)) result.show() person_sp.show() ###Output +---+------+-------+------+ |age|height| name| sex| +---+------+-------+------+ | 23| 156| Alice|female| | 21| 181| Bob| male| | 27| 176|Charlie| male| | 24| 167| Eve|female| | 19| 172|Frances|female| | 31| 191| George| male| +---+------+-------+------+ ###Markdown join spark也支持跨dataframe做join, 让我们加个数据作例子。 ###Code addresses = spark.read.json('data/addresses.json') addresses_pd = addresses.toPandas() addresses_pd pd_join = person_pd.merge(addresses_pd, left_on=['name'], right_on=['name']) pd_join sp_join = person_sp.join(addresses, person_sp.name==addresses.name) sp_join.show() sp_join_1 = person_sp.join(addresses, on=['name']) sp_join_1.show() ###Output +---+------+-----+------+---------+-----+ |age|height| name| sex| city| name| +---+------+-----+------+---------+-----+ | 23| 156|Alice|female| Hamburg|Alice| | 21| 181| Bob| male|Frankfurt| Bob| +---+------+-----+------+---------+-----+ +-----+---+------+------+---------+ | name|age|height| sex| city| +-----+---+------+------+---------+ |Alice| 23| 156|female| Hamburg| | Bob| 21| 181| male|Frankfurt| +-----+---+------+------+---------+ ###Markdown 重装dataframe pandas可以很方便地将现有的一列数据赋给一个新的列, 但是spark做起来不是很方便,需要join操作。 ###Code df = person_pd[['name', 'age']] col = person_pd['height'] result = df.copy() result['h2'] = col result df = person_sp[['name', 'age']] col = person_sp[['name', 'height']] result = df.join(col, on=['name']) result.show() ###Output +-------+---+------+ | name|age|height| +-------+---+------+ | Alice| 23| 156| | Bob| 21| 181| |Charlie| 27| 176| | Eve| 24| 167| |Frances| 19| 172| | George| 31| 191| +-------+---+------+ ###Markdown 前言本文主要讨论如何把pandas移植到spark, 他们的dataframe共有一些特性如操作方法和模式。pandas的灵活性比spark强, 但是经过一些改动spark基本上能完成相同的工作。同时又兼具了扩展性的优势,当然他们的语法和用法稍稍有些不同。 主要不同处: 分布式处理pandas只能单机处理, 把dataframe放进内存计算。spark是集群分布式地,可以处理的数据可以大大超出集群的内存数。 懒执行spark不执行任何`transformation`直到需要运行`action`方法,`action`一般是存储或者展示数据的操作。这种将`transformation`延后的做法可以让spark调度知道所有的执行情况,用于优化执行顺序和读取需要的数据。懒执行也是scala的特性之一。通常,在pandas我们总是和数据打交道, 而在spark,我们总是在改变产生数据的执行计划。 数据不可变scala的函数式编程通常倾向使用不可变对象, 每一个spark transformation会返回一个新的dataframe(除了一些meta info会改变) 没有索引spark是没有索引概念的. 单条数据索引不方便pandas可以快速使用索引找到数据,spark没有这个功能,因为在spark主要操作的是执行计划来展示数据, 而不是数据本身。 spark sql因为有了SQL功能的支持, spark更接近关系型数据库。 pandas和pyspark使用的一些例子 ###Code import pandas as pd import pyspark.sql import pyspark.sql.functions as sf from pyspark.sql import SparkSession ###Output _____no_output_____ ###Markdown Projectionspandas的投影可以直接通过[]操作 ###Code person_pd = pd.read_csv('data/persons.csv') person_pd[["name", "sex", "age"]] ###Output _____no_output_____ ###Markdown pyspark也可以直接`[]`来选取投影, 但是这是一个语法糖, 实际是用了`select`方法 ###Code spark = SparkSession.builder \ .master("local[*]") \ .config("spark.driver.memory","6G") \ .getOrCreate() #person_pd[['age','name']] person_sp = spark.read.option("inferSchema", True) \ .option("header", True) \ .csv('data/persons.csv') person_sp.show() person_sp[['age', 'name']].show() ###Output +---+-------+ |age| name| +---+-------+ | 23| Alice| | 21| Bob| | 27|Charlie| | 24| Eve| | 19|Frances| | 31| George| +---+-------+ ###Markdown 简单transformation spark的`dataframe.select`实际上接受任何column对象, 一个column对象概念上是dataframe的一列。一列可以是dataframe的一列输入,也可以是一个计算结果或者多个列的transformation结果。 以改变一列为大写为例: ###Code ret = pd.DataFrame(person_pd['name'].apply(lambda x: x.upper())) ret result = person_sp.select( sf.upper(person_sp.name) ) result.show() ###Output +-----------+ |upper(name)| +-----------+ | ALICE| | BOB| | CHARLIE| | EVE| | FRANCES| | GEORGE| +-----------+ ###Markdown 给dataframe增加一列 pandas给dataframe增加一列很方便,直接给df赋值就行了。spark需要使用`withColumn`函数。 ###Code def create_salutation(row): sex = row[0] name = row[1] if sex == 'male': return 'Mr '+name else: return "Mrs "+name result = person_pd.copy() result['salutation'] = result[['sex','name']].apply(create_salutation, axis=1, result_type='expand') result result = person_sp.withColumn( "salutation", sf.concat(sf.when(person_sp.sex == 'male', "Mr ").otherwise("Mrs "), person_sp.name) ) result.show() ###Output +---+------+-------+------+-----------+ |age|height| name| sex| salutation| +---+------+-------+------+-----------+ | 23| 156| Alice|female| Mrs Alice| | 21| 181| Bob| male| Mr Bob| | 27| 176|Charlie| male| Mr Charlie| | 24| 167| Eve|female| Mrs Eve| | 19| 172|Frances|female|Mrs Frances| | 31| 191| George| male| Mr George| +---+------+-------+------+-----------+ ###Markdown 过滤 ###Code result = person_pd[person_pd['age'] > 20] result ###Output _____no_output_____ ###Markdown spark支持三种过滤写法 ###Code person_sp.filter(person_sp['age'] > 20).show() person_sp[person_sp['age'] > 20].show() person_sp.filter('age > 20').show() ###Output +---+------+-------+------+ |age|height| name| sex| +---+------+-------+------+ | 23| 156| Alice|female| | 21| 181| Bob| male| | 27| 176|Charlie| male| | 24| 167| Eve|female| | 31| 191| George| male| +---+------+-------+------+ ###Markdown 分组和聚合 类似sql中的`select aggregation Group by grouping`语句功能,pandas和spark都定义了一些聚合函数,如:- count- sum- avg- corr- first- last可以具体查看[PySpark Function Documentation](http://spark.apache.org/docs/latest/api/python/pyspark.sql.htmlmodule-pyspark.sql.functions) ###Code result = person_pd.groupby('sex').agg({'age': 'mean', 'height':['min', 'max']}) result from pyspark.sql.functions import avg, min, max result = person_sp.groupBy(person_sp.sex).agg(min(person_sp.height).alias('min height'), max(person_sp.height).alias('max height'), avg(person_sp.age)) result.show() person_sp.show() ###Output +---+------+-------+------+ |age|height| name| sex| +---+------+-------+------+ | 23| 156| Alice|female| | 21| 181| Bob| male| | 27| 176|Charlie| male| | 24| 167| Eve|female| | 19| 172|Frances|female| | 31| 191| George| male| +---+------+-------+------+ ###Markdown join spark也支持跨dataframe做join, 让我们加个数据作例子。 ###Code addresses = spark.read.json('data/addresses.json') addresses_pd = addresses.toPandas() addresses_pd pd_join = person_pd.merge(addresses_pd, left_on=['name'], right_on=['name']) pd_join sp_join = person_sp.join(addresses, person_sp.name==addresses.name) sp_join.show() sp_join_1 = person_sp.join(addresses, on=['name']) sp_join_1.show() ###Output +---+------+-----+------+---------+-----+ |age|height| name| sex| city| name| +---+------+-----+------+---------+-----+ | 23| 156|Alice|female| Hamburg|Alice| | 21| 181| Bob| male|Frankfurt| Bob| +---+------+-----+------+---------+-----+ +-----+---+------+------+---------+ | name|age|height| sex| city| +-----+---+------+------+---------+ |Alice| 23| 156|female| Hamburg| | Bob| 21| 181| male|Frankfurt| +-----+---+------+------+---------+ ###Markdown 重装dataframe pandas可以很方便地将现有的一列数据赋给一个新的列, 但是spark做起来不是很方便,需要join操作。 ###Code df = person_pd[['name', 'age']] col = person_pd['height'] result = df.copy() result['h2'] = col result df = person_sp[['name', 'age']] col = person_sp[['name', 'height']] result = df.join(col, on=['name']) result.show() ###Output +-------+---+------+ | name|age|height| +-------+---+------+ | Alice| 23| 156| | Bob| 21| 181| |Charlie| 27| 176| | Eve| 24| 167| |Frances| 19| 172| | George| 31| 191| +-------+---+------+
Fair-SMOTE/Adult_Race.ipynb
###Markdown Load Dataset ###Code ## Load dataset from sklearn import preprocessing dataset_orig = pd.read_csv('../data/adult.data.csv') ## Drop NULL values dataset_orig = dataset_orig.dropna() ## Drop categorical features dataset_orig = dataset_orig.drop(['workclass','fnlwgt','education','marital-status','occupation','relationship','native-country'],axis=1) ## Change symbolics to numerics dataset_orig['sex'] = np.where(dataset_orig['sex'] == ' Male', 1, 0) dataset_orig['race'] = np.where(dataset_orig['race'] != ' White', 0, 1) dataset_orig['Probability'] = np.where(dataset_orig['Probability'] == ' <=50K', 0, 1) ## Discretize age dataset_orig['age'] = np.where(dataset_orig['age'] >= 70, 70, dataset_orig['age']) dataset_orig['age'] = np.where((dataset_orig['age'] >= 60 ) & (dataset_orig['age'] < 70), 60, dataset_orig['age']) dataset_orig['age'] = np.where((dataset_orig['age'] >= 50 ) & (dataset_orig['age'] < 60), 50, dataset_orig['age']) dataset_orig['age'] = np.where((dataset_orig['age'] >= 40 ) & (dataset_orig['age'] < 50), 40, dataset_orig['age']) dataset_orig['age'] = np.where((dataset_orig['age'] >= 30 ) & (dataset_orig['age'] < 40), 30, dataset_orig['age']) dataset_orig['age'] = np.where((dataset_orig['age'] >= 20 ) & (dataset_orig['age'] < 30), 20, dataset_orig['age']) dataset_orig['age'] = np.where((dataset_orig['age'] >= 10 ) & (dataset_orig['age'] < 10), 10, dataset_orig['age']) dataset_orig['age'] = np.where(dataset_orig['age'] < 10, 0, dataset_orig['age']) protected_attribute = 'race' from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() dataset_orig = pd.DataFrame(scaler.fit_transform(dataset_orig),columns = dataset_orig.columns) dataset_orig_train, dataset_orig_test = train_test_split(dataset_orig, test_size=0.2,shuffle = True) # dataset_orig ###Output _____no_output_____ ###Markdown Check original scores ###Code X_train, y_train = dataset_orig_train.loc[:, dataset_orig_train.columns != 'Probability'], dataset_orig_train['Probability'] X_test , y_test = dataset_orig_test.loc[:, dataset_orig_test.columns != 'Probability'], dataset_orig_test['Probability'] clf = LogisticRegression(C=1.0, penalty='l2', solver='liblinear', max_iter=100) # LSR print("recall :", measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'recall')) print("far :",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'far')) print("precision :", measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'precision')) print("accuracy :",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'accuracy')) print("F1 Score :",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'F1')) print("aod :"+protected_attribute,measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'aod')) print("eod :"+protected_attribute,measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'eod')) print("SPD:",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'SPD')) print("DI:",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'DI')) ###Output _____no_output_____ ###Markdown Check SMOTE Scores ###Code def apply_smote(df): df.reset_index(drop=True,inplace=True) cols = df.columns smt = smote(df) df = smt.run() df.columns = cols return df # dataset_orig_train, dataset_orig_test = train_test_split(dataset_orig, test_size=0.2, random_state=0,shuffle = True) X_train, y_train = dataset_orig_train.loc[:, dataset_orig_train.columns != 'Probability'], dataset_orig_train['Probability'] X_test , y_test = dataset_orig_test.loc[:, dataset_orig_test.columns != 'Probability'], dataset_orig_test['Probability'] train_df = X_train train_df['Probability'] = y_train train_df = apply_smote(train_df) y_train = train_df.Probability X_train = train_df.drop('Probability', axis = 1) clf = LogisticRegression(C=1.0, penalty='l2', solver='liblinear', max_iter=100) # LSR print("recall :", measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'recall')) print("far :",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'far')) print("precision :", measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'precision')) print("accuracy :",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'accuracy')) print("F1 Score :",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'F1')) print("aod :"+protected_attribute,measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'aod')) print("eod :"+protected_attribute,measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'eod')) print("SPD:",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'SPD')) print("DI:",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'DI')) ###Output _____no_output_____ ###Markdown Find Class & Protected attribute Distribution ###Code # first one is class value and second one is protected attribute value zero_zero = len(dataset_orig_train[(dataset_orig_train['Probability'] == 0) & (dataset_orig_train[protected_attribute] == 0)]) zero_one = len(dataset_orig_train[(dataset_orig_train['Probability'] == 0) & (dataset_orig_train[protected_attribute] == 1)]) one_zero = len(dataset_orig_train[(dataset_orig_train['Probability'] == 1) & (dataset_orig_train[protected_attribute] == 0)]) one_one = len(dataset_orig_train[(dataset_orig_train['Probability'] == 1) & (dataset_orig_train[protected_attribute] == 1)]) print(zero_zero,zero_one,one_zero,one_one) ###Output _____no_output_____ ###Markdown Sort these four ###Code maximum = max(zero_zero,zero_one,one_zero,one_one) if maximum == zero_zero: print("zero_zero is maximum") if maximum == zero_one: print("zero_one is maximum") if maximum == one_zero: print("one_zero is maximum") if maximum == one_one: print("one_one is maximum") zero_zero_to_be_incresed = maximum - zero_zero ## where both are 0 one_zero_to_be_incresed = maximum - one_zero ## where class is 1 attribute is 0 one_one_to_be_incresed = maximum - one_one ## where class is 1 attribute is 1 print(zero_zero_to_be_incresed,one_zero_to_be_incresed,one_one_to_be_incresed) """ df_zero_zero = dataset_orig_train[(dataset_orig_train['Probability'] == 0) & (dataset_orig_train[protected_attribute] == 0)] df_one_zero = dataset_orig_train[(dataset_orig_train['Probability'] == 1) & (dataset_orig_train[protected_attribute] == 0)] df_one_one = dataset_orig_train[(dataset_orig_train['Probability'] == 1) & (dataset_orig_train[protected_attribute] == 1)] df_zero_zero['race'] = df_zero_zero['race'].astype(str) df_zero_zero['sex'] = df_zero_zero['sex'].astype(str) df_one_zero['race'] = df_one_zero['race'].astype(str) df_one_zero['sex'] = df_one_zero['sex'].astype(str) df_one_one['race'] = df_one_one['race'].astype(str) df_one_one['sex'] = df_one_one['sex'].astype(str) df_zero_zero = generate_samples(zero_zero_to_be_incresed,df_zero_zero,'Adult') df_one_zero = generate_samples(one_zero_to_be_incresed,df_one_zero,'Adult') df_one_one = generate_samples(one_one_to_be_incresed,df_one_one,'Adult') """ #print(dataset_orig_train) ratio_mapping = { 'zero_zero': 0.40, 'zero_one': 0.10, 'one_zero': 0.35, 'one_one': 0.15 } temp = rebalance(dataset_orig_train, 'Adult', ['race', 'sex'], protected_attribute, ratio_mapping) ###Output c:\Users\Administrator\Desktop\Fair-SMOTE-master\DataBalance.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df_map[t][k] = df_map[t][k].astype(str) ###Markdown Append the dataframes ###Code """ df = df_zero_zero.append(df_one_zero) df = df.append(df_one_one) df['race'] = df['race'].astype(float) df['sex'] = df['sex'].astype(float) df_zero_one = dataset_orig_train[(dataset_orig_train['Probability'] == 0) & (dataset_orig_train[protected_attribute] == 1)] df = df.append(df_zero_one) """ df = temp ###Output _____no_output_____ ###Markdown Check score after oversampling ###Code X_train, y_train = df.loc[:, df.columns != 'Probability'], df['Probability'] X_test , y_test = dataset_orig_test.loc[:, dataset_orig_test.columns != 'Probability'], dataset_orig_test['Probability'] clf = LogisticRegression(C=1.0, penalty='l2', solver='liblinear', max_iter=100) # LSR print("recall :", measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'recall')) print("far :",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'far')) print("precision :", measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'precision')) print("accuracy :",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'accuracy')) print("F1 Score :",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'F1')) print("aod :"+protected_attribute,measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'aod')) print("eod :"+protected_attribute,measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'eod')) print("SPD:",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'SPD')) print("DI:",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'DI')) ###Output recall : 0.76 far : 0.23 precision : 0.51 accuracy : 0.77 F1 Score : 0.61 aod :race -0.03 eod :race -0.03 SPD: 0.08 DI: 0.22 ###Markdown Verification ###Code # first one is class value and second one is protected attribute value zero_zero = len(df[(df['Probability'] == 0) & (df[protected_attribute] == 0)]) zero_one = len(df[(df['Probability'] == 0) & (df[protected_attribute] == 1)]) one_zero = len(df[(df['Probability'] == 1) & (df[protected_attribute] == 0)]) one_one = len(df[(df['Probability'] == 1) & (df[protected_attribute] == 1)]) print(zero_zero,zero_one,one_zero,one_one) ###Output 9769 9769 9769 9769 ###Markdown Load Dataset ###Code ## Load dataset from sklearn import preprocessing dataset_orig = pd.read_csv('../data/adult.data.csv') ## Drop NULL values dataset_orig = dataset_orig.dropna() ## Drop categorical features dataset_orig = dataset_orig.drop(['workclass','fnlwgt','education','marital-status','occupation','relationship','native-country'],axis=1) ## Change symbolics to numerics dataset_orig['sex'] = np.where(dataset_orig['sex'] == ' Male', 1, 0) dataset_orig['race'] = np.where(dataset_orig['race'] != ' White', 0, 1) dataset_orig['Probability'] = np.where(dataset_orig['Probability'] == ' <=50K', 0, 1) ## Discretize age dataset_orig['age'] = np.where(dataset_orig['age'] >= 70, 70, dataset_orig['age']) dataset_orig['age'] = np.where((dataset_orig['age'] >= 60 ) & (dataset_orig['age'] < 70), 60, dataset_orig['age']) dataset_orig['age'] = np.where((dataset_orig['age'] >= 50 ) & (dataset_orig['age'] < 60), 50, dataset_orig['age']) dataset_orig['age'] = np.where((dataset_orig['age'] >= 40 ) & (dataset_orig['age'] < 50), 40, dataset_orig['age']) dataset_orig['age'] = np.where((dataset_orig['age'] >= 30 ) & (dataset_orig['age'] < 40), 30, dataset_orig['age']) dataset_orig['age'] = np.where((dataset_orig['age'] >= 20 ) & (dataset_orig['age'] < 30), 20, dataset_orig['age']) dataset_orig['age'] = np.where((dataset_orig['age'] >= 10 ) & (dataset_orig['age'] < 10), 10, dataset_orig['age']) dataset_orig['age'] = np.where(dataset_orig['age'] < 10, 0, dataset_orig['age']) protected_attribute = 'race' from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() dataset_orig = pd.DataFrame(scaler.fit_transform(dataset_orig),columns = dataset_orig.columns) dataset_orig_train, dataset_orig_test = train_test_split(dataset_orig, test_size=0.2,shuffle = True) # dataset_orig ###Output _____no_output_____ ###Markdown Check original scores ###Code X_train, y_train = dataset_orig_train.loc[:, dataset_orig_train.columns != 'Probability'], dataset_orig_train['Probability'] X_test , y_test = dataset_orig_test.loc[:, dataset_orig_test.columns != 'Probability'], dataset_orig_test['Probability'] clf = LogisticRegression(C=1.0, penalty='l2', solver='liblinear', max_iter=100) # LSR print("recall :", measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'recall')) print("far :",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'far')) print("precision :", measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'precision')) print("accuracy :",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'accuracy')) print("F1 Score :",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'F1')) print("aod :"+protected_attribute,measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'aod')) print("eod :"+protected_attribute,measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'eod')) print("SPD:",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'SPD')) print("DI:",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'DI')) ###Output _____no_output_____ ###Markdown Check SMOTE Scores ###Code def apply_smote(df): df.reset_index(drop=True,inplace=True) cols = df.columns smt = smote(df) df = smt.run() df.columns = cols return df # dataset_orig_train, dataset_orig_test = train_test_split(dataset_orig, test_size=0.2, random_state=0,shuffle = True) X_train, y_train = dataset_orig_train.loc[:, dataset_orig_train.columns != 'Probability'], dataset_orig_train['Probability'] X_test , y_test = dataset_orig_test.loc[:, dataset_orig_test.columns != 'Probability'], dataset_orig_test['Probability'] train_df = X_train train_df['Probability'] = y_train train_df = apply_smote(train_df) y_train = train_df.Probability X_train = train_df.drop('Probability', axis = 1) clf = LogisticRegression(C=1.0, penalty='l2', solver='liblinear', max_iter=100) # LSR print("recall :", measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'recall')) print("far :",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'far')) print("precision :", measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'precision')) print("accuracy :",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'accuracy')) print("F1 Score :",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'F1')) print("aod :"+protected_attribute,measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'aod')) print("eod :"+protected_attribute,measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'eod')) print("SPD:",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'SPD')) print("DI:",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'DI')) ###Output _____no_output_____ ###Markdown Find Class & Protected attribute Distribution ###Code # first one is class value and second one is protected attribute value zero_zero = len(dataset_orig_train[(dataset_orig_train['Probability'] == 0) & (dataset_orig_train[protected_attribute] == 0)]) zero_one = len(dataset_orig_train[(dataset_orig_train['Probability'] == 0) & (dataset_orig_train[protected_attribute] == 1)]) one_zero = len(dataset_orig_train[(dataset_orig_train['Probability'] == 1) & (dataset_orig_train[protected_attribute] == 0)]) one_one = len(dataset_orig_train[(dataset_orig_train['Probability'] == 1) & (dataset_orig_train[protected_attribute] == 1)]) print(zero_zero,zero_one,one_zero,one_one) ###Output _____no_output_____ ###Markdown Sort these four ###Code maximum = max(zero_zero,zero_one,one_zero,one_one) if maximum == zero_zero: print("zero_zero is maximum") if maximum == zero_one: print("zero_one is maximum") if maximum == one_zero: print("one_zero is maximum") if maximum == one_one: print("one_one is maximum") zero_zero_to_be_incresed = maximum - zero_zero ## where both are 0 one_zero_to_be_incresed = maximum - one_zero ## where class is 1 attribute is 0 one_one_to_be_incresed = maximum - one_one ## where class is 1 attribute is 1 print(zero_zero_to_be_incresed,one_zero_to_be_incresed,one_one_to_be_incresed) df_zero_zero = dataset_orig_train[(dataset_orig_train['Probability'] == 0) & (dataset_orig_train[protected_attribute] == 0)] df_one_zero = dataset_orig_train[(dataset_orig_train['Probability'] == 1) & (dataset_orig_train[protected_attribute] == 0)] df_one_one = dataset_orig_train[(dataset_orig_train['Probability'] == 1) & (dataset_orig_train[protected_attribute] == 1)] df_zero_zero['race'] = df_zero_zero['race'].astype(str) df_zero_zero['sex'] = df_zero_zero['sex'].astype(str) df_one_zero['race'] = df_one_zero['race'].astype(str) df_one_zero['sex'] = df_one_zero['sex'].astype(str) df_one_one['race'] = df_one_one['race'].astype(str) df_one_one['sex'] = df_one_one['sex'].astype(str) df_zero_zero = generate_samples(zero_zero_to_be_incresed,df_zero_zero,'Adult') df_one_zero = generate_samples(one_zero_to_be_incresed,df_one_zero,'Adult') df_one_one = generate_samples(one_one_to_be_incresed,df_one_one,'Adult') ###Output _____no_output_____ ###Markdown Append the dataframes ###Code df = df_zero_zero.append(df_one_zero) df = df.append(df_one_one) df['race'] = df['race'].astype(float) df['sex'] = df['sex'].astype(float) df_zero_one = dataset_orig_train[(dataset_orig_train['Probability'] == 0) & (dataset_orig_train[protected_attribute] == 1)] df = df.append(df_zero_one) ###Output _____no_output_____ ###Markdown Check score after oversampling ###Code X_train, y_train = df.loc[:, df.columns != 'Probability'], df['Probability'] X_test , y_test = dataset_orig_test.loc[:, dataset_orig_test.columns != 'Probability'], dataset_orig_test['Probability'] clf = LogisticRegression(C=1.0, penalty='l2', solver='liblinear', max_iter=100) # LSR print("recall :", measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'recall')) print("far :",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'far')) print("precision :", measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'precision')) print("accuracy :",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'accuracy')) print("F1 Score :",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'F1')) print("aod :"+protected_attribute,measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'aod')) print("eod :"+protected_attribute,measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'eod')) print("SPD:",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'SPD')) print("DI:",measure_final_score(dataset_orig_test, clf, X_train, y_train, X_test, y_test, protected_attribute, 'DI')) ###Output _____no_output_____ ###Markdown Verification ###Code # first one is class value and second one is protected attribute value zero_zero = len(df[(df['Probability'] == 0) & (df[protected_attribute] == 0)]) zero_one = len(df[(df['Probability'] == 0) & (df[protected_attribute] == 1)]) one_zero = len(df[(df['Probability'] == 1) & (df[protected_attribute] == 0)]) one_one = len(df[(df['Probability'] == 1) & (df[protected_attribute] == 1)]) print(zero_zero,zero_one,one_zero,one_one) ###Output _____no_output_____
00_CommunityLearning.ipynb
###Markdown ###Code ###Output _____no_output_____
week3_course_python_III/day5_probability_statistics/theory/json/read_json.ipynb
###Markdown Para escribir a un archivo un json ###Code import requests import json import pandas as pd nombre_archivo = "pepito_ataulfo.json" mi_diccionario = {"clave": 2, "otra_clave": 3, 515:[1,3,4,5,6,7,8,2], "DICT":{"clave_pequena": "valor_pequeño"}} with open(nombre_archivo, 'w+') as outfile: json.dump(mi_diccionario, outfile, indent=4) ###Output _____no_output_____ ###Markdown Para sobreescribir un archivo (si se requiere) ###Code with open(nombre_archivo, 'a+', encoding='latin1') as outfile: json.dump(mi_diccionario, outfile, indent=4) ###Output _____no_output_____ ###Markdown Para leer un archivo json ###Code import json with open('data_indented.json', 'r+') as outfile: json_data_indented_readed = json.load(outfile) print(type(json_data_indented_readed)) json_data_indented_readed json_data_indented_readed["members"] jsons_dicts = [] for mini_json in json_data_indented_readed["members"]: mini_json_readed_string = json.dumps(mini_json) string_to_json = json.loads(mini_json_readed_string) print(mini_json_readed_string) print("-----------") print(string_to_json) jsons_dicts.append(string_to_json) print("\n##############################\n") print(type(mini_json_readed)) print(type(string_to_json)) # escribimos cada mini_json en archivos diferentes for i, jsn in enumerate(jsons_dicts): nombre_archivo = str(i) + '_final_data.json' with open(nombre_archivo, 'w+') as outfile: json.dump(jsn, outfile, indent=4) ###Output _____no_output_____ ###Markdown Para escribir a un archivo un ###Code #usamos porque tiene un gran uso en data science, este tipo de archivos para hacer diccionarios #hemos creado un archivo para importar el diccionario en un ipynb a jsn en tiene que haber diccionarios o o listas con diccionarios import #hay que importar primeramente nombre_archivo = "pepito_ataulfo." #para volcar informacion en un nuevo archivo mi_diccionario = {"clave": 2, "otra_clave": 3, 515:[1,3,4,5,6,7,8,2], "DICT":{"clave_pequena": "valor_pequeño"}} #ejemplo importamos esto with open(nombre_archivo, 'w+') as outfile: #esto permite abrir un archivo en modo escritura "w+" outfile es el nombre w+ para sobreescribir .dump(mi_diccionario, outfile, indent=4) #se vuelva el diccionario en el archivo renombrado y le identacion 4 #al correr el codigo, en la misma ruta que se ha abierto este archivo, este archivo contiene lo que he añadido< ###Output _____no_output_____ ###Markdown Para sobreescribir un archivo añadiedo info (si se requiere) ###Code with open(nombre_archivo, 'a+') as outfile: # con esto se consigue escribir mas informacion con la a, se ha copiado dos veces .dump(mi_diccionario, outfile, indent=4) ###Output _____no_output_____ ###Markdown Para leer un archivo ###Code import with open('data_indented.', 'r+') as outfile: #abro este archivo con permisos de lectura r+ _data_indented_readed = .load(outfile) #cargo el archivo que es un diccionario (dentro) print(type(_data_indented_readed)) # aqui muestra clase y abajo el diccionario importado _data_indented_readed _data_indented_readed["members"] #accedo a los valores de la clave members s_dicts = [] #no podemos usar load un tipo de archivo que no se puede leer con la funcion load, para ellos hay que primero leerlo como string y luego transformarlo en diccionario #ahora vamos a leer cada uno de los pequeños y los voy a guardar cada uno de los diccionarios pequeños en una lista for mini_ in _data_indented_readed["members"]: #for value in recorro la lista del diccionario mini__readed_string = .dumps(mini_) #dumps lee como string lo que sea string_to_ = .loads(mini__readed_string) #loads convierte un string en diccionario. hay que hacerlo asi primero dump y luego loads como diccionario (esto se llama data wrangling esto es leer la informacion que sea de tal forma que pueda trabajar con ella) print(mini__readed_string) #esto es string print("-----------") print(string_to_) #esto es diccionario s_dicts.append(string_to_) #tercer paso. añadimos el diccionario a la lista "s_dicts" print("\n##############################\n") print(type(mini__readed_string)) print(type(string_to_)) s_dicts #1. leemos como string 2. transformamos en diccionario 3. lo añadimos a una lista # escribimos cada mini_ en archivos diferentes, cada minidiccionario del for i, jsn in enumerate(s_dicts): #habiendo 3 diccionarios en la lista, va a haber 3 archivos cada uno con su posicion nombre_archivo = str(i) + '_final_data.' with open(nombre_archivo, 'w+') as outfile: .dump(jsn, outfile, indent=4) with open('0_final_data.', 'r+') as outfile: #asi cargo uno de los nuevos para poder cargarlo tienes que hacerlo asi _0_final_data = .load(outfile) print(_0_final_data) #RESUMEN: #1. vuelco la informacion de un diccionario a un , w+ (creando el archivo desde 0): #.dup(mi_diccionario, outfile, indent=4) #2. volcar informacion de un diccionario a un jason, a+ (añadiendo la informacion sin borrar) # 3. dos opciones #3.1 yo tengo un archivo .sjon en local y lo abro usando .load() #3.2 tengo ya sea un fichero local con el formato cualquiera o en la web --> 1º lo leemos como string -->2º lo transofmramos la variable string a diccionario. si hubera alguno tipo de error al pasarlo a diccionario habria que trabajar con el string para que se pudiese trabajar como dic ###Output _____no_output_____
2020-09-25-basic-object-detector.ipynb
###Markdown "Object detection"> "Basic image processing and simple color based object detector"- toc: false- branch: master- badges: true- comments: true- categories: [fastpages, jupyter]- image: images/some_folder/your_image.png- hide: false- search_exclude: true- metadata_key1: metadata_value1- metadata_key2: metadata_value2 In object detection, one seeks to develop algorithm that identifies a specific object in an image. Here, we'll see how to build a very simple object detector (based on color) using opencv. More sophisticated object detection algorithms are capable of identifying multiple objects in a single image. For example, one can train an object detection model to identify various types of fruits, etc. Later, we'll also see that our object detection model is not exactly perfect. Nevertheless, aim of this notebook is not to build a world-class object detector but to introduce the reader to basic computer vision and image processing. Let's start by loading some useful libraries ###Code # A popular python library useful for working with arrays import numpy as np # opencv library import cv2 # For image visualization import matplotlib.pyplot as plt #Plots are displayed below the code cell %matplotlib inline ###Output _____no_output_____ ###Markdown Let's load and inspect the dimensions of our image. Images are basically a matrix of size heigth\*width\*color channels. ###Code fruits = cv2.imread('apple_banana.png') # cv2.method loads an image fruits.shape ###Output _____no_output_____ ###Markdown So, we can see that our image is 1216 by 752 pixels and it has 3 color channels. Next, we'll convert our image into the RGB color channel. RGB color space is an additive color model where we can obtain other colors by a linear combinations of red, green, and blue color. Each of the red, green and blue light levels is encoded as a number in the range from 0 to 255, with 0 denoting zero light and 255 denoting maximum light. To obtain a matrix with values ranging from 0 to 1, we'll divide by 255. ###Code fruits = cv2.cvtColor(fruits, cv2.COLOR_BGR2RGB) # cvtColor method to convert an image from one color space to another. fruits = fruits / 255.0 ###Output _____no_output_____ ###Markdown Finally, let's plot our image. ###Code plt.imshow(fruits) ###Output _____no_output_____ ###Markdown We can see that our image contains one **red** apple and one **yellow** banana. Next, we will build a very basic object detector which can pinpoint apple and banana in our image based on their colors. There are more excellent algorithms out there to do this task but that's for some other time. We start by creating two new images of the same dimensions as our original image and fill first one with the red color - to detect apple and the second one with the yellow - to detect banana. ###Code apple_red = np.zeros(np.shape(fruits)) banana_yellow = np.zeros(np.shape(fruits)) apple_red[:,:,0] = 1 # set red channel to 1 - index 0 corresponds to red channel banana_yellow[:,:,0:2] = 1 # set yellow channel to 1 - it can be done by filling red and blue channel with 1 fig, (ax1, ax2) = plt.subplots(1,2) ax1.imshow(apple_red) ax2.imshow(banana_yellow) ###Output _____no_output_____ ###Markdown Now, we will compare the pixels between our colored and fruits images. One way is to calculate the mean-squared distance as follows:$$d_{x,y} = \sqrt{\sum_{z = 1}^{3}(R_{xyz} - F_{xyz})^2} $$where, $d_{xyz}$ is Euclidean distance between pixel values for all 3 color channels in two compared images $R$ and $F$. To implement this, we will first subtract two matrices from each other, and then take a norm of a vector. This can be easily acheived by numpy's `linalg.norm` method (Don't forget to set the axis to 2). ###Code # Subtract matrices diff_red = fruits - apple_red diff_yellow = fruits - banana_yellow # Take norm of both vectors dist_red = np.linalg.norm(diff_red, axis=2) dist_yellow = np.linalg.norm(diff_yellow, axis=2) # Let's plot our matrix with values, the imshow function color-maps them. # For apple(red) detector plt.imshow(dist_red) plt.colorbar() ###Output _____no_output_____ ###Markdown One can see in the plot above that the pixels with the lowest value in the matrice are the pixels that make up the apple (see colorbar for reference). This makes sense as those pixels corresponds to the red-most pixels in the fruits image. Let's also plot the matrice for banana (yellow) detector. ###Code # For banana (yellow) detector plt.imshow(dist_yellow) plt.colorbar() ###Output _____no_output_____ ###Markdown Again we see that the pixels with the lowest value in the matrice are the pixels that make up the banana. Now in order to pinpoint apple and banana in our fruits image, we need to find the index of the matrix element with the lowest value. ###Code ind_red = np.argmin(dist_red) print ("red most pixel index= ", ind_red) ind_yellow = np.argmin(dist_yellow) print ("yellow most pixel index = ", ind_yellow) ###Output red most pixel index= 544887 yellow most pixel index = 225109 ###Markdown In order to point the location of this index on our fruits image i.e. to pinpoint our object, we need the x,y coordinates of the index. This can be done using the np.unravel_index method. ###Code # We will get the height and width of our fruits image image = np.shape(fruits)[0:2] (y_red, x_red) = np.unravel_index(ind_red, image) (y_yellow, x_yellow) = np.unravel_index(ind_yellow, image) ###Output _____no_output_____ ###Markdown Finally, it's time to pinpoint our objects ! Let's first pinpoint our apple. ###Code fig, (ax1, ax2) = plt.subplots(1,2) # Apple ax1.scatter(x_red, y_red, c='black', s = 100, marker = 'X') ax1.imshow(fruits) # Banana ax2.scatter(x_yellow, y_yellow, c='black', s = 100, marker = 'X') ax2.imshow(fruits) ###Output _____no_output_____
docs/practices/nlp/addition_rnn.ipynb
###Markdown 使用序列到序列模型完成数字加法**作者:** [jm12138](https://github.com/jm12138) **日期:** 2021.12 **摘要:** 本示例介绍如何使用飞桨完成一个数字加法任务,将会使用飞桨提供的`LSTM`,组建一个序列到序列模型,并在随机生成的数据集上完成数字加法任务的模型训练与预测。 一、环境配置本教程基于Paddle 2.2 编写,如果你的环境不是本版本,请先参考官网[安装](https://www.paddlepaddle.org.cn/install/quick) Paddle 2.2。 ###Code # 导入项目运行所需的包 import paddle import paddle.nn as nn import random import numpy as np from visualdl import LogWriter # 打印Paddle版本 print('paddle version: %s' % paddle.__version__) ###Output paddle version: 2.2.1 ###Markdown 二、构建数据集* 随机生成数据,并使用生成的数据构造数据集* 通过继承 ``paddle.io.Dataset`` 来完成数据集的构造 ###Code # 编码函数 def encoder(text, LEN, label_dict): # 文本转ID ids = [label_dict[word] for word in text] # 对长度进行补齐 ids += [label_dict[' ']]*(LEN-len(ids)) return ids # 单个数据生成函数 def make_data(inputs, labels, DIGITS, label_dict): MAXLEN = DIGITS + 1 + DIGITS # 对输入输出文本进行ID编码 inputs = encoder(inputs, MAXLEN, label_dict) labels = encoder(labels, DIGITS + 1, label_dict) return inputs, labels # 批量数据生成函数 def gen_datas(DATA_NUM, MAX_NUM, DIGITS, label_dict): datas = [] while len(datas)<DATA_NUM: # 随机取两个数 a = random.randint(0,MAX_NUM) b = random.randint(0,MAX_NUM) # 生成输入文本 inputs = '%d+%d' % (a, b) # 生成输出文本 labels = str(eval(inputs)) # 生成单个数据 inputs, labels = [np.array(_).astype('int64') for _ in make_data(inputs, labels, DIGITS, label_dict)] datas.append([inputs, labels]) return datas # 继承paddle.io.Dataset来构造数据集 class Addition_Dataset(paddle.io.Dataset): # 重写数据集初始化函数 def __init__(self, datas): super(Addition_Dataset, self).__init__() self.datas = datas # 重写生成样本的函数 def __getitem__(self, index): data, label = [paddle.to_tensor(_) for _ in self.datas[index]] return data, label # 重写返回数据集大小的函数 def __len__(self): return len(self.datas) print('generating datas..') # 定义字符表 label_dict = { '0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9, '+': 10, ' ': 11 } # 输入数字最大位数 DIGITS = 2 # 数据数量 train_num = 5000 dev_num = 500 # 数据批大小 batch_size = 32 # 读取线程数 num_workers = 8 # 定义一些所需变量 MAXLEN = DIGITS + 1 + DIGITS MAX_NUM = 10**(DIGITS)-1 # 生成数据 train_datas = gen_datas( train_num, MAX_NUM, DIGITS, label_dict ) dev_datas = gen_datas( dev_num, MAX_NUM, DIGITS, label_dict ) # 实例化数据集 train_dataset = Addition_Dataset(train_datas) dev_dataset = Addition_Dataset(dev_datas) print('making the dataset...') # 实例化数据读取器 train_reader = paddle.io.DataLoader( train_dataset, batch_size=batch_size, shuffle=True, drop_last=True ) dev_reader = paddle.io.DataLoader( dev_dataset, batch_size=batch_size, shuffle=False, drop_last=True ) print('finish') ###Output generating datas.. making the dataset... finish ###Markdown 三、模型组网* 通过继承 ``paddle.nn.Layer`` 类来搭建模型* 本次介绍的模型是一个简单的基于 ``LSTM`` 的 ``Seq2Seq`` 模型* 一共有如下四个主要的网络层: 1. 嵌入层(``Embedding``):将输入的文本序列转为嵌入向量 2. 编码层(``LSTM``):将嵌入向量进行编码 3. 解码层(``LSTM``):将编码向量进行解码 4. 全连接层(``Linear``):对解码完成的向量进行线性映射* 损失函数为交叉熵损失函数 ###Code # 继承paddle.nn.Layer类 class Addition_Model(nn.Layer): # 重写初始化函数 # 参数:字符表长度、嵌入层大小、隐藏层大小、解码器层数、处理数字的最大位数 def __init__(self, char_len=12, embedding_size=128, hidden_size=128, num_layers=1, DIGITS=2): super(Addition_Model, self).__init__() # 初始化变量 self.DIGITS = DIGITS self.MAXLEN = DIGITS + 1 + DIGITS self.hidden_size = hidden_size self.char_len = char_len # 嵌入层 self.emb = nn.Embedding( char_len, embedding_size ) # 编码器 self.encoder = nn.LSTM( input_size=embedding_size, hidden_size=hidden_size, num_layers=1 ) # 解码器 self.decoder = nn.LSTM( input_size=hidden_size, hidden_size=hidden_size, num_layers=num_layers ) # 全连接层 self.fc = nn.Linear( hidden_size, char_len ) # 重写模型前向计算函数 # 参数:输入[None, MAXLEN]、标签[None, DIGITS + 1] def forward(self, inputs, labels=None): # 嵌入层 out = self.emb(inputs) # 编码器 out, (_, _) = self.encoder(out) # 按时间步切分编码器输出 out = paddle.split(out, self.MAXLEN, axis=1) # 取最后一个时间步的输出并复制 DIGITS + 1 次 out = paddle.expand(out[-1], [out[-1].shape[0], self.DIGITS + 1, self.hidden_size]) # 解码器 out, (_, _) = self.decoder(out) # 全连接 out = self.fc(out) # 如果标签存在,则计算其损失和准确率 if labels is not None: # 计算交叉熵损失 loss = nn.functional.cross_entropy(out, labels) # 计算准确率 acc = paddle.metric.accuracy(paddle.reshape(out, [-1, self.char_len]), paddle.reshape(labels, [-1, 1])) # 返回损失和准确率 return loss, acc # 返回输出 return out ###Output _____no_output_____ ###Markdown 四、模型训练与评估* 使用 ``Adam`` 作为优化器进行模型训练* 以模型准确率作为评价指标* 使用 ``VisualDL`` 对训练数据进行可视化* 训练过程中会同时进行模型评估和最佳模型的保存 ###Code # 初始化log写入器 log_writer = LogWriter(logdir="./log") # 模型参数设置 embedding_size = 128 hidden_size=128 num_layers=1 # 训练参数设置 epoch_num = 50 learning_rate = 0.001 log_iter = 2000 eval_iter = 500 # 定义一些所需变量 global_step = 0 log_step = 0 max_acc = 0 # 实例化模型 model = Addition_Model( char_len=len(label_dict), embedding_size=embedding_size, hidden_size=hidden_size, num_layers=num_layers, DIGITS=DIGITS) # 将模型设置为训练模式 model.train() # 设置优化器,学习率,并且把模型参数给优化器 opt = paddle.optimizer.Adam( learning_rate=learning_rate, parameters=model.parameters() ) # 启动训练,循环epoch_num个轮次 for epoch in range(epoch_num): # 遍历数据集读取数据 for batch_id, data in enumerate(train_reader()): # 读取数据 inputs, labels = data # 模型前向计算 loss, acc = model(inputs, labels=labels) # 打印训练数据 if global_step%log_iter==0: print('train epoch:%d step: %d loss:%f acc:%f' % (epoch, global_step, loss.numpy(), acc.numpy())) log_writer.add_scalar(tag="train/loss", step=log_step, value=loss.numpy()) log_writer.add_scalar(tag="train/acc", step=log_step, value=acc.numpy()) log_step+=1 # 模型验证 if global_step%eval_iter==0: model.eval() losses = [] accs = [] for data in dev_reader(): loss_eval, acc_eval = model(inputs, labels=labels) losses.append(loss_eval.numpy()) accs.append(acc_eval.numpy()) avg_loss = np.concatenate(losses).mean() avg_acc = np.concatenate(accs).mean() print('eval epoch:%d step: %d loss:%f acc:%f' % (epoch, global_step, avg_loss, avg_acc)) log_writer.add_scalar(tag="dev/loss", step=log_step, value=avg_loss) log_writer.add_scalar(tag="dev/acc", step=log_step, value=avg_acc) # 保存最佳模型 if avg_acc>max_acc: max_acc = avg_acc print('saving the best_model...') paddle.save(model.state_dict(), 'best_model') model.train() # 反向传播 loss.backward() # 使用优化器进行参数优化 opt.step() # 清除梯度 opt.clear_grad() # 全局步数加一 global_step += 1 # 保存最终模型 paddle.save(model.state_dict(),'final_model') ###Output train epoch:0 step: 0 loss:2.489843 acc:0.072917 eval epoch:0 step: 0 loss:2.489844 acc:0.072917 saving the best_model... eval epoch:3 step: 500 loss:1.132963 acc:0.583333 saving the best_model... eval epoch:6 step: 1000 loss:0.922499 acc:0.718750 saving the best_model... eval epoch:9 step: 1500 loss:0.833021 acc:0.666667 train epoch:12 step: 2000 loss:0.732612 acc:0.739583 eval epoch:12 step: 2000 loss:0.732612 acc:0.739583 saving the best_model... eval epoch:16 step: 2500 loss:0.448837 acc:0.812500 saving the best_model... eval epoch:19 step: 3000 loss:0.225695 acc:0.947917 saving the best_model... eval epoch:22 step: 3500 loss:0.099140 acc:0.989583 saving the best_model... train epoch:25 step: 4000 loss:0.065642 acc:1.000000 eval epoch:25 step: 4000 loss:0.065642 acc:1.000000 saving the best_model... eval epoch:28 step: 4500 loss:0.033392 acc:1.000000 eval epoch:32 step: 5000 loss:0.020793 acc:1.000000 eval epoch:35 step: 5500 loss:0.021470 acc:1.000000 train epoch:38 step: 6000 loss:0.015860 acc:1.000000 eval epoch:38 step: 6000 loss:0.015860 acc:1.000000 eval epoch:41 step: 6500 loss:0.008177 acc:1.000000 eval epoch:44 step: 7000 loss:0.004767 acc:1.000000 eval epoch:48 step: 7500 loss:0.003457 acc:1.000000 ###Markdown 五、模型测试* 使用保存的最佳模型进行测试 ###Code # 反转字符表 label_dict_adv = {v: k for k, v in label_dict.items()} # 输入计算题目 input_text = '12+40' # 编码输入为ID inputs = encoder(input_text, MAXLEN, label_dict) # 转换输入为向量形式 inputs = np.array(inputs).reshape(-1, MAXLEN) inputs = paddle.to_tensor(inputs) # 加载模型 params_dict= paddle.load('best_model') model.set_dict(params_dict) # 设置为评估模式 model.eval() # 模型推理 out = model(inputs) # 结果转换 result = ''.join([label_dict_adv[_] for _ in np.argmax(out.numpy(), -1).reshape(-1)]) # 打印结果 print('the model answer: %s=%s' % (input_text, result)) print('the true answer: %s=%s' % (input_text, eval(input_text))) ###Output the model answer: 12+40=52 the true answer: 12+40=52 ###Markdown 使用序列到序列模型完成数字加法**作者:** [jm12138](https://github.com/jm12138) **日期:** 2022.5 **摘要:** 本示例介绍如何使用飞桨完成一个数字加法任务,将会使用飞桨提供的`LSTM`,组建一个序列到序列模型,并在随机生成的数据集上完成数字加法任务的模型训练与预测。 一、环境配置本教程基于PaddlePaddle 2.3.0 编写,如果你的环境不是本版本,请先参考官网[安装](https://www.paddlepaddle.org.cn/install/quick) PaddlePaddle 2.3.0。 ###Code # 导入项目运行所需的包 import paddle import paddle.nn as nn import random import numpy as np from visualdl import LogWriter # 打印Paddle版本 print('paddle version: %s' % paddle.__version__) ###Output paddle version: 2.3.0 ###Markdown 二、构建数据集* 随机生成数据,并使用生成的数据构造数据集* 通过继承 ``paddle.io.Dataset`` 来完成数据集的构造 ###Code # 编码函数 def encoder(text, LEN, label_dict): # 文本转ID ids = [label_dict[word] for word in text] # 对长度进行补齐 ids += [label_dict[' ']]*(LEN-len(ids)) return ids # 单个数据生成函数 def make_data(inputs, labels, DIGITS, label_dict): MAXLEN = DIGITS + 1 + DIGITS # 对输入输出文本进行ID编码 inputs = encoder(inputs, MAXLEN, label_dict) labels = encoder(labels, DIGITS + 1, label_dict) return inputs, labels # 批量数据生成函数 def gen_datas(DATA_NUM, MAX_NUM, DIGITS, label_dict): datas = [] while len(datas)<DATA_NUM: # 随机取两个数 a = random.randint(0,MAX_NUM) b = random.randint(0,MAX_NUM) # 生成输入文本 inputs = '%d+%d' % (a, b) # 生成输出文本 labels = str(eval(inputs)) # 生成单个数据 inputs, labels = [np.array(_).astype('int64') for _ in make_data(inputs, labels, DIGITS, label_dict)] datas.append([inputs, labels]) return datas # 继承paddle.io.Dataset来构造数据集 class Addition_Dataset(paddle.io.Dataset): # 重写数据集初始化函数 def __init__(self, datas): super(Addition_Dataset, self).__init__() self.datas = datas # 重写生成样本的函数 def __getitem__(self, index): data, label = [paddle.to_tensor(_) for _ in self.datas[index]] return data, label # 重写返回数据集大小的函数 def __len__(self): return len(self.datas) print('generating datas..') # 定义字符表 label_dict = { '0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9, '+': 10, ' ': 11 } # 输入数字最大位数 DIGITS = 2 # 数据数量 train_num = 5000 dev_num = 500 # 数据批大小 batch_size = 32 # 读取线程数 num_workers = 8 # 定义一些所需变量 MAXLEN = DIGITS + 1 + DIGITS MAX_NUM = 10**(DIGITS)-1 # 生成数据 train_datas = gen_datas( train_num, MAX_NUM, DIGITS, label_dict ) dev_datas = gen_datas( dev_num, MAX_NUM, DIGITS, label_dict ) # 实例化数据集 train_dataset = Addition_Dataset(train_datas) dev_dataset = Addition_Dataset(dev_datas) print('making the dataset...') # 实例化数据读取器 train_reader = paddle.io.DataLoader( train_dataset, batch_size=batch_size, shuffle=True, drop_last=True ) dev_reader = paddle.io.DataLoader( dev_dataset, batch_size=batch_size, shuffle=False, drop_last=True ) print('finish') ###Output generating datas.. making the dataset... finish ###Markdown 三、模型组网* 通过继承 ``paddle.nn.Layer`` 类来搭建模型* 本次介绍的模型是一个简单的基于 ``LSTM`` 的 ``Seq2Seq`` 模型* 一共有如下四个主要的网络层: 1. 嵌入层(``Embedding``):将输入的文本序列转为嵌入向量 2. 编码层(``LSTM``):将嵌入向量进行编码 3. 解码层(``LSTM``):将编码向量进行解码 4. 全连接层(``Linear``):对解码完成的向量进行线性映射* 损失函数为交叉熵损失函数 ###Code # 继承paddle.nn.Layer类 class Addition_Model(nn.Layer): # 重写初始化函数 # 参数:字符表长度、嵌入层大小、隐藏层大小、解码器层数、处理数字的最大位数 def __init__(self, char_len=12, embedding_size=128, hidden_size=128, num_layers=1, DIGITS=2): super(Addition_Model, self).__init__() # 初始化变量 self.DIGITS = DIGITS self.MAXLEN = DIGITS + 1 + DIGITS self.hidden_size = hidden_size self.char_len = char_len # 嵌入层 self.emb = nn.Embedding( char_len, embedding_size ) # 编码器 self.encoder = nn.LSTM( input_size=embedding_size, hidden_size=hidden_size, num_layers=1 ) # 解码器 self.decoder = nn.LSTM( input_size=hidden_size, hidden_size=hidden_size, num_layers=num_layers ) # 全连接层 self.fc = nn.Linear( hidden_size, char_len ) # 重写模型前向计算函数 # 参数:输入[None, MAXLEN]、标签[None, DIGITS + 1] def forward(self, inputs, labels=None): # 嵌入层 out = self.emb(inputs) # 编码器 out, (_, _) = self.encoder(out) # 按时间步切分编码器输出 out = paddle.split(out, self.MAXLEN, axis=1) # 取最后一个时间步的输出并复制 DIGITS + 1 次 out = paddle.expand(out[-1], [out[-1].shape[0], self.DIGITS + 1, self.hidden_size]) # 解码器 out, (_, _) = self.decoder(out) # 全连接 out = self.fc(out) # 如果标签存在,则计算其损失和准确率 if labels is not None: # 计算交叉熵损失 loss = nn.functional.cross_entropy(out, labels) # 计算准确率 acc = paddle.metric.accuracy(paddle.reshape(out, [-1, self.char_len]), paddle.reshape(labels, [-1, 1])) # 返回损失和准确率 return loss, acc # 返回输出 return out ###Output _____no_output_____ ###Markdown 四、模型训练与评估* 使用 ``Adam`` 作为优化器进行模型训练* 以模型准确率作为评价指标* 使用 ``VisualDL`` 对训练数据进行可视化* 训练过程中会同时进行模型评估和最佳模型的保存 ###Code # 初始化log写入器 log_writer = LogWriter(logdir="./log") # 模型参数设置 embedding_size = 128 hidden_size=128 num_layers=1 # 训练参数设置 epoch_num = 50 learning_rate = 0.001 log_iter = 2000 eval_iter = 500 # 定义一些所需变量 global_step = 0 log_step = 0 max_acc = 0 # 实例化模型 model = Addition_Model( char_len=len(label_dict), embedding_size=embedding_size, hidden_size=hidden_size, num_layers=num_layers, DIGITS=DIGITS) # 将模型设置为训练模式 model.train() # 设置优化器,学习率,并且把模型参数给优化器 opt = paddle.optimizer.Adam( learning_rate=learning_rate, parameters=model.parameters() ) # 启动训练,循环epoch_num个轮次 for epoch in range(epoch_num): # 遍历数据集读取数据 for batch_id, data in enumerate(train_reader()): # 读取数据 inputs, labels = data # 模型前向计算 loss, acc = model(inputs, labels=labels) # 打印训练数据 if global_step%log_iter==0: print('train epoch:%d step: %d loss:%f acc:%f' % (epoch, global_step, loss.numpy(), acc.numpy())) log_writer.add_scalar(tag="train/loss", step=log_step, value=loss.numpy()) log_writer.add_scalar(tag="train/acc", step=log_step, value=acc.numpy()) log_step+=1 # 模型验证 if global_step%eval_iter==0: model.eval() losses = [] accs = [] for data in dev_reader(): loss_eval, acc_eval = model(inputs, labels=labels) losses.append(loss_eval.numpy()) accs.append(acc_eval.numpy()) avg_loss = np.concatenate(losses).mean() avg_acc = np.concatenate(accs).mean() print('eval epoch:%d step: %d loss:%f acc:%f' % (epoch, global_step, avg_loss, avg_acc)) log_writer.add_scalar(tag="dev/loss", step=log_step, value=avg_loss) log_writer.add_scalar(tag="dev/acc", step=log_step, value=avg_acc) # 保存最佳模型 if avg_acc>max_acc: max_acc = avg_acc print('saving the best_model...') paddle.save(model.state_dict(), 'best_model') model.train() # 反向传播 loss.backward() # 使用优化器进行参数优化 opt.step() # 清除梯度 opt.clear_grad() # 全局步数加一 global_step += 1 # 保存最终模型 paddle.save(model.state_dict(),'final_model') ###Output W0509 16:43:23.286460 233 gpu_context.cc:278] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 10.1 W0509 16:43:23.291019 233 gpu_context.cc:306] device: 0, cuDNN Version: 7.6. ###Markdown 五、模型测试* 使用保存的最佳模型进行测试 ###Code # 反转字符表 label_dict_adv = {v: k for k, v in label_dict.items()} # 输入计算题目 input_text = '12+40' # 编码输入为ID inputs = encoder(input_text, MAXLEN, label_dict) # 转换输入为向量形式 inputs = np.array(inputs).reshape(-1, MAXLEN) inputs = paddle.to_tensor(inputs) # 加载模型 params_dict= paddle.load('best_model') model.set_dict(params_dict) # 设置为评估模式 model.eval() # 模型推理 out = model(inputs) # 结果转换 result = ''.join([label_dict_adv[_] for _ in np.argmax(out.numpy(), -1).reshape(-1)]) # 打印结果 print('the model answer: %s=%s' % (input_text, result)) print('the true answer: %s=%s' % (input_text, eval(input_text))) ###Output the model answer: 12+40=52 the true answer: 12+40=52 ###Markdown 使用序列到序列模型完成数字加法**作者:** [jm12138](https://github.com/jm12138) **日期:** 2022.4 **摘要:** 本示例介绍如何使用飞桨完成一个数字加法任务,将会使用飞桨提供的`LSTM`,组建一个序列到序列模型,并在随机生成的数据集上完成数字加法任务的模型训练与预测。 一、环境配置本教程基于PaddlePaddle 2.3.0-rc0 编写,如果你的环境不是本版本,请先参考官网[安装](https://www.paddlepaddle.org.cn/install/quick) PaddlePaddle 2.3.0-rc0。 ###Code # 导入项目运行所需的包 import paddle import paddle.nn as nn import random import numpy as np from visualdl import LogWriter # 打印Paddle版本 print('paddle version: %s' % paddle.__version__) ###Output paddle version: 2.3.0-rc0 ###Markdown 二、构建数据集* 随机生成数据,并使用生成的数据构造数据集* 通过继承 ``paddle.io.Dataset`` 来完成数据集的构造 ###Code # 编码函数 def encoder(text, LEN, label_dict): # 文本转ID ids = [label_dict[word] for word in text] # 对长度进行补齐 ids += [label_dict[' ']]*(LEN-len(ids)) return ids # 单个数据生成函数 def make_data(inputs, labels, DIGITS, label_dict): MAXLEN = DIGITS + 1 + DIGITS # 对输入输出文本进行ID编码 inputs = encoder(inputs, MAXLEN, label_dict) labels = encoder(labels, DIGITS + 1, label_dict) return inputs, labels # 批量数据生成函数 def gen_datas(DATA_NUM, MAX_NUM, DIGITS, label_dict): datas = [] while len(datas)<DATA_NUM: # 随机取两个数 a = random.randint(0,MAX_NUM) b = random.randint(0,MAX_NUM) # 生成输入文本 inputs = '%d+%d' % (a, b) # 生成输出文本 labels = str(eval(inputs)) # 生成单个数据 inputs, labels = [np.array(_).astype('int64') for _ in make_data(inputs, labels, DIGITS, label_dict)] datas.append([inputs, labels]) return datas # 继承paddle.io.Dataset来构造数据集 class Addition_Dataset(paddle.io.Dataset): # 重写数据集初始化函数 def __init__(self, datas): super(Addition_Dataset, self).__init__() self.datas = datas # 重写生成样本的函数 def __getitem__(self, index): data, label = [paddle.to_tensor(_) for _ in self.datas[index]] return data, label # 重写返回数据集大小的函数 def __len__(self): return len(self.datas) print('generating datas..') # 定义字符表 label_dict = { '0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9, '+': 10, ' ': 11 } # 输入数字最大位数 DIGITS = 2 # 数据数量 train_num = 5000 dev_num = 500 # 数据批大小 batch_size = 32 # 读取线程数 num_workers = 8 # 定义一些所需变量 MAXLEN = DIGITS + 1 + DIGITS MAX_NUM = 10**(DIGITS)-1 # 生成数据 train_datas = gen_datas( train_num, MAX_NUM, DIGITS, label_dict ) dev_datas = gen_datas( dev_num, MAX_NUM, DIGITS, label_dict ) # 实例化数据集 train_dataset = Addition_Dataset(train_datas) dev_dataset = Addition_Dataset(dev_datas) print('making the dataset...') # 实例化数据读取器 train_reader = paddle.io.DataLoader( train_dataset, batch_size=batch_size, shuffle=True, drop_last=True ) dev_reader = paddle.io.DataLoader( dev_dataset, batch_size=batch_size, shuffle=False, drop_last=True ) print('finish') ###Output generating datas.. making the dataset... finish ###Markdown 三、模型组网* 通过继承 ``paddle.nn.Layer`` 类来搭建模型* 本次介绍的模型是一个简单的基于 ``LSTM`` 的 ``Seq2Seq`` 模型* 一共有如下四个主要的网络层: 1. 嵌入层(``Embedding``):将输入的文本序列转为嵌入向量 2. 编码层(``LSTM``):将嵌入向量进行编码 3. 解码层(``LSTM``):将编码向量进行解码 4. 全连接层(``Linear``):对解码完成的向量进行线性映射* 损失函数为交叉熵损失函数 ###Code # 继承paddle.nn.Layer类 class Addition_Model(nn.Layer): # 重写初始化函数 # 参数:字符表长度、嵌入层大小、隐藏层大小、解码器层数、处理数字的最大位数 def __init__(self, char_len=12, embedding_size=128, hidden_size=128, num_layers=1, DIGITS=2): super(Addition_Model, self).__init__() # 初始化变量 self.DIGITS = DIGITS self.MAXLEN = DIGITS + 1 + DIGITS self.hidden_size = hidden_size self.char_len = char_len # 嵌入层 self.emb = nn.Embedding( char_len, embedding_size ) # 编码器 self.encoder = nn.LSTM( input_size=embedding_size, hidden_size=hidden_size, num_layers=1 ) # 解码器 self.decoder = nn.LSTM( input_size=hidden_size, hidden_size=hidden_size, num_layers=num_layers ) # 全连接层 self.fc = nn.Linear( hidden_size, char_len ) # 重写模型前向计算函数 # 参数:输入[None, MAXLEN]、标签[None, DIGITS + 1] def forward(self, inputs, labels=None): # 嵌入层 out = self.emb(inputs) # 编码器 out, (_, _) = self.encoder(out) # 按时间步切分编码器输出 out = paddle.split(out, self.MAXLEN, axis=1) # 取最后一个时间步的输出并复制 DIGITS + 1 次 out = paddle.expand(out[-1], [out[-1].shape[0], self.DIGITS + 1, self.hidden_size]) # 解码器 out, (_, _) = self.decoder(out) # 全连接 out = self.fc(out) # 如果标签存在,则计算其损失和准确率 if labels is not None: # 计算交叉熵损失 loss = nn.functional.cross_entropy(out, labels) # 计算准确率 acc = paddle.metric.accuracy(paddle.reshape(out, [-1, self.char_len]), paddle.reshape(labels, [-1, 1])) # 返回损失和准确率 return loss, acc # 返回输出 return out ###Output _____no_output_____ ###Markdown 四、模型训练与评估* 使用 ``Adam`` 作为优化器进行模型训练* 以模型准确率作为评价指标* 使用 ``VisualDL`` 对训练数据进行可视化* 训练过程中会同时进行模型评估和最佳模型的保存 ###Code # 初始化log写入器 log_writer = LogWriter(logdir="./log") # 模型参数设置 embedding_size = 128 hidden_size=128 num_layers=1 # 训练参数设置 epoch_num = 50 learning_rate = 0.001 log_iter = 2000 eval_iter = 500 # 定义一些所需变量 global_step = 0 log_step = 0 max_acc = 0 # 实例化模型 model = Addition_Model( char_len=len(label_dict), embedding_size=embedding_size, hidden_size=hidden_size, num_layers=num_layers, DIGITS=DIGITS) # 将模型设置为训练模式 model.train() # 设置优化器,学习率,并且把模型参数给优化器 opt = paddle.optimizer.Adam( learning_rate=learning_rate, parameters=model.parameters() ) # 启动训练,循环epoch_num个轮次 for epoch in range(epoch_num): # 遍历数据集读取数据 for batch_id, data in enumerate(train_reader()): # 读取数据 inputs, labels = data # 模型前向计算 loss, acc = model(inputs, labels=labels) # 打印训练数据 if global_step%log_iter==0: print('train epoch:%d step: %d loss:%f acc:%f' % (epoch, global_step, loss.numpy(), acc.numpy())) log_writer.add_scalar(tag="train/loss", step=log_step, value=loss.numpy()) log_writer.add_scalar(tag="train/acc", step=log_step, value=acc.numpy()) log_step+=1 # 模型验证 if global_step%eval_iter==0: model.eval() losses = [] accs = [] for data in dev_reader(): loss_eval, acc_eval = model(inputs, labels=labels) losses.append(loss_eval.numpy()) accs.append(acc_eval.numpy()) avg_loss = np.concatenate(losses).mean() avg_acc = np.concatenate(accs).mean() print('eval epoch:%d step: %d loss:%f acc:%f' % (epoch, global_step, avg_loss, avg_acc)) log_writer.add_scalar(tag="dev/loss", step=log_step, value=avg_loss) log_writer.add_scalar(tag="dev/acc", step=log_step, value=avg_acc) # 保存最佳模型 if avg_acc>max_acc: max_acc = avg_acc print('saving the best_model...') paddle.save(model.state_dict(), 'best_model') model.train() # 反向传播 loss.backward() # 使用优化器进行参数优化 opt.step() # 清除梯度 opt.clear_grad() # 全局步数加一 global_step += 1 # 保存最终模型 paddle.save(model.state_dict(),'final_model') ###Output W0422 17:48:54.917449 149 gpu_context.cc:244] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1 W0422 17:48:54.922053 149 gpu_context.cc:272] device: 0, cuDNN Version: 7.6. ###Markdown 五、模型测试* 使用保存的最佳模型进行测试 ###Code # 反转字符表 label_dict_adv = {v: k for k, v in label_dict.items()} # 输入计算题目 input_text = '12+40' # 编码输入为ID inputs = encoder(input_text, MAXLEN, label_dict) # 转换输入为向量形式 inputs = np.array(inputs).reshape(-1, MAXLEN) inputs = paddle.to_tensor(inputs) # 加载模型 params_dict= paddle.load('best_model') model.set_dict(params_dict) # 设置为评估模式 model.eval() # 模型推理 out = model(inputs) # 结果转换 result = ''.join([label_dict_adv[_] for _ in np.argmax(out.numpy(), -1).reshape(-1)]) # 打印结果 print('the model answer: %s=%s' % (input_text, result)) print('the true answer: %s=%s' % (input_text, eval(input_text))) ###Output the model answer: 12+40=52 the true answer: 12+40=52 ###Markdown 使用序列到序列模型完成数字加法**作者:** [jm12138](https://github.com/jm12138) **日期:** 2022.1 **摘要:** 本示例介绍如何使用飞桨完成一个数字加法任务,将会使用飞桨提供的`LSTM`,组建一个序列到序列模型,并在随机生成的数据集上完成数字加法任务的模型训练与预测。 一、环境配置本教程基于Paddle 2.2 编写,如果你的环境不是本版本,请先参考官网[安装](https://www.paddlepaddle.org.cn/install/quick) Paddle 2.2。 ###Code # 导入项目运行所需的包 import paddle import paddle.nn as nn import random import numpy as np from visualdl import LogWriter # 打印Paddle版本 print('paddle version: %s' % paddle.__version__) ###Output paddle version: 2.2.2 ###Markdown 二、构建数据集* 随机生成数据,并使用生成的数据构造数据集* 通过继承 ``paddle.io.Dataset`` 来完成数据集的构造 ###Code # 编码函数 def encoder(text, LEN, label_dict): # 文本转ID ids = [label_dict[word] for word in text] # 对长度进行补齐 ids += [label_dict[' ']]*(LEN-len(ids)) return ids # 单个数据生成函数 def make_data(inputs, labels, DIGITS, label_dict): MAXLEN = DIGITS + 1 + DIGITS # 对输入输出文本进行ID编码 inputs = encoder(inputs, MAXLEN, label_dict) labels = encoder(labels, DIGITS + 1, label_dict) return inputs, labels # 批量数据生成函数 def gen_datas(DATA_NUM, MAX_NUM, DIGITS, label_dict): datas = [] while len(datas)<DATA_NUM: # 随机取两个数 a = random.randint(0,MAX_NUM) b = random.randint(0,MAX_NUM) # 生成输入文本 inputs = '%d+%d' % (a, b) # 生成输出文本 labels = str(eval(inputs)) # 生成单个数据 inputs, labels = [np.array(_).astype('int64') for _ in make_data(inputs, labels, DIGITS, label_dict)] datas.append([inputs, labels]) return datas # 继承paddle.io.Dataset来构造数据集 class Addition_Dataset(paddle.io.Dataset): # 重写数据集初始化函数 def __init__(self, datas): super(Addition_Dataset, self).__init__() self.datas = datas # 重写生成样本的函数 def __getitem__(self, index): data, label = [paddle.to_tensor(_) for _ in self.datas[index]] return data, label # 重写返回数据集大小的函数 def __len__(self): return len(self.datas) print('generating datas..') # 定义字符表 label_dict = { '0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9, '+': 10, ' ': 11 } # 输入数字最大位数 DIGITS = 2 # 数据数量 train_num = 5000 dev_num = 500 # 数据批大小 batch_size = 32 # 读取线程数 num_workers = 8 # 定义一些所需变量 MAXLEN = DIGITS + 1 + DIGITS MAX_NUM = 10**(DIGITS)-1 # 生成数据 train_datas = gen_datas( train_num, MAX_NUM, DIGITS, label_dict ) dev_datas = gen_datas( dev_num, MAX_NUM, DIGITS, label_dict ) # 实例化数据集 train_dataset = Addition_Dataset(train_datas) dev_dataset = Addition_Dataset(dev_datas) print('making the dataset...') # 实例化数据读取器 train_reader = paddle.io.DataLoader( train_dataset, batch_size=batch_size, shuffle=True, drop_last=True ) dev_reader = paddle.io.DataLoader( dev_dataset, batch_size=batch_size, shuffle=False, drop_last=True ) print('finish') ###Output generating datas.. making the dataset... finish ###Markdown 三、模型组网* 通过继承 ``paddle.nn.Layer`` 类来搭建模型* 本次介绍的模型是一个简单的基于 ``LSTM`` 的 ``Seq2Seq`` 模型* 一共有如下四个主要的网络层: 1. 嵌入层(``Embedding``):将输入的文本序列转为嵌入向量 2. 编码层(``LSTM``):将嵌入向量进行编码 3. 解码层(``LSTM``):将编码向量进行解码 4. 全连接层(``Linear``):对解码完成的向量进行线性映射* 损失函数为交叉熵损失函数 ###Code # 继承paddle.nn.Layer类 class Addition_Model(nn.Layer): # 重写初始化函数 # 参数:字符表长度、嵌入层大小、隐藏层大小、解码器层数、处理数字的最大位数 def __init__(self, char_len=12, embedding_size=128, hidden_size=128, num_layers=1, DIGITS=2): super(Addition_Model, self).__init__() # 初始化变量 self.DIGITS = DIGITS self.MAXLEN = DIGITS + 1 + DIGITS self.hidden_size = hidden_size self.char_len = char_len # 嵌入层 self.emb = nn.Embedding( char_len, embedding_size ) # 编码器 self.encoder = nn.LSTM( input_size=embedding_size, hidden_size=hidden_size, num_layers=1 ) # 解码器 self.decoder = nn.LSTM( input_size=hidden_size, hidden_size=hidden_size, num_layers=num_layers ) # 全连接层 self.fc = nn.Linear( hidden_size, char_len ) # 重写模型前向计算函数 # 参数:输入[None, MAXLEN]、标签[None, DIGITS + 1] def forward(self, inputs, labels=None): # 嵌入层 out = self.emb(inputs) # 编码器 out, (_, _) = self.encoder(out) # 按时间步切分编码器输出 out = paddle.split(out, self.MAXLEN, axis=1) # 取最后一个时间步的输出并复制 DIGITS + 1 次 out = paddle.expand(out[-1], [out[-1].shape[0], self.DIGITS + 1, self.hidden_size]) # 解码器 out, (_, _) = self.decoder(out) # 全连接 out = self.fc(out) # 如果标签存在,则计算其损失和准确率 if labels is not None: # 计算交叉熵损失 loss = nn.functional.cross_entropy(out, labels) # 计算准确率 acc = paddle.metric.accuracy(paddle.reshape(out, [-1, self.char_len]), paddle.reshape(labels, [-1, 1])) # 返回损失和准确率 return loss, acc # 返回输出 return out ###Output _____no_output_____ ###Markdown 四、模型训练与评估* 使用 ``Adam`` 作为优化器进行模型训练* 以模型准确率作为评价指标* 使用 ``VisualDL`` 对训练数据进行可视化* 训练过程中会同时进行模型评估和最佳模型的保存 ###Code # 初始化log写入器 log_writer = LogWriter(logdir="./log") # 模型参数设置 embedding_size = 128 hidden_size=128 num_layers=1 # 训练参数设置 epoch_num = 50 learning_rate = 0.001 log_iter = 2000 eval_iter = 500 # 定义一些所需变量 global_step = 0 log_step = 0 max_acc = 0 # 实例化模型 model = Addition_Model( char_len=len(label_dict), embedding_size=embedding_size, hidden_size=hidden_size, num_layers=num_layers, DIGITS=DIGITS) # 将模型设置为训练模式 model.train() # 设置优化器,学习率,并且把模型参数给优化器 opt = paddle.optimizer.Adam( learning_rate=learning_rate, parameters=model.parameters() ) # 启动训练,循环epoch_num个轮次 for epoch in range(epoch_num): # 遍历数据集读取数据 for batch_id, data in enumerate(train_reader()): # 读取数据 inputs, labels = data # 模型前向计算 loss, acc = model(inputs, labels=labels) # 打印训练数据 if global_step%log_iter==0: print('train epoch:%d step: %d loss:%f acc:%f' % (epoch, global_step, loss.numpy(), acc.numpy())) log_writer.add_scalar(tag="train/loss", step=log_step, value=loss.numpy()) log_writer.add_scalar(tag="train/acc", step=log_step, value=acc.numpy()) log_step+=1 # 模型验证 if global_step%eval_iter==0: model.eval() losses = [] accs = [] for data in dev_reader(): loss_eval, acc_eval = model(inputs, labels=labels) losses.append(loss_eval.numpy()) accs.append(acc_eval.numpy()) avg_loss = np.concatenate(losses).mean() avg_acc = np.concatenate(accs).mean() print('eval epoch:%d step: %d loss:%f acc:%f' % (epoch, global_step, avg_loss, avg_acc)) log_writer.add_scalar(tag="dev/loss", step=log_step, value=avg_loss) log_writer.add_scalar(tag="dev/acc", step=log_step, value=avg_acc) # 保存最佳模型 if avg_acc>max_acc: max_acc = avg_acc print('saving the best_model...') paddle.save(model.state_dict(), 'best_model') model.train() # 反向传播 loss.backward() # 使用优化器进行参数优化 opt.step() # 清除梯度 opt.clear_grad() # 全局步数加一 global_step += 1 # 保存最终模型 paddle.save(model.state_dict(),'final_model') ###Output train epoch:0 step: 0 loss:2.495761 acc:0.062500 eval epoch:0 step: 0 loss:2.495761 acc:0.062500 saving the best_model... eval epoch:3 step: 500 loss:1.171557 acc:0.572917 saving the best_model... eval epoch:6 step: 1000 loss:0.944137 acc:0.666667 saving the best_model... eval epoch:9 step: 1500 loss:0.823990 acc:0.718750 saving the best_model... train epoch:12 step: 2000 loss:0.759228 acc:0.729167 eval epoch:12 step: 2000 loss:0.759228 acc:0.729167 saving the best_model... eval epoch:16 step: 2500 loss:0.596108 acc:0.812500 saving the best_model... eval epoch:19 step: 3000 loss:0.261857 acc:0.947917 saving the best_model... eval epoch:22 step: 3500 loss:0.115905 acc:0.979167 saving the best_model... train epoch:25 step: 4000 loss:0.061168 acc:1.000000 eval epoch:25 step: 4000 loss:0.061168 acc:1.000000 saving the best_model... eval epoch:28 step: 4500 loss:0.064226 acc:0.979167 eval epoch:32 step: 5000 loss:0.043079 acc:0.989583 eval epoch:35 step: 5500 loss:0.226035 acc:0.916667 train epoch:38 step: 6000 loss:0.008072 acc:1.000000 eval epoch:38 step: 6000 loss:0.008072 acc:1.000000 eval epoch:41 step: 6500 loss:0.005520 acc:1.000000 eval epoch:44 step: 7000 loss:0.004417 acc:1.000000 eval epoch:48 step: 7500 loss:0.003517 acc:1.000000 ###Markdown 五、模型测试* 使用保存的最佳模型进行测试 ###Code # 反转字符表 label_dict_adv = {v: k for k, v in label_dict.items()} # 输入计算题目 input_text = '12+40' # 编码输入为ID inputs = encoder(input_text, MAXLEN, label_dict) # 转换输入为向量形式 inputs = np.array(inputs).reshape(-1, MAXLEN) inputs = paddle.to_tensor(inputs) # 加载模型 params_dict= paddle.load('best_model') model.set_dict(params_dict) # 设置为评估模式 model.eval() # 模型推理 out = model(inputs) # 结果转换 result = ''.join([label_dict_adv[_] for _ in np.argmax(out.numpy(), -1).reshape(-1)]) # 打印结果 print('the model answer: %s=%s' % (input_text, result)) print('the true answer: %s=%s' % (input_text, eval(input_text))) ###Output the model answer: 12+40=52 the true answer: 12+40=52 ###Markdown 使用序列到序列模型完成数字加法**作者:** [jm12138](https://github.com/jm12138) **日期:** 2021.11 **摘要:** 本示例介绍如何使用飞桨完成一个数字加法任务,将会使用飞桨提供的`LSTM`,组建一个序列到序列模型,并在随机生成的数据集上完成数字加法任务的模型训练与预测。 一、环境配置本教程基于Paddle 2.2.0 编写,如果你的环境不是本版本,请先参考官网[安装](https://www.paddlepaddle.org.cn/install/quick) Paddle 2.2.0。 ###Code # 导入项目运行所需的包 import paddle import paddle.nn as nn import random import numpy as np from visualdl import LogWriter # 打印Paddle版本 print('paddle version: %s' % paddle.__version__) ###Output paddle version: 2.2.0 ###Markdown 二、构建数据集* 随机生成数据,并使用生成的数据构造数据集* 通过继承 ``paddle.io.Dataset`` 来完成数据集的构造 ###Code # 编码函数 def encoder(text, LEN, label_dict): # 文本转ID ids = [label_dict[word] for word in text] # 对长度进行补齐 ids += [label_dict[' ']]*(LEN-len(ids)) return ids # 单个数据生成函数 def make_data(inputs, labels, DIGITS, label_dict): MAXLEN = DIGITS + 1 + DIGITS # 对输入输出文本进行ID编码 inputs = encoder(inputs, MAXLEN, label_dict) labels = encoder(labels, DIGITS + 1, label_dict) return inputs, labels # 批量数据生成函数 def gen_datas(DATA_NUM, MAX_NUM, DIGITS, label_dict): datas = [] while len(datas)<DATA_NUM: # 随机取两个数 a = random.randint(0,MAX_NUM) b = random.randint(0,MAX_NUM) # 生成输入文本 inputs = '%d+%d' % (a, b) # 生成输出文本 labels = str(eval(inputs)) # 生成单个数据 inputs, labels = [np.array(_).astype('int64') for _ in make_data(inputs, labels, DIGITS, label_dict)] datas.append([inputs, labels]) return datas # 继承paddle.io.Dataset来构造数据集 class Addition_Dataset(paddle.io.Dataset): # 重写数据集初始化函数 def __init__(self, datas): super(Addition_Dataset, self).__init__() self.datas = datas # 重写生成样本的函数 def __getitem__(self, index): data, label = [paddle.to_tensor(_) for _ in self.datas[index]] return data, label # 重写返回数据集大小的函数 def __len__(self): return len(self.datas) print('generating datas..') # 定义字符表 label_dict = { '0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9, '+': 10, ' ': 11 } # 输入数字最大位数 DIGITS = 2 # 数据数量 train_num = 5000 dev_num = 500 # 数据批大小 batch_size = 32 # 读取线程数 num_workers = 8 # 定义一些所需变量 MAXLEN = DIGITS + 1 + DIGITS MAX_NUM = 10**(DIGITS)-1 # 生成数据 train_datas = gen_datas( train_num, MAX_NUM, DIGITS, label_dict ) dev_datas = gen_datas( dev_num, MAX_NUM, DIGITS, label_dict ) # 实例化数据集 train_dataset = Addition_Dataset(train_datas) dev_dataset = Addition_Dataset(dev_datas) print('making the dataset...') # 实例化数据读取器 train_reader = paddle.io.DataLoader( train_dataset, batch_size=batch_size, shuffle=True, drop_last=True ) dev_reader = paddle.io.DataLoader( dev_dataset, batch_size=batch_size, shuffle=False, drop_last=True ) print('finish') ###Output generating datas.. making the dataset... finish ###Markdown 三、模型组网* 通过继承 ``paddle.nn.Layer`` 类来搭建模型* 本次介绍的模型是一个简单的基于 ``LSTM`` 的 ``Seq2Seq`` 模型* 一共有如下四个主要的网络层: 1. 嵌入层(``Embedding``):将输入的文本序列转为嵌入向量 2. 编码层(``LSTM``):将嵌入向量进行编码 3. 解码层(``LSTM``):将编码向量进行解码 4. 全连接层(``Linear``):对解码完成的向量进行线性映射* 损失函数为交叉熵损失函数 ###Code # 继承paddle.nn.Layer类 class Addition_Model(nn.Layer): # 重写初始化函数 # 参数:字符表长度、嵌入层大小、隐藏层大小、解码器层数、处理数字的最大位数 def __init__(self, char_len=12, embedding_size=128, hidden_size=128, num_layers=1, DIGITS=2): super(Addition_Model, self).__init__() # 初始化变量 self.DIGITS = DIGITS self.MAXLEN = DIGITS + 1 + DIGITS self.hidden_size = hidden_size self.char_len = char_len # 嵌入层 self.emb = nn.Embedding( char_len, embedding_size ) # 编码器 self.encoder = nn.LSTM( input_size=embedding_size, hidden_size=hidden_size, num_layers=1 ) # 解码器 self.decoder = nn.LSTM( input_size=hidden_size, hidden_size=hidden_size, num_layers=num_layers ) # 全连接层 self.fc = nn.Linear( hidden_size, char_len ) # 重写模型前向计算函数 # 参数:输入[None, MAXLEN]、标签[None, DIGITS + 1] def forward(self, inputs, labels=None): # 嵌入层 out = self.emb(inputs) # 编码器 out, (_, _) = self.encoder(out) # 按时间步切分编码器输出 out = paddle.split(out, self.MAXLEN, axis=1) # 取最后一个时间步的输出并复制 DIGITS + 1 次 out = paddle.expand(out[-1], [out[-1].shape[0], self.DIGITS + 1, self.hidden_size]) # 解码器 out, (_, _) = self.decoder(out) # 全连接 out = self.fc(out) # 如果标签存在,则计算其损失和准确率 if labels is not None: # 计算交叉熵损失 loss = nn.functional.cross_entropy(out, labels) # 计算准确率 acc = paddle.metric.accuracy(paddle.reshape(out, [-1, self.char_len]), paddle.reshape(labels, [-1, 1])) # 返回损失和准确率 return loss, acc # 返回输出 return out ###Output _____no_output_____ ###Markdown 四、模型训练与评估* 使用 ``Adam`` 作为优化器进行模型训练* 以模型准确率作为评价指标* 使用 ``VisualDL`` 对训练数据进行可视化* 训练过程中会同时进行模型评估和最佳模型的保存 ###Code # 初始化log写入器 log_writer = LogWriter(logdir="./log") # 模型参数设置 embedding_size = 128 hidden_size=128 num_layers=1 # 训练参数设置 epoch_num = 50 learning_rate = 0.001 log_iter = 2000 eval_iter = 500 # 定义一些所需变量 global_step = 0 log_step = 0 max_acc = 0 # 实例化模型 model = Addition_Model( char_len=len(label_dict), embedding_size=embedding_size, hidden_size=hidden_size, num_layers=num_layers, DIGITS=DIGITS) # 将模型设置为训练模式 model.train() # 设置优化器,学习率,并且把模型参数给优化器 opt = paddle.optimizer.Adam( learning_rate=learning_rate, parameters=model.parameters() ) # 启动训练,循环epoch_num个轮次 for epoch in range(epoch_num): # 遍历数据集读取数据 for batch_id, data in enumerate(train_reader()): # 读取数据 inputs, labels = data # 模型前向计算 loss, acc = model(inputs, labels=labels) # 打印训练数据 if global_step%log_iter==0: print('train epoch:%d step: %d loss:%f acc:%f' % (epoch, global_step, loss.numpy(), acc.numpy())) log_writer.add_scalar(tag="train/loss", step=log_step, value=loss.numpy()) log_writer.add_scalar(tag="train/acc", step=log_step, value=acc.numpy()) log_step+=1 # 模型验证 if global_step%eval_iter==0: model.eval() losses = [] accs = [] for data in dev_reader(): loss_eval, acc_eval = model(inputs, labels=labels) losses.append(loss_eval.numpy()) accs.append(acc_eval.numpy()) avg_loss = np.concatenate(losses).mean() avg_acc = np.concatenate(accs).mean() print('eval epoch:%d step: %d loss:%f acc:%f' % (epoch, global_step, avg_loss, avg_acc)) log_writer.add_scalar(tag="dev/loss", step=log_step, value=avg_loss) log_writer.add_scalar(tag="dev/acc", step=log_step, value=avg_acc) # 保存最佳模型 if avg_acc>max_acc: max_acc = avg_acc print('saving the best_model...') paddle.save(model.state_dict(), 'best_model') model.train() # 反向传播 loss.backward() # 使用优化器进行参数优化 opt.step() # 清除梯度 opt.clear_grad() # 全局步数加一 global_step += 1 # 保存最终模型 paddle.save(model.state_dict(),'final_model') ###Output train epoch:0 step: 0 loss:2.489843 acc:0.072917 eval epoch:0 step: 0 loss:2.489844 acc:0.072917 saving the best_model... eval epoch:3 step: 500 loss:1.132963 acc:0.583333 saving the best_model... eval epoch:6 step: 1000 loss:0.922499 acc:0.718750 saving the best_model... eval epoch:9 step: 1500 loss:0.833021 acc:0.666667 train epoch:12 step: 2000 loss:0.732612 acc:0.739583 eval epoch:12 step: 2000 loss:0.732612 acc:0.739583 saving the best_model... eval epoch:16 step: 2500 loss:0.448837 acc:0.812500 saving the best_model... eval epoch:19 step: 3000 loss:0.225695 acc:0.947917 saving the best_model... eval epoch:22 step: 3500 loss:0.099140 acc:0.989583 saving the best_model... train epoch:25 step: 4000 loss:0.065642 acc:1.000000 eval epoch:25 step: 4000 loss:0.065642 acc:1.000000 saving the best_model... eval epoch:28 step: 4500 loss:0.033392 acc:1.000000 eval epoch:32 step: 5000 loss:0.020793 acc:1.000000 eval epoch:35 step: 5500 loss:0.021470 acc:1.000000 train epoch:38 step: 6000 loss:0.015860 acc:1.000000 eval epoch:38 step: 6000 loss:0.015860 acc:1.000000 eval epoch:41 step: 6500 loss:0.008177 acc:1.000000 eval epoch:44 step: 7000 loss:0.004767 acc:1.000000 eval epoch:48 step: 7500 loss:0.003457 acc:1.000000 ###Markdown 五、模型测试* 使用保存的最佳模型进行测试 ###Code # 反转字符表 label_dict_adv = {v: k for k, v in label_dict.items()} # 输入计算题目 input_text = '12+40' # 编码输入为ID inputs = encoder(input_text, MAXLEN, label_dict) # 转换输入为向量形式 inputs = np.array(inputs).reshape(-1, MAXLEN) inputs = paddle.to_tensor(inputs) # 加载模型 params_dict= paddle.load('best_model') model.set_dict(params_dict) # 设置为评估模式 model.eval() # 模型推理 out = model(inputs) # 结果转换 result = ''.join([label_dict_adv[_] for _ in np.argmax(out.numpy(), -1).reshape(-1)]) # 打印结果 print('the model answer: %s=%s' % (input_text, result)) print('the true answer: %s=%s' % (input_text, eval(input_text))) ###Output the model answer: 12+40=52 the true answer: 12+40=52
site/ja/tutorials/customization/custom_training.ipynb
###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown カスタム訓練:基本 View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook 前のチュートリアルでは、機械学習の基本構成ブロックの1つである自動微分について TensorFlow の API を学習しました。このチュートリアルでは、これまでのチュートリアルに出てきた TensorFlow の基本要素を使って、単純な機械学習を実行します。TensorFlow には `tf.keras` が含まれています。`tf.keras`は、抽象化により決まり切った記述を削減し、柔軟さと性能を犠牲にすることなく TensorFlow をやさしく使えるようにする、高度なニューラルネットワーク API です。開発には [tf.Keras API](../../guide/keras/overview.ipynb) を使うことを強くおすすめします。しかしながら、この短いチュートリアルでは、しっかりした基礎を身につけていただくために、ニューラルネットワークの訓練についていちから学ぶことにします。 設定 ###Code from __future__ import absolute_import, division, print_function, unicode_literals try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass import tensorflow as tf ###Output _____no_output_____ ###Markdown 変数TensorFlow のテンソルはイミュータブルでステートレスなオブジェクトです。しかしながら、機械学習モデルには変化する状態が必要です。モデルの訓練が進むにつれて、推論を行うおなじコードが異なる振る舞いをする必要があります(望むべくはより損失の少なくなるように)。この計算が進むにつれて変化する必要がある状態を表現するために、Python が状態を保つプログラミング言語であることを利用することができます。 ###Code # Python の状態を使う x = tf.zeros([10, 10]) x += 2 # これは x = x + 2 と等価で, x の元の値を変えているわけではない print(x) ###Output _____no_output_____ ###Markdown TensorFlow にはステートフルな演算が組み込まれているので、状態を表現するのに低レベルの Python による表現を使うよりは簡単なことがしばしばあります。`tf.Variable`オブジェクトは値を保持し、何も指示しなくともこの保存された値を読み出します。TensorFlow の変数に保持された値を操作する演算(`tf.assign_sub`, `tf.scatter_update`, など)が用意されています。 ###Code v = tf.Variable(1.0) # Python の `assert` を条件をテストするデバッグ文として使用 assert v.numpy() == 1.0 # `v` に値を再代入 v.assign(3.0) assert v.numpy() == 3.0 # `v` に TensorFlow の `tf.square()` 演算を適用し再代入 v.assign(tf.square(v)) assert v.numpy() == 9.0 ###Output _____no_output_____ ###Markdown `tf.Variable`を使った計算は、勾配計算の際に自動的にトレースされます。埋め込みを表す変数では、TensorFlow は既定でスパースな更新を行います。これは計算量やメモリ使用量においてより効率的です。`tf.Variable`はあなたのコードを読む人にその状態の一部がミュータブルであることを示す方法でもあります。 線形モデルの適合これまでに学んだ `Tensor`、 `Variable`、 そして `GradientTape`という概念を使って、簡単なモデルの構築と訓練を行ってみましょう。通常、これには次のようないくつかの手順が含まれます。1. モデルの定義2. 損失関数の定義3. 訓練データの取得4. 訓練データを使って実行し、"optimizer" を使って変数をデータに適合ここでは、`f(x) = x * W + b`という簡単な線形モデルを作ります。このモデルには `W` (重み) と `b` (バイアス) の2つの変数があります。十分訓練されたモデルが `W = 3.0` と `b = 2.0` になるようなデータを人工的に作ります。 モデルの定義変数と計算をカプセル化する単純なクラスを定義してみましょう。 ###Code class Model(object): def __init__(self): # 重みを `5.0` に、バイアスを `0.0` に初期化 # 実際には、これらの値は乱数で初期化するべき(例えば `tf.random.normal` を使って) self.W = tf.Variable(5.0) self.b = tf.Variable(0.0) def __call__(self, x): return self.W * x + self.b model = Model() assert model(3.0).numpy() == 15.0 ###Output _____no_output_____ ###Markdown 損失関数の定義損失関数は、ある入力値に対するモデルの出力がどれだけ出力の目的値に近いかを測るものです。訓練を通じて、この差異を最小化するのがゴールとなります。最小二乗誤差とも呼ばれる L2 損失を使ってみましょう。 ###Code def loss(predicted_y, target_y): return tf.reduce_mean(tf.square(predicted_y - target_y)) ###Output _____no_output_____ ###Markdown 訓練データの取得最初に、入力にランダムなガウス(正規)分布のノイズを加えることで、訓練用データを生成します。 ###Code TRUE_W = 3.0 TRUE_b = 2.0 NUM_EXAMPLES = 1000 inputs = tf.random.normal(shape=[NUM_EXAMPLES]) noise = tf.random.normal(shape=[NUM_EXAMPLES]) outputs = inputs * TRUE_W + TRUE_b + noise ###Output _____no_output_____ ###Markdown モデルを訓練する前に、モデルの予測値を赤で、訓練データを青でプロットすることで、損失を可視化します。 ###Code import matplotlib.pyplot as plt plt.scatter(inputs, outputs, c='b') plt.scatter(inputs, model(inputs), c='r') plt.show() print('Current loss: %1.6f' % loss(model(inputs), outputs).numpy()) ###Output _____no_output_____ ###Markdown 訓練ループの定義ネットワークと訓練データが準備できたところで、損失が少なくなるように、重み変数 (`W`) とバイアス変数 (`b`) を更新するために、[gradient descent (勾配降下法)](https://en.wikipedia.org/wiki/Gradient_descent) を使ってモデルを訓練します。勾配降下法にはさまざまな変種があり、我々の推奨する実装である `tf.train.Optimizer` にも含まれています。しかし、ここでは基本原理から構築するという精神で、自動微分を行う `tf.GradientTape` と、値を減少させる `tf.assign_sub` (これは、`tf.assign` と `tf.sub` の組み合わせですが)の力を借りて、この基本計算を実装してみましょう。 ###Code def train(model, inputs, outputs, learning_rate): with tf.GradientTape() as t: current_loss = loss(model(inputs), outputs) dW, db = t.gradient(current_loss, [model.W, model.b]) model.W.assign_sub(learning_rate * dW) model.b.assign_sub(learning_rate * db) ###Output _____no_output_____ ###Markdown 最後に、訓練データ全体に対して繰り返し実行し、`W` と `b` がどのように変化するかを見てみましょう。 ###Code model = Model() # 後ほどプロットするために、W 値と b 値の履歴を集める Ws, bs = [], [] epochs = range(10) for epoch in epochs: Ws.append(model.W.numpy()) bs.append(model.b.numpy()) current_loss = loss(model(inputs), outputs) train(model, inputs, outputs, learning_rate=0.1) print('Epoch %2d: W=%1.2f b=%1.2f, loss=%2.5f' % (epoch, Ws[-1], bs[-1], current_loss)) # すべてをプロット plt.plot(epochs, Ws, 'r', epochs, bs, 'b') plt.plot([TRUE_W] * len(epochs), 'r--', [TRUE_b] * len(epochs), 'b--') plt.legend(['W', 'b', 'True W', 'True b']) plt.show() ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown カスタム訓練:基本 View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook 前のチュートリアルでは、機械学習の基本構成ブロックの1つである自動微分について TensorFlow の API を学習しました。このチュートリアルでは、これまでのチュートリアルに出てきた TensorFlow の基本要素を使って、単純な機械学習を実行します。TensorFlow には `tf.keras` が含まれています。`tf.keras`は、抽象化により決まり切った記述を削減し、柔軟さと性能を犠牲にすることなく TensorFlow をやさしく使えるようにする、高度なニューラルネットワーク API です。開発には [tf.Keras API](../../guide/keras/overview.ipynb) を使うことを強くおすすめします。しかしながら、この短いチュートリアルでは、しっかりした基礎を身につけていただくために、ニューラルネットワークの訓練についていちから学ぶことにします。 設定 ###Code from __future__ import absolute_import, division, print_function, unicode_literals try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass import tensorflow as tf ###Output _____no_output_____ ###Markdown 変数TensorFlow のテンソルはイミュータブルでステートレスなオブジェクトです。しかしながら、機械学習モデルには変化する状態が必要です。モデルの訓練が進むにつれて、推論を行うおなじコードが異なる振る舞いをする必要があります(望むべくはより損失の少なくなるように)。この計算が進むにつれて変化する必要がある状態を表現するために、Python が状態を保つプログラミング言語であることを利用することができます。 ###Code # Python の状態を使う x = tf.zeros([10, 10]) x += 2 # これは x = x + 2 と等価で, x の元の値を変えているわけではない print(x) ###Output _____no_output_____ ###Markdown TensorFlow にはステートフルな演算が組み込まれているので、状態を表現するのに低レベルの Python による表現を使うよりは簡単なことがしばしばあります。`tf.Variable`オブジェクトは値を保持し、何も指示しなくともこの保存された値を読み出します。TensorFlow の変数に保持された値を操作する演算(`tf.assign_sub`, `tf.scatter_update`, など)が用意されています。 ###Code v = tf.Variable(1.0) # Python の `assert` を条件をテストするデバッグ文として使用 assert v.numpy() == 1.0 # `v` に値を再代入 v.assign(3.0) assert v.numpy() == 3.0 # `v` に TensorFlow の `tf.square()` 演算を適用し再代入 v.assign(tf.square(v)) assert v.numpy() == 9.0 ###Output _____no_output_____ ###Markdown `tf.Variable`を使った計算は、勾配計算の際に自動的にトレースされます。埋め込みを表す変数では、TensorFlow は既定でスパースな更新を行います。これは計算量やメモリ使用量においてより効率的です。`tf.Variable`はあなたのコードを読む人にその状態の一部がミュータブルであることを示す方法でもあります。 線形モデルの適合これまでに学んだ `Tensor`、 `Variable`、 そして `GradientTape`という概念を使って、簡単なモデルの構築と訓練を行ってみましょう。通常、これには次のようないくつかの手順が含まれます。1. モデルの定義2. 損失関数の定義3. 訓練データの取得4. 訓練データを使って実行し、"optimizer" を使って変数をデータに適合ここでは、`f(x) = x * W + b`という簡単な線形モデルを作ります。このモデルには `W` (重み) と `b` (バイアス) の2つの変数があります。十分訓練されたモデルが `W = 3.0` と `b = 2.0` になるようなデータを人工的に作ります。 モデルの定義変数と計算をカプセル化する単純なクラスを定義してみましょう。 ###Code class Model(object): def __init__(self): # 重みを `5.0` に、バイアスを `0.0` に初期化 # 実際には、これらの値は乱数で初期化するべき(例えば `tf.random.normal` を使って) self.W = tf.Variable(5.0) self.b = tf.Variable(0.0) def __call__(self, x): return self.W * x + self.b model = Model() assert model(3.0).numpy() == 15.0 ###Output _____no_output_____ ###Markdown 損失関数の定義損失関数は、ある入力値に対するモデルの出力がどれだけ出力の目的値に近いかを測るものです。訓練を通じて、この差異を最小化するのがゴールとなります。最小二乗誤差とも呼ばれる L2 損失を使ってみましょう。 ###Code def loss(predicted_y, target_y): return tf.reduce_mean(tf.square(predicted_y - target_y)) ###Output _____no_output_____ ###Markdown 訓練データの取得最初に、入力にランダムなガウス(正規)分布のノイズを加えることで、訓練用データを生成します。 ###Code TRUE_W = 3.0 TRUE_b = 2.0 NUM_EXAMPLES = 1000 inputs = tf.random.normal(shape=[NUM_EXAMPLES]) noise = tf.random.normal(shape=[NUM_EXAMPLES]) outputs = inputs * TRUE_W + TRUE_b + noise ###Output _____no_output_____ ###Markdown モデルを訓練する前に、モデルの予測値を赤で、訓練データを青でプロットすることで、損失を可視化します。 ###Code import matplotlib.pyplot as plt plt.scatter(inputs, outputs, c='b') plt.scatter(inputs, model(inputs), c='r') plt.show() print('Current loss: %1.6f' % loss(model(inputs), outputs).numpy()) ###Output _____no_output_____ ###Markdown 訓練ループの定義ネットワークと訓練データが準備できたところで、損失が少なくなるように、重み変数 (`W`) とバイアス変数 (`b`) を更新するために、[gradient descent (勾配降下法)](https://en.wikipedia.org/wiki/Gradient_descent) を使ってモデルを訓練します。勾配降下法にはさまざまな変種があり、我々の推奨する実装である `tf.train.Optimizer` にも含まれています。しかし、ここでは基本原理から構築するという精神で、自動微分を行う `tf.GradientTape` と、値を減少させる `tf.assign_sub` (これは、`tf.assign` と `tf.sub` の組み合わせですが)の力を借りて、この基本計算を実装してみましょう。 ###Code def train(model, inputs, outputs, learning_rate): with tf.GradientTape() as t: current_loss = loss(model(inputs), outputs) dW, db = t.gradient(current_loss, [model.W, model.b]) model.W.assign_sub(learning_rate * dW) model.b.assign_sub(learning_rate * db) ###Output _____no_output_____ ###Markdown 最後に、訓練データ全体に対して繰り返し実行し、`W` と `b` がどのように変化するかを見てみましょう。 ###Code model = Model() # 後ほどプロットするために、W 値と b 値の履歴を集める Ws, bs = [], [] epochs = range(10) for epoch in epochs: Ws.append(model.W.numpy()) bs.append(model.b.numpy()) current_loss = loss(model(inputs), outputs) train(model, inputs, outputs, learning_rate=0.1) print('Epoch %2d: W=%1.2f b=%1.2f, loss=%2.5f' % (epoch, Ws[-1], bs[-1], current_loss)) # すべてをプロット plt.plot(epochs, Ws, 'r', epochs, bs, 'b') plt.plot([TRUE_W] * len(epochs), 'r--', [TRUE_b] * len(epochs), 'b--') plt.legend(['W', 'b', 'True W', 'True b']) plt.show() ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown カスタム訓練:基本 View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook 前のチュートリアルでは、機械学習の基本構成ブロックの1つである自動微分について TensorFlow の API を学習しました。このチュートリアルでは、これまでのチュートリアルに出てきた TensorFlow の基本要素を使って、単純な機械学習を実行します。TensorFlow には `tf.keras` が含まれています。`tf.keras`は、抽象化により決まり切った記述を削減し、柔軟さと性能を犠牲にすることなく TensorFlow をやさしく使えるようにする、高度なニューラルネットワーク API です。開発には [tf.Keras API](../../guide/keras/overview.ipynb) を使うことを強くおすすめします。しかしながら、この短いチュートリアルでは、しっかりした基礎を身につけていただくために、ニューラルネットワークの訓練についていちから学ぶことにします。 設定 ###Code import tensorflow as tf ###Output _____no_output_____ ###Markdown 変数TensorFlow のテンソルはイミュータブルでステートレスなオブジェクトです。しかしながら、機械学習モデルには変化する状態が必要です。モデルの訓練が進むにつれて、推論を行うおなじコードが異なる振る舞いをする必要があります(望むべくはより損失の少なくなるように)。この計算が進むにつれて変化する必要がある状態を表現するために、Python が状態を保つプログラミング言語であることを利用することができます。 ###Code # Python の状態を使う x = tf.zeros([10, 10]) x += 2 # これは x = x + 2 と等価で, x の元の値を変えているわけではない print(x) ###Output _____no_output_____ ###Markdown TensorFlow にはステートフルな演算が組み込まれているので、状態を表現するのに低レベルの Python による表現を使うよりは簡単なことがしばしばあります。`tf.Variable`オブジェクトは値を保持し、何も指示しなくともこの保存された値を読み出します。TensorFlow の変数に保持された値を操作する演算(`tf.assign_sub`, `tf.scatter_update`, など)が用意されています。 ###Code v = tf.Variable(1.0) # Python の `assert` を条件をテストするデバッグ文として使用 assert v.numpy() == 1.0 # `v` に値を再代入 v.assign(3.0) assert v.numpy() == 3.0 # `v` に TensorFlow の `tf.square()` 演算を適用し再代入 v.assign(tf.square(v)) assert v.numpy() == 9.0 ###Output _____no_output_____ ###Markdown `tf.Variable`を使った計算は、勾配計算の際に自動的にトレースされます。埋め込みを表す変数では、TensorFlow は既定でスパースな更新を行います。これは計算量やメモリ使用量においてより効率的です。`tf.Variable`はあなたのコードを読む人にその状態の一部がミュータブルであることを示す方法でもあります。 線形モデルの適合これまでに学んだ `Tensor`、 `Variable`、 そして `GradientTape`という概念を使って、簡単なモデルの構築と訓練を行ってみましょう。通常、これには次のようないくつかの手順が含まれます。1. モデルの定義2. 損失関数の定義3. 訓練データの取得4. 訓練データを使って実行し、"optimizer" を使って変数をデータに適合ここでは、`f(x) = x * W + b`という簡単な線形モデルを作ります。このモデルには `W` (重み) と `b` (バイアス) の2つの変数があります。十分訓練されたモデルが `W = 3.0` と `b = 2.0` になるようなデータを人工的に作ります。 モデルの定義変数と計算をカプセル化する単純なクラスを定義してみましょう。 ###Code class Model(object): def __init__(self): # 重みを `5.0` に、バイアスを `0.0` に初期化 # 実際には、これらの値は乱数で初期化するべき(例えば `tf.random.normal` を使って) self.W = tf.Variable(5.0) self.b = tf.Variable(0.0) def __call__(self, x): return self.W * x + self.b model = Model() assert model(3.0).numpy() == 15.0 ###Output _____no_output_____ ###Markdown 損失関数の定義損失関数は、ある入力値に対するモデルの出力がどれだけ出力の目的値に近いかを測るものです。訓練を通じて、この差異を最小化するのがゴールとなります。最小二乗誤差とも呼ばれる L2 損失を使ってみましょう。 ###Code def loss(predicted_y, target_y): return tf.reduce_mean(tf.square(predicted_y - target_y)) ###Output _____no_output_____ ###Markdown 訓練データの取得最初に、入力にランダムなガウス(正規)分布のノイズを加えることで、訓練用データを生成します。 ###Code TRUE_W = 3.0 TRUE_b = 2.0 NUM_EXAMPLES = 1000 inputs = tf.random.normal(shape=[NUM_EXAMPLES]) noise = tf.random.normal(shape=[NUM_EXAMPLES]) outputs = inputs * TRUE_W + TRUE_b + noise ###Output _____no_output_____ ###Markdown モデルを訓練する前に、モデルの予測値を赤で、訓練データを青でプロットすることで、損失を可視化します。 ###Code import matplotlib.pyplot as plt plt.scatter(inputs, outputs, c='b') plt.scatter(inputs, model(inputs), c='r') plt.show() print('Current loss: %1.6f' % loss(model(inputs), outputs).numpy()) ###Output _____no_output_____ ###Markdown 訓練ループの定義ネットワークと訓練データが準備できたところで、損失が少なくなるように、重み変数 (`W`) とバイアス変数 (`b`) を更新するために、[gradient descent (勾配降下法)](https://en.wikipedia.org/wiki/Gradient_descent) を使ってモデルを訓練します。勾配降下法にはさまざまな変種があり、我々の推奨する実装である `tf.train.Optimizer` にも含まれています。しかし、ここでは基本原理から構築するという精神で、自動微分を行う `tf.GradientTape` と、値を減少させる `tf.assign_sub` (これは、`tf.assign` と `tf.sub` の組み合わせですが)の力を借りて、この基本計算を実装してみましょう。 ###Code def train(model, inputs, outputs, learning_rate): with tf.GradientTape() as t: current_loss = loss(model(inputs), outputs) dW, db = t.gradient(current_loss, [model.W, model.b]) model.W.assign_sub(learning_rate * dW) model.b.assign_sub(learning_rate * db) ###Output _____no_output_____ ###Markdown 最後に、訓練データ全体に対して繰り返し実行し、`W` と `b` がどのように変化するかを見てみましょう。 ###Code model = Model() # 後ほどプロットするために、W 値と b 値の履歴を集める Ws, bs = [], [] epochs = range(10) for epoch in epochs: Ws.append(model.W.numpy()) bs.append(model.b.numpy()) current_loss = loss(model(inputs), outputs) train(model, inputs, outputs, learning_rate=0.1) print('Epoch %2d: W=%1.2f b=%1.2f, loss=%2.5f' % (epoch, Ws[-1], bs[-1], current_loss)) # すべてをプロット plt.plot(epochs, Ws, 'r', epochs, bs, 'b') plt.plot([TRUE_W] * len(epochs), 'r--', [TRUE_b] * len(epochs), 'b--') plt.legend(['W', 'b', 'True W', 'True b']) plt.show() ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown カスタム訓練:基本 View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook 前のチュートリアルでは、機械学習の基本構成ブロックの1つである自動微分について TensorFlow の API を学習しました。このチュートリアルでは、これまでのチュートリアルに出てきた TensorFlow の基本要素を使って、単純な機械学習を実行します。TensorFlow には `tf.keras` が含まれています。`tf.keras`は、抽象化により決まり切った記述を削減し、柔軟さと性能を犠牲にすることなく TensorFlow をやさしく使えるようにする、高度なニューラルネットワーク API です。開発には [tf.Keras API](../../guide/keras/overview.ipynb) を使うことを強くおすすめします。しかしながら、この短いチュートリアルでは、しっかりした基礎を身につけていただくために、ニューラルネットワークの訓練についていちから学ぶことにします。 設定 ###Code import tensorflow as tf ###Output _____no_output_____ ###Markdown 変数TensorFlow のテンソルはイミュータブルでステートレスなオブジェクトです。しかしながら、機械学習モデルには変化する状態が必要です。モデルの訓練が進むにつれて、推論を行うおなじコードが異なる振る舞いをする必要があります(望むべくはより損失の少なくなるように)。この計算が進むにつれて変化する必要がある状態を表現するために、Python が状態を保つプログラミング言語であることを利用することができます。 ###Code # Python の状態を使う x = tf.zeros([10, 10]) x += 2 # これは x = x + 2 と等価で, x の元の値を変えているわけではない print(x) ###Output _____no_output_____ ###Markdown TensorFlow にはステートフルな演算が組み込まれているので、状態を表現するのに低レベルの Python による表現を使うよりは簡単なことがしばしばあります。`tf.Variable`オブジェクトは値を保持し、何も指示しなくともこの保存された値を読み出します。TensorFlow の変数に保持された値を操作する演算(`tf.assign_sub`, `tf.scatter_update`, など)が用意されています。 ###Code v = tf.Variable(1.0) # Python の `assert` を条件をテストするデバッグ文として使用 assert v.numpy() == 1.0 # `v` に値を再代入 v.assign(3.0) assert v.numpy() == 3.0 # `v` に TensorFlow の `tf.square()` 演算を適用し再代入 v.assign(tf.square(v)) assert v.numpy() == 9.0 ###Output _____no_output_____ ###Markdown `tf.Variable`を使った計算は、勾配計算の際に自動的にトレースされます。埋め込みを表す変数では、TensorFlow は既定でスパースな更新を行います。これは計算量やメモリ使用量においてより効率的です。`tf.Variable`はあなたのコードを読む人にその状態の一部がミュータブルであることを示す方法でもあります。 線形モデルの適合これまでに学んだ `Tensor`、 `Variable`、 そして `GradientTape`という概念を使って、簡単なモデルの構築と訓練を行ってみましょう。通常、これには次のようないくつかの手順が含まれます。1. モデルの定義2. 損失関数の定義3. 訓練データの取得4. 訓練データを使って実行し、"optimizer" を使って変数をデータに適合ここでは、`f(x) = x * W + b`という簡単な線形モデルを作ります。このモデルには `W` (重み) と `b` (バイアス) の2つの変数があります。十分訓練されたモデルが `W = 3.0` と `b = 2.0` になるようなデータを人工的に作ります。 モデルの定義変数と計算をカプセル化する単純なクラスを定義してみましょう。 ###Code class Model(object): def __init__(self): # 重みを `5.0` に、バイアスを `0.0` に初期化 # 実際には、これらの値は乱数で初期化するべき(例えば `tf.random.normal` を使って) self.W = tf.Variable(5.0) self.b = tf.Variable(0.0) def __call__(self, x): return self.W * x + self.b model = Model() assert model(3.0).numpy() == 15.0 ###Output _____no_output_____ ###Markdown 損失関数の定義損失関数は、ある入力値に対するモデルの出力がどれだけ出力の目的値に近いかを測るものです。訓練を通じて、この差異を最小化するのがゴールとなります。最小二乗誤差とも呼ばれる L2 損失を使ってみましょう。 ###Code def loss(predicted_y, target_y): return tf.reduce_mean(tf.square(predicted_y - target_y)) ###Output _____no_output_____ ###Markdown 訓練データの取得最初に、入力にランダムなガウス(正規)分布のノイズを加えることで、訓練用データを生成します。 ###Code TRUE_W = 3.0 TRUE_b = 2.0 NUM_EXAMPLES = 1000 inputs = tf.random.normal(shape=[NUM_EXAMPLES]) noise = tf.random.normal(shape=[NUM_EXAMPLES]) outputs = inputs * TRUE_W + TRUE_b + noise ###Output _____no_output_____ ###Markdown モデルを訓練する前に、モデルの予測値を赤で、訓練データを青でプロットすることで、損失を可視化します。 ###Code import matplotlib.pyplot as plt plt.scatter(inputs, outputs, c='b') plt.scatter(inputs, model(inputs), c='r') plt.show() print('Current loss: %1.6f' % loss(model(inputs), outputs).numpy()) ###Output _____no_output_____ ###Markdown 訓練ループの定義ネットワークと訓練データが準備できたところで、損失が少なくなるように、重み変数 (`W`) とバイアス変数 (`b`) を更新するために、[gradient descent (勾配降下法)](https://en.wikipedia.org/wiki/Gradient_descent) を使ってモデルを訓練します。勾配降下法にはさまざまな変種があり、我々の推奨する実装である `tf.train.Optimizer` にも含まれています。しかし、ここでは基本原理から構築するという精神で、自動微分を行う `tf.GradientTape` と、値を減少させる `tf.assign_sub` (これは、`tf.assign` と `tf.sub` の組み合わせですが)の力を借りて、この基本計算を実装してみましょう。 ###Code def train(model, inputs, outputs, learning_rate): with tf.GradientTape() as t: current_loss = loss(model(inputs), outputs) dW, db = t.gradient(current_loss, [model.W, model.b]) model.W.assign_sub(learning_rate * dW) model.b.assign_sub(learning_rate * db) ###Output _____no_output_____ ###Markdown 最後に、訓練データ全体に対して繰り返し実行し、`W` と `b` がどのように変化するかを見てみましょう。 ###Code model = Model() # 後ほどプロットするために、W 値と b 値の履歴を集める Ws, bs = [], [] epochs = range(10) for epoch in epochs: Ws.append(model.W.numpy()) bs.append(model.b.numpy()) current_loss = loss(model(inputs), outputs) train(model, inputs, outputs, learning_rate=0.1) print('Epoch %2d: W=%1.2f b=%1.2f, loss=%2.5f' % (epoch, Ws[-1], bs[-1], current_loss)) # すべてをプロット plt.plot(epochs, Ws, 'r', epochs, bs, 'b') plt.plot([TRUE_W] * len(epochs), 'r--', [TRUE_b] * len(epochs), 'b--') plt.legend(['W', 'b', 'True W', 'True b']) plt.show() ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown カスタム訓練:基本 View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook 前のチュートリアルでは、機械学習の基本構成ブロックの1つである自動微分について TensorFlow の API を学習しました。このチュートリアルでは、これまでのチュートリアルに出てきた TensorFlow の基本要素を使って、単純な機械学習を実行します。TensorFlow には `tf.keras` が含まれています。`tf.keras`は、抽象化により決まり切った記述を削減し、柔軟さと性能を犠牲にすることなく TensorFlow をやさしく使えるようにする、高度なニューラルネットワーク API です。開発には [tf.Keras API](../../guide/keras/overview.ipynb) を使うことを強くおすすめします。しかしながら、この短いチュートリアルでは、しっかりした基礎を身につけていただくために、ニューラルネットワークの訓練についていちから学ぶことにします。 設定 ###Code from __future__ import absolute_import, division, print_function, unicode_literals try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass import tensorflow as tf ###Output _____no_output_____ ###Markdown 変数TensorFlow のテンソルはイミュータブルでステートレスなオブジェクトです。しかしながら、機械学習モデルには変化する状態が必要です。モデルの訓練が進むにつれて、推論を行うおなじコードが異なる振る舞いをする必要があります(望むべくはより損失の少なくなるように)。この計算が進むにつれて変化する必要がある状態を表現するために、Python が状態を保つプログラミング言語であることを利用することができます。 ###Code # Python の状態を使う x = tf.zeros([10, 10]) x += 2 # これは x = x + 2 と等価で, x の元の値を変えているわけではない print(x) ###Output _____no_output_____ ###Markdown TensorFlow にはステートフルな演算が組み込まれているので、状態を表現するのに低レベルの Python による表現を使うよりは簡単なことがしばしばあります。`tf.Variable`オブジェクトは値を保持し、何も指示しなくともこの保存された値を読み出します。TensorFlow の変数に保持された値を操作する演算(`tf.assign_sub`, `tf.scatter_update`, など)が用意されています。 ###Code v = tf.Variable(1.0) # Python の `assert` を条件をテストするデバッグ文として使用 assert v.numpy() == 1.0 # `v` に値を再代入 v.assign(3.0) assert v.numpy() == 3.0 # `v` に TensorFlow の `tf.square()` 演算を適用し再代入 v.assign(tf.square(v)) assert v.numpy() == 9.0 ###Output _____no_output_____ ###Markdown `tf.Variable`を使った計算は、勾配計算の際に自動的にトレースされます。埋め込みを表す変数では、TensorFlow は既定でスパースな更新を行います。これは計算量やメモリ使用量においてより効率的です。`tf.Variable`はあなたのコードを読む人にその状態の一部がミュータブルであることを示す方法でもあります。 線形モデルの適合これまでに学んだ `Tensor`、 `Variable`、 そして `GradientTape`という概念を使って、簡単なモデルの構築と訓練を行ってみましょう。通常、これには次のようないくつかの手順が含まれます。1. モデルの定義2. 損失関数の定義3. 訓練データの取得4. 訓練データを使って実行し、"optimizer" を使って変数をデータに適合ここでは、`f(x) = x * W + b`という簡単な線形モデルを作ります。このモデルには `W` (重み) と `b` (バイアス) の2つの変数があります。十分訓練されたモデルが `W = 3.0` と `b = 2.0` になるようなデータを人工的に作ります。 モデルの定義変数と計算をカプセル化する単純なクラスを定義してみましょう。 ###Code class Model(object): def __init__(self): # 重みを `5.0` に、バイアスを `0.0` に初期化 # 実際には、これらの値は乱数で初期化するべき(例えば `tf.random.normal` を使って) self.W = tf.Variable(5.0) self.b = tf.Variable(0.0) def __call__(self, x): return self.W * x + self.b model = Model() assert model(3.0).numpy() == 15.0 ###Output _____no_output_____ ###Markdown 損失関数の定義損失関数は、ある入力値に対するモデルの出力がどれだけ出力の目的値に近いかを測るものです。訓練を通じて、この差異を最小化するのがゴールとなります。最小二乗誤差とも呼ばれる L2 損失を使ってみましょう。 ###Code def loss(predicted_y, target_y): return tf.reduce_mean(tf.square(predicted_y - target_y)) ###Output _____no_output_____ ###Markdown 訓練データの取得最初に、入力にランダムなガウス(正規)分布のノイズを加えることで、訓練用データを生成します。 ###Code TRUE_W = 3.0 TRUE_b = 2.0 NUM_EXAMPLES = 1000 inputs = tf.random.normal(shape=[NUM_EXAMPLES]) noise = tf.random.normal(shape=[NUM_EXAMPLES]) outputs = inputs * TRUE_W + TRUE_b + noise ###Output _____no_output_____ ###Markdown モデルを訓練する前に、モデルの予測値を赤で、訓練データを青でプロットすることで、損失を可視化します。 ###Code import matplotlib.pyplot as plt plt.scatter(inputs, outputs, c='b') plt.scatter(inputs, model(inputs), c='r') plt.show() print('Current loss: %1.6f' % loss(model(inputs), outputs).numpy()) ###Output _____no_output_____ ###Markdown 訓練ループの定義ネットワークと訓練データが準備できたところで、損失が少なくなるように、重み変数 (`W`) とバイアス変数 (`b`) を更新するために、[gradient descent (勾配降下法)](https://en.wikipedia.org/wiki/Gradient_descent) を使ってモデルを訓練します。勾配降下法にはさまざまな変種があり、我々の推奨する実装である `tf.train.Optimizer` にも含まれています。しかし、ここでは基本原理から構築するという精神で、自動微分を行う `tf.GradientTape` と、値を減少させる `tf.assign_sub` (これは、`tf.assign` と `tf.sub` の組み合わせですが)の力を借りて、この基本計算を実装してみましょう。 ###Code def train(model, inputs, outputs, learning_rate): with tf.GradientTape() as t: current_loss = loss(model(inputs), outputs) dW, db = t.gradient(current_loss, [model.W, model.b]) model.W.assign_sub(learning_rate * dW) model.b.assign_sub(learning_rate * db) ###Output _____no_output_____ ###Markdown 最後に、訓練データ全体に対して繰り返し実行し、`W` と `b` がどのように変化するかを見てみましょう。 ###Code model = Model() # 後ほどプロットするために、W 値と b 値の履歴を集める Ws, bs = [], [] epochs = range(10) for epoch in epochs: Ws.append(model.W.numpy()) bs.append(model.b.numpy()) current_loss = loss(model(inputs), outputs) train(model, inputs, outputs, learning_rate=0.1) print('Epoch %2d: W=%1.2f b=%1.2f, loss=%2.5f' % (epoch, Ws[-1], bs[-1], current_loss)) # すべてをプロット plt.plot(epochs, Ws, 'r', epochs, bs, 'b') plt.plot([TRUE_W] * len(epochs), 'r--', [TRUE_b] * len(epochs), 'b--') plt.legend(['W', 'b', 'True W', 'True b']) plt.show() ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown カスタム訓練:基本 View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook 前のチュートリアルでは、機械学習の基本構成ブロックの1つである自動微分について TensorFlow の API を学習しました。このチュートリアルでは、これまでのチュートリアルに出てきた TensorFlow の基本要素を使って、単純な機械学習を実行します。TensorFlow には `tf.keras` が含まれています。`tf.keras`は、抽象化により決まり切った記述を削減し、柔軟さと性能を犠牲にすることなく TensorFlow をやさしく使えるようにする、高度なニューラルネットワーク API です。開発には [tf.Keras API](../../guide/keras/overview.ipynb) を使うことを強くおすすめします。しかしながら、この短いチュートリアルでは、しっかりした基礎を身につけていただくために、ニューラルネットワークの訓練についていちから学ぶことにします。 設定 ###Code from __future__ import absolute_import, division, print_function, unicode_literals try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass import tensorflow as tf ###Output _____no_output_____ ###Markdown 変数TensorFlow のテンソルはイミュータブルでステートレスなオブジェクトです。しかしながら、機械学習モデルには変化する状態が必要です。モデルの訓練が進むにつれて、推論を行うおなじコードが異なる振る舞いをする必要があります(望むべくはより損失の少なくなるように)。この計算が進むにつれて変化する必要がある状態を表現するために、Python が状態を保つプログラミング言語であることを利用することができます。 ###Code # Python の状態を使う x = tf.zeros([10, 10]) x += 2 # これは x = x + 2 と等価で, x の元の値を変えているわけではない print(x) ###Output _____no_output_____ ###Markdown TensorFlow にはステートフルな演算が組み込まれているので、状態を表現するのに低レベルの Python による表現を使うよりは簡単なことがしばしばあります。`tf.Variable`オブジェクトは値を保持し、何も指示しなくともこの保存された値を読み出します。TensorFlow の変数に保持された値を操作する演算(`tf.assign_sub`, `tf.scatter_update`, など)が用意されています。 ###Code v = tf.Variable(1.0) # Python の `assert` を条件をテストするデバッグ文として使用 assert v.numpy() == 1.0 # `v` に値を再代入 v.assign(3.0) assert v.numpy() == 3.0 # `v` に TensorFlow の `tf.square()` 演算を適用し再代入 v.assign(tf.square(v)) assert v.numpy() == 9.0 ###Output _____no_output_____ ###Markdown `tf.Variable`を使った計算は、勾配計算の際に自動的にトレースされます。埋め込みを表す変数では、TensorFlow は既定でスパースな更新を行います。これは計算量やメモリ使用量においてより効率的です。`tf.Variable`はあなたのコードを読む人にその状態の一部がミュータブルであることを示す方法でもあります。 線形モデルの適合これまでに学んだ `Tensor`、 `Variable`、 そして `GradientTape`という概念を使って、簡単なモデルの構築と訓練を行ってみましょう。通常、これには次のようないくつかの手順が含まれます。1. モデルの定義2. 損失関数の定義3. 訓練データの取得4. 訓練データを使って実行し、"optimizer" を使って変数をデータに適合ここでは、`f(x) = x * W + b`という簡単な線形モデルを作ります。このモデルには `W` (重み) と `b` (バイアス) の2つの変数があります。十分訓練されたモデルが `W = 3.0` と `b = 2.0` になるようなデータを人工的に作ります。 モデルの定義変数と計算をカプセル化する単純なクラスを定義してみましょう。 ###Code class Model(object): def __init__(self): # 重みを `5.0` に、バイアスを `0.0` に初期化 # 実際には、これらの値は乱数で初期化するべき(例えば `tf.random.normal` を使って) self.W = tf.Variable(5.0) self.b = tf.Variable(0.0) def __call__(self, x): return self.W * x + self.b model = Model() assert model(3.0).numpy() == 15.0 ###Output _____no_output_____ ###Markdown 損失関数の定義損失関数は、ある入力値に対するモデルの出力がどれだけ出力の目的値に近いかを測るものです。訓練を通じて、この差異を最小化するのがゴールとなります。最小二乗誤差とも呼ばれる L2 損失を使ってみましょう。 ###Code def loss(predicted_y, target_y): return tf.reduce_mean(tf.square(predicted_y - target_y)) ###Output _____no_output_____ ###Markdown 訓練データの取得最初に、入力にランダムなガウス(正規)分布のノイズを加えることで、訓練用データを生成します。 ###Code TRUE_W = 3.0 TRUE_b = 2.0 NUM_EXAMPLES = 1000 inputs = tf.random.normal(shape=[NUM_EXAMPLES]) noise = tf.random.normal(shape=[NUM_EXAMPLES]) outputs = inputs * TRUE_W + TRUE_b + noise ###Output _____no_output_____ ###Markdown モデルを訓練する前に、モデルの予測値を赤で、訓練データを青でプロットすることで、損失を可視化します。 ###Code import matplotlib.pyplot as plt plt.scatter(inputs, outputs, c='b') plt.scatter(inputs, model(inputs), c='r') plt.show() print('Current loss: %1.6f' % loss(model(inputs), outputs).numpy()) ###Output _____no_output_____ ###Markdown 訓練ループの定義ネットワークと訓練データが準備できたところで、損失が少なくなるように、重み変数 (`W`) とバイアス変数 (`b`) を更新するために、[gradient descent (勾配降下法)](https://en.wikipedia.org/wiki/Gradient_descent) を使ってモデルを訓練します。勾配降下法にはさまざまな変種があり、我々の推奨する実装である `tf.train.Optimizer` にも含まれています。しかし、ここでは基本原理から構築するという精神で、自動微分を行う `tf.GradientTape` と、値を減少させる `tf.assign_sub` (これは、`tf.assign` と `tf.sub` の組み合わせですが)の力を借りて、この基本計算を実装してみましょう。 ###Code def train(model, inputs, outputs, learning_rate): with tf.GradientTape() as t: current_loss = loss(model(inputs), outputs) dW, db = t.gradient(current_loss, [model.W, model.b]) model.W.assign_sub(learning_rate * dW) model.b.assign_sub(learning_rate * db) ###Output _____no_output_____ ###Markdown 最後に、訓練データ全体に対して繰り返し実行し、`W` と `b` がどのように変化するかを見てみましょう。 ###Code model = Model() # 後ほどプロットするために、W 値と b 値の履歴を集める Ws, bs = [], [] epochs = range(10) for epoch in epochs: Ws.append(model.W.numpy()) bs.append(model.b.numpy()) current_loss = loss(model(inputs), outputs) train(model, inputs, outputs, learning_rate=0.1) print('Epoch %2d: W=%1.2f b=%1.2f, loss=%2.5f' % (epoch, Ws[-1], bs[-1], current_loss)) # すべてをプロット plt.plot(epochs, Ws, 'r', epochs, bs, 'b') plt.plot([TRUE_W] * len(epochs), 'r--', [TRUE_b] * len(epochs), 'b--') plt.legend(['W', 'b', 'True W', 'True b']) plt.show() ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown カスタム訓練:基本 View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook 前のチュートリアルでは、機械学習の基本構成ブロックの1つである自動微分について TensorFlow の API を学習しました。このチュートリアルでは、これまでのチュートリアルに出てきた TensorFlow の基本要素を使って、単純な機械学習を実行します。TensorFlow には `tf.keras` が含まれています。`tf.keras`は、抽象化により決まり切った記述を削減し、柔軟さと性能を犠牲にすることなく TensorFlow をやさしく使えるようにする、高度なニューラルネットワーク API です。開発には [tf.Keras API](../../guide/keras/overview.ipynb) を使うことを強くおすすめします。しかしながら、この短いチュートリアルでは、しっかりした基礎を身につけていただくために、ニューラルネットワークの訓練についていちから学ぶことにします。 設定 ###Code import tensorflow as tf ###Output _____no_output_____ ###Markdown 変数TensorFlow のテンソルはイミュータブルでステートレスなオブジェクトです。しかしながら、機械学習モデルには変化する状態が必要です。モデルの訓練が進むにつれて、推論を行うおなじコードが異なる振る舞いをする必要があります(望むべくはより損失の少なくなるように)。この計算が進むにつれて変化する必要がある状態を表現するために、Python が状態を保つプログラミング言語であることを利用することができます。 ###Code # Python の状態を使う x = tf.zeros([10, 10]) x += 2 # これは x = x + 2 と等価で, x の元の値を変えているわけではない print(x) ###Output _____no_output_____ ###Markdown TensorFlow にはステートフルな演算が組み込まれているので、状態を表現するのに低レベルの Python による表現を使うよりは簡単なことがしばしばあります。`tf.Variable`オブジェクトは値を保持し、何も指示しなくともこの保存された値を読み出します。TensorFlow の変数に保持された値を操作する演算(`tf.assign_sub`, `tf.scatter_update`, など)が用意されています。 ###Code v = tf.Variable(1.0) # Python の `assert` を条件をテストするデバッグ文として使用 assert v.numpy() == 1.0 # `v` に値を再代入 v.assign(3.0) assert v.numpy() == 3.0 # `v` に TensorFlow の `tf.square()` 演算を適用し再代入 v.assign(tf.square(v)) assert v.numpy() == 9.0 ###Output _____no_output_____ ###Markdown `tf.Variable`を使った計算は、勾配計算の際に自動的にトレースされます。埋め込みを表す変数では、TensorFlow は既定でスパースな更新を行います。これは計算量やメモリ使用量においてより効率的です。`tf.Variable`はあなたのコードを読む人にその状態の一部がミュータブルであることを示す方法でもあります。 線形モデルの適合これまでに学んだ `Tensor`、 `Variable`、 そして `GradientTape`という概念を使って、簡単なモデルの構築と訓練を行ってみましょう。通常、これには次のようないくつかの手順が含まれます。1. モデルの定義2. 損失関数の定義3. 訓練データの取得4. 訓練データを使って実行し、"optimizer" を使って変数をデータに適合ここでは、`f(x) = x * W + b`という簡単な線形モデルを作ります。このモデルには `W` (重み) と `b` (バイアス) の2つの変数があります。十分訓練されたモデルが `W = 3.0` と `b = 2.0` になるようなデータを人工的に作ります。 モデルの定義変数と計算をカプセル化する単純なクラスを定義してみましょう。 ###Code class Model(object): def __init__(self): # 重みを `5.0` に、バイアスを `0.0` に初期化 # 実際には、これらの値は乱数で初期化するべき(例えば `tf.random.normal` を使って) self.W = tf.Variable(5.0) self.b = tf.Variable(0.0) def __call__(self, x): return self.W * x + self.b model = Model() assert model(3.0).numpy() == 15.0 ###Output _____no_output_____ ###Markdown 損失関数の定義損失関数は、ある入力値に対するモデルの出力がどれだけ出力の目的値に近いかを測るものです。訓練を通じて、この差異を最小化するのがゴールとなります。最小二乗誤差とも呼ばれる L2 損失を使ってみましょう。 ###Code def loss(predicted_y, target_y): return tf.reduce_mean(tf.square(predicted_y - target_y)) ###Output _____no_output_____ ###Markdown 訓練データの取得最初に、入力にランダムなガウス(正規)分布のノイズを加えることで、訓練用データを生成します。 ###Code TRUE_W = 3.0 TRUE_b = 2.0 NUM_EXAMPLES = 1000 inputs = tf.random.normal(shape=[NUM_EXAMPLES]) noise = tf.random.normal(shape=[NUM_EXAMPLES]) outputs = inputs * TRUE_W + TRUE_b + noise ###Output _____no_output_____ ###Markdown モデルを訓練する前に、モデルの予測値を赤で、訓練データを青でプロットすることで、損失を可視化します。 ###Code import matplotlib.pyplot as plt plt.scatter(inputs, outputs, c='b') plt.scatter(inputs, model(inputs), c='r') plt.show() print('Current loss: %1.6f' % loss(model(inputs), outputs).numpy()) ###Output _____no_output_____ ###Markdown 訓練ループの定義ネットワークと訓練データが準備できたところで、損失が少なくなるように、重み変数 (`W`) とバイアス変数 (`b`) を更新するために、[gradient descent (勾配降下法)](https://en.wikipedia.org/wiki/Gradient_descent) を使ってモデルを訓練します。勾配降下法にはさまざまな変種があり、我々の推奨する実装である `tf.train.Optimizer` にも含まれています。しかし、ここでは基本原理から構築するという精神で、自動微分を行う `tf.GradientTape` と、値を減少させる `tf.assign_sub` (これは、`tf.assign` と `tf.sub` の組み合わせですが)の力を借りて、この基本計算を実装してみましょう。 ###Code def train(model, inputs, outputs, learning_rate): with tf.GradientTape() as t: current_loss = loss(model(inputs), outputs) dW, db = t.gradient(current_loss, [model.W, model.b]) model.W.assign_sub(learning_rate * dW) model.b.assign_sub(learning_rate * db) ###Output _____no_output_____ ###Markdown 最後に、訓練データ全体に対して繰り返し実行し、`W` と `b` がどのように変化するかを見てみましょう。 ###Code model = Model() # 後ほどプロットするために、W 値と b 値の履歴を集める Ws, bs = [], [] epochs = range(10) for epoch in epochs: Ws.append(model.W.numpy()) bs.append(model.b.numpy()) current_loss = loss(model(inputs), outputs) train(model, inputs, outputs, learning_rate=0.1) print('Epoch %2d: W=%1.2f b=%1.2f, loss=%2.5f' % (epoch, Ws[-1], bs[-1], current_loss)) # すべてをプロット plt.plot(epochs, Ws, 'r', epochs, bs, 'b') plt.plot([TRUE_W] * len(epochs), 'r--', [TRUE_b] * len(epochs), 'b--') plt.legend(['W', 'b', 'True W', 'True b']) plt.show() ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown カスタム訓練:基本 View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook 前のチュートリアルでは、機械学習の基本構成ブロックの1つである自動微分について TensorFlow の API を学習しました。このチュートリアルでは、これまでのチュートリアルに出てきた TensorFlow の基本要素を使って、単純な機械学習を実行します。TensorFlow には `tf.keras` が含まれています。`tf.keras`は、抽象化により決まり切った記述を削減し、柔軟さと性能を犠牲にすることなく TensorFlow をやさしく使えるようにする、高度なニューラルネットワーク API です。開発には [tf.Keras API](../../guide/keras/overview.ipynb) を使うことを強くおすすめします。しかしながら、この短いチュートリアルでは、しっかりした基礎を身につけていただくために、ニューラルネットワークの訓練についていちから学ぶことにします。 設定 ###Code from __future__ import absolute_import, division, print_function, unicode_literals try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass import tensorflow as tf ###Output _____no_output_____ ###Markdown 変数TensorFlow のテンソルはイミュータブルでステートレスなオブジェクトです。しかしながら、機械学習モデルには変化する状態が必要です。モデルの訓練が進むにつれて、推論を行うおなじコードが異なる振る舞いをする必要があります(望むべくはより損失の少なくなるように)。この計算が進むにつれて変化する必要がある状態を表現するために、Python が状態を保つプログラミング言語であることを利用することができます。 ###Code # Python の状態を使う x = tf.zeros([10, 10]) x += 2 # これは x = x + 2 と等価で, x の元の値を変えているわけではない print(x) ###Output _____no_output_____ ###Markdown TensorFlow にはステートフルな演算が組み込まれているので、状態を表現するのに低レベルの Python による表現を使うよりは簡単なことがしばしばあります。`tf.Variable`オブジェクトは値を保持し、何も指示しなくともこの保存された値を読み出します。TensorFlow の変数に保持された値を操作する演算(`tf.assign_sub`, `tf.scatter_update`, など)が用意されています。 ###Code v = tf.Variable(1.0) # Python の `assert` を条件をテストするデバッグ文として使用 assert v.numpy() == 1.0 # `v` に値を再代入 v.assign(3.0) assert v.numpy() == 3.0 # `v` に TensorFlow の `tf.square()` 演算を適用し再代入 v.assign(tf.square(v)) assert v.numpy() == 9.0 ###Output _____no_output_____ ###Markdown `tf.Variable`を使った計算は、勾配計算の際に自動的にトレースされます。埋め込みを表す変数では、TensorFlow は既定でスパースな更新を行います。これは計算量やメモリ使用量においてより効率的です。`tf.Variable`はあなたのコードを読む人にその状態の一部がミュータブルであることを示す方法でもあります。 線形モデルの適合これまでに学んだ `Tensor`、 `Variable`、 そして `GradientTape`という概念を使って、簡単なモデルの構築と訓練を行ってみましょう。通常、これには次のようないくつかの手順が含まれます。1. モデルの定義2. 損失関数の定義3. 訓練データの取得4. 訓練データを使って実行し、"optimizer" を使って変数をデータに適合ここでは、`f(x) = x * W + b`という簡単な線形モデルを作ります。このモデルには `W` (重み) と `b` (バイアス) の2つの変数があります。十分訓練されたモデルが `W = 3.0` と `b = 2.0` になるようなデータを人工的に作ります。 モデルの定義変数と計算をカプセル化する単純なクラスを定義してみましょう。 ###Code class Model(object): def __init__(self): # 重みを `5.0` に、バイアスを `0.0` に初期化 # 実際には、これらの値は乱数で初期化するべき(例えば `tf.random.normal` を使って) self.W = tf.Variable(5.0) self.b = tf.Variable(0.0) def __call__(self, x): return self.W * x + self.b model = Model() assert model(3.0).numpy() == 15.0 ###Output _____no_output_____ ###Markdown 損失関数の定義損失関数は、ある入力値に対するモデルの出力がどれだけ出力の目的値に近いかを測るものです。訓練を通じて、この差異を最小化するのがゴールとなります。最小二乗誤差とも呼ばれる L2 損失を使ってみましょう。 ###Code def loss(predicted_y, target_y): return tf.reduce_mean(tf.square(predicted_y - target_y)) ###Output _____no_output_____ ###Markdown 訓練データの取得最初に、入力にランダムなガウス(正規)分布のノイズを加えることで、訓練用データを生成します。 ###Code TRUE_W = 3.0 TRUE_b = 2.0 NUM_EXAMPLES = 1000 inputs = tf.random.normal(shape=[NUM_EXAMPLES]) noise = tf.random.normal(shape=[NUM_EXAMPLES]) outputs = inputs * TRUE_W + TRUE_b + noise ###Output _____no_output_____ ###Markdown モデルを訓練する前に、モデルの予測値を赤で、訓練データを青でプロットすることで、損失を可視化します。 ###Code import matplotlib.pyplot as plt plt.scatter(inputs, outputs, c='b') plt.scatter(inputs, model(inputs), c='r') plt.show() print('Current loss: %1.6f' % loss(model(inputs), outputs).numpy()) ###Output _____no_output_____ ###Markdown 訓練ループの定義ネットワークと訓練データが準備できたところで、損失が少なくなるように、重み変数 (`W`) とバイアス変数 (`b`) を更新するために、[gradient descent (勾配降下法)](https://en.wikipedia.org/wiki/Gradient_descent) を使ってモデルを訓練します。勾配降下法にはさまざまな変種があり、我々の推奨する実装である `tf.train.Optimizer` にも含まれています。しかし、ここでは基本原理から構築するという精神で、自動微分を行う `tf.GradientTape` と、値を減少させる `tf.assign_sub` (これは、`tf.assign` と `tf.sub` の組み合わせですが)の力を借りて、この基本計算を実装してみましょう。 ###Code def train(model, inputs, outputs, learning_rate): with tf.GradientTape() as t: current_loss = loss(model(inputs), outputs) dW, db = t.gradient(current_loss, [model.W, model.b]) model.W.assign_sub(learning_rate * dW) model.b.assign_sub(learning_rate * db) ###Output _____no_output_____ ###Markdown 最後に、訓練データ全体に対して繰り返し実行し、`W` と `b` がどのように変化するかを見てみましょう。 ###Code model = Model() # 後ほどプロットするために、W 値と b 値の履歴を集める Ws, bs = [], [] epochs = range(10) for epoch in epochs: Ws.append(model.W.numpy()) bs.append(model.b.numpy()) current_loss = loss(model(inputs), outputs) train(model, inputs, outputs, learning_rate=0.1) print('Epoch %2d: W=%1.2f b=%1.2f, loss=%2.5f' % (epoch, Ws[-1], bs[-1], current_loss)) # すべてをプロット plt.plot(epochs, Ws, 'r', epochs, bs, 'b') plt.plot([TRUE_W] * len(epochs), 'r--', [TRUE_b] * len(epochs), 'b--') plt.legend(['W', 'b', 'True W', 'True b']) plt.show() ###Output _____no_output_____
neural-networks/assignment3/coding_exercise-old.ipynb
###Markdown Exercise Sheet 3 Machine learning basics Deadline: 02.12.2020 23:59**Instructions:**Insert your code in the *TODO* sections ans type your answers in the *Answer* cells. Names and teams IDs: ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, log_loss from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import Pipeline ###Output _____no_output_____ ###Markdown 1 Implementing regression In this exercise we will practice implementing regression on the Titanic dataset using the package *sklearn*. Titanic dataset contains the data about passengers of the ship and information whether they survived or not. In the materials for this exercise you can find the file *titanic.csv*. This file contains preprocessed data with information about passenger ID, age, class, and *price* of their ticket. **1.1 Load the data as a pandas dataframe, using read_csv method** ###Code # TODO: load the data into the varible 'titanic', have a look at the data titanic = pd.read_csv('titanic.csv') titanic.head() ###Output _____no_output_____ ###Markdown **Look at the data and report which variables are continuous, nominal, ordinal. (0.5 points)** *Answer:* - **continuous**: A continious data represents measurements and therefore their values can’t be counted but they can be measured. For eg. Weight. It can take on every value on some range like my weight can vary from 60 Kg to 60.0001 and we get a new data. Examples of continious data are- weight, area, time. While some examples of discreet data are- grades, of numbers, money- **nominal**: Nominal data is used for naming or labelling variables.- **ordinal**:Ordinal data is a type of categorical data with an order. The variables in ordinal data are listed in an ordered manner. eg. medals in Olympic by all countries.Here we have-- continious variable- **Price**- nominal variables- **Pclass**, **Survived**- ordinal variables- **PassengerId**\\- continious variable- **PassengerId**, **Age**, **Price**- nominal variables- **Survived**- ordinal variables- **Pclass** **1.2 Here we will implement a simple linear regression and try to see if we can predict the *price* of the ticket based on the *age* of the passenger (0.5 points)** Consult the documentation on LinearRegression class in sklearn ###Code # TODO: # 1) create an instance of LinearRegression class # 2) fit the model to predict Price of the ticket from Age of the passenger # (consult the METHODS section in the documentation) # Hint: it might be the case that you will have to reshape your data using .reshape(-1, 1). # You can create separate numpy arrays containing only Age and Price and reshape them if needed. lr = LinearRegression() X = titanic["Age"].to_numpy().reshape(-1, 1) #Training data y_true = titanic["Price"].to_numpy().reshape(-1, 1) #Target values lr.fit(X, y_true) # It returns self, which is the variable model itself y_pred = lr.predict(X) ###Output _____no_output_____ ###Markdown **What are the parameters of the model that we fit? Hint: the parametrs are the attributes of the model, consult the documentation.** ###Code # TODO: Get the parameters of the model print("Model parameters-") print("Slope", lr.coef_) print("Intercept", lr.intercept_) # print(tuple(zip(X, y_pred))[:10]) ###Output Model parameters- Slope [[0.33511181]] Intercept [8.77641078] ###Markdown **1.3 Write the formula of the fitted regression. (0.5 points)** *Answer:* $$ y = \theta_0 +\theta_1 x \\y = 8.77641078 +0.33511181 x$$ **1.4 Let us see how good are the estimated values of the model. (0.5 points)** Write the formula for Mean Squared Error and calculate the value for our age~price model. Check if you calculated it correctly using the mean_squared_error method from sklearn.metrics *Answer (MSE formula)*: $$\text{MSE}(y, \hat{y}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples} - 1} (y_i - \hat{y}_i)^2.$$Where $y$ : true values \ $\hat{y}$: predicated values \ $n_{samples}$: total number of samples in the training data ###Code # TODO: # a) calculate mean squared error of our model mse_np = np.sum(np.square(y_true - y_pred))/len(y_true) print('Mean squared error using using formula: %.2f'%mse_np) # b) check you answer using mean_squared_error method. mse = mean_squared_error(y_true, y_pred) print('Mean squared error using mean_squared_error method: %.2f'%mse) ###Output Mean squared error using using formula: 433.04 Mean squared error using mean_squared_error method: 433.04 ###Markdown **1.5 Get predictions of your model (hint: there is a corresponding method) and plot them with the original data on the same graph. (1 point)** ###Code #TODO: # Plot original data and predictions on the same graph plt.figure(num=None, figsize=(9.5, 6), dpi=100, facecolor='w', edgecolor='k') plt.scatter(X, y_true, color='blue', s=10) plt.plot(X, y_pred, color='red', linewidth=1) plt.xlabel('Ticket price') plt.ylabel('Passanger\'s Age') plt.grid() plt.show() ###Output _____no_output_____ ###Markdown Is Age a good predictor for the Price of the ticket? Have a look at the data again. Is there a better predictor? **1.6 Choose another predictor and repeat the same steps (1.2-1.5). Report the better predictor. (0.5 points)** ###Code # TODO: Choose another predictor and repeat the same steps lr = LinearRegression() X = titanic["Pclass"].to_numpy().reshape(-1, 1) #Training data lr.fit(X, y_true) # It returns self, which is the variable model itself y_pred = np.round(lr.predict(X)) print("Model parameters-") print("Slope", lr.coef_) print("Intercept", lr.intercept_) # a) calculate mean squared error of our model mse_np = np.sum(np.square(y_true - y_pred))/len(y_true) print('Mean squared error using using formula: %.2f'%mse_np) # b) check you answer using mean_squared_error method. mse = mean_squared_error(y_true, y_pred) print('Mean squared error using mean_squared_error method: %.2f'%mse) plt.figure(num=None, figsize=(9.5, 6), dpi=100, facecolor='w', edgecolor='k') plt.scatter(X, y_true, color='blue', s=10) plt.plot(X, y_pred, color='red', linewidth=2) plt.rcParams['figure.figsize'] = [9.5, 6] plt.xlabel('Ticket price') plt.ylabel('Passanger\'s Age') plt.grid() plt.show() # Write why Pclass is a better prediction ###Output Model parameters- Slope [[-17.06934444]] Intercept [56.90784762] Mean squared error using using formula: 252.32 Mean squared error using mean_squared_error method: 252.32 ###Markdown **Pclass** is a better predictor for the price of the ticket. We can go on and try to improve the fit even more by increasing the complexity of the model.**1.7 Consult this Tutorial and fit polynomial regressions using the better predictor. (1.5 points)**1) Fit regressions of order 2, 5, and 10. 2) Get parameters of the models and write down the equations for each model inserting the fitted parameters. 3) Compute MSE for each model and compare them. Does increasing the capacity of the model improve its performance? ###Code # TODO: Perform steps 1-3. # Fit regression X = titanic["Age"].to_numpy().reshape(-1, 1) #Training data def poly_reg(deg, X, y_true): Input = [('poly',PolynomialFeatures(degree=deg)),('lr',LinearRegression())] pipe = Pipeline(Input) pipe.fit(X,y_true) mse = mean_squared_error(y_true, pipe.predict(X)) # print("params", pipe.named_steps.lr.coef_) print("Poly reg order: %d"%deg) reg_label = "Inliers coef:%s - b:%f" % (np.array2string(pipe.named_steps.lr.coef_, formatter={'float_kind': lambda fk: "%f" % fk}),pipe.named_steps.lr.intercept_) # print("Intercept", pipe.named_steps.lr.intercept_) print(reg_label) print('MSE: %.2f\n'%mse) poly_reg(2, X, y_true) poly_reg(5, X, y_true) poly_reg(10, X, y_true) ## Extra # y_poly_pred = pipe_deg2.predict(X) # Predicted ouput- ticket price sorted_zip = sorted(zip(X,pipe_deg2.predict(X))) X2_poly, y2_poly_pred = zip(*sorted_zip) sorted_zip = sorted(zip(X,pipe_deg2.predict(X))) X5_poly, y5_poly_pred = zip(*sorted_zip) sorted_zip = sorted(zip(X,pipe_deg10.predict(X))) X10_poly, y10_poly_pred = zip(*sorted_zip) plt.figure(num=None, figsize=(9.5, 6), dpi=100, facecolor='w', edgecolor='k') plt.scatter(X, y_true, color='blue', s=10) plt.plot(X, y_pred, color='red', linewidth=1) plt.plot(X2_poly, y2_poly_pred, color='green', linewidth=2, label="Order=2") plt.plot(X5_poly, y5_poly_pred, color='peru', linewidth=2, label="Order=5") plt.plot(X10_poly, y10_poly_pred, color='orange', linewidth=2, label="Order=10") plt.xlabel('Ticket price') plt.ylabel('Passanger\'s Age') plt.legend() plt.grid() plt.show() ###Output _____no_output_____ ###Markdown Now we will try to predict if a passenger survived based on the passenger class. Whether a passenger survived or not is a categorical variable, so we have to implement a **logistic** regression. Logistic regression will be covered in the lecture on the 1st of December, but you can already get acquainted with it in this post. **1.8 Fit a logistic regression predicting if a passenger has survived based on their class. (0.5 points)** ###Code # TODO: fit a logistic regression (Pclass predicts Survived) X = titanic["Pclass"].to_numpy().reshape(-1, 1) #Training data y_true = titanic["Survived"] #Target values logisticRegr = LogisticRegression() logisticRegr.fit(X, y_true.values.ravel()) y_pred = np.round(logisticRegr.predict(X)).reshape(-1, 1) y_pred plt.scatter(X, y_true.values.ravel(), color='blue', s=10, label="True classes") plt.scatter(X, y_pred, color='red', s=10, label="Predicted classes") plt.rcParams['figure.figsize'] = [9.5, 6] # plt.xlabel('Ticket price') # plt.ylabel('Passanger\'s Age') plt.legend() plt.grid() plt.show() # print(X.shape, y_true.shape, y_pred.shape) # print(y_true.values.ravel()[:10],y_pred[:10]) y_true[:100] ###Output _____no_output_____ ###Markdown **1.9 Cross entropy loss. (1 point)** The measure that we use for estimating the error of a logistic regression is *Cross Entropy Loss*. Here is a good video explaining Maximum Likelihood Estimation and Cross Entropy Loss. Write the formula for Cross Entropy Loss and calculate the error of your model using this formula. Check your answer using the log_loss method from sklearn. *Cross Entropy Loss formula*: ###Code # TODO: compute Cross Entropy Loss and check it using log_loss method. ###Output _____no_output_____ ###Markdown **1.10 Fit a multiple logistic regression (0.5 points)** Now let's check if the Age of a passenger also had an influence on their survival chances. Fit a model with 2 predictors, compute the loss. Compare with the previous model. ###Code # TODO: fit a multiple regression with Age and Pclass as predictors of survival. # Hint: the predictors should be in shape of a 2d array, Age and Pclass as columns. ###Output _____no_output_____
notebooks/examples/diverging_stacked_bar_chart.ipynb
###Markdown Diverging Stacked Bar Chart---------------------------This example shows a diverging stacked bar chart for sentiments towards a set of eight questions, displayed as percentages with neutral responses straddling the 0% mark. ###Code import altair as alt alt.data_transformers.enable('json') data = [ { "question": "Question 1", "type": "Strongly disagree", "value": 24, "percentage": 0.7, "percentage_start": -19.1, "percentage_end": -18.4 }, { "question": "Question 1", "type": "Disagree", "value": 294, "percentage": 9.1, "percentage_start": -18.4, "percentage_end": -9.2 }, { "question": "Question 1", "type": "Neither agree nor disagree", "value": 594, "percentage": 18.5, "percentage_start": -9.2, "percentage_end": 9.2 }, { "question": "Question 1", "type": "Agree", "value": 1927, "percentage": 59.9, "percentage_start": 9.2, "percentage_end": 69.2 }, { "question": "Question 1", "type": "Strongly agree", "value": 376, "percentage": 11.7, "percentage_start": 69.2, "percentage_end": 80.9 }, { "question": "Question 2", "type": "Strongly disagree", "value": 2, "percentage": 18.2, "percentage_start": -36.4, "percentage_end": -18.2 }, { "question": "Question 2", "type": "Disagree", "value": 2, "percentage": 18.2, "percentage_start": -18.2, "percentage_end": 0 }, { "question": "Question 2", "type": "Neither agree nor disagree", "value": 0, "percentage": 0, "percentage_start": 0, "percentage_end": 0 }, { "question": "Question 2", "type": "Agree", "value": 7, "percentage": 63.6, "percentage_start": 0, "percentage_end": 63.6 }, { "question": "Question 2", "type": "Strongly agree", "value": 11, "percentage": 0, "percentage_start": 63.6, "percentage_end": 63.6 }, { "question": "Question 3", "type": "Strongly disagree", "value": 2, "percentage": 20, "percentage_start": -30, "percentage_end": -10 }, { "question": "Question 3", "type": "Disagree", "value": 0, "percentage": 0, "percentage_start": -10, "percentage_end": -10 }, { "question": "Question 3", "type": "Neither agree nor disagree", "value": 2, "percentage": 20, "percentage_start": -10, "percentage_end": 10 }, { "question": "Question 3", "type": "Agree", "value": 4, "percentage": 40, "percentage_start": 10, "percentage_end": 50 }, { "question": "Question 3", "type": "Strongly agree", "value": 2, "percentage": 20, "percentage_start": 50, "percentage_end": 70 }, { "question": "Question 4", "type": "Strongly disagree", "value": 0, "percentage": 0, "percentage_start": -15.6, "percentage_end": -15.6 }, { "question": "Question 4", "type": "Disagree", "value": 2, "percentage": 12.5, "percentage_start": -15.6, "percentage_end": -3.1 }, { "question": "Question 4", "type": "Neither agree nor disagree", "value": 1, "percentage": 6.3, "percentage_start": -3.1, "percentage_end": 3.1 }, { "question": "Question 4", "type": "Agree", "value": 7, "percentage": 43.8, "percentage_start": 3.1, "percentage_end": 46.9 }, { "question": "Question 4", "type": "Strongly agree", "value": 6, "percentage": 37.5, "percentage_start": 46.9, "percentage_end": 84.4 }, { "question": "Question 5", "type": "Strongly disagree", "value": 0, "percentage": 0, "percentage_start": -10.4, "percentage_end": -10.4 }, { "question": "Question 5", "type": "Disagree", "value": 1, "percentage": 4.2, "percentage_start": -10.4, "percentage_end": -6.3 }, { "question": "Question 5", "type": "Neither agree nor disagree", "value": 3, "percentage": 12.5, "percentage_start": -6.3, "percentage_end": 6.3 }, { "question": "Question 5", "type": "Agree", "value": 16, "percentage": 66.7, "percentage_start": 6.3, "percentage_end": 72.9 }, { "question": "Question 5", "type": "Strongly agree", "value": 4, "percentage": 16.7, "percentage_start": 72.9, "percentage_end": 89.6 }, { "question": "Question 6", "type": "Strongly disagree", "value": 1, "percentage": 6.3, "percentage_start": -18.8, "percentage_end": -12.5 }, { "question": "Question 6", "type": "Disagree", "value": 1, "percentage": 6.3, "percentage_start": -12.5, "percentage_end": -6.3 }, { "question": "Question 6", "type": "Neither agree nor disagree", "value": 2, "percentage": 12.5, "percentage_start": -6.3, "percentage_end": 6.3 }, { "question": "Question 6", "type": "Agree", "value": 9, "percentage": 56.3, "percentage_start": 6.3, "percentage_end": 62.5 }, { "question": "Question 6", "type": "Strongly agree", "value": 3, "percentage": 18.8, "percentage_start": 62.5, "percentage_end": 81.3 }, { "question": "Question 7", "type": "Strongly disagree", "value": 0, "percentage": 0, "percentage_start": -10, "percentage_end": -10 }, { "question": "Question 7", "type": "Disagree", "value": 0, "percentage": 0, "percentage_start": -10, "percentage_end": -10 }, { "question": "Question 7", "type": "Neither agree nor disagree", "value": 1, "percentage": 20, "percentage_start": -10, "percentage_end": 10 }, { "question": "Question 7", "type": "Agree", "value": 4, "percentage": 80, "percentage_start": 10, "percentage_end": 90 }, { "question": "Question 7", "type": "Strongly agree", "value": 0, "percentage": 0, "percentage_start": 90, "percentage_end": 90 }, { "question": "Question 8", "type": "Strongly disagree", "value": 0, "percentage": 0, "percentage_start": 0, "percentage_end": 0 }, { "question": "Question 8", "type": "Disagree", "value": 0, "percentage": 0, "percentage_start": 0, "percentage_end": 0 }, { "question": "Question 8", "type": "Neither agree nor disagree", "value": 0, "percentage": 0, "percentage_start": 0, "percentage_end": 0 }, { "question": "Question 8", "type": "Agree", "value": 0, "percentage": 0, "percentage_start": 0, "percentage_end": 0 }, { "question": "Question 8", "type": "Strongly agree", "value": 2, "percentage": 100, "percentage_start": 0, "percentage_end": 100 } ] color_scale = alt.Scale( domain=["Strongly disagree", "Disagree", "Neither agree nor disagree", "Agree", "Strongly agree"], range=["#c30d24", "#f3a583", "#cccccc", "#94c6da", "#1770ab"] ) y_axis = alt.Axis(title='Question', offset=5, ticks=False, minExtent=60, domain=False) source = alt.pd.DataFrame(data) alt.Chart(source).mark_bar().encode( x='percentage_start:Q', x2='percentage_end:Q', y=alt.Y('question:N', axis=y_axis), color=alt.Color( 'type:N', legend=alt.Legend( title='Response'), scale=color_scale, ) ) ###Output _____no_output_____
project-tv-script-generation/dlnd_tv_script_generation.ipynb
###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) #text = open(data_dir, encoding='utf-8').read() ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code #import unicodedata #import string #import re from collections import Counter import torch.nn.functional as F import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function #normalized_words = [normalizeString(s) for s in text] #word_count = Counter(normalized_words) word_count = Counter(text) sorted_vocab = sorted(word_count, key=word_count.get, reverse=True) int_to_vocab = {word : i for word ,i in enumerate(sorted_vocab, 0)} vocab_to_int = { word : i for i, word in int_to_vocab.items()} return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function punct_dict = { '.' : '§§POINT§§', ',' : '§§COMMA§§', '"' : '§§DOUBLEQUOTES§§', ';' : '§§SEMICOLON§§', '!' : '§§EXCLAMATIONMARK§§', '?' : '§§QUESTIONMARK§§', '(' : '§§LEFTPARENTHESES§§', ')' : '§§RIGHTPARENTHESES§§', '-' : '§§DASH§§', '\n' : '§§RETURN§§' } return punct_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function feature_tensors = [[words[index] for index in range(idx, idx + sequence_length)] for idx in range(len(words)) if (idx + sequence_length) <= (len(words) - 1)] target_tensors = [target for target in words[sequence_length:]] # creat tensors out of the last lists feature_tensors = torch.tensor(feature_tensors) target_tensors = torch.tensor(target_tensors) # create a TensorDataset object ... tensordataset = TensorDataset(feature_tensors, target_tensors) # create the data loader .... dataloader = DataLoader(tensordataset, batch_size=batch_size, shuffle=True) # return a dataloader return dataloader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 31, 32, 33, 34, 35], [ 32, 33, 34, 35, 36], [ 43, 44, 45, 46, 47], [ 12, 13, 14, 15, 16], [ 39, 40, 41, 42, 43], [ 33, 34, 35, 36, 37], [ 27, 28, 29, 30, 31], [ 41, 42, 43, 44, 45], [ 9, 10, 11, 12, 13], [ 36, 37, 38, 39, 40]]) torch.Size([10]) tensor([ 36, 37, 48, 17, 44, 38, 32, 46, 14, 41]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn import numpy as np class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.n_layers = n_layers self.hidden_dim = hidden_dim self.output_size = output_size # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, batch_first=True, dropout=dropout) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function embedded = self.embedding(nn_input) lstm_output, new_hidden = self.lstm(embedded, hidden) lstm_output_reshape = lstm_output.contiguous().view(-1, self.hidden_dim) fc_output = self.fc(lstm_output_reshape) f_softmax_out = F.log_softmax(fc_output, dim=1) output_in_batches = f_softmax_out.view(self.batch_size, -1) final_output = output_in_batches[:, -self.output_size:] #print("self.outputsize: ", self.output_size) #print("embedded shape: ", embedded.shape) #print("lstm_output shape: ", lstm_output.shape) #print("lstm_output_reshape shape: ", lstm_output_reshape.shape) #print("drop_fc shape: ", drop_fc.shape) #print("f_softmax_out shape: ", f_softmax_out.shape) #print("output_in_batches shape: ", output_in_batches.shape) #print("final_output shape: ", final_output.shape) #print("final_output: ", final_output) # return one batch of output word scores and the hidden state return final_output, new_hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # save size of batch_size self.batch_size = batch_size # initialize hidden state with zero weights, and move to GPU if available # Implement function weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers,batch_size,self.hidden_dim).zero_().cuda(), weight.new(self.n_layers,batch_size,self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers,batch_size,self.hidden_dim).zero_(), weight.new(self.n_layers,batch_size,self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) #arhe sequence_length=33 batch_size=5 model = RNN(len(vocab_to_int), output_size=10, embedding_dim=300, hidden_dim=256, n_layers=2, dropout=0.5) #arhe h = model.init_hidden(batch_size) #arhe t_loader = batch_data(test_text, sequence_length, batch_size=batch_size) data_iter = iter(t_loader) #arhe inputs, target = data_iter.next() print("inputs shape: ", inputs.shape) print("target shape: ", target.shape) #arhe if train_on_gpu: inputs = inputs.cuda() model = model.cuda() output, hidden = model(inputs, h) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function clip = 1 # move data to GPU, if available if (train_on_gpu): inp = inp.cuda() target = target.cuda() # perform backpropagation and optimization h = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() # get output and new hidden state from the model output, hidden = rnn(inp, h) # calculate loss loss = criterion(output.squeeze(), target) # I do now backpropagation loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 15# of words in a sequence # Batch Size batch_size = 200 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = len(vocab_to_int) # Embedding Dimension embedding_dim = 300 # Hidden Dimension hidden_dim = 280 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model from workspace_utils import active_session with active_session(): trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.465411370277405 Epoch: 1/10 Loss: 4.747380018234253 Epoch: 1/10 Loss: 4.523646339416504 Epoch: 1/10 Loss: 4.410965185165406 Epoch: 1/10 Loss: 4.332641193389892 Epoch: 1/10 Loss: 4.250781437397003 Epoch: 1/10 Loss: 4.22547828245163 Epoch: 1/10 Loss: 4.1736126127243045 Epoch: 2/10 Loss: 4.065602141122024 Epoch: 2/10 Loss: 3.9713831934928896 Epoch: 2/10 Loss: 3.9646511087417604 Epoch: 2/10 Loss: 3.9443734703063966 Epoch: 2/10 Loss: 3.9253846549987794 Epoch: 2/10 Loss: 3.910103404521942 Epoch: 2/10 Loss: 3.8933036794662477 Epoch: 2/10 Loss: 3.9087741861343384 Epoch: 3/10 Loss: 3.8143211881319683 Epoch: 3/10 Loss: 3.7305254492759703 Epoch: 3/10 Loss: 3.729267876148224 Epoch: 3/10 Loss: 3.7531130471229552 Epoch: 3/10 Loss: 3.7433264141082763 Epoch: 3/10 Loss: 3.7331958508491514 Epoch: 3/10 Loss: 3.727801914215088 Epoch: 3/10 Loss: 3.731751173019409 Epoch: 4/10 Loss: 3.6587215259671213 Epoch: 4/10 Loss: 3.595583642959595 Epoch: 4/10 Loss: 3.5899739193916322 Epoch: 4/10 Loss: 3.6007260189056396 Epoch: 4/10 Loss: 3.5976479263305663 Epoch: 4/10 Loss: 3.6087461557388307 Epoch: 4/10 Loss: 3.609230924129486 Epoch: 4/10 Loss: 3.606380813121796 Epoch: 5/10 Loss: 3.544965221484502 Epoch: 5/10 Loss: 3.477003323554993 Epoch: 5/10 Loss: 3.5038782482147215 Epoch: 5/10 Loss: 3.4993654556274416 Epoch: 5/10 Loss: 3.4956233019828797 Epoch: 5/10 Loss: 3.5124139609336855 Epoch: 5/10 Loss: 3.505984607219696 Epoch: 5/10 Loss: 3.5327468881607054 Epoch: 6/10 Loss: 3.4462271121641 Epoch: 6/10 Loss: 3.389488977909088 Epoch: 6/10 Loss: 3.4160489406585692 Epoch: 6/10 Loss: 3.4161289353370665 Epoch: 6/10 Loss: 3.423075870513916 Epoch: 6/10 Loss: 3.4306877388954162 Epoch: 6/10 Loss: 3.44356072473526 Epoch: 6/10 Loss: 3.452195174694061 Epoch: 7/10 Loss: 3.3693260550498962 Epoch: 7/10 Loss: 3.340730875968933 Epoch: 7/10 Loss: 3.3286486849784853 Epoch: 7/10 Loss: 3.3355954723358154 Epoch: 7/10 Loss: 3.350142655849457 Epoch: 7/10 Loss: 3.360555097579956 Epoch: 7/10 Loss: 3.3787125854492186 Epoch: 7/10 Loss: 3.3902198257446288 Epoch: 8/10 Loss: 3.318429421633482 Epoch: 8/10 Loss: 3.259853980541229 Epoch: 8/10 Loss: 3.2851018786430357 Epoch: 8/10 Loss: 3.275691987037659 Epoch: 8/10 Loss: 3.3088065972328184 Epoch: 8/10 Loss: 3.311209179878235 Epoch: 8/10 Loss: 3.3378564591407778 Epoch: 8/10 Loss: 3.3370056500434875 Epoch: 9/10 Loss: 3.2620486368735633 Epoch: 9/10 Loss: 3.224260495185852 Epoch: 9/10 Loss: 3.2384872851371767 Epoch: 9/10 Loss: 3.2424585890769957 Epoch: 9/10 Loss: 3.2472597703933714 Epoch: 9/10 Loss: 3.274127863407135 Epoch: 9/10 Loss: 3.2769912271499635 Epoch: 9/10 Loss: 3.2860502099990843 Epoch: 10/10 Loss: 3.2116867817938326 Epoch: 10/10 Loss: 3.173737900733948 Epoch: 10/10 Loss: 3.1908502650260924 Epoch: 10/10 Loss: 3.1961592049598693 Epoch: 10/10 Loss: 3.2073359265327452 Epoch: 10/10 Loss: 3.2222299757003783 Epoch: 10/10 Loss: 3.2426239256858826 Epoch: 10/10 Loss: 3.2621713438034057 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:**I tried different values of everything (including different embedding dimensions). I noticed that the sequence length can influence a lot the final loss gotten during training. But what I think made a good training here, was a combination between the learning rate together with the clipping of the gradients during training. As for the hidden dimensions and the number of layers, my intuition - after trying different numbers- is that any value between 256 <= hidden < 1000 and 2 <= n_layers <= 3 is going to (eventually) get the expected loss values as long as there are enough epochs to train (and the number of layers remain between 2 and 3). --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:36: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ vocab_to_int = {} int_to_vocab = {} unique_words = set(text) for i, word in enumerate(unique_words): vocab_to_int[word] = i int_to_vocab[i] = word # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ punctuation_tokens = { '.': '||period||', ',': '||comma||', '"': '||doublequote||', ';': '||semicolon||', '!': '||bang||', '?': '||questionmark||', '(': '||leftparen||', ')': '||rightparen||', '-': '||dash||', '\n': '||newline||', } return punctuation_tokens """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() train_set_size = int(len(int_text) * 0.8) train_set = int_text[:train_set_size] val_set = int_text[train_set_size:] ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ text_len = len(words) num_batches = text_len // (sequence_length * batch_size) # Trim text to be a multiple batch size trimmed_text_len = num_batches * batch_size * sequence_length words = list(words[:trimmed_text_len]) if trimmed_text_len == 0: raise Exception( "Text length({}) less than sequence length({}) times batch size({})".format( text_len, sequence_length, batch_size )) # append a newline to the text so we don't get an # IndexError when we traverse words.append(vocab_to_int['||newline||']) inputs = [] labels = [] for i in range(0, trimmed_text_len - sequence_length + 1): x = words[i:i + sequence_length] y = words[i + sequence_length] inputs.append(x) labels.append(y) input_tensor = torch.from_numpy(np.array(inputs)) output_tensor = torch.from_numpy(np.array(labels)) tensor_dataset = TensorDataset(input_tensor, output_tensor) # return a dataloader return DataLoader(tensor_dataset, batch_size=batch_size, drop_last=True, shuffle=True) # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) num_test_runs = 10 for run in range(num_test_runs): test_text_len = np.random.randint(low=50, high=1000) test_text = range(test_text_len) test_batch_size = np.random.randint(low=1, high=int(np.sqrt(test_text_len))) test_seq_len = np.random.randint(low=1, high=int(np.sqrt(test_text_len))) print("Testing with text of len: {}, seq len: {}, batch size: {}\n".format(test_text_len, test_seq_len, test_batch_size)) t_loader = batch_data(test_text, sequence_length=test_seq_len, batch_size=test_batch_size) for i, d in enumerate(t_loader, 1): x = d[0] y = d[1] assert(x.shape[0] == test_batch_size), "Expected batch size {} got batch size {}".format(test_batch_size, x.shape[0]) assert(x.shape[1] == test_seq_len), "Expected seq len {} got seq len {}".format(test_batch_size, x.shape[0]) assert(y.shape[0] == test_batch_size), "Expected batch size {} got batch size {}".format(test_batch_size, x.shape[0]) print("All tests passed") ###Output Testing with text of len: 63, seq len: 1, batch size: 3 Testing with text of len: 465, seq len: 18, batch size: 17 Testing with text of len: 463, seq len: 16, batch size: 1 Testing with text of len: 896, seq len: 1, batch size: 9 Testing with text of len: 695, seq len: 5, batch size: 4 Testing with text of len: 904, seq len: 26, batch size: 15 Testing with text of len: 579, seq len: 19, batch size: 1 Testing with text of len: 467, seq len: 3, batch size: 20 Testing with text of len: 291, seq len: 11, batch size: 13 Testing with text of len: 913, seq len: 27, batch size: 13 All tests passed ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # set class variables self.vocab_size = vocab_size self.output_size = output_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers self.dropout = dropout # define model layers self.embedding = nn.Embedding(self.vocab_size, self.embedding_dim) self.embedding.weight.data.normal_(0, 1.0 / np.sqrt(self.vocab_size)) self.gru = nn.GRU( input_size=self.embedding_dim, hidden_size=self.hidden_dim, num_layers=self.n_layers, batch_first=True, dropout=self.dropout ) self.fc = nn.Linear(self.hidden_dim, self.output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ batch_size = nn_input.shape[0] seq_len = nn_input.shape[1] # return one batch of output word scores and the hidden state embedded_input = self.embedding(nn_input) gru_out, hidden = self.gru(embedded_input, hidden) #reshape to 2d tensor gru_out = gru_out.contiguous().view(-1, self.hidden_dim) out = self.fc(gru_out) out = out.view(batch_size, seq_len, self.output_size) # grab just the last output return out[:,-1], hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # initialize hidden state with zero weights, and move to GPU if available h0 = torch.zeros(self.n_layers, batch_size, self.hidden_dim) if train_on_gpu: h0 = h0.cuda() return h0 """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ optimizer.zero_grad() # detach hidden state history hidden = hidden.data # Move to GPU if needed if train_on_gpu: inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization out, hidden = rnn(inp, hidden) loss = criterion(out, target) loss_val = loss.item() loss.backward() nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss_val, hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() min_val_loss = np.Inf print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: train_loss = np.average(batch_losses) batch_losses = [] rnn.eval() val_loss_acc = 0.0 val_hidden = rnn.init_hidden(batch_size) for val_batch_i, (val_inputs, val_labels) in enumerate(val_loader, 1): val_inputs, val_labels = val_inputs.cuda(), val_labels.cuda() val_output, val_hidden = rnn(val_inputs, val_hidden) val_loss = criterion(val_output, val_labels) val_loss_acc += val_loss.item() del val_inputs del val_labels del val_loss mean_val_loss = val_loss_acc / val_batch_i print('Epoch: {:>4}/{:<4} Train loss: {}, val loss: {}\n'.format( epoch_i, n_epochs, train_loss, mean_val_loss)) # if mean_val_loss < min_val_loss: # min_val_loss = mean_val_loss # print("Validation loss less than previous seen minimum. Saving model...") # helper.save_model('./save/trained_rnn', rnn) rnn.train() # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(train_set, sequence_length, batch_size) val_loader = batch_data(val_set, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 20 # Learning Rate learning_rate = 0.0001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = len(vocab_to_int) # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 500 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 20 epoch(s)... Epoch: 1/20 Train loss: 6.089443292617798, val loss: 5.888545632276542 Epoch: 1/20 Train loss: 5.38032785320282, val loss: 5.229292028837706 Epoch: 1/20 Train loss: 5.001903301239014, val loss: 5.066568021382936 Epoch: 1/20 Train loss: 4.8311947569847105, val loss: 4.965543107045821 Epoch: 1/20 Train loss: 4.729884071826935, val loss: 4.8825112027689395 Epoch: 1/20 Train loss: 4.647920533180237, val loss: 4.824099782561981 Epoch: 1/20 Train loss: 4.609042806148529, val loss: 4.772486563291886 Epoch: 1/20 Train loss: 4.533252994060517, val loss: 4.745904328927795 Epoch: 1/20 Train loss: 4.502012115001678, val loss: 4.712778917227485 Epoch: 1/20 Train loss: 4.429528242111206, val loss: 4.688688200613506 Epoch: 1/20 Train loss: 4.425151922702789, val loss: 4.673239785703161 Epoch: 2/20 Train loss: 4.32508260294507, val loss: 4.681823958760118 Epoch: 2/20 Train loss: 4.302997501373291, val loss: 4.666792680927109 Epoch: 2/20 Train loss: 4.277871142864227, val loss: 4.671902093379252 Epoch: 2/20 Train loss: 4.275054126739502, val loss: 4.6539782286548546 Epoch: 2/20 Train loss: 4.270262873649597, val loss: 4.649798901326541 Epoch: 2/20 Train loss: 4.24421347618103, val loss: 4.646515612468349 Epoch: 2/20 Train loss: 4.217134667873383, val loss: 4.639997927038853 Epoch: 2/20 Train loss: 4.240438857078552, val loss: 4.640751204960976 Epoch: 2/20 Train loss: 4.249748113632202, val loss: 4.624884529367808 Epoch: 2/20 Train loss: 4.208532666683197, val loss: 4.619073774936475 Epoch: 2/20 Train loss: 4.203614521026611, val loss: 4.615755053713134 Epoch: 3/20 Train loss: 4.08810302955614, val loss: 4.626964970060696 Epoch: 3/20 Train loss: 4.100640897274017, val loss: 4.628881762575296 Epoch: 3/20 Train loss: 4.097302923202514, val loss: 4.626060246048083 Epoch: 3/20 Train loss: 4.094220775604248, val loss: 4.625499844980205 Epoch: 3/20 Train loss: 4.088377061843872, val loss: 4.618856930063301 Epoch: 3/20 Train loss: 4.086565406322479, val loss: 4.621455580832891 Epoch: 3/20 Train loss: 4.075271434307099, val loss: 4.617256336026779 Epoch: 3/20 Train loss: 4.0792808923721315, val loss: 4.608320056662618 Epoch: 3/20 Train loss: 4.06850001001358, val loss: 4.605131064498056 Epoch: 3/20 Train loss: 4.073314413547516, val loss: 4.598010234647385 Epoch: 3/20 Train loss: 4.045189538955689, val loss: 4.597710606346378 Epoch: 4/20 Train loss: 3.951297586538251, val loss: 4.596722706519416 Epoch: 4/20 Train loss: 3.9634818296432495, val loss: 4.591242590595956 Epoch: 4/20 Train loss: 3.9785354022979735, val loss: 4.595947196965942 Epoch: 4/20 Train loss: 3.9646830744743347, val loss: 4.589471628032544 Epoch: 4/20 Train loss: 3.9598280696868895, val loss: 4.580066362501821 Epoch: 4/20 Train loss: 3.9620407814979552, val loss: 4.577522607910453 Epoch: 4/20 Train loss: 3.957287353992462, val loss: 4.579697091945047 Epoch: 4/20 Train loss: 3.960713074684143, val loss: 4.565049192388766 Epoch: 4/20 Train loss: 3.9513324022293093, val loss: 4.55822671463886 Epoch: 4/20 Train loss: 3.9562961134910584, val loss: 4.563128009642346 Epoch: 4/20 Train loss: 3.946153395175934, val loss: 4.553070252537299 Epoch: 5/20 Train loss: 3.8713922320434624, val loss: 4.55371470379263 Epoch: 5/20 Train loss: 3.835891191005707, val loss: 4.554215290119014 Epoch: 5/20 Train loss: 3.8666149320602416, val loss: 4.557163587828349 Epoch: 5/20 Train loss: 3.8644120378494264, val loss: 4.5504185377564506 Epoch: 5/20 Train loss: 3.838248219013214, val loss: 4.554908227542907 Epoch: 5/20 Train loss: 3.881598852157593, val loss: 4.549014977193548 Epoch: 5/20 Train loss: 3.8765457849502565, val loss: 4.547274337216536 Epoch: 5/20 Train loss: 3.8755537700653075, val loss: 4.536517882364271 Epoch: 5/20 Train loss: 3.875738375663757, val loss: 4.533529537199555 Epoch: 5/20 Train loss: 3.870757665634155, val loss: 4.535768347562346 Epoch: 5/20 Train loss: 3.867671820640564, val loss: 4.530416350642755 Epoch: 6/20 Train loss: 3.7497484801314207, val loss: 4.533847979284002 Epoch: 6/20 Train loss: 3.796032989025116, val loss: 4.535632892166478 Epoch: 6/20 Train loss: 3.7660351166725157, val loss: 4.539057220118435 Epoch: 6/20 Train loss: 3.78435298204422, val loss: 4.544943564053145 Epoch: 6/20 Train loss: 3.8019707641601563, val loss: 4.541727619260399 Epoch: 6/20 Train loss: 3.7767844052314756, val loss: 4.538789587110131 Epoch: 6/20 Train loss: 3.787640649318695, val loss: 4.5347009027836735 Epoch: 6/20 Train loss: 3.797083462238312, val loss: 4.530216853167189 Epoch: 6/20 Train loss: 3.796281076431274, val loss: 4.538494392639445 Epoch: 6/20 Train loss: 3.8056915717124937, val loss: 4.533379843974817 Epoch: 6/20 Train loss: 3.7789505429267884, val loss: 4.524802388348452 Epoch: 7/20 Train loss: 3.70558353132439, val loss: 4.54135556320564 Epoch: 7/20 Train loss: 3.6803517718315124, val loss: 4.53808564810207 Epoch: 7/20 Train loss: 3.707981806278229, val loss: 4.53672881260289 Epoch: 7/20 Train loss: 3.727965608119965, val loss: 4.541944288538033 Epoch: 7/20 Train loss: 3.7338137564659117, val loss: 4.5347937710256 Epoch: 7/20 Train loss: 3.7170997552871703, val loss: 4.531428056624915 Epoch: 7/20 Train loss: 3.7191410465240478, val loss: 4.53699447423799 Epoch: 7/20 Train loss: 3.711714801311493, val loss: 4.53272362421364 Epoch: 7/20 Train loss: 3.7127138934135435, val loss: 4.529020150159227 Epoch: 7/20 Train loss: 3.733606447696686, val loss: 4.531387109220929 Epoch: 7/20 Train loss: 3.730205627441406, val loss: 4.524798944581748 Epoch: 8/20 Train loss: 3.6367429027657936, val loss: 4.528649301988946 Epoch: 8/20 Train loss: 3.608758909702301, val loss: 4.536122329635016 Epoch: 8/20 Train loss: 3.636224901199341, val loss: 4.531542666444167 Epoch: 8/20 Train loss: 3.642311806678772, val loss: 4.531848789548771 Epoch: 8/20 Train loss: 3.666326376438141, val loss: 4.52992889261486 Epoch: 8/20 Train loss: 3.6457205715179444, val loss: 4.532586033864361 Epoch: 8/20 Train loss: 3.6608132266998292, val loss: 4.533744542009973 Epoch: 8/20 Train loss: 3.658338613986969, val loss: 4.533045496504628 Epoch: 8/20 Train loss: 3.695858839035034, val loss: 4.522558821286118 Epoch: 8/20 Train loss: 3.684595164299011, val loss: 4.5256659191576505 Epoch: 8/20 Train loss: 3.677954578399658, val loss: 4.515781677052475 Epoch: 9/20 Train loss: 3.559159166574059, val loss: 4.531293803105859 Epoch: 9/20 Train loss: 3.57889263343811, val loss: 4.5268093157878795 Epoch: 9/20 Train loss: 3.569286174297333, val loss: 4.526701747469974 Epoch: 9/20 Train loss: 3.5622908320426943, val loss: 4.527236569949069 Epoch: 9/20 Train loss: 3.594777565956116, val loss: 4.52576502953784 Epoch: 9/20 Train loss: 3.59393940448761, val loss: 4.529714261824661 Epoch: 9/20 Train loss: 3.603114803314209, val loss: 4.526787569576069 Epoch: 9/20 Train loss: 3.6289773931503295, val loss: 4.531483062485982 Epoch: 9/20 Train loss: 3.632167550086975, val loss: 4.523828966485415 Epoch: 9/20 Train loss: 3.6176296267509462, val loss: 4.52546941779173 Epoch: 9/20 Train loss: 3.627548965930939, val loss: 4.522664796542228 Epoch: 10/20 Train loss: 3.514357979561616, val loss: 4.522655114585157 Epoch: 10/20 Train loss: 3.4983480253219605, val loss: 4.530439458535334 Epoch: 10/20 Train loss: 3.541814908981323, val loss: 4.533421656654583 Epoch: 10/20 Train loss: 3.5416244578361513, val loss: 4.530649678495996 Epoch: 10/20 Train loss: 3.5546161065101622, val loss: 4.5293445623204205 Epoch: 10/20 Train loss: 3.5405620584487916, val loss: 4.530408524711669 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** Model hyperparameters I started off with a pretty simple network with two layers. I didn't want to complicate the architecture early on and wanted the simplest model that would work. I chose 2 layers and embedding_dim set to 200. The reason I picked 200 was from the insights in the hyperparameters lecture. It said 200 was a good place to start. I set the hidden_dim to 300, a value between the embedding_dim and the output. Later I increased it to 500 to decrease the loss. This was a bit tricky since these were pretty close to how large I could make them given the memory on my GPU. Training hyperparameters I picked a learning_rate = 0.01 and num_epochs = 40. These were arbitrary choices. However, when I trained this model, it did not converge with the loss oscillating at around 4.7-4.8. This indicated that I needed to decrease the learning rate. I set learning_rate to 0.001 and the loss started decreasing. However, I got the best stability at 0.0001.With these changes, 20 epochs was enough.64 was a batch size I picked arbitrarily. It worked quite well, so I didn't change it. Data hyperparameters The sequence length I picked was 10. The reason for this was that when I plotted a histogram of the sentence lengths, about 65% of sentences were less than 10 words long (once the 0 length sentences were ignored). What I was going for here was that while producing each sentence, the previous sentence was what was used as the sequence. This seemed to work quite well in practice. I couldn't try much larger sequence lengths due to memory constraints, but in general, it seemed that a larger sequence length reduced the loss. Decreasing the sequence length to 5 didn't produce a training loss of < 3.5 in 20 epochs. Validation loss I tried using the validation loss, but could never get it below 3.5. The model would always start overfitting around a loss of 4.5. This was despite a dropout of 0.5. Given this, there were 3 alternatives:1. Reduce the number of features2. Reduce the complexity of the network3. Get more dataI tried reducing the size of the embedding dim (1 above) and the hidden_dim (2 above) but none of these approaches worked. I concluded that to get a lower validation loss, we'd need more data. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /home/rahul/anaconda3/envs/deep-learning/lib/python3.6/site-packages/ipykernel_launcher.py:50: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output _____no_output_____ ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # return tuple return (None, None) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # return a dataloader return None # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables # define model layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state return None, None def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return None, None # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = # of words in a sequence # Batch Size batch_size = # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = # Learning Rate learning_rate = # Model parameters # Vocab size vocab_size = # Output size output_size = # Embedding Dimension embedding_dim = # Hidden Dimension hidden_dim = # Number of RNN Layers n_layers = # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function int_to_vocab = dict(enumerate(set(text))) vocab_to_int = {} for (key, value) in int_to_vocab.items(): vocab_to_int[value] = key # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function tokenization_dict = { '.': 'Period', ',': 'Comma', '"': 'QuotationMark', ';': 'Semicolon', '!': 'ExclamationMark', '?': 'QuestionMark', '(': 'LeftParentheses', ')': 'RightParentheses', '-': 'Dash', '\n': 'Return' } return tokenization_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ batch_size_total = batch_size * sequence_length n_batches = len(words) // batch_size_total feature_tensor = [] target_tensor = [] for n in range(0, len(words), sequence_length): print(f' n {n}') print(f'words {words[n: n + sequence_length]}') feature_tensor.append(words[n: n + sequence_length]) try: target_tensor.append(words[n + sequence_length + 1]) except IndexError: target_tensor.append(words[0]) data = TensorDataset(torch.IntTensor(feature_tensor), torch.IntTensor(target_tensor)) dataloader = DataLoader(data, batch_size=batch_size) # TODO: Implement function # return a dataloader return dataloader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output n 0 words range(0, 5) n 5 words range(5, 10) n 10 words range(10, 15) n 15 words range(15, 20) n 20 words range(20, 25) n 25 words range(25, 30) n 30 words range(30, 35) n 35 words range(35, 40) n 40 words range(40, 45) n 45 words range(45, 50) torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24], [25, 26, 27, 28, 29], [30, 31, 32, 33, 34], [35, 36, 37, 38, 39], [40, 41, 42, 43, 44], [45, 46, 47, 48, 49]], dtype=torch.int32) torch.Size([10]) tensor([ 6, 11, 16, 21, 26, 31, 36, 41, 46, 0], dtype=torch.int32) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function self.vocab_size = vocab_size self.output_size = output_size self.embedding_dim = embedding_dim self.hidden_him = hidden_dim self.dropout = dropout # set class variables # define model layers self.lstm = nn.LSTM(self.vocab_size, self.hidden_dim, self.embedding_dim, dropout = self.dropout, batch_first=True) self.dropout = nn.Dropout(self.dropout) self.fc = nn.Linear(self.hidden_dim, self.ouput_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function r_output, hidden = self.lstm(nn_input, hidden) output = self.dropout(r_output) output = output.reshape((self.hidden_dim, -1)) output = self.fc(output) # return one batch of output word scores and the hidden state return output, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return None, None # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = # of words in a sequence # Batch Size batch_size = # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = # Learning Rate learning_rate = # Model parameters # Vocab size vocab_size = # Output size output_size = # Embedding Dimension embedding_dim = # Hidden Dimension hidden_dim = # Number of RNN Layers n_layers = # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output _____no_output_____ ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # return tuple return (None, None) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word":```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # return a dataloader return None # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of words** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output one, next word. ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables # define model layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state return None, None def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return None, None # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = # of words in a sequence # Batch Size batch_size = # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = # Learning Rate learning_rate = # Model parameters # Vocab size vocab_size = # Output size output_size = # Embedding Dimension embedding_dim = # Hidden Dimension hidden_dim = # Number of RNN Layers n_layers = # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat it's predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # eval mode # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the index of the most likely next word top_i = torch.multinomial(output.exp().data, 1).item() # retrieve that word from the dictionary word = int_to_vocab[top_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = top_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function from collections import Counter counts = Counter(text) vocab = sorted(counts, key=counts.get, reverse=True) vocab_to_int = {word: i for i, word in enumerate(vocab)} int_to_vocab = {i: word for word, i in vocab_to_int.items()} # return tuple return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function # MICAH Why is this needed...? Pretty sure it would work to just surround # the tokens with spaces return {char: f"<{ord(char)}>" for char in ".,\";!?()-\n"} """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ num_batches = (len(words)-1) // (sequence_length * batch_size) keep = num_batches*sequence_length*batch_size print(f"Discarding last {len(words) - keep} words") features = torch.tensor(words[:keep]).view(batch_size, num_batches, sequence_length).transpose(0,1).transpose(1,2) targets = torch.tensor(words[1:keep+1]).view(batch_size, num_batches, sequence_length).transpose(0,1).transpose(1,2) return [*zip(features, targets[:,-1])] # there is no test for this function, but you are encouraged to create # print statements and tests of your own for x, y in batch_data([*range(100)], 3, 10): print(x) # print(y) ###Output Discarding last 10 words tensor([[ 0, 9, 18, 27, 36, 45, 54, 63, 72, 81], [ 1, 10, 19, 28, 37, 46, 55, 64, 73, 82], [ 2, 11, 20, 29, 38, 47, 56, 65, 74, 83]]) tensor([[ 3, 12, 21, 30, 39, 48, 57, 66, 75, 84], [ 4, 13, 22, 31, 40, 49, 58, 67, 76, 85], [ 5, 14, 23, 32, 41, 50, 59, 68, 77, 86]]) tensor([[ 6, 15, 24, 33, 42, 51, 60, 69, 78, 87], [ 7, 16, 25, 34, 43, 52, 61, 70, 79, 88], [ 8, 17, 26, 35, 44, 53, 62, 71, 80, 89]]) ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=9) data_iter = iter(t_loader) sample_x, sample_y = next(data_iter) print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output Discarding last 5 words torch.Size([5, 9]) tensor([[ 0, 5, 10, 15, 20, 25, 30, 35, 40], [ 1, 6, 11, 16, 21, 26, 31, 36, 41], [ 2, 7, 12, 17, 22, 27, 32, 37, 42], [ 3, 8, 13, 18, 23, 28, 33, 38, 43], [ 4, 9, 14, 19, 24, 29, 34, 39, 44]]) torch.Size([9]) tensor([ 5, 10, 15, 20, 25, 30, 35, 40, 45]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super().__init__() # TODO: Implement function self.embed = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout) self.fc = nn.Linear(hidden_dim, output_size) self.dropout = nn.Dropout(dropout) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function x = self.embed(nn_input.long()) x, hidden = self.lstm(x, hidden) x = x[-1,:,:] # Only keep last sequence item output x = self.dropout(x) x = self.fc(x) # return one batch of output word scores and the hidden state return x, hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ # tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden, train=True): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: inp = inp.cuda() target = target.cuda() if hidden: hidden = tuple(h.detach() for h in hidden) # perform backpropagation and optimization output, hidden = rnn(inp, hidden) loss = criterion(output, target.squeeze()) if train: rnn.zero_grad() loss.backward() # TODO how do I know if this is needed or what to use for it? nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ # tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = None for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only # n_batches = len(train_loader.dataset)//batch_size # if(batch_i > n_batches): # break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 16 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 30 # Learning Rate learning_rate = .0003 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 512 # Hidden Dimension hidden_dim = 1024 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 100 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 30 epoch(s)... Epoch: 1/30 Loss: 6.320746541023254 Epoch: 1/30 Loss: 5.348134903907776 Epoch: 1/30 Loss: 5.1833203458786015 Epoch: 1/30 Loss: 5.0734469509124756 Epoch: 2/30 Loss: 4.881154561925817 Epoch: 2/30 Loss: 4.745476379394531 Epoch: 2/30 Loss: 4.7238505172729495 Epoch: 2/30 Loss: 4.669734661579132 Epoch: 3/30 Loss: 4.557466406292385 Epoch: 3/30 Loss: 4.445793311595917 Epoch: 3/30 Loss: 4.4521932744979855 Epoch: 3/30 Loss: 4.402828514575958 Epoch: 4/30 Loss: 4.307625784697356 Epoch: 4/30 Loss: 4.224611687660217 Epoch: 4/30 Loss: 4.217877686023712 Epoch: 4/30 Loss: 4.169713020324707 Epoch: 5/30 Loss: 4.081824730060719 Epoch: 5/30 Loss: 3.999491412639618 Epoch: 5/30 Loss: 3.9962826681137087 Epoch: 5/30 Loss: 3.9522921347618105 Epoch: 6/30 Loss: 3.8648497828730832 Epoch: 6/30 Loss: 3.7627077984809874 Epoch: 6/30 Loss: 3.7621408891677857 Epoch: 6/30 Loss: 3.711037130355835 Epoch: 7/30 Loss: 3.615943177541097 Epoch: 7/30 Loss: 3.5138127779960633 Epoch: 7/30 Loss: 3.4889926314353943 Epoch: 7/30 Loss: 3.448523542881012 Epoch: 8/30 Loss: 3.356293644728484 Epoch: 8/30 Loss: 3.249914195537567 Epoch: 8/30 Loss: 3.2156256890296935 Epoch: 8/30 Loss: 3.163530719280243 Epoch: 9/30 Loss: 3.0722286383310955 Epoch: 9/30 Loss: 2.9782372379302977 Epoch: 9/30 Loss: 2.9401678109169005 Epoch: 9/30 Loss: 2.8860844707489015 Epoch: 10/30 Loss: 2.8070294662758157 Epoch: 10/30 Loss: 2.704846746921539 Epoch: 10/30 Loss: 2.655916314125061 Epoch: 10/30 Loss: 2.6334973192214965 Epoch: 11/30 Loss: 2.5527074231041804 Epoch: 11/30 Loss: 2.440101854801178 Epoch: 11/30 Loss: 2.4132673108577727 Epoch: 11/30 Loss: 2.384680417776108 Epoch: 12/30 Loss: 2.2861942379562943 Epoch: 12/30 Loss: 2.1899501037597657 Epoch: 12/30 Loss: 2.1658310878276823 Epoch: 12/30 Loss: 2.120043692588806 Epoch: 13/30 Loss: 2.0541996876398723 Epoch: 13/30 Loss: 1.9452829146385193 Epoch: 13/30 Loss: 1.929740288257599 Epoch: 13/30 Loss: 1.8880230963230134 Epoch: 14/30 Loss: 1.8238688910448992 Epoch: 14/30 Loss: 1.7239552199840547 Epoch: 14/30 Loss: 1.7112397277355194 Epoch: 14/30 Loss: 1.6673466289043426 Epoch: 15/30 Loss: 1.6068431509865655 Epoch: 15/30 Loss: 1.5391413950920105 Epoch: 15/30 Loss: 1.5125179016590118 Epoch: 15/30 Loss: 1.478696836233139 Epoch: 16/30 Loss: 1.411489728645042 Epoch: 16/30 Loss: 1.350627772808075 Epoch: 16/30 Loss: 1.3385493898391723 Epoch: 16/30 Loss: 1.2946833491325378 Epoch: 17/30 Loss: 1.243518133516665 Epoch: 17/30 Loss: 1.1780248993635178 Epoch: 17/30 Loss: 1.1670920872688293 Epoch: 17/30 Loss: 1.1172199761867523 Epoch: 18/30 Loss: 1.0740072524106061 Epoch: 18/30 Loss: 1.02829485476017 Epoch: 18/30 Loss: 1.0020198231935502 Epoch: 18/30 Loss: 0.9775135004520417 Epoch: 19/30 Loss: 0.9251667852754946 Epoch: 19/30 Loss: 0.8898401129245758 Epoch: 19/30 Loss: 0.8612530297040939 Epoch: 19/30 Loss: 0.8250289970636367 Epoch: 20/30 Loss: 0.7899847441249424 Epoch: 20/30 Loss: 0.7448580867052078 Epoch: 20/30 Loss: 0.7287216418981552 Epoch: 20/30 Loss: 0.7126620370149612 Epoch: 21/30 Loss: 0.6679433670308855 Epoch: 21/30 Loss: 0.6317534220218658 Epoch: 21/30 Loss: 0.615033273100853 Epoch: 21/30 Loss: 0.598382982313633 Epoch: 22/30 Loss: 0.5677967638881118 Epoch: 22/30 Loss: 0.5382282266020775 Epoch: 22/30 Loss: 0.5280096444487572 Epoch: 22/30 Loss: 0.5113486337661743 Epoch: 23/30 Loss: 0.479440450447577 Epoch: 23/30 Loss: 0.44737132877111435 Epoch: 23/30 Loss: 0.44609891444444655 Epoch: 23/30 Loss: 0.4355119559168816 Epoch: 24/30 Loss: 0.40146029348726625 Epoch: 24/30 Loss: 0.37681356638669966 Epoch: 24/30 Loss: 0.37139121025800703 Epoch: 24/30 Loss: 0.3626461037993431 Epoch: 25/30 Loss: 0.33981207267001823 Epoch: 25/30 Loss: 0.31446532666683197 Epoch: 25/30 Loss: 0.3177489612996578 Epoch: 25/30 Loss: 0.30868755400180814 Epoch: 26/30 Loss: 0.281929725518933 Epoch: 26/30 Loss: 0.2624028177559376 Epoch: 26/30 Loss: 0.2682495655119419 Epoch: 26/30 Loss: 0.267210082411766 Epoch: 27/30 Loss: 0.24271566613956733 Epoch: 27/30 Loss: 0.22970589518547058 Epoch: 27/30 Loss: 0.22710575625300408 Epoch: 27/30 Loss: 0.22650425739586352 Epoch: 28/30 Loss: 0.20698450522290335 Epoch: 28/30 Loss: 0.1980937472730875 Epoch: 28/30 Loss: 0.19913665264844893 Epoch: 28/30 Loss: 0.20187171049416064 Epoch: 29/30 Loss: 0.18485633245220892 Epoch: 29/30 Loss: 0.17600062713027 Epoch: 29/30 Loss: 0.1665116700530052 Epoch: 29/30 Loss: 0.17081114858388902 Epoch: 30/30 Loss: 0.16158955533195424 Epoch: 30/30 Loss: 0.161728732958436 Epoch: 30/30 Loss: 0.15483054615557193 Epoch: 30/30 Loss: 0.15256089434027673 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** I started with the same parameters that were used in Character_Level_RNN_Solution and experimented from there.I wasn't getting < 3.5 loss so I tried lower and higher embedding_dim, hidden_dim, sequence_length values. Raising the values gave better results.Using a high sequence_length > 256 seemed to slow the training down a lot. I believe it was spending a lot of time backpropating through the history. I tried torch.utils.bottleneck and I think it was saying that all the time was spent in the loss.backwards call. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, 1), prime_id) predicted = [int_to_vocab[prime_id]] # initialize the hidden state hidden = None for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # get the output of the rnn output, hidden = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq[-1][-1] = torch.LongTensor([word_i]) gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'kramer:' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output kramer: i'm sorry. morty: jerry! kramer: this is the best points. i said he was going to tell ya, but i'm going to get your hand. mike:(hands back back to sleep) hey... so i have to have to tell you something, but you find the other thing with you or jerry: no, it's tarragon, it's not my family. elaine: uhh! youre out! ill be the back! kramer: look, i'm gonna tell me; where going to get up out, can i get all these apartment here again.(wilhelm)(sits) i'm sorry.(picks up) this sorry, i'm gonna be right right right now.(kramer and george as then leaves) hey, where is she for me on the flight? george:(pointing) kramer, elaine, go. george:(frustrated) ohh...(listens) oh, yeah. yeah. yeah.(tapping) yeah. yeah.(listens) oh, yeah. yeah. yeah. yeah.(listens) what? oh, what happened, i'll tell you you. i'll tell you; i'm going to make tell you what you did. kramer: well, i need the same of money with me or they want to see me. george: well, i was just an same- it's part over. elaine: this is not an hard of eight isn't. that's an artist than soon again on any than? morty: that's fine. jerry: so youre just a good idea? george:(worked up) there come all nice sorry.(to susan) : what is that? george: that's exactly! i'm cooking a huge- hm.(sits) puke. oh, yeah. i got to tell you what i said, i think you should will be something. mrs(hands away) how you have to ask i'm going to play, play---- ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function counter = Counter(text) sorted_vocab = sorted(counter, key=counter.get, reverse=True) vocab_to_int = { w:i for i, w in enumerate(sorted_vocab) } int_to_vocab = { i: w for w, i in vocab_to_int.items() } # return tuple return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return { '.': '||period||', ',': '||comma||', '"': '||quotationmark||', ';': '||semicolon||', '!': '||exclamation_mark||', '?': '||question_mark||', '(': '||left_parentheses||', ')': '||right_parentheses||', '-': '||dash||', '\n': '||return||' } """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function n_batches = len(words) // batch_size words = words[:n_batches*batch_size] features, targets = [], [] for idx in range(0, (len(words) - sequence_length)): features.append(words[idx : idx+sequence_length]) targets.append(words[idx + sequence_length]) feature_tensors = torch.from_numpy(np.asarray(features)) target_tensors = torch.from_numpy(np.asarray(targets)) data = TensorDataset(feature_tensors, target_tensors) data_loader = DataLoader(data, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.hidden_dim = hidden_dim self.n_layers = n_layers self.embeds = nn.Embedding(vocab_size, embedding_dim) # define model layers self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) embeds = self.embeds(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm outputs (convert the output of lstm layer (lstm_out) into a single vector) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) output = self.fc(lstm_out) # reshape into (batch_size, seq_length, output_size) output = output.view(batch_size, -1, self.output_size) # get last batch out = output[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data # initialize hidden state with zero weights, and move to GPU if available if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): rnn.cuda() inp, target = inp.cuda(), target.cuda() rnn.zero_grad() # perform backpropagation and optimization # create new variable for the hidden state, otherwise we'd backprop through the entire training history hidden = tuple([each.data for each in hidden]) output, hidden = rnn(inp, hidden) loss = criterion(output, target) loss.backward() optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 32 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 256 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.569646213054657 Epoch: 1/10 Loss: 4.903888876914978 Epoch: 1/10 Loss: 4.672388590335846 Epoch: 1/10 Loss: 4.54434988451004 Epoch: 1/10 Loss: 4.5281686902046205 Epoch: 1/10 Loss: 4.5664872193336485 Epoch: 1/10 Loss: 4.465383111476898 Epoch: 1/10 Loss: 4.343403972148895 Epoch: 1/10 Loss: 4.3210724906921385 Epoch: 1/10 Loss: 4.252272840976715 Epoch: 1/10 Loss: 4.371095730304718 Epoch: 1/10 Loss: 4.3912276711463925 Epoch: 1/10 Loss: 4.391727335453034 Epoch: 2/10 Loss: 4.184920583628426 Epoch: 2/10 Loss: 4.0109624605178835 Epoch: 2/10 Loss: 3.9138201785087587 Epoch: 2/10 Loss: 3.880740828990936 Epoch: 2/10 Loss: 3.9042025117874144 Epoch: 2/10 Loss: 4.008398723125458 Epoch: 2/10 Loss: 3.9446401982307435 Epoch: 2/10 Loss: 3.8605413846969605 Epoch: 2/10 Loss: 3.842089657783508 Epoch: 2/10 Loss: 3.784481876850128 Epoch: 2/10 Loss: 3.9156136593818665 Epoch: 2/10 Loss: 3.926361674785614 Epoch: 2/10 Loss: 3.9235469045639038 Epoch: 3/10 Loss: 3.84044204098134 Epoch: 3/10 Loss: 3.7677185273170473 Epoch: 3/10 Loss: 3.695485861778259 Epoch: 3/10 Loss: 3.6573827176094054 Epoch: 3/10 Loss: 3.680353585243225 Epoch: 3/10 Loss: 3.781810849189758 Epoch: 3/10 Loss: 3.739059875011444 Epoch: 3/10 Loss: 3.6542064056396484 Epoch: 3/10 Loss: 3.6418440165519717 Epoch: 3/10 Loss: 3.5999845514297486 Epoch: 3/10 Loss: 3.7204623069763185 Epoch: 3/10 Loss: 3.709243686676025 Epoch: 3/10 Loss: 3.7199526662826536 Epoch: 4/10 Loss: 3.6580167336404816 Epoch: 4/10 Loss: 3.5927111444473265 Epoch: 4/10 Loss: 3.5276292357444765 Epoch: 4/10 Loss: 3.4953991475105286 Epoch: 4/10 Loss: 3.5144025554656984 Epoch: 4/10 Loss: 3.6310911202430725 Epoch: 4/10 Loss: 3.6029968276023863 Epoch: 4/10 Loss: 3.5077578992843628 Epoch: 4/10 Loss: 3.4986249899864195 Epoch: 4/10 Loss: 3.4666494555473326 Epoch: 4/10 Loss: 3.600983817577362 Epoch: 4/10 Loss: 3.573426197052002 Epoch: 4/10 Loss: 3.605087466239929 Epoch: 5/10 Loss: 3.5346858205874105 Epoch: 5/10 Loss: 3.4853166971206666 Epoch: 5/10 Loss: 3.4185337285995483 Epoch: 5/10 Loss: 3.397120719909668 Epoch: 5/10 Loss: 3.404377478122711 Epoch: 5/10 Loss: 3.5253946480751037 Epoch: 5/10 Loss: 3.4875299983024597 Epoch: 5/10 Loss: 3.405537743091583 Epoch: 5/10 Loss: 3.3958568601608277 Epoch: 5/10 Loss: 3.364429218292236 Epoch: 5/10 Loss: 3.5005551533699037 Epoch: 5/10 Loss: 3.4673416152000427 Epoch: 5/10 Loss: 3.4864660873413085 Epoch: 6/10 Loss: 3.4507964955381127 Epoch: 6/10 Loss: 3.405338900089264 Epoch: 6/10 Loss: 3.3421392107009886 Epoch: 6/10 Loss: 3.3130164761543273 Epoch: 6/10 Loss: 3.325946174621582 Epoch: 6/10 Loss: 3.438218214035034 Epoch: 6/10 Loss: 3.406750172138214 Epoch: 6/10 Loss: 3.32884024477005 Epoch: 6/10 Loss: 3.317576075553894 Epoch: 6/10 Loss: 3.293105420589447 Epoch: 6/10 Loss: 3.4282815790176393 Epoch: 6/10 Loss: 3.388278433799744 Epoch: 6/10 Loss: 3.4071144456863403 Epoch: 7/10 Loss: 3.3834101939496914 Epoch: 7/10 Loss: 3.3443531384468077 Epoch: 7/10 Loss: 3.277641586780548 Epoch: 7/10 Loss: 3.2539846467971802 Epoch: 7/10 Loss: 3.263275703907013 Epoch: 7/10 Loss: 3.3695823040008546 Epoch: 7/10 Loss: 3.3457471075057983 Epoch: 7/10 Loss: 3.285442876338959 Epoch: 7/10 Loss: 3.260405200004578 Epoch: 7/10 Loss: 3.2375488934516907 Epoch: 7/10 Loss: 3.370436939239502 Epoch: 7/10 Loss: 3.3361376304626464 Epoch: 7/10 Loss: 3.341608226776123 Epoch: 8/10 Loss: 3.32905676739275 Epoch: 8/10 Loss: 3.2985602645874024 Epoch: 8/10 Loss: 3.2299773263931275 Epoch: 8/10 Loss: 3.20190758228302 Epoch: 8/10 Loss: 3.2117767534255983 Epoch: 8/10 Loss: 3.3105455675125124 Epoch: 8/10 Loss: 3.2984149770736693 Epoch: 8/10 Loss: 3.2341997981071473 Epoch: 8/10 Loss: 3.204292078971863 Epoch: 8/10 Loss: 3.1903437275886537 Epoch: 8/10 Loss: 3.3155577182769775 Epoch: 8/10 Loss: 3.2859347643852233 Epoch: 8/10 Loss: 3.2892895097732544 Epoch: 9/10 Loss: 3.2839157275917117 Epoch: 9/10 Loss: 3.2492265133857727 Epoch: 9/10 Loss: 3.1888844327926638 Epoch: 9/10 Loss: 3.1661140813827515 Epoch: 9/10 Loss: 3.1664534668922424 Epoch: 9/10 Loss: 3.270862488269806 Epoch: 9/10 Loss: 3.2628838171958923 Epoch: 9/10 Loss: 3.1905170602798463 Epoch: 9/10 Loss: 3.1589288034439087 Epoch: 9/10 Loss: 3.1527077651023863 Epoch: 9/10 Loss: 3.2745649905204774 Epoch: 9/10 Loss: 3.256315386772156 Epoch: 9/10 Loss: 3.2581371936798096 Epoch: 10/10 Loss: 3.2420642220776927 Epoch: 10/10 Loss: 3.2144362425804136 Epoch: 10/10 Loss: 3.1593434796333315 Epoch: 10/10 Loss: 3.1309784088134767 Epoch: 10/10 Loss: 3.128321165084839 Epoch: 10/10 Loss: 3.2270213775634766 Epoch: 10/10 Loss: 3.2273673377037047 Epoch: 10/10 Loss: 3.1523736033439635 Epoch: 10/10 Loss: 3.118960084915161 Epoch: 10/10 Loss: 3.119816872596741 Epoch: 10/10 Loss: 3.23650101852417 Epoch: 10/10 Loss: 3.2255920367240907 Epoch: 10/10 Loss: 3.213144190788269 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:**- sequence_length: It should be about the size of the length of sentences you want to look at before you generate the next word. I tried the value of 8, 16, 32. The longer the sequence length, the more complicated the model. I prefer to choose 32. - batch_size: I have tried 64, 128, 256, and found 128 is good size for my local machine GPU memory.- embedding_dim: Too small value may cause too much dimension reduction and lose important information. Too large value may lead to a very complicated model and become hard to train. I have tried 128, 256, and 512. I prefer using 256.- hidden_dim: the large value may lead to some kind of overfitting. But for TV script Generation, this is not a big issue, as far as it can generate interesting scripts. Actually people prefer getting some kind of surprise reading TV scripts. I tried 128, 256, and 512. I like to choose 256, as far as it does not generate too strange scripts.- n_layers: the general choice of the number of layers in a GRU/LSTM is 1, 2 or 3. I adopt 2 to make it simple.- num_epochs: it's a value to get reasonable trained parameters and should stop training early to avoid overfitting. I use 10 and get pretty good training result. - learning_rate: If it converges too slow, I will increase the learning rate. If the loss fluctuates, it is the time to reduce learning rate. I choose 0.001, as it work well in general. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'george' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output george: como upon a plane. elaine: oh, i don't want to get the picture of nbc! jerry: so what? elaine: what? kramer: well, i guess i was watchin' mortal como. jerry: what are you doin'? kramer: no no no! no problem! stu: you know, i was a jackass. it's a lovely boy. hoyt: so, how do you know about the plane? george: i don't know. elaine:(to jerry) what is that? jerry: so what? what do you say, 'no, and the female bubble is a victim, starving? george: yes! hoyt: i can't believe that was the defendants- talker call the moops! hoyt: so? hoyt: so you were watchin' your mind. hoyt: so, uh, you want to come back? hoyt: and then, uh, you want to go to a library cop? hoyt:(pointing at jerry) you know, the whole victim is going to be held accountable. chiles: i think this is a good time of nbc. jerry: you know what the defendants are in here? george: i was in the bathroom and i pretended that was the most explanation. jerry: you know what? jerry: what do you mean? elaine: well i am going to call jill. hoyt: so how about abandoning the plane.. hoyt: what? elaine: what are you doing here? jerry: well, i think we should be in a mood. hoyt:(pointing in disgust and vigorously object to the bathroom) oh, i think so... george: you know what, what is it? elaine:(pointing to the phone) well, i think i can do that. chiles: oh... hoyt: i was screamin'. chiles: i can't see this. ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Imports ###Code import numpy as np import pandas as pd import collections ###Output _____no_output_____ ###Markdown Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ word_counts = collections.Counter(text) # sorting the words from most to least frequent in text occurrence sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) # create int_to_vocab dictionaries int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ tokens = dict() tokens['.'] = '<PERIOD>' tokens[','] = '<COMMA>' tokens['"'] = '<QUOTATION_MARK>' tokens[';'] = '<SEMICOLON>' tokens['!'] = '<EXCLAMATION_MARK>' tokens['?'] = '<QUESTION_MARK>' tokens['('] = '<LEFT_PAREN>' tokens[')'] = '<RIGHT_PAREN>' tokens['?'] = '<QUESTION_MARK>' tokens['-'] = '<DASH>' tokens['\n'] = '<NEW_LINE>' return tokens """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function batch_size_total = batch_size * sequence_length # total number of batches we can make n_batches = len(words)//batch_size_total words = words[:n_batches * batch_size_total] # Reshape into batch_size rows #words = words.reshape((batch_size, -1)) #print(words.shape) n = len(words) - sequence_length x, y = [], [] for idx in range(0, n): idx_end = sequence_length + idx x_batch = words[idx:idx_end] x.append(x_batch) # print("feature: ",x_batch) y_batch = words[idx_end] # print("target: ", batch_y) y.append(y_batch) # create Tensor datasets data = TensorDataset(torch.from_numpy(np.asarray(x)), torch.from_numpy(np.asarray(y))) # make sure the SHUFFLE your training data data_loader = DataLoader(data, shuffle=False, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader import numpy as np import torch test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define embedding layer self.embedding = nn.Embedding(vocab_size, embedding_dim) ## Define the LSTM self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # Define the final, fully-connected output layer self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ batch_size = nn_input.size(0) # embeddings and lstm_out input_embedding = self.embedding(nn_input) lstm_out, hidden = self.lstm(input_embedding, hidden) # stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer out = self.fc(lstm_out) # reshape into (batch_size, seq_length, output_size) out = out.view(batch_size, -1, self.output_size) # get last batch out = out[:, -1] return out, hidden def init_hidden(self, batch_size): ''' Initializes hidden state ''' # Create two new tensors with sizes n_layers x batch_size x n_hidden, # initialized to zero, for hidden state and cell state of LSTM weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # move data and model to GPU, if available if(train_on_gpu): inp, target = inp.cuda(), target.cuda() rnn.cuda() #set zero grad rnn.zero_grad() # detach hidden state from history h = tuple([each.data for each in hidden]) # perform backpropagation and optimization # get predicted outputs output, h = rnn(inp, h) # calculate loss loss = criterion(output, target) # backward prop loss.backward() # 'clip_grad_norm' helps prevent the exploding gradient problem in RNNs / LSTMs nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 2000 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 4.896044356584549 Epoch: 1/10 Loss: 4.472833939909935 Epoch: 1/10 Loss: 4.330938710570336 Epoch: 2/10 Loss: 4.09480341168101 Epoch: 2/10 Loss: 3.922113653898239 Epoch: 2/10 Loss: 3.892978543639183 Epoch: 3/10 Loss: 3.794577428802279 Epoch: 3/10 Loss: 3.7095399137735368 Epoch: 3/10 Loss: 3.6991673481464384 Epoch: 4/10 Loss: 3.6337133000210438 Epoch: 4/10 Loss: 3.5685569670200348 Epoch: 4/10 Loss: 3.565621659874916 Epoch: 5/10 Loss: 3.5113238398792697 Epoch: 5/10 Loss: 3.4785272579193114 Epoch: 5/10 Loss: 3.4706383802890777 Epoch: 6/10 Loss: 3.42234632452423 Epoch: 6/10 Loss: 3.3891663069725038 Epoch: 6/10 Loss: 3.3913224357366563 Epoch: 7/10 Loss: 3.3571709921006296 Epoch: 7/10 Loss: 3.3278514384031297 Epoch: 7/10 Loss: 3.3307785955667497 Epoch: 8/10 Loss: 3.3022590637529325 Epoch: 8/10 Loss: 3.2749763374328613 Epoch: 8/10 Loss: 3.273710937023163 Epoch: 9/10 Loss: 3.255635271446251 Epoch: 9/10 Loss: 3.2312054147720337 Epoch: 9/10 Loss: 3.2289528781175614 Epoch: 10/10 Loss: 3.2181485639548293 Epoch: 10/10 Loss: 3.19440953707695 Epoch: 10/10 Loss: 3.192575043082237 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** - I kept the `sequence_lengths` and `n_layers` fixed and `10` and `2` respectively- I decided to experiement with batch_size and hidden_dimension parameters. From my previous experience with Char RNN models, I have seen `batch_size= 32` and `hidden_dim = 64` generally works well. So I started with those parameters along with other parameters. My loss was `5.9` and came down to `4.2` in `6` epochs but realized they are not coming down soon enough and/or there are some swing- Because the dataset we have here is larger than my previous Char RNN projects and also I wanted to see if a faster converge to desired minimum loss of `3.5` is possible or not. I then made `batch_size = 128` and `hidden_dim = 256`. This change was promising as the `loss` started with `4.896` and by epoch 6 it came down to `3.389` and eventually at the end of `10` epoch got to `3.192` --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:42: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output _____no_output_____ ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # return tuple return (None, None) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # return a dataloader return None # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables # define model layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state return None, None def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return None, None # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = # of words in a sequence # Batch Size batch_size = # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = # Learning Rate learning_rate = # Model parameters # Vocab size vocab_size = # Output size output_size = # Embedding Dimension embedding_dim = # Hidden Dimension hidden_dim = # Number of RNN Layers n_layers = # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') unique_words = len({word: None for word in text.split()}) print('Roughly the number of unique words: {}'.format(unique_words)) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # DONE: Implement Function ## Create dictionary "vocab_to_int" to go from the words to an id # create unique list of words unique_words = list(set(text)) print(len(unique_words)) # map unique words to id in dictionary vocab_to_int = {word: idx for idx, word in enumerate(unique_words)} ## Create dictionary "int_to_vocab" to go from the id to word # map unique id to word in dictionary int_to_vocab = {idx: word for idx, word in enumerate(unique_words)} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output 71 Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # DONE: Implement Function punc_dict = {"." : "||Period||", "," : "||Comma||", '"' : "||Quotation_Mark||", ";" : "||Semicolon||", "!" : "||Exclamation_Mark||", "?" : "||Question_Mark||", "(" : "||Left_Parentheses||", ")" : "||Righ_Parentheses||", "-" : "||Dash||", "\n" : "||Return||", } return punc_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output 21388 ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader import numpy as np def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # calculate number of words and batches n_words = len(words) n_batches = n_words - sequence_length # # keep only enough words to make full batches # words = words[:n_batches * batch_size * ] ## instantiate feature_tensor and target_tensor as black zero numpy arrays # feature_tensor size will be [n_batches, sequence_length] feature_tensors = np.zeros((n_batches, sequence_length), dtype=int) # target_tensor size will be [n_batches, 1] target_tensors = np.zeros((n_batches, 1), dtype=int) print("n_batches ", n_batches) print("target shaep ", np.shape(target_tensors)) ## populate the feature_tensor and target_tensor for i in range(0, n_batches): #print(i) feature_tensors[i] = words[i:i + sequence_length] #print(feature_tensor[i]) target_tensors[i] = words[i + sequence_length] #print(target_tensor[i]) print("final_words ", words[-1]) print("feature_tensor ", feature_tensors[n_batches-1]) print("target_tensor ", target_tensors[n_batches-1]) # TODO: need to convert the numpy array into pytorch tensor feature_tensors = torch.from_numpy(feature_tensors) target_tensors = torch.from_numpy(target_tensors) data = TensorDataset(feature_tensors, target_tensors) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own batch_data(int_text, 10, 5) ###Output n_batches 892100 target shaep (892100, 1) final_words 17407 feature_tensor [ 2165 13213 16876 2534 13168 15051 12836 14361 7156 17407] target_tensor [17407] ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output n_batches 45 target shaep (45, 1) final_words 49 feature_tensor [44 45 46 47 48] target_tensor [49] torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10, 1]) tensor([[ 5], [ 6], [ 7], [ 8], [ 9], [ 10], [ 11], [ 12], [ 13], [ 14]]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.hidden_dim = hidden_dim self.n_layers = n_layers ## define model layers # embedding and LSTM layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # dropout layer self.dropout = nn.Dropout(dropout) # linear and sigmoid layers self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state # get batch size batch_size = nn_input.size(0) # embedding and LSTM layers x = nn_input.long() embeds = self.embedding(x) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm ouutputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer #out = self.dropout(lstm_out) #out = self.fc(out) out = self.fc(lstm_out) out = out.view(batch_size, -1, self.output_size) out = out[:, -1] return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: inp, target = inp.cuda(), target.cuda() # create new variables for the hidden state to avoid backprop trhough entire training history hidden = tuple([each.data for each in hidden]) # set gradient to 0 rnn.zero_grad() # update target to squeeze into a single dimension #REVISE target = target.squeeze(1) # perform backpropagation and optimization output, h = rnn(inp, hidden) # print("inp: ", inp.size(), "target: ", target.size()) loss = criterion(output.squeeze(), target.long()) loss.backward(retain_graph=True) # use clip to prevent exploding gradient nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() #loss = float(loss) # return the loss over a batch and the hidden state produced by our model return loss.item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ #tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code from workspace_utils import active_session """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) # prevent the loop from timing out with active_session() with active_session(): for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence, adjusting from 5 to see impact on traing. 5 had loss of 4 # Batch Size batch_size = 128 # kept running of memory at higher values # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = unique_words # Output size output_size = vocab_size + 1 # Embedding Dimension embedding_dim = 400 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.714723686218262 Epoch: 1/10 Loss: 4.947399044513703 Epoch: 1/10 Loss: 4.6830759882926944 Epoch: 1/10 Loss: 4.566186357021332 Epoch: 1/10 Loss: 4.574236698150635 Epoch: 1/10 Loss: 4.598560484409332 Epoch: 1/10 Loss: 4.500714970588684 Epoch: 1/10 Loss: 4.386897342681885 Epoch: 1/10 Loss: 4.3637693424224855 Epoch: 1/10 Loss: 4.294235398292542 Epoch: 1/10 Loss: 4.416331884860992 Epoch: 1/10 Loss: 4.447272889614105 Epoch: 1/10 Loss: 4.44886888551712 Epoch: 2/10 Loss: 4.22156453649326 Epoch: 2/10 Loss: 4.019749310493469 Epoch: 2/10 Loss: 3.9229512248039247 Epoch: 2/10 Loss: 3.8771452169418334 Epoch: 2/10 Loss: 3.9142372097969056 Epoch: 2/10 Loss: 4.007809993743897 Epoch: 2/10 Loss: 3.9367793407440184 Epoch: 2/10 Loss: 3.867321635246277 Epoch: 2/10 Loss: 3.8507271032333374 Epoch: 2/10 Loss: 3.8097642946243284 Epoch: 2/10 Loss: 3.9510108041763305 Epoch: 2/10 Loss: 3.969310088634491 Epoch: 2/10 Loss: 3.9876924748420715 Epoch: 3/10 Loss: 3.867785342583592 Epoch: 3/10 Loss: 3.7681717638969423 Epoch: 3/10 Loss: 3.702448328495026 Epoch: 3/10 Loss: 3.658593469619751 Epoch: 3/10 Loss: 3.673355776309967 Epoch: 3/10 Loss: 3.773371073246002 Epoch: 3/10 Loss: 3.7327209677696227 Epoch: 3/10 Loss: 3.6552824969291686 Epoch: 3/10 Loss: 3.651632721424103 Epoch: 3/10 Loss: 3.636891181945801 Epoch: 3/10 Loss: 3.752034731388092 Epoch: 3/10 Loss: 3.7687638039588927 Epoch: 3/10 Loss: 3.7861446509361265 Epoch: 4/10 Loss: 3.692302106949813 Epoch: 4/10 Loss: 3.606812599658966 Epoch: 4/10 Loss: 3.5411606884002684 Epoch: 4/10 Loss: 3.519571429729462 Epoch: 4/10 Loss: 3.53412579202652 Epoch: 4/10 Loss: 3.6380978260040284 Epoch: 4/10 Loss: 3.589286687850952 Epoch: 4/10 Loss: 3.510832920074463 Epoch: 4/10 Loss: 3.51266285610199 Epoch: 4/10 Loss: 3.5048670778274538 Epoch: 4/10 Loss: 3.621937972545624 Epoch: 4/10 Loss: 3.66049054479599 Epoch: 4/10 Loss: 3.6557118601799012 Epoch: 5/10 Loss: 3.578338870077064 Epoch: 5/10 Loss: 3.501653299808502 Epoch: 5/10 Loss: 3.4428087730407713 Epoch: 5/10 Loss: 3.4347814507484435 Epoch: 5/10 Loss: 3.442070734500885 Epoch: 5/10 Loss: 3.5404933252334594 Epoch: 5/10 Loss: 3.4917204933166506 Epoch: 5/10 Loss: 3.426301456928253 Epoch: 5/10 Loss: 3.4189863348007203 Epoch: 5/10 Loss: 3.409524739742279 Epoch: 5/10 Loss: 3.525466704368591 Epoch: 5/10 Loss: 3.544346896648407 Epoch: 5/10 Loss: 3.5465411224365235 Epoch: 6/10 Loss: 3.488031313761346 Epoch: 6/10 Loss: 3.4313817591667175 Epoch: 6/10 Loss: 3.3624429535865783 Epoch: 6/10 Loss: 3.3602363324165343 Epoch: 6/10 Loss: 3.356619673252106 Epoch: 6/10 Loss: 3.464830176830292 Epoch: 6/10 Loss: 3.4014710030555726 Epoch: 6/10 Loss: 3.3436798100471496 Epoch: 6/10 Loss: 3.336275463104248 Epoch: 6/10 Loss: 3.3384783935546873 Epoch: 6/10 Loss: 3.4377746348381044 Epoch: 6/10 Loss: 3.4658451790809632 Epoch: 6/10 Loss: 3.482286964893341 Epoch: 7/10 Loss: 3.4236547371182278 Epoch: 7/10 Loss: 3.3627661385536194 Epoch: 7/10 Loss: 3.3065256156921388 Epoch: 7/10 Loss: 3.3031564240455626 Epoch: 7/10 Loss: 3.2919883036613466 Epoch: 7/10 Loss: 3.408005521774292 Epoch: 7/10 Loss: 3.3372538013458253 Epoch: 7/10 Loss: 3.282076304912567 Epoch: 7/10 Loss: 3.280915585041046 Epoch: 7/10 Loss: 3.2877967281341554 Epoch: 7/10 Loss: 3.372384461402893 Epoch: 7/10 Loss: 3.393191682815552 Epoch: 7/10 Loss: 3.400779527664185 Epoch: 8/10 Loss: 3.3664774050776556 Epoch: 8/10 Loss: 3.310150158405304 Epoch: 8/10 Loss: 3.258916851043701 Epoch: 8/10 Loss: 3.2518119635581972 Epoch: 8/10 Loss: 3.2393870911598204 Epoch: 8/10 Loss: 3.35853059053421 Epoch: 8/10 Loss: 3.289390298843384 Epoch: 8/10 Loss: 3.2308204183578493 Epoch: 8/10 Loss: 3.2316478242874145 Epoch: 8/10 Loss: 3.2444359769821167 Epoch: 8/10 Loss: 3.317259634971619 Epoch: 8/10 Loss: 3.3405857963562013 Epoch: 8/10 Loss: 3.337912019729614 Epoch: 9/10 Loss: 3.3225249766811373 Epoch: 9/10 Loss: 3.2688573575019837 Epoch: 9/10 Loss: 3.2203273429870607 Epoch: 9/10 Loss: 3.219068323135376 Epoch: 9/10 Loss: 3.1970218787193296 Epoch: 9/10 Loss: 3.3108576860427856 Epoch: 9/10 Loss: 3.2424683537483214 Epoch: 9/10 Loss: 3.188258267879486 Epoch: 9/10 Loss: 3.188338352203369 Epoch: 9/10 Loss: 3.201212610244751 Epoch: 9/10 Loss: 3.2708193316459657 Epoch: 9/10 Loss: 3.305390962600708 Epoch: 9/10 Loss: 3.2952378735542296 Epoch: 10/10 Loss: 3.2804403910326885 Epoch: 10/10 Loss: 3.240860106945038 Epoch: 10/10 Loss: 3.1989309272766113 Epoch: 10/10 Loss: 3.188296244621277 Epoch: 10/10 Loss: 3.160790126800537 Epoch: 10/10 Loss: 3.2704716300964356 Epoch: 10/10 Loss: 3.204473289012909 Epoch: 10/10 Loss: 3.15122399520874 Epoch: 10/10 Loss: 3.150492645740509 Epoch: 10/10 Loss: 3.1670052223205567 Epoch: 10/10 Loss: 3.2323387851715086 Epoch: 10/10 Loss: 3.270649323940277 Epoch: 10/10 Loss: 3.2512613244056703 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:**I mostly used the default hyperparameter values I gathered from different lessons in the Deep Learning nanodegree, and otherwised referenced best practices to select starting points and ranges.I experimented with the following:1. batch_size - I started with 256 which exhaustd the memory so I adjusted down to 1282. num_epochs - I started with 5 but it seemed the loss was hardly getting close to the deisred minimum so I adjusted upawards to 103. n_layers - I tested 3 layers but found no difference to 2 layers so I reverted back to 2 layers4. sequence_length - I started off with a sequence length of 5, but the loss was not getting close to the desired 3.5 value. Once I tested the sequence length at 10, my model had no trouble converging. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:50: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_counts = Counter(text) # sort the words from most to least frequent sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) # create dictionaries int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function punct_to_token = { '.': '||PERIOD||', ',': '||COMMA||', '"': '||QUOTATION_MARK||', ';': '||SEMICOLON||', '!': '||EXCLAMATION_MARK||', '?': '||QUESTION_MARK||', '(': '||LEFT_PAREN||', ')': '||RIGHT_PAREN||', '-': '||DASH||', '\n': '||RETURN||' } return punct_to_token """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function feature_tensors, target_tensors = [], [] for i in range(len(words)): target_idx = i + sequence_length if target_idx < len(words): features = words[i:i + sequence_length] feature_tensors.append(features) target = words[target_idx] target_tensors.append(target) # convert to tensor feature_tensors = torch.from_numpy(np.asarray(feature_tensors)) target_tensors = torch.from_numpy(np.asarray(target_tensors)) data = TensorDataset(feature_tensors, target_tensors) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True) return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 10, 11, 12, 13, 14], [ 39, 40, 41, 42, 43], [ 5, 6, 7, 8, 9], [ 32, 33, 34, 35, 36], [ 23, 24, 25, 26, 27], [ 14, 15, 16, 17, 18], [ 6, 7, 8, 9, 10], [ 36, 37, 38, 39, 40], [ 22, 23, 24, 25, 26], [ 3, 4, 5, 6, 7]]) torch.Size([10]) tensor([ 15, 44, 10, 37, 28, 19, 11, 41, 27, 8]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # embedding and LSTM layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) #linear layers self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # embeddings and lstm_out embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # fully-connected layer out = self.fc(lstm_out) # reshape to be (batch_size, seq_length, output_size) out = out.view(batch_size, -1, self.output_size) out = out[:, -1] # get last batch of labels # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): inp, target = inp.cuda(), target.cuda() # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history hidden = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() # get the output from the model output, hidden = rnn(inp, hidden) # perform backpropagation and optimization loss = criterion(output, target) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10# of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 20 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 20 epoch(s)... Epoch: 1/20 Loss: 5.529391175270081 Epoch: 1/20 Loss: 4.864750448226928 Epoch: 1/20 Loss: 4.673917549610138 Epoch: 1/20 Loss: 4.53624011516571 Epoch: 1/20 Loss: 4.43394695186615 Epoch: 1/20 Loss: 4.391361342906952 Epoch: 1/20 Loss: 4.349459547996521 Epoch: 1/20 Loss: 4.293628051280975 Epoch: 1/20 Loss: 4.264595439434052 Epoch: 1/20 Loss: 4.2329872598648075 Epoch: 1/20 Loss: 4.219681046485901 Epoch: 1/20 Loss: 4.176609238624573 Epoch: 1/20 Loss: 4.173091259479523 Epoch: 2/20 Loss: 4.0620111695753165 Epoch: 2/20 Loss: 3.97152907705307 Epoch: 2/20 Loss: 3.9748258848190305 Epoch: 2/20 Loss: 3.949656668663025 Epoch: 2/20 Loss: 3.9572295794487 Epoch: 2/20 Loss: 3.9438273811340334 Epoch: 2/20 Loss: 3.9231659355163573 Epoch: 2/20 Loss: 3.925105185031891 Epoch: 2/20 Loss: 3.909913544654846 Epoch: 2/20 Loss: 3.933670042037964 Epoch: 2/20 Loss: 3.9098702807426453 Epoch: 2/20 Loss: 3.9223010420799254 Epoch: 2/20 Loss: 3.938464592933655 Epoch: 3/20 Loss: 3.804339567082093 Epoch: 3/20 Loss: 3.757045175075531 Epoch: 3/20 Loss: 3.7410627422332765 Epoch: 3/20 Loss: 3.746852583408356 Epoch: 3/20 Loss: 3.7452759342193604 Epoch: 3/20 Loss: 3.7707648339271547 Epoch: 3/20 Loss: 3.7618724212646484 Epoch: 3/20 Loss: 3.760535253047943 Epoch: 3/20 Loss: 3.7732520866394044 Epoch: 3/20 Loss: 3.755405373573303 Epoch: 3/20 Loss: 3.740365430831909 Epoch: 3/20 Loss: 3.751500138282776 Epoch: 3/20 Loss: 3.7737027554512026 Epoch: 4/20 Loss: 3.6998141119477674 Epoch: 4/20 Loss: 3.617857692718506 Epoch: 4/20 Loss: 3.6174797143936157 Epoch: 4/20 Loss: 3.6146593928337096 Epoch: 4/20 Loss: 3.634882091999054 Epoch: 4/20 Loss: 3.6236209311485292 Epoch: 4/20 Loss: 3.656707974910736 Epoch: 4/20 Loss: 3.649324120521545 Epoch: 4/20 Loss: 3.635141547203064 Epoch: 4/20 Loss: 3.6623518476486208 Epoch: 4/20 Loss: 3.647887206554413 Epoch: 4/20 Loss: 3.666522166252136 Epoch: 4/20 Loss: 3.656830111026764 Epoch: 5/20 Loss: 3.5839353879784897 Epoch: 5/20 Loss: 3.534105875968933 Epoch: 5/20 Loss: 3.5169877190589904 Epoch: 5/20 Loss: 3.5174399967193604 Epoch: 5/20 Loss: 3.558476655960083 Epoch: 5/20 Loss: 3.531831500530243 Epoch: 5/20 Loss: 3.5559655900001528 Epoch: 5/20 Loss: 3.536132891178131 Epoch: 5/20 Loss: 3.565013190746307 Epoch: 5/20 Loss: 3.5810106892585756 Epoch: 5/20 Loss: 3.572405120372772 Epoch: 5/20 Loss: 3.5877698526382447 Epoch: 5/20 Loss: 3.597608308315277 Epoch: 6/20 Loss: 3.5061968187306563 Epoch: 6/20 Loss: 3.4279884305000303 Epoch: 6/20 Loss: 3.440210905075073 Epoch: 6/20 Loss: 3.470801765918732 Epoch: 6/20 Loss: 3.4496021003723145 Epoch: 6/20 Loss: 3.482304501533508 Epoch: 6/20 Loss: 3.484525243282318 Epoch: 6/20 Loss: 3.503444883823395 Epoch: 6/20 Loss: 3.498856789112091 Epoch: 6/20 Loss: 3.5078747344017027 Epoch: 6/20 Loss: 3.522995020389557 Epoch: 6/20 Loss: 3.5332308502197267 Epoch: 6/20 Loss: 3.529061026096344 Epoch: 7/20 Loss: 3.459417881488308 Epoch: 7/20 Loss: 3.384156697273254 Epoch: 7/20 Loss: 3.389166923522949 Epoch: 7/20 Loss: 3.398777552127838 Epoch: 7/20 Loss: 3.4103299684524537 Epoch: 7/20 Loss: 3.424512595176697 Epoch: 7/20 Loss: 3.4071421575546266 Epoch: 7/20 Loss: 3.445137722969055 Epoch: 7/20 Loss: 3.445871344566345 Epoch: 7/20 Loss: 3.449563290596008 Epoch: 7/20 Loss: 3.4708132734298704 Epoch: 7/20 Loss: 3.4714629349708557 Epoch: 7/20 Loss: 3.475574741363525 Epoch: 8/20 Loss: 3.4081745054207597 Epoch: 8/20 Loss: 3.3436727862358095 Epoch: 8/20 Loss: 3.354399088382721 Epoch: 8/20 Loss: 3.3449832668304444 Epoch: 8/20 Loss: 3.3495688972473143 Epoch: 8/20 Loss: 3.3638466124534605 Epoch: 8/20 Loss: 3.38108523273468 Epoch: 8/20 Loss: 3.4094437856674196 Epoch: 8/20 Loss: 3.4086391820907593 Epoch: 8/20 Loss: 3.4086695485115053 Epoch: 8/20 Loss: 3.421333518028259 Epoch: 8/20 Loss: 3.4205390634536745 Epoch: 8/20 Loss: 3.4438080477714537 Epoch: 9/20 Loss: 3.35868846890358 Epoch: 9/20 Loss: 3.2935498371124265 Epoch: 9/20 Loss: 3.28726358795166 Epoch: 9/20 Loss: 3.311820751667023 Epoch: 9/20 Loss: 3.3329122214317324 Epoch: 9/20 Loss: 3.341483960151672 Epoch: 9/20 Loss: 3.3512190375328066 Epoch: 9/20 Loss: 3.336891372680664 Epoch: 9/20 Loss: 3.3644563784599306 Epoch: 9/20 Loss: 3.3801354532241823 Epoch: 9/20 Loss: 3.39298441028595 Epoch: 9/20 Loss: 3.3924070143699647 Epoch: 9/20 Loss: 3.402356596946716 Epoch: 10/20 Loss: 3.333333688377719 Epoch: 10/20 Loss: 3.2606058802604676 Epoch: 10/20 Loss: 3.264059374809265 Epoch: 10/20 Loss: 3.2967714405059816 Epoch: 10/20 Loss: 3.2851467266082763 Epoch: 10/20 Loss: 3.306796584606171 Epoch: 10/20 Loss: 3.305581615447998 Epoch: 10/20 Loss: 3.3108429794311522 Epoch: 10/20 Loss: 3.320066169261932 Epoch: 10/20 Loss: 3.3418579959869383 Epoch: 10/20 Loss: 3.3553106684684755 Epoch: 10/20 Loss: 3.389110330581665 Epoch: 10/20 Loss: 3.3771179237365723 Epoch: 11/20 Loss: 3.291515919200161 Epoch: 11/20 Loss: 3.2240699586868287 Epoch: 11/20 Loss: 3.2339837374687197 Epoch: 11/20 Loss: 3.2528910026550295 Epoch: 11/20 Loss: 3.2731507120132446 Epoch: 11/20 Loss: 3.2790966925621032 Epoch: 11/20 Loss: 3.278383232116699 Epoch: 11/20 Loss: 3.284507378578186 Epoch: 11/20 Loss: 3.3126354699134826 Epoch: 11/20 Loss: 3.3165445895195007 Epoch: 11/20 Loss: 3.3021326088905334 Epoch: 11/20 Loss: 3.336663378715515 Epoch: 11/20 Loss: 3.3606710910797117 Epoch: 12/20 Loss: 3.273235888180964 Epoch: 12/20 Loss: 3.2143123846054076 Epoch: 12/20 Loss: 3.216760028362274 Epoch: 12/20 Loss: 3.2183160047531127 Epoch: 12/20 Loss: 3.2526223793029785 Epoch: 12/20 Loss: 3.253923884868622 Epoch: 12/20 Loss: 3.231957037448883 Epoch: 12/20 Loss: 3.267335345745087 Epoch: 12/20 Loss: 3.26310148191452 Epoch: 12/20 Loss: 3.285992920398712 Epoch: 12/20 Loss: 3.301306200027466 Epoch: 12/20 Loss: 3.3112958788871767 Epoch: 12/20 Loss: 3.308891138076782 Epoch: 13/20 Loss: 3.242131777469096 Epoch: 13/20 Loss: 3.1717548875808714 Epoch: 13/20 Loss: 3.1900500340461733 Epoch: 13/20 Loss: 3.2054759612083434 Epoch: 13/20 Loss: 3.2211250371932985 Epoch: 13/20 Loss: 3.2237357287406923 Epoch: 13/20 Loss: 3.226701593399048 Epoch: 13/20 Loss: 3.242177087306976 Epoch: 13/20 Loss: 3.257656816482544 Epoch: 13/20 Loss: 3.2739972996711733 Epoch: 13/20 Loss: 3.288779035568237 Epoch: 13/20 Loss: 3.286942635059357 Epoch: 13/20 Loss: 3.3027435512542724 Epoch: 14/20 Loss: 3.220484633440819 Epoch: 14/20 Loss: 3.1590835218429567 Epoch: 14/20 Loss: 3.1784450936317445 Epoch: 14/20 Loss: 3.1829410891532897 Epoch: 14/20 Loss: 3.2023180832862854 Epoch: 14/20 Loss: 3.1920323343276977 Epoch: 14/20 Loss: 3.195057466983795 Epoch: 14/20 Loss: 3.2153018436431884 Epoch: 14/20 Loss: 3.233634081363678 Epoch: 14/20 Loss: 3.2512196350097655 Epoch: 14/20 Loss: 3.2593807835578916 Epoch: 14/20 Loss: 3.2833624482154846 Epoch: 14/20 Loss: 3.2832912101745606 Epoch: 15/20 Loss: 3.215326426322 Epoch: 15/20 Loss: 3.134665168762207 Epoch: 15/20 Loss: 3.1522001147270204 Epoch: 15/20 Loss: 3.1754859085083007 Epoch: 15/20 Loss: 3.174431248188019 Epoch: 15/20 Loss: 3.1996604952812193 Epoch: 15/20 Loss: 3.204711798667908 Epoch: 15/20 Loss: 3.1993963813781736 Epoch: 15/20 Loss: 3.2118970527648925 Epoch: 15/20 Loss: 3.220851254463196 Epoch: 15/20 Loss: 3.2454243774414064 Epoch: 15/20 Loss: 3.2423621950149535 Epoch: 15/20 Loss: 3.2676719970703125 Epoch: 16/20 Loss: 3.177448484058597 Epoch: 16/20 Loss: 3.1191557040214537 Epoch: 16/20 Loss: 3.134803343772888 Epoch: 16/20 Loss: 3.1511257400512696 Epoch: 16/20 Loss: 3.168752275466919 Epoch: 16/20 Loss: 3.172501452445984 Epoch: 16/20 Loss: 3.18746435546875 Epoch: 16/20 Loss: 3.193613554477692 Epoch: 16/20 Loss: 3.1950018639564512 Epoch: 16/20 Loss: 3.2123971381187437 Epoch: 16/20 Loss: 3.2215262694358824 Epoch: 16/20 Loss: 3.2384445128440857 Epoch: 16/20 Loss: 3.2336698637008667 Epoch: 17/20 Loss: 3.1798037803579042 Epoch: 17/20 Loss: 3.110266995429993 Epoch: 17/20 Loss: 3.130526102542877 Epoch: 17/20 Loss: 3.1248331561088563 Epoch: 17/20 Loss: 3.1492376255989076 Epoch: 17/20 Loss: 3.1620756893157957 Epoch: 17/20 Loss: 3.1571986265182495 Epoch: 17/20 Loss: 3.1948366208076475 Epoch: 17/20 Loss: 3.1939454264640808 Epoch: 17/20 Loss: 3.204389548301697 Epoch: 17/20 Loss: 3.1888044686317443 Epoch: 17/20 Loss: 3.2138706440925597 Epoch: 17/20 Loss: 3.2258294010162354 Epoch: 18/20 Loss: 3.146411789706125 Epoch: 18/20 Loss: 3.0961286783218385 Epoch: 18/20 Loss: 3.1242588081359863 Epoch: 18/20 Loss: 3.133706639289856 Epoch: 18/20 Loss: 3.1309349694252013 Epoch: 18/20 Loss: 3.144322584629059 Epoch: 18/20 Loss: 3.1536198887825013 Epoch: 18/20 Loss: 3.176272698402405 Epoch: 18/20 Loss: 3.1755652117729185 Epoch: 18/20 Loss: 3.1745694031715392 Epoch: 18/20 Loss: 3.1830272850990293 Epoch: 18/20 Loss: 3.2063993945121765 Epoch: 18/20 Loss: 3.2037946944236757 Epoch: 19/20 Loss: 3.150665195610747 Epoch: 19/20 Loss: 3.087133441448212 Epoch: 19/20 Loss: 3.11333136510849 Epoch: 19/20 Loss: 3.1150451335906983 Epoch: 19/20 Loss: 3.122633202075958 Epoch: 19/20 Loss: 3.1271822962760925 Epoch: 19/20 Loss: 3.1251408529281615 Epoch: 19/20 Loss: 3.145860999584198 Epoch: 19/20 Loss: 3.168108784675598 Epoch: 19/20 Loss: 3.166985785484314 Epoch: 19/20 Loss: 3.170442952632904 Epoch: 19/20 Loss: 3.181114953994751 Epoch: 19/20 Loss: 3.2101287002563477 Epoch: 20/20 Loss: 3.1437751636662594 Epoch: 20/20 Loss: 3.06917157125473 Epoch: 20/20 Loss: 3.0799417219161986 Epoch: 20/20 Loss: 3.0942797131538393 Epoch: 20/20 Loss: 3.092326626777649 Epoch: 20/20 Loss: 3.1178182945251467 Epoch: 20/20 Loss: 3.1420974383354188 Epoch: 20/20 Loss: 3.143783143043518 Epoch: 20/20 Loss: 3.146897301197052 Epoch: 20/20 Loss: 3.166947968482971 Epoch: 20/20 Loss: 3.173344421863556 Epoch: 20/20 Loss: 3.185516931056976 Epoch: 20/20 Loss: 3.1903200421333313 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)As starting point for the hyperparameters I used values that we used in the previous lessons and exercises. At the end of the day I had not to change them to reach the required loss of 3.5. But to optimize the training a bit, I tried different sequence lengths, learning rates, number of RNN layers, hidden dimensions and embedding dimensions while training for 5 epochs. I tried the following values:sequence lengths: 5, 10, 15learning rate: 0.01, 0.001, 0.0001number of RNN layers: 1, 2, 3hidden dimensions: 64, 128, 256embedding dimensions: 200, 300I choose the ones, which resulted in faster and better decrease in training loss. For the final training step I used 20 epochs. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:43: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # adapted from util.py from word2vec project word_counts = Counter(text) sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token_dict = {'.':'||Period||', ',':'||Comma||', '"':'||Quotation_Mark||', ';':'||Semicolon||', '!':'||Exclamation_Mark||', '?':'||Question_Mark||', '(':'||Left_Paren||', ')':'||Right_Paren||', '-':'||Dash||', '\n':'||Return||'} return token_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output No GPU found. Please use a GPU to train your neural network. ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function n_batches = len(words)//batch_size words = words[:batch_size * n_batches] x, y = [], [] for idx in range(0, len(words) - sequence_length): x.append(words[idx:idx + sequence_length]) y.append(words[idx + sequence_length]) feature_tensors = torch.from_numpy(np.asarray(x)) target_tensors = torch.from_numpy(np.asarray(y)) data = TensorDataset(feature_tensors, target_tensors) data_loader = DataLoader(data, shuffle = False, batch_size = batch_size) return data_loader ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(53) t_loader = batch_data(test_text, sequence_length=4, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 4]) tensor([[ 0, 1, 2, 3], [ 1, 2, 3, 4], [ 2, 3, 4, 5], [ 3, 4, 5, 6], [ 4, 5, 6, 7], [ 5, 6, 7, 8], [ 6, 7, 8, 9], [ 7, 8, 9, 10], [ 8, 9, 10, 11], [ 9, 10, 11, 12]], dtype=torch.int32) torch.Size([10]) tensor([ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], dtype=torch.int32) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.vocab_size = vocab_size self.output_size = output_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers self.dropout = dropout # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout = dropout, batch_first = True) self.dropout = nn.Dropout(0.3) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # embeddings and lstm_out nn_input = nn_input.long() embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer output = self.fc(lstm_out) output = output.view(batch_size, -1, self.output_size) out = output[:, -1] # get last batch of labels return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization hidden = tuple([each.data for each in hidden]) rnn.zero_grad() output, hidden = rnn(inp, hidden) loss = criterion(output.squeeze(1), target.long()) loss.backward() clip = 5 nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 8 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 15 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.8879834823608395 Epoch: 1/10 Loss: 5.255883387088776 Epoch: 1/10 Loss: 4.952197147369385 Epoch: 1/10 Loss: 4.820415332317352 Epoch: 1/10 Loss: 4.811099704265595 Epoch: 1/10 Loss: 4.852408919334412 Epoch: 1/10 Loss: 4.744156408309936 Epoch: 1/10 Loss: 4.610701610565186 Epoch: 1/10 Loss: 4.5576639690399166 Epoch: 1/10 Loss: 4.496510800838471 Epoch: 1/10 Loss: 4.590415596485138 Epoch: 1/10 Loss: 4.604939558506012 Epoch: 1/10 Loss: 4.596785079956055 Epoch: 2/10 Loss: 4.399568411683248 Epoch: 2/10 Loss: 4.234029729366302 Epoch: 2/10 Loss: 4.1518063282966615 Epoch: 2/10 Loss: 4.118065470218658 Epoch: 2/10 Loss: 4.153740507125854 Epoch: 2/10 Loss: 4.23086633682251 Epoch: 2/10 Loss: 4.164884633541107 Epoch: 2/10 Loss: 4.052936632633209 Epoch: 2/10 Loss: 4.052750252723694 Epoch: 2/10 Loss: 4.0097911176681515 Epoch: 2/10 Loss: 4.1369876337051394 Epoch: 2/10 Loss: 4.127726135730743 Epoch: 2/10 Loss: 4.116226076602936 Epoch: 3/10 Loss: 4.038073611653541 Epoch: 3/10 Loss: 3.9572711324691774 Epoch: 3/10 Loss: 3.8775673389434813 Epoch: 3/10 Loss: 3.854536430835724 Epoch: 3/10 Loss: 3.8949240260124207 Epoch: 3/10 Loss: 3.9791862292289735 Epoch: 3/10 Loss: 3.921848979949951 Epoch: 3/10 Loss: 3.8106048412323 Epoch: 3/10 Loss: 3.810979067325592 Epoch: 3/10 Loss: 3.7926068544387816 Epoch: 3/10 Loss: 3.9088358902931213 Epoch: 3/10 Loss: 3.90287650680542 Epoch: 3/10 Loss: 3.8800569314956666 Epoch: 4/10 Loss: 3.830680659733528 Epoch: 4/10 Loss: 3.7694512376785276 Epoch: 4/10 Loss: 3.7137360949516296 Epoch: 4/10 Loss: 3.695846221446991 Epoch: 4/10 Loss: 3.7254633088111877 Epoch: 4/10 Loss: 3.8081488699913026 Epoch: 4/10 Loss: 3.75006081533432 Epoch: 4/10 Loss: 3.650891854763031 Epoch: 4/10 Loss: 3.6529644889831543 Epoch: 4/10 Loss: 3.6346872572898863 Epoch: 4/10 Loss: 3.7504418897628784 Epoch: 4/10 Loss: 3.747957190036774 Epoch: 4/10 Loss: 3.7438595314025878 Epoch: 5/10 Loss: 3.684265803453351 Epoch: 5/10 Loss: 3.6375495796203614 Epoch: 5/10 Loss: 3.5883078808784483 Epoch: 5/10 Loss: 3.580000238418579 Epoch: 5/10 Loss: 3.594644871711731 Epoch: 5/10 Loss: 3.692937425136566 Epoch: 5/10 Loss: 3.6423147230148314 Epoch: 5/10 Loss: 3.52877615404129 Epoch: 5/10 Loss: 3.530840669155121 Epoch: 5/10 Loss: 3.5226033205986025 Epoch: 5/10 Loss: 3.6330539150238037 Epoch: 5/10 Loss: 3.6348735995292665 Epoch: 5/10 Loss: 3.636835765361786 Epoch: 6/10 Loss: 3.5827553727902655 Epoch: 6/10 Loss: 3.5415079855918883 Epoch: 6/10 Loss: 3.495518507003784 Epoch: 6/10 Loss: 3.491495626449585 Epoch: 6/10 Loss: 3.5056679344177244 Epoch: 6/10 Loss: 3.597500946998596 Epoch: 6/10 Loss: 3.5800885028839113 Epoch: 6/10 Loss: 3.4455021510124206 Epoch: 6/10 Loss: 3.435186081409454 Epoch: 6/10 Loss: 3.434113308906555 Epoch: 6/10 Loss: 3.551355528354645 Epoch: 6/10 Loss: 3.556346004486084 Epoch: 6/10 Loss: 3.5592494101524355 Epoch: 7/10 Loss: 3.5090956062324774 Epoch: 7/10 Loss: 3.463120987415314 Epoch: 7/10 Loss: 3.426212378025055 Epoch: 7/10 Loss: 3.425258728981018 Epoch: 7/10 Loss: 3.4313915486335755 Epoch: 7/10 Loss: 3.521229241847992 Epoch: 7/10 Loss: 3.502367600440979 Epoch: 7/10 Loss: 3.375809354305267 Epoch: 7/10 Loss: 3.3604294362068177 Epoch: 7/10 Loss: 3.3639101281166077 Epoch: 7/10 Loss: 3.481114777088165 Epoch: 7/10 Loss: 3.482030040740967 Epoch: 7/10 Loss: 3.4896444087028504 Epoch: 8/10 Loss: 3.444731027626794 Epoch: 8/10 Loss: 3.4149495549201965 Epoch: 8/10 Loss: 3.3759664483070373 Epoch: 8/10 Loss: 3.368459558963776 Epoch: 8/10 Loss: 3.377001323223114 Epoch: 8/10 Loss: 3.466079110145569 Epoch: 8/10 Loss: 3.445937519073486 Epoch: 8/10 Loss: 3.320456923484802 Epoch: 8/10 Loss: 3.3011093196868897 Epoch: 8/10 Loss: 3.309420441150665 Epoch: 8/10 Loss: 3.421898567199707 Epoch: 8/10 Loss: 3.4243329553604127 Epoch: 8/10 Loss: 3.435413668632507 Epoch: 9/10 Loss: 3.3876476842017214 Epoch: 9/10 Loss: 3.3634887952804564 Epoch: 9/10 Loss: 3.330356463909149 Epoch: 9/10 Loss: 3.3167815341949463 Epoch: 9/10 Loss: 3.320630997657776 Epoch: 9/10 Loss: 3.414757354736328 Epoch: 9/10 Loss: 3.388247101306915 Epoch: 9/10 Loss: 3.26922251701355 Epoch: 9/10 Loss: 3.2560101628303526 Epoch: 9/10 Loss: 3.263214789390564 Epoch: 9/10 Loss: 3.3752480425834657 Epoch: 9/10 Loss: 3.3754741582870484 Epoch: 9/10 Loss: 3.3871750588417053 Epoch: 10/10 Loss: 3.3427198642541556 Epoch: 10/10 Loss: 3.3194530515670775 Epoch: 10/10 Loss: 3.2875109882354736 Epoch: 10/10 Loss: 3.2749180846214294 Epoch: 10/10 Loss: 3.2752520990371705 Epoch: 10/10 Loss: 3.366152672767639 Epoch: 10/10 Loss: 3.3423954834938048 Epoch: 10/10 Loss: 3.230453185081482 Epoch: 10/10 Loss: 3.2154562129974367 Epoch: 10/10 Loss: 3.2278022203445436 Epoch: 10/10 Loss: 3.3294336709976196 Epoch: 10/10 Loss: 3.3312849197387697 Epoch: 10/10 Loss: 3.340261073112488 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** - According to this paper https://arxiv.org/pdf/1506.02078.pdf > Our consistent finding is that depth of at least two is beneficial. However, between two and three layers our results are mixed.and the best performance of LSTM appeared when using 2 layers with the size of 256. - The embedding dimension was chosen by the equation according to this article: ```embedding_dimensions = number_of_categories**0.25```The vocabulary set is about 50k so the corresponding embedding size is about 15.- Sequencing size was chosen based on this article: https://medium.com/@theacropolitan/sentence-length-has-declined-75-in-the-past-500-years-2e40f80f589f. The average sentence length is now about 15. So I tested lengths like 8, 10, 12 etc. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 150 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry:. kramer: oh yeah... george:(correcting him) you know, i can't do it! george:(sarcastic) well, i'm sorry about it, and you were in there with the plane, the whole building, the only thing you are. george:(standing out to the counter, and they had to be carrying it in a long line. jerry: no. no. i'm sorry, but i got a little bit. kramer: oh yeah, right. [setting: jerry's apartment] jerry: so, what are you doing? george: well, i was going to get this book in the car, and they were in the bathroom. george: oh. jerry: so ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code import torch print(torch.__version__) # from google.colab import drive # drive.mount('/content/drive') # %cd /content/drive/My Drive/Colab Notebooks/deep-learning-v2-pytorch/project-tv-script-generation/ """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_counts = Counter(text) sorted_word_counts = sorted(word_counts, key=word_counts.get, reverse=True) # create int_to_vocab dictionaries int_to_vocab = {ii: word for ii, word in enumerate(sorted_word_counts)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ from string import punctuation # TODO: Implement Function dict_punc = {} for symb in punctuation: if symb=='.': dict_punc[symb]="||PERIOD||" elif symb==',': dict_punc[symb]="||COMMA||" elif symb=='"': dict_punc[symb]="||QUOTATION_MARK||" elif symb==';': dict_punc[symb]="||SEMICOLON||" elif symb=='!': dict_punc[symb]="||EXCLAMATION_MARK||" elif symb=='?': dict_punc[symb]="||QUESTION_MARK||" elif symb=='(': dict_punc[symb]="||LEFT_PAREN||" elif symb==')': dict_punc[symb]="||RIGHT_PAREN||" elif symb=='-': dict_punc[symb]="||HYPHENS||" # elif symb==':': # dict_punc[symb]="||COLON||" dict_punc['\n']="||NEW_LINE||" return dict_punc """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code #!pip install --upgrade torch torchvision """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # convert list data into tensor of size (sequence_length x ...) n_rows = len(words)//(sequence_length+1) words = np.array(words[:n_rows*(sequence_length+1)]) # print(words.shape) words_tensor = torch.from_numpy(words).view(n_rows,-1) # print(words_tensor.size()) # separate last column as targets tensor, remaining is features feature_tensors = words_tensor[:,:sequence_length] target_tensors = words_tensor[:,-1] print("target_tensors size:",target_tensors.size()) assert(feature_tensors.size()[0]==target_tensors.size()[0]) if train_on_gpu: # print(feature_tensors) feature_tensors = feature_tensors.cuda() target_tensors = target_tensors.cuda() # return a dataloader data = TensorDataset(feature_tensors, target_tensors) data_loader = DataLoader(data, batch_size=batch_size) return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # import os # os.environ['CUDA_LAUNCH_BLOCKING'] = "1" # test dataloader test_text = range(50) # print(list(range(50))) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output target_tensors size: torch.Size([8]) torch.Size([8, 5]) tensor([[ 0, 1, 2, 3, 4], [ 6, 7, 8, 9, 10], [12, 13, 14, 15, 16], [18, 19, 20, 21, 22], [24, 25, 26, 27, 28], [30, 31, 32, 33, 34], [36, 37, 38, 39, 40], [42, 43, 44, 45, 46]], device='cuda:0') torch.Size([8]) tensor([ 5, 11, 17, 23, 29, 35, 41, 47], device='cuda:0') ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn import torch.nn.functional as F class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.hidden_dim = hidden_dim self.n_layers = n_layers # define model layers self.embed = nn.Embedding(vocab_size,embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers,bias=False,batch_first=True,dropout=dropout,bidirectional=False) self.dropout = nn.Dropout(p=0.2) self.fc = nn.Linear(hidden_dim, vocab_size) # self.sigmoid = nn.Sigmoid() initrange = 0.1 if (train_on_gpu): self.embed.weight.data.uniform_(-initrange, initrange).cuda() # self.fc.bias.data.zero_().cuda() # self.fc.weight.data.uniform_(-initrange, initrange).cuda() else: self.embed.weight.data.uniform_(-initrange, initrange) # self.fc.bias.data.zero_() # self.fc.weight.data.uniform_(-initrange, initrange) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size()[0] embeds = self.embed(nn_input) lstm_output,hidden = self.lstm(embeds,hidden) lstm_output = self.dropout(lstm_output) fc_input = lstm_output.contiguous().view(-1, self.hidden_dim) # out = self.sigmoid(self.fc(fc_input)) fc_output = self.fc(fc_input) output = fc_output.view(batch_size, -1, self.output_size) out = output[:, -1] return out,hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available iterator = self.parameters() weight = next(iterator) if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move model to GPU, if available if(train_on_gpu): rnn.cuda() rnn.zero_grad() # move data to GPU, if available if (train_on_gpu): inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization hidden = tuple([x.data for x in hidden]) out, hidden = rnn(inp, hidden) loss = criterion(out.squeeze(), target.long()) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 100 # of words in a sequence # Batch Size batch_size = 100 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 20 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 400 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 50 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() import time t = time.time() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) print("in elapsed time ={} for {} epochs, seq_length ={} hidden_dim = {}".format(time.time() - t,num_epochs,sequence_length,hidden_dim)) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 20 epoch(s)... Epoch: 1/20 Loss: 6.911905717849732 Epoch: 2/20 Loss: 5.73502333055843 Epoch: 3/20 Loss: 5.47475217147307 Epoch: 4/20 Loss: 5.188980091701854 Epoch: 5/20 Loss: 4.900497902523387 Epoch: 6/20 Loss: 4.728184369477359 Epoch: 7/20 Loss: 4.557388040152463 Epoch: 8/20 Loss: 4.474985298785296 Epoch: 9/20 Loss: 4.357317640022798 Epoch: 10/20 Loss: 4.211959706111387 Epoch: 11/20 Loss: 4.0703448517756025 Epoch: 12/20 Loss: 3.9142714630473745 Epoch: 13/20 Loss: 3.7770327654751865 Epoch: 14/20 Loss: 3.6297601109201256 Epoch: 15/20 Loss: 3.577383217486468 Epoch: 16/20 Loss: 3.440413599664515 Epoch: 17/20 Loss: 3.268353882161054 Epoch: 18/20 Loss: 3.0990848676724867 Epoch: 19/20 Loss: 2.9485677020116285 Epoch: 20/20 Loss: 2.7713954773816196 in elapsed time =503.3225054740906 for 20 epochs, seq_length =100 hidden_dim = 512 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** Based on parameter tuning in previous exercises on RNN, I learned to keep sequence_length = 5 or 10 or 25 or 50 or 100, batch_size == 100, learning_rate = 0.001, embedding_dim = 400, hidden_dim = 128 or 256 or 512, n_layers = 2. Modifying the values within these ranges, one variable at a time, I got training loss within desired limit (around 2.77). When I varied hidden_dim, 512 gave a slow but more accurate learning. For sequence_length=10 to 50, generated script is vague. Increasing sequence length leads to need for num_epochs to be more than 10 to achieve loss < 3.5 and length of continuous predictions within same sentence increases. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry:. . yeah, i don't had the arms idea. you don't have the chocolate? jerry:(not the executives) i'm insult it a bowl, number? frank: hey. i'm designs? jerry: yeah.(designs at his usa from the apartment) you got the chocolate, i don't have this sleep out to the street. i don't go you a charles will house at my hand cheek shirt from my thing to the apartment) i got the prime. you is the keys.(talking is a crest in the armoire. jerry: i don't think i have you have the chocolate to my ticket- the hood up of a counter of the counter. kramer: oh, i gotta see. jerry: i know you have you a good today? elaine: i don't see you you you this have. i know what- you is like this. i don't go. i don't see we have to take there my few environment to the street and jerry? jerry:(o. you don't have to by this and i don't go this the street, jerry, i was by there. i'm front it the hearty marisa from there. i got it by here. george: yeah. i guess, i'm not this like this the leotard, eyed there. but insult it? kramer:(o. you don't see this a sound. i is the keys. you have a keys. you know you don't have to sleep? george: yeah. you don't think we can do you a question, i don't see. kramer: yeah i god, you know i have to take this the armoire! i got the keys. i have you like this you know, you have the keys. you know, i'm son's to his my problem for a few unit. and you don't have the chocolate? jerry:(to smuckers in his thing! jerry:(pulls in exporter with it who've there. elaine: i know i don't go ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown The TV Script is Not PerfectIt's ok if the TV script doesn't make perfect sense. It should look like alternating lines of dialogue, here is one such example of a few generated lines. Example generated script>jerry: what about me?>>jerry: i don't have to wait.>>kramer:(to the sales table)>>elaine:(to jerry) hey, look at this, i'm a good doctor.>>newman:(to elaine) you think i have no idea of this...>>elaine: oh, you better take the phone, and he was a little nervous.>>kramer:(to the phone) hey, hey, jerry, i don't want to be a little bit.(to kramer and jerry) you can't.>>jerry: oh, yeah. i don't even know, i know.>>jerry:(to the phone) oh, i know.>>kramer:(laughing) you know...(to jerry) you don't know.You can see that there are multiple characters that say (somewhat) complete sentences, but it doesn't have to be perfect! It takes quite a while to get good results, and often, you'll have to use a smaller vocabulary (and discard uncommon words), or get more data. The Seinfeld dataset is about 3.4 MB, which is big enough for our purposes; for script generation you'll want more than 1 MB of text, generally. Submitting This ProjectWhen submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_tv_script_generation.ipynb" and save another copy as an HTML file by clicking "File" -> "Download as.."->"html". Include the "helper.py" and "problem_unittests.py" files in your submission. Once you download these files, compress them into one zip file for submission. ###Code ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. ###Code ##################################################################################################################### ###################################################### Imports ###################################################### ##################################################################################################################### import problem_unittests as tests import helper import numpy as np import re from collections import Counter ###################################################################################################################### ################################################ Parameter definition ################################################ ###################################################################################################################### ###Output _____no_output_____ ###Markdown Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data # import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ # import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_counts = Counter(text) # sorting the words from most to least frequent in text occurrence sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) # create int_to_vocab dictionaries int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token = dict() token['.']= '<PERIOD>' token[',']= '<COMMA>' token['"']= '<QUOTATION_MARK>' token[';']= '<SEMICOLON>' token['!']= '<EXCLAMATION_MARK>' token['?']= '<QUESTION_MARK>' token['(']= '<LEFT_PAREN>' token[')']= '<RIGHT_PAREN>' # token['--']= '<HYPHENS>' token['?']= '<QUESTION_MARK>' token['\n']= '<NEW_LINE>' # token[':']= '<COLON>' token['-']= '<DASH>' return token """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function n_batches = len(words)//batch_size # only full batches words = words[:n_batches*batch_size] y_len = len(words) - sequence_length x, y = [], [] for idx in range(0, y_len): idx_end = sequence_length + idx x_batch = words[idx:idx_end] x.append(x_batch) batch_y = words[idx_end] y.append(batch_y) # create Tensor datasets data = TensorDataset(torch.from_numpy(np.asarray(x)), torch.from_numpy(np.asarray(y))) # create dataloader dataloader = DataLoader(data, shuffle=False, batch_size=batch_size) # return a dataloader return dataloader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]], dtype=torch.int32) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], dtype=torch.int32) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # embedding and LSTM layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # dropout layer self.dropout = nn.Dropout(0.3) # linear and sigmoid layers self.fc = nn.Linear(hidden_dim, output_size) self.sig = nn.Sigmoid() def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # embeddings and lstm_out nn_input = nn_input.long() embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer # out = self.dropout(lstm_out) out = self.fc(lstm_out) # sigmoid function # sig_out = self.sig(out) # reshape to be batch_size first # sig_out = sig_out.view(batch_size, -1, self.output_size) # sig_out = sig_out[:, -1] # get last batch of labels out = out.view(batch_size, -1, self.output_size) # get last batch out = out[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inputs, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function target = target.type(torch.LongTensor) # move data to GPU, if available if(train_on_gpu): rnn.cuda() # Creating new variables for the hidden state, otherwise we'd backprop through the entire training history h = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() if(train_on_gpu): inputs, target = inputs.cuda(), target.cuda() # get predicted outputs output, h = rnn(inputs, h) # calculate loss loss = criterion(output, target) # optimizer.zero_grad() loss.backward() # 'clip_grad_norm' helps prevent the exploding gradient problem in RNNs / LSTMs nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 64 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 250 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 5000 print(vocab_size) ###Output 21388 ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 4.712341558122635 Epoch: 1/10 Loss: 4.335313930273056 Epoch: 2/10 Loss: 4.149240888813567 Epoch: 2/10 Loss: 3.9730034842729567 Epoch: 3/10 Loss: 3.9168669078861686 Epoch: 3/10 Loss: 3.8041488509655 Epoch: 4/10 Loss: 3.7839235365190715 Epoch: 4/10 Loss: 3.6922322475910185 Epoch: 5/10 Loss: 3.6980445897400473 Epoch: 5/10 Loss: 3.619258991408348 Epoch: 6/10 Loss: 3.635652422624884 Epoch: 6/10 Loss: 3.5545290014743807 Epoch: 7/10 Loss: 3.5807655950898583 Epoch: 7/10 Loss: 3.5075816065073013 Epoch: 8/10 Loss: 3.537103382992675 Epoch: 8/10 Loss: 3.4669744132995604 Epoch: 9/10 Loss: 3.5024679281962854 Epoch: 9/10 Loss: 3.439684652209282 Epoch: 10/10 Loss: 3.470367230566643 Epoch: 10/10 Loss: 3.405293434667587 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** I used the parameters of the "Sentiment_RNN" notebook as a starting point. I just cut the embedding layers to 200, increased the learning rate to 0,003 and let the network train for 4 epochs. This just brought me close to the requested loss of 3,5. By increasing the epochs to 10 the loss was ~3,6 and by decreasing the lr to 0,001 the loss got finally to 3,4. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: cheese. elaine: what are you doing? morty: no. elaine: oh, yeah! george: i got to see you. elaine: oh, i don't think so. elaine: you know what? i got the one that had to get a little more more more more than you? george: you know, i was wondering how you got to know what you think. jerry: what? jerry: i got to tell ya. i think it's a lot better than the only way. jerry: oh, that's it. jerry: oh, come on. jerry:(confused) what is this? kramer: yeah! elaine: oh, i can't believe this is my way. you know i was going to be able to have a little good time, huh? jerry: i got to tell you what you think. jerry: i don't know how much i got to see you again. jerry: you know the other day, you know, the only way i can get a little... kramer: well, that's it. kramer: oh, come on. kramer:(to the man) hey, you got a little thing with that? george: yeah, yeah, i guess i could do that... elaine: i don't understand... elaine: i don't know, i don't want any money. elaine: you know, it's the way that i have a little more. elaine:(confused) oh, my god! kramer: yeah, well... i can't. i can't believe this is it, i got my mail and the new york. kramer: well you can't get any money. george: you think you're better than a good meal. elaine: you know what? elaine: oh no. kramer:(to jerry, puzzled) yeah, well, i'm gonna need it. ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # return tuple #return (None, None) word_counts = Counter(text) # sorting the words from most to least frequent in text occurrence sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) # create int_to_vocab dictionaries int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function #return None tokens = {'.' : '||period||', ',' : '||comma||', '"' : '||quotation_mark||', ';' : '||semicolon||', '!' : '||exclamation_mark||', '?' : '||question_mark||', '(' : '||left_parentheses||', ')' : '||right_parentheses||', '-' : '||dash||', '\n': '||return||' } return tokens """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # return a dataloader #return None rows = len(words) - sequence_length feature_tensors = np.zeros((rows, sequence_length), dtype=np.int64) target_tensors = np.zeros(rows, dtype=np.int64) for i in range(0, rows): feature_tensors[i] = words[i: i+sequence_length] target_tensors[i] = words[i+sequence_length] data = TensorDataset(torch.from_numpy(feature_tensors), torch.from_numpy(target_tensors)) data_loader = DataLoader(data, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own words = [85, 100, 97, 99, 105, 116, 121, 46, 99, 111, 109] data_loader = batch_data(words, 3, 3) for i, batch in enumerate(iter(data_loader)): print(f"batch[{i}] -> {batch}") ###Output batch[0] -> [tensor([[ 85, 100, 97], [ 100, 97, 99], [ 97, 99, 105]]), tensor([ 99, 105, 116])] batch[1] -> [tensor([[ 99, 105, 116], [ 105, 116, 121], [ 116, 121, 46]]), tensor([ 121, 46, 99])] batch[2] -> [tensor([[ 121, 46, 99], [ 46, 99, 111]]), tensor([ 111, 109])] ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.hidden_dim = hidden_dim self.n_layers = n_layers # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state #return None, None nn_input = nn_input.to(torch.long) embeds = self.embedding(nn_input) # get the output and the new hidden state from the lstm output, hidden = self.lstm(embeds, hidden) output = output.contiguous().view(-1, self.hidden_dim) # add fully-connected layer output = self.fc(output) batch_size = nn_input.size(0) output = output.view(batch_size, -1, self.output_size) output = output[:, -1] # return one batch of output word scores and the hidden state return output, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available #return None weights = next(self.parameters()).data if (train_on_gpu): hidden = (weights.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weights.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weights.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weights.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model #return None, None # move data to GPU, if available if train_on_gpu: inp, target = inp.cuda(), target.cuda() # create new variables for the hidden state hidden = tuple([_.data for _ in hidden]) # perform backpropagation and optimization rnn.zero_grad() output, hidden = rnn(inp, hidden) loss = criterion(output, target) loss.backward() # clip_grad_norm prevents exploding gradient problem in RNNs / LSTMs nn.utils.clip_grad_norm_(rnn.parameters(), 7) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length #sequence_length = # of words in a sequence # Batch Size #batch_size = sequence_length = 8 batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs #num_epochs = # Learning Rate #learning_rate = num_epochs = 4 learning_rate = 0.001 # Model parameters # Vocab size #vocab_size = # Output size #output_size = # Embedding Dimension #embedding_dim = # Hidden Dimension #hidden_dim = # Number of RNN Layers #n_layers = vocab_size = len(int_to_vocab) output_size = vocab_size embedding_dim = 128 hidden_dim = 512 n_layers = 1 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output /opt/conda/lib/python3.6/site-packages/torch/nn/modules/rnn.py:38: UserWarning: dropout option adds dropout after all but last recurrent layer, so non-zero dropout expects num_layers greater than 1, but got dropout=0.5 and num_layers=1 "num_layers={}".format(dropout, num_layers)) ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)My strategy was to select just enough hyperparameters to be able minimize training duration to the minimum.During initial tests I decided that at the minimum training must last 4 epochs to reach Loss below 3.5.The trainig rate was set to 0.001. Then I started to tweak other parameters to minimize computationalload. I experimented with batch size 64 and 128 but only 128 enabled the algorithm to learn for 4 epochs. I experimented with sequence size of 16 and was able to lower it to 8. I did similar experiment with embedding dimention and was able to lower it down to 128. Hidden size cannot be lower than 512. All above exercises I executed with number of layers set to 2. Later I have found out that setting it to 1 would further decrease the training time to 3 epochs. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:45: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter import re def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_counts = Counter(text) # sorting the words from most to least frequent in text occurrence sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) # create int_to_vocab dictionaries int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token_table = dict() token_table['.'] = "<PERIOD>" token_table[','] = "<COMMA>" token_table['"'] = "<QUOTATION_MARK>" token_table[';'] = "<SEMICOLON>" token_table['!'] = "<EXCLAMATION_MARK>" token_table['?'] = "<QUESTION_MARK>" token_table['('] = "<LEFT_PAREN>" token_table[')'] = "<RIGHT_PAREN>" token_table['-'] = "<DASH>" token_table['\n'] = "<NEW_LINE>" return token_table """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function feature_tensors, target_tensors = [], [] for idx in range(len(words) - sequence_length): feature_tensors.append(words[idx: idx + sequence_length]) target_tensors.append(words[idx + sequence_length]) feature_tensors, target_tensors = torch.Tensor(feature_tensors), torch.Tensor(target_tensors) data = TensorDataset(feature_tensors, target_tensors) # return a dataloader return DataLoader(data, batch_size=batch_size, shuffle=True) # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[40., 41., 42., 43., 44.], [19., 20., 21., 22., 23.], [14., 15., 16., 17., 18.], [16., 17., 18., 19., 20.], [ 0., 1., 2., 3., 4.], [23., 24., 25., 26., 27.], [18., 19., 20., 21., 22.], [12., 13., 14., 15., 16.], [27., 28., 29., 30., 31.], [34., 35., 36., 37., 38.]]) torch.Size([10]) tensor([45., 24., 19., 21., 5., 28., 23., 17., 32., 39.]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.vocab_size = vocab_size self.output_size = output_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # self.dropout = nn.Dropout(p=0.3) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function emb = self.embedding(nn_input.long()) out, hidden = self.lstm(emb, hidden) # out = self.dropout(out) out = out.contiguous().view(-1, self.hidden_dim) out = self.fc(out) out = out.view(nn_input.size(0), -1, self.output_size) out = out[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # Avoid backprop through entire hidden history hidden = tuple([each.data for each in hidden]) # move data to GPU, if available if train_on_gpu: inp, target = inp.cuda(), target.cuda() rnn.zero_grad() output, h = rnn(inp, hidden) # perform backpropagation and optimization loss = criterion(output, target.long()) loss.backward() # Prevent exploding gradient with clipping # nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code !nvidia-smi """ DON'T MODIFY ANYTHING IN THIS CELL """ from fastprogress import master_bar, progress_bar def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) mb = master_bar(range(1, n_epochs + 1)) for epoch_i in mb: # for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) n_batches = len(train_loader.dataset)//batch_size for idx in progress_bar(range(n_batches), parent=mb): (inputs, labels) = iter(train_loader).next() batch_i = idx + 1 #for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] #### mb.child.comment = f'Running loss {np.average(batch_losses)}' mb.first_bar.comment = f'Final loss {np.average(batch_losses)}' mb.write(f'Finished loop {epoch_i} - Loss {np.average(batch_losses)}.') # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 20 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 1e-3 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # 400 # Hidden Dimension hidden_dim = 512 # 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = len(train_loader.dataset) // (2 * batch_size) # 5 epochs : 3.4856 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)I started rather simply with smaller batch size than my final iteration. Initially I had an additional dropout before the final FC which turned out to be unnecessary and slowing down the training. In regards to the sequence lengths, I noticed quite a difference in the coherence of generated scripts by using longer sequence lengths. Shorter ones gave faster convergence regarding grammar but longer sequences provide better general sense.I reduced the embedding dimension and increased the hidden dimension to carry coherence longer in the network. My biggest mistake in the beginning was not detaching correctly the hidden state which brought about a memory leak I spent time on. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn # Personal edit: ensure inference is performed on the same device as the input data (CPU) ########## rnn.cpu() current_seq = current_seq.cpu() hidden = hidden[0].cpu(), hidden[1].cpu() ########### output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: creaking hats, and rub spaghetti at the beep. ' jerry: yeah! george:(urgent) oh god. george:(to jerry) i don't know. jerry: what do you mean, maybe you should get the job? george: i don't know. jerry: i thought it was an accident. kramer: oh, well, that's nice.(indicates 'gene' kruger's) well, you see, i've got to have a call for a second, but i don't have to be a vegetable. i don't know how the bubble boy did that. george:(worried) you know, it's not like this... it's a doodle. elaine: you see, i think she might be, he doesn't know if you can spare me somewhere, i have to say it. kramer: hey hey hey. hey, hey. hey. hey. george:(to kramer) i was a 718 biologist! jerry: what? george: i don't know, you don't know, it's a joke of a man's visit. elaine: i think you're not getting any sleep? elaine: no, no, you said i was dumb. i really have a little reason to see you. kramer: hey, hey. jerry: hi, how ya doing?(kramer hits the button to the door.) jerry:(to george) so, you know, if you think i could call the police, i don't want to get the extension clear. elaine: i thought you hated sweatpants thunder, you're yella. jerry: well, you know, it's just not fair.(to kramer) hey. hey, i got the doll. jerry: i know. it's all right. george: what is it? jerry: you know, i really enjoy it. i don't know where she looks like george: you see? you're going to the hospital, newman. i can't believe it. ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output _____no_output_____ ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # return tuple return (None, None) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # return a dataloader return None # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables # define model layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state return None, None def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return None, None # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = # of words in a sequence # Batch Size batch_size = # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = # Learning Rate learning_rate = # Model parameters # Vocab size vocab_size = # Output size output_size = # Embedding Dimension embedding_dim = # Hidden Dimension hidden_dim = # Number of RNN Layers n_layers = # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_freq = Counter(text) sorted_words = sorted(word_freq, key = word_freq.get, reverse=True) int_to_vocab = {i: each_word for i, each_word in enumerate(sorted_words)} vocab_to_int = {v: k for k, v in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function punc_to_token_dict = { ".":"<PERIOD>", ",": "<COMMA>", "\"": "<QUOTATION_MARK>", ";": "<SEMICOLON>", "!": "<EXCLAMATION_MARK>", "?": "<QUESTION_MARK>", "(": "<LEFT_PARENTHESES>", ")": "<RIGHT_PARENTHESES>", "-": "<DASH>", "\n": "<RETURN>"} return punc_to_token_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # get number of batches n_batches = len(words)//batch_size # get words words = words[:n_batches*batch_size] target_length = len(words) - sequence_length feature_tensor = [] target_tensor = [] for i in range(target_length): feature_batch = words[i:i+sequence_length] target_batch = words[i+sequence_length] feature_tensor.append(feature_batch) target_tensor.append(target_batch) feature_tensor = torch.from_numpy(np.asarray(feature_tensor)) target_tensor = torch.from_numpy(np.asarray(target_tensor)) data = TensorDataset(feature_tensor, target_tensor) data_loader = torch.utils.data.DataLoader(data, shuffle=True, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[24, 25, 26, 27, 28], [25, 26, 27, 28, 29], [ 0, 1, 2, 3, 4], [12, 13, 14, 15, 16], [ 9, 10, 11, 12, 13], [ 7, 8, 9, 10, 11], [23, 24, 25, 26, 27], [11, 12, 13, 14, 15], [ 8, 9, 10, 11, 12], [28, 29, 30, 31, 32]]) torch.Size([10]) tensor([29, 30, 5, 17, 14, 12, 28, 16, 13, 33]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.hidden_dim = hidden_dim self.n_layers = n_layers # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout = dropout, batch_first=True) self.dropout = nn.Dropout(dropout) self.fc = nn.Linear(self.hidden_dim, self.output_size) self.sig = nn.Sigmoid() def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # get batch size batch_size = nn_input.size(0) # get the embedding layers embedding_output = self.embedding(nn_input) lstm_output, hidden = self.lstm(embedding_output, hidden) lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim) # output = self.dropout(lstm_output) # output = self.fc(output) output = self.fc(lstm_output) output = output.view(batch_size, -1, self.output_size) output = output[:, -1] # return one batch of output word scores and the hidden state return output, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weights = next(self.parameters()).data if train_on_gpu: hidden = ( weights.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weights.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda() ) else: hidden = ( weights.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weights.new(self.n_layers, batch_size, self.hidden_dim).zero_() ) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: inp = inp.cuda() target = target.cuda() hidden = tuple([each.data for each in hidden]) # replace gradient instead of accumulation rnn.zero_grad() # get the output output, hidden = rnn(inp, hidden) # perform backpropagation and optimization loss = criterion(output, target) loss.backward() optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 50 # of words in a sequence # Batch Size batch_size = 256 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 5 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size #print(vocab_size, output_size) # Embedding Dimension embedding_dim = 150 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 100 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 5 epoch(s)... Epoch: 1/5 Loss: 6.4068379306793215 Epoch: 1/5 Loss: 5.80017605304718 Epoch: 1/5 Loss: 5.524508976936341 Epoch: 1/5 Loss: 5.270959777832031 Epoch: 1/5 Loss: 5.056707382202148 Epoch: 1/5 Loss: 5.002842583656311 Epoch: 1/5 Loss: 4.893531923294067 Epoch: 1/5 Loss: 4.767762522697449 Epoch: 1/5 Loss: 4.7649554967880245 Epoch: 1/5 Loss: 4.656662092208863 Epoch: 1/5 Loss: 4.647053670883179 Epoch: 1/5 Loss: 4.590586309432983 Epoch: 1/5 Loss: 4.534190645217896 Epoch: 1/5 Loss: 4.50496241569519 Epoch: 1/5 Loss: 4.462353477478027 Epoch: 1/5 Loss: 4.451501240730286 Epoch: 1/5 Loss: 4.473024802207947 Epoch: 1/5 Loss: 4.4302429723739625 Epoch: 1/5 Loss: 4.401646440029144 Epoch: 1/5 Loss: 4.396014726161956 Epoch: 1/5 Loss: 4.389751906394959 Epoch: 1/5 Loss: 4.378966391086578 Epoch: 1/5 Loss: 4.371344213485718 Epoch: 1/5 Loss: 4.322054214477539 Epoch: 1/5 Loss: 4.327344102859497 Epoch: 1/5 Loss: 4.303751721382141 Epoch: 1/5 Loss: 4.286612455844879 Epoch: 1/5 Loss: 4.25340856552124 Epoch: 1/5 Loss: 4.260677220821381 Epoch: 1/5 Loss: 4.231102390289307 Epoch: 1/5 Loss: 4.255189394950866 Epoch: 1/5 Loss: 4.239887957572937 Epoch: 1/5 Loss: 4.268645915985108 Epoch: 1/5 Loss: 4.241557712554932 Epoch: 2/5 Loss: 4.159387060853302 Epoch: 2/5 Loss: 4.100561435222626 Epoch: 2/5 Loss: 4.076433598995209 Epoch: 2/5 Loss: 4.072349045276642 Epoch: 2/5 Loss: 4.069418666362762 Epoch: 2/5 Loss: 4.06257465839386 Epoch: 2/5 Loss: 4.058723542690277 Epoch: 2/5 Loss: 4.058817756175995 Epoch: 2/5 Loss: 4.021687088012695 Epoch: 2/5 Loss: 4.079593675136566 Epoch: 2/5 Loss: 4.06189908504486 Epoch: 2/5 Loss: 4.015020637512207 Epoch: 2/5 Loss: 4.001477456092834 Epoch: 2/5 Loss: 4.017015645503998 Epoch: 2/5 Loss: 4.027090125083923 Epoch: 2/5 Loss: 4.022747764587402 Epoch: 2/5 Loss: 4.056444859504699 Epoch: 2/5 Loss: 3.959230074882507 Epoch: 2/5 Loss: 3.991372244358063 Epoch: 2/5 Loss: 4.023463635444641 Epoch: 2/5 Loss: 4.013900892734528 Epoch: 2/5 Loss: 3.9712702584266664 Epoch: 2/5 Loss: 3.9888929438591005 Epoch: 2/5 Loss: 3.9944417691230774 Epoch: 2/5 Loss: 3.9805916333198548 Epoch: 2/5 Loss: 3.9727710771560667 Epoch: 2/5 Loss: 3.953549497127533 Epoch: 2/5 Loss: 3.971550006866455 Epoch: 2/5 Loss: 3.95867192029953 Epoch: 2/5 Loss: 3.992890188694 Epoch: 2/5 Loss: 3.916501529216766 Epoch: 2/5 Loss: 3.9801615619659425 Epoch: 2/5 Loss: 3.9616604328155516 Epoch: 2/5 Loss: 3.972940526008606 Epoch: 3/5 Loss: 3.8893500468770013 Epoch: 3/5 Loss: 3.8272493290901184 Epoch: 3/5 Loss: 3.809918806552887 Epoch: 3/5 Loss: 3.8243420624732973 Epoch: 3/5 Loss: 3.8020728254318237 Epoch: 3/5 Loss: 3.7898845744132994 Epoch: 3/5 Loss: 3.8551889729499815 Epoch: 3/5 Loss: 3.8339338660240174 Epoch: 3/5 Loss: 3.828848407268524 Epoch: 3/5 Loss: 3.817383871078491 Epoch: 3/5 Loss: 3.8198004817962645 Epoch: 3/5 Loss: 3.823597071170807 Epoch: 3/5 Loss: 3.8172457337379457 Epoch: 3/5 Loss: 3.826956343650818 Epoch: 3/5 Loss: 3.843570771217346 Epoch: 3/5 Loss: 3.8241956758499147 Epoch: 3/5 Loss: 3.788174576759338 Epoch: 3/5 Loss: 3.802480704784393 Epoch: 3/5 Loss: 3.802792975902557 Epoch: 3/5 Loss: 3.8059629797935486 Epoch: 3/5 Loss: 3.822601993083954 Epoch: 3/5 Loss: 3.8122875332832336 Epoch: 3/5 Loss: 3.792563076019287 Epoch: 3/5 Loss: 3.799284896850586 Epoch: 3/5 Loss: 3.7591514730453492 Epoch: 3/5 Loss: 3.8213213682174683 Epoch: 3/5 Loss: 3.7904862189292907 Epoch: 3/5 Loss: 3.7652175307273863 Epoch: 3/5 Loss: 3.775081684589386 Epoch: 3/5 Loss: 3.805647120475769 Epoch: 3/5 Loss: 3.8115931391716003 Epoch: 3/5 Loss: 3.7801232147216797 Epoch: 3/5 Loss: 3.7809012794494627 Epoch: 3/5 Loss: 3.7960203099250793 Epoch: 4/5 Loss: 3.717857441615537 Epoch: 4/5 Loss: 3.6277985835075377 Epoch: 4/5 Loss: 3.6847699308395385 Epoch: 4/5 Loss: 3.7003368139266968 Epoch: 4/5 Loss: 3.6774175333976746 Epoch: 4/5 Loss: 3.669505636692047 Epoch: 4/5 Loss: 3.6503692483901977 Epoch: 4/5 Loss: 3.6640839791297912 Epoch: 4/5 Loss: 3.648356976509094 Epoch: 4/5 Loss: 3.6605164074897765 Epoch: 4/5 Loss: 3.640787110328674 Epoch: 4/5 Loss: 3.674849519729614 Epoch: 4/5 Loss: 3.6508079314231874 Epoch: 4/5 Loss: 3.636616377830505 Epoch: 4/5 Loss: 3.6928508830070497 Epoch: 4/5 Loss: 3.710030746459961 Epoch: 4/5 Loss: 3.671573815345764 Epoch: 4/5 Loss: 3.676208462715149 Epoch: 4/5 Loss: 3.695106589794159 Epoch: 4/5 Loss: 3.6542873120307924 Epoch: 4/5 Loss: 3.6725457859039308 Epoch: 4/5 Loss: 3.676883533000946 Epoch: 4/5 Loss: 3.641233990192413 Epoch: 4/5 Loss: 3.6844634914398195 Epoch: 4/5 Loss: 3.684463300704956 Epoch: 4/5 Loss: 3.6984883618354796 Epoch: 4/5 Loss: 3.6826293683052063 Epoch: 4/5 Loss: 3.658426206111908 Epoch: 4/5 Loss: 3.6646661019325255 Epoch: 4/5 Loss: 3.6891902613639833 Epoch: 4/5 Loss: 3.6704711723327637 Epoch: 4/5 Loss: 3.652671253681183 Epoch: 4/5 Loss: 3.6616198945045473 Epoch: 4/5 Loss: 3.6719136381149293 Epoch: 5/5 Loss: 3.6039040531617044 Epoch: 5/5 Loss: 3.5313985776901244 Epoch: 5/5 Loss: 3.5652358174324035 Epoch: 5/5 Loss: 3.5692408585548403 Epoch: 5/5 Loss: 3.5740801239013673 Epoch: 5/5 Loss: 3.53299649477005 Epoch: 5/5 Loss: 3.582785394191742 Epoch: 5/5 Loss: 3.562717342376709 Epoch: 5/5 Loss: 3.5709479212760926 Epoch: 5/5 Loss: 3.5633581590652468 Epoch: 5/5 Loss: 3.5897817158699037 Epoch: 5/5 Loss: 3.5493237590789795 Epoch: 5/5 Loss: 3.5699755334854126 Epoch: 5/5 Loss: 3.5801324033737183 Epoch: 5/5 Loss: 3.5854428577423096 Epoch: 5/5 Loss: 3.5198756718635558 Epoch: 5/5 Loss: 3.5358573722839357 Epoch: 5/5 Loss: 3.5455330348014833 Epoch: 5/5 Loss: 3.550049612522125 Epoch: 5/5 Loss: 3.550722641944885 Epoch: 5/5 Loss: 3.585439095497131 Epoch: 5/5 Loss: 3.557195086479187 Epoch: 5/5 Loss: 3.549436020851135 Epoch: 5/5 Loss: 3.5957862186431884 Epoch: 5/5 Loss: 3.553499011993408 Epoch: 5/5 Loss: 3.57416659116745 Epoch: 5/5 Loss: 3.5646439743041993 Epoch: 5/5 Loss: 3.596697154045105 Epoch: 5/5 Loss: 3.563871457576752 Epoch: 5/5 Loss: 3.5278802132606506 Epoch: 5/5 Loss: 3.538695294857025 Epoch: 5/5 Loss: 3.5814749240875243 Epoch: 5/5 Loss: 3.589377660751343 Epoch: 5/5 Loss: 3.567865424156189 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)I trained the network on my local GPU machine. I tried a batch size of 64 and learning rate of 0.003. However, this didn't converge quickly. It was stuck in local minima (and couldn't reach less than 3.5). I tried a larger batch_size (bumped up my batch size since I figured my GPU utilization was low) and slower learning rate. It quickly reached less than 3.5/3.6 within 5-6 epochs. Then after 15 epochs, reached 3.2 (less than 3.5). This was trained with sequence length of 25.I wanted to experiment with larger sequence size. So, I trained the network with a sequence length of 50, batch size of 256 and number of epochs (set to 10 this time). It also converged fairly quickly (to less than 3.5) in 10 epochs.**However, I am unable to properly distinguish between these 2 models that I have trained. Not sure how to check which model is better?****Does one look at the validation loss only to determine the best model?** --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 100 # modify the length to your preference prime_word = 'elaine' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output elaine: saturate disorient tolerate saturate tolerate saturate disorient tolerate 'yeah............ i think i could have to get a job. jerry: oh, yeah, yeah, i'm sorry.. jerry: i don't think so, i don't think so. morty:(on intercom) what do you think? jerry: well, i think i had to talk to her. jerry: i know. jerry: what are we talking about? ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_3.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function counts = Counter(text) vocab = sorted(counts, key=counts.get, reverse=True) int_to_vocab = {ii: word for ii, word in enumerate(vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token_dict = {"." : "||Period||", "," : "||Comma||", '"' : "||Quotation_Mark||", ";" : "||Semicolon||", "!" : "||Exclamation_mark||", "?" : "||Question_mark||", "(" : "||Left_Parentheses||", ")" : "||Right_Parentheses||", "-" : "||Dash||", "\n" : "||Return||"} return token_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function n_batches = len(words)//batch_size # only full batches words = words[:n_batches*batch_size] feature_tensors = [] target_tensors = [] for i in range(len(words) - sequence_length): feature_tensors.append(words[i : i + sequence_length]) target_tensors.append(words[i + sequence_length]) data = TensorDataset(torch.from_numpy(np.asarray(feature_tensors)), torch.from_numpy(np.asarray(target_tensors))) dataLoader = DataLoader(data, shuffle=True, batch_size=batch_size) # return a dataloader return dataLoader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 36, 37, 38, 39, 40], [ 14, 15, 16, 17, 18], [ 44, 45, 46, 47, 48], [ 16, 17, 18, 19, 20], [ 21, 22, 23, 24, 25], [ 26, 27, 28, 29, 30], [ 2, 3, 4, 5, 6], [ 10, 11, 12, 13, 14], [ 41, 42, 43, 44, 45], [ 20, 21, 22, 23, 24]]) torch.Size([10]) tensor([ 41, 19, 49, 21, 26, 31, 7, 15, 46, 25]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.hidden_dim = hidden_dim self.n_layers = n_layers # define model layers # embedding and LSTM layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # dropout later # self.dropout = nn.Dropout(0.25) # linear and sigmoid layers self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # embeddings and lstm_out embeds = self.embedding(nn_input) lstm_output, hidden = self.lstm(embeds, hidden) # stack up lstm outputs lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer # output = self.dropout(lstm_output) output = self.fc(lstm_output) # reshape into (batch_size, seq_length, output_size) output = output.view(batch_size, -1, self.output_size) # get last batch of labels output = output[:, -1] # return one batch of output word scores and the hidden state return output, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if train_on_gpu: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization hidden = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() # get the output from the model output, hidden = rnn(inp, hidden) # calculate the loss and perform backprop loss = criterion(output, target) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), max_norm=5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 7 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 250 # Hidden Dimension hidden_dim = 250 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 3000 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 4.726041041612625 Epoch: 1/10 Loss: 4.2466800963878635 Epoch: 2/10 Loss: 4.013005056568692 Epoch: 2/10 Loss: 3.9271443860530852 Epoch: 3/10 Loss: 3.7985737514832327 Epoch: 3/10 Loss: 3.765283320824305 Epoch: 4/10 Loss: 3.6726168634430056 Epoch: 4/10 Loss: 3.668744683980942 Epoch: 5/10 Loss: 3.5784635943991523 Epoch: 5/10 Loss: 3.5919457669258117 Epoch: 6/10 Loss: 3.51369749153814 Epoch: 6/10 Loss: 3.5273837795257568 Epoch: 7/10 Loss: 3.4528840551933935 Epoch: 7/10 Loss: 3.4793679432868956 Epoch: 8/10 Loss: 3.413141442462802 Epoch: 8/10 Loss: 3.433897761265437 Epoch: 9/10 Loss: 3.371523099260465 Epoch: 9/10 Loss: 3.401685496966044 Epoch: 10/10 Loss: 3.3346742933555955 Epoch: 10/10 Loss: 3.3665654594103493 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** | Trial | sequence_length | batch_size | embedding_dim | hidden_dim | Loss | dropout at fc layer ||:-----:|:---------------:|:----------:|:-------------:|:----------:|:------------------------------:|:-------------------:|| 1st | 50 | 16 | 300 | 256 | 4.688908943653106 (1 epoch) | 0.25 || 2nd | 25 | 32 | 200 | 200 | 4.157939701477686 (5 epochs) | 0.25 || 3rd | 10 | 32 | 200 | 200 | 4.169152552286784 (4 epochs) | 0.25 || 4th | 7 | 32 | 250 | 250 | 3.3665654594103493 (10 epochs) | 0 |At first, I used learning_rate = 0.01 and it couldn't converge, so I decreased the learning rate to 0.001.Then, I tried a few runs and above are the results. In the first run, I used a long sequence length (50) and a high embedding dimension (300), and it took forever to converge. So, I stopped it after the first epoch.Then, I reduced the sequence length by half (to 25) and embedding dimension to 200, allowing me to increase the batch size without running out of memory. It trained a bit faster, but the loss still stayed at around 4.15 after 5 epochs. Next, I continued reducing the sequence length but it didn't do better. Then, I asked people on Slack, and some said that I should not do dropout before **the fc layer**, so I removed the dropout. I also realized that the sequence length can be reduced to 7 because we found out in the beginning that the average number of words in each line is 5.5, which makes sense because this is a TV script. As a result, the sequence length of 7 sounds more reasonable. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:45: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_counter = Counter(text) sorted_vocab_list = sorted(word_counter, key=word_counter.get, reverse=True) vocab_to_int = {word: i for i, word in enumerate(sorted_vocab_list)} #Do not need to start from index 1 because no padding. int_to_vocab = {i: word for word, i in vocab_to_int.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token_dict = { '.': "||dot||", ',': "||comma||", '"': "||doublequote||", ';': "||semicolon||", '!': "||bang||", '?': "||questionmark||", '(': "||leftparens||", ')': "||rightparens||", '-': "||dash||", '\n': "||return||", } return token_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function features = [] targets = [] print(words, sequence_length, batch_size) for start in range(len(words) - sequence_length): end = start + sequence_length features.append(words[start:end]) targets.append(words[end]) data = TensorDataset(torch.tensor(features), torch.tensor(targets)) data_loader = DataLoader(data, batch_size, True) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output range(0, 50) 5 10 torch.Size([10, 5]) tensor([[ 18, 19, 20, 21, 22], [ 42, 43, 44, 45, 46], [ 41, 42, 43, 44, 45], [ 1, 2, 3, 4, 5], [ 15, 16, 17, 18, 19], [ 32, 33, 34, 35, 36], [ 26, 27, 28, 29, 30], [ 30, 31, 32, 33, 34], [ 39, 40, 41, 42, 43], [ 4, 5, 6, 7, 8]]) torch.Size([10]) tensor([ 23, 47, 46, 6, 20, 37, 31, 35, 44, 9]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers self.embed = nn.Embedding(vocab_size, embedding_dim) self.rnn = nn.LSTM(embedding_dim, self.hidden_dim, self.n_layers, dropout=dropout, batch_first=True) self.fc = nn.Linear(self.hidden_dim, self.output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function x = self.embed(nn_input) x, hidden = self.rnn(x, hidden) x = x.contiguous().view(-1, self.hidden_dim) x = self.fc(x) x = x.view(nn_input.size(0), -1, self.output_size)[:, -1] # return one batch of output word scores and the hidden state return x, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) if train_on_gpu: hidden = (hidden[0].cuda(), hidden[1].cuda()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization hidden = tuple([each.data for each in hidden]) optimizer.zero_grad() rnn.zero_grad() output, hidden = rnn(inp, hidden) loss = criterion(output, target) loss.backward() nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 8 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 9 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 256 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 3 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 9 epoch(s)... Epoch: 1/9 Loss: 5.9196070919036865 Epoch: 1/9 Loss: 5.154569608688354 Epoch: 1/9 Loss: 4.861867110252381 Epoch: 1/9 Loss: 4.663630374908447 Epoch: 1/9 Loss: 4.568453297615052 Epoch: 1/9 Loss: 4.501800373077392 Epoch: 1/9 Loss: 4.4400984477996825 Epoch: 1/9 Loss: 4.407389422893524 Epoch: 1/9 Loss: 4.359781648635864 Epoch: 1/9 Loss: 4.311809137821197 Epoch: 1/9 Loss: 4.285976921081543 Epoch: 1/9 Loss: 4.265631782531738 Epoch: 1/9 Loss: 4.228047152042389 Epoch: 2/9 Loss: 4.1530766147578095 Epoch: 2/9 Loss: 4.056858470439911 Epoch: 2/9 Loss: 4.049036991596222 Epoch: 2/9 Loss: 4.028184664726258 Epoch: 2/9 Loss: 4.027896447658539 Epoch: 2/9 Loss: 3.99689031124115 Epoch: 2/9 Loss: 3.996437876701355 Epoch: 2/9 Loss: 3.978628529548645 Epoch: 2/9 Loss: 4.00464665555954 Epoch: 2/9 Loss: 3.986073437690735 Epoch: 2/9 Loss: 3.9736593861579896 Epoch: 2/9 Loss: 3.9845535202026365 Epoch: 2/9 Loss: 3.9533566370010376 Epoch: 3/9 Loss: 3.887317371565245 Epoch: 3/9 Loss: 3.7951194486618043 Epoch: 3/9 Loss: 3.7917876377105713 Epoch: 3/9 Loss: 3.7811633620262146 Epoch: 3/9 Loss: 3.7886141839027405 Epoch: 3/9 Loss: 3.8130338320732116 Epoch: 3/9 Loss: 3.8106535000801087 Epoch: 3/9 Loss: 3.8175085015296935 Epoch: 3/9 Loss: 3.784125514984131 Epoch: 3/9 Loss: 3.797453468799591 Epoch: 3/9 Loss: 3.80401885843277 Epoch: 3/9 Loss: 3.808668386936188 Epoch: 3/9 Loss: 3.8207490234375 Epoch: 4/9 Loss: 3.7332648527265455 Epoch: 4/9 Loss: 3.634948308467865 Epoch: 4/9 Loss: 3.647617848396301 Epoch: 4/9 Loss: 3.6423205795288087 Epoch: 4/9 Loss: 3.64229798412323 Epoch: 4/9 Loss: 3.647725365638733 Epoch: 4/9 Loss: 3.6609289746284484 Epoch: 4/9 Loss: 3.6745360856056215 Epoch: 4/9 Loss: 3.6791053624153136 Epoch: 4/9 Loss: 3.6619578566551207 Epoch: 4/9 Loss: 3.6766717824935915 Epoch: 4/9 Loss: 3.678693187713623 Epoch: 4/9 Loss: 3.694414616584778 Epoch: 5/9 Loss: 3.5895329953716266 Epoch: 5/9 Loss: 3.5111766138076783 Epoch: 5/9 Loss: 3.5191890153884886 Epoch: 5/9 Loss: 3.5270044150352478 Epoch: 5/9 Loss: 3.5389353365898133 Epoch: 5/9 Loss: 3.546943061828613 Epoch: 5/9 Loss: 3.5659065365791323 Epoch: 5/9 Loss: 3.5496874227523803 Epoch: 5/9 Loss: 3.5708318347930907 Epoch: 5/9 Loss: 3.5583040256500245 Epoch: 5/9 Loss: 3.572103688716888 Epoch: 5/9 Loss: 3.583995021343231 Epoch: 5/9 Loss: 3.5945741410255434 Epoch: 6/9 Loss: 3.508891934580847 Epoch: 6/9 Loss: 3.4223804202079773 Epoch: 6/9 Loss: 3.4277972531318666 Epoch: 6/9 Loss: 3.4104116830825806 Epoch: 6/9 Loss: 3.455143273830414 Epoch: 6/9 Loss: 3.4551423745155336 Epoch: 6/9 Loss: 3.446984980583191 Epoch: 6/9 Loss: 3.4660440020561216 Epoch: 6/9 Loss: 3.490551306247711 Epoch: 6/9 Loss: 3.4813959879875185 Epoch: 6/9 Loss: 3.5088824620246886 Epoch: 6/9 Loss: 3.50870436668396 Epoch: 6/9 Loss: 3.512404335975647 Epoch: 7/9 Loss: 3.42333300760779 Epoch: 7/9 Loss: 3.3405881376266477 Epoch: 7/9 Loss: 3.349756766796112 Epoch: 7/9 Loss: 3.3535381975173952 Epoch: 7/9 Loss: 3.3849702200889586 Epoch: 7/9 Loss: 3.3748793692588808 Epoch: 7/9 Loss: 3.400786780834198 Epoch: 7/9 Loss: 3.4115707964897157 Epoch: 7/9 Loss: 3.4002523488998415 Epoch: 7/9 Loss: 3.4308757686614992 Epoch: 7/9 Loss: 3.403478935718536 Epoch: 7/9 Loss: 3.4190732889175415 Epoch: 7/9 Loss: 3.436656415462494 Epoch: 8/9 Loss: 3.3615086432950045 Epoch: 8/9 Loss: 3.2641971321105956 Epoch: 8/9 Loss: 3.283445837497711 Epoch: 8/9 Loss: 3.2901403641700746 Epoch: 8/9 Loss: 3.3264351720809935 Epoch: 8/9 Loss: 3.3202496209144594 Epoch: 8/9 Loss: 3.3229446692466738 Epoch: 8/9 Loss: 3.3508189005851747 Epoch: 8/9 Loss: 3.3521045947074892 Epoch: 8/9 Loss: 3.346731041908264 Epoch: 8/9 Loss: 3.3734106063842773 Epoch: 8/9 Loss: 3.379966462612152 Epoch: 8/9 Loss: 3.38812366771698 Epoch: 9/9 Loss: 3.2891932857540986 Epoch: 9/9 Loss: 3.213767638206482 Epoch: 9/9 Loss: 3.239010145187378 Epoch: 9/9 Loss: 3.2513397607803345 Epoch: 9/9 Loss: 3.258533630371094 Epoch: 9/9 Loss: 3.2619752712249754 Epoch: 9/9 Loss: 3.275171920776367 Epoch: 9/9 Loss: 3.2787757329940797 Epoch: 9/9 Loss: 3.28660843372345 Epoch: 9/9 Loss: 3.293291466712952 Epoch: 9/9 Loss: 3.327093819618225 Epoch: 9/9 Loss: 3.320905412197113 Epoch: 9/9 Loss: 3.3482332491874693 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** Most of the params were selected based on community input gathered from online sources. Sequence length was a little special in that I could not find many suggestions online, I tested, 4, 6, 8, 16, 32, 64, 128, and 1024 length sequences. I found that smaller sequences where effective, but I am not conclusive. 8 achieved the best results in a fairly short time.I also tested other params like hidden dims and layers, etc. The conclusion was that higher embedding dims did not improve performance, while higher hidden dims did, 2-3 layers seems to offer little difference in performance. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code import numpy as np # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:35: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function counts = Counter(text) vocab = sorted(counts, key=counts.get, reverse=True) int_to_vocab = dict(enumerate(vocab)) vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return {".": "||Period||", ",": "||Comma||", '"': "||Quoteation_Mark||", ";": "||Semicolon||", "?": "||Question_Mark||", "-": "||Dash||", "!": "||Exclamation_Mark||", "(": "||Left_Parenthesis||", ")": "||Right_Parenthesis||", "\n": "||Return||"} """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function words = np.array(words) num_of_sequences = len(words) - sequence_length # Obtain window indexes indexer = np.arange(num_of_sequences)[:, None] + np.arange(sequence_length)[None, :] # Get features array features = words[indexer] targets = words[sequence_length:] dataset = TensorDataset(torch.from_numpy(features), torch.from_numpy(targets)) # return a dataloader return DataLoader(dataset, shuffle=True, batch_size=batch_size) # there is no test for this function, but you are encouraged to create # print statements and tests of your own sample_loader = batch_data(int_text, 4, 10) dataiter = iter(sample_loader) sample_x, sample_y = dataiter.next() print("Sample input size ", sample_x.size()) print("Sample input:\n", sample_x) print() print("Sample targets size: ", sample_y.size()) print("Sample targets:\n", sample_y) ###Output Sample input size torch.Size([10, 4]) Sample input: tensor([[ 1, 0, 0, 13], [ 400, 1125, 1, 11], [ 5, 1076, 8, 186], [ 1, 91, 59, 15], [ 3, 53, 11, 43], [ 44, 51, 6, 693], [ 345, 5476, 1, 0], [ 412, 1, 313, 57], [ 1, 0, 0, 16], [ 548, 20, 6, 501]], dtype=torch.int32) Sample targets size: torch.Size([10]) Sample targets: tensor([108, 35, 28, 2, 806, 23, 0, 1, 77, 1], dtype=torch.int32) ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[17, 18, 19, 20, 21], [39, 40, 41, 42, 43], [18, 19, 20, 21, 22], [ 7, 8, 9, 10, 11], [26, 27, 28, 29, 30], [43, 44, 45, 46, 47], [31, 32, 33, 34, 35], [19, 20, 21, 22, 23], [33, 34, 35, 36, 37], [32, 33, 34, 35, 36]], dtype=torch.int32) torch.Size([10]) tensor([22, 44, 23, 12, 31, 48, 36, 24, 38, 37], dtype=torch.int32) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.vocab_size = vocab_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.output_size = output_size self.n_layers = n_layers # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.dropout = nn.Dropout(dropout) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) nn_input = nn_input.long() embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) lstm_out = self.dropout(lstm_out) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) out = self.fc(lstm_out) out = out.view(batch_size, -1, self.output_size) out = out[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if train_on_gpu: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: inp, target = inp.cuda(), target.cuda() rnn.zero_grad() hidden = tuple([each.data for each in hidden]) # perform backpropagation and optimization output, hidden = rnn(inp, hidden) loss = criterion(output, target.long()) loss.backward() optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 300 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 30 # Learning Rate learning_rate = 0.0002 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = len(vocab_to_int) # Embedding Dimension embedding_dim = 500 # Hidden Dimension hidden_dim = 1000 # Number of RNN Layers n_layers = 3 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 30 epoch(s)... Epoch: 1/30 Loss: 5.542212463378906 Epoch: 1/30 Loss: 4.895925772666931 Epoch: 1/30 Loss: 4.716342515468598 Epoch: 1/30 Loss: 4.563274583816528 Epoch: 1/30 Loss: 4.470524339199066 Epoch: 2/30 Loss: 4.342157107095434 Epoch: 2/30 Loss: 4.267198216438294 Epoch: 2/30 Loss: 4.228925843715667 Epoch: 2/30 Loss: 4.192948694705963 Epoch: 2/30 Loss: 4.183900503635407 Epoch: 3/30 Loss: 4.095780112638013 Epoch: 3/30 Loss: 4.048094055175781 Epoch: 3/30 Loss: 4.047820780277252 Epoch: 3/30 Loss: 4.0481199040412905 Epoch: 3/30 Loss: 4.027770218372345 Epoch: 4/30 Loss: 3.975011658938056 Epoch: 4/30 Loss: 3.9300294289588926 Epoch: 4/30 Loss: 3.922672815322876 Epoch: 4/30 Loss: 3.9054472136497496 Epoch: 4/30 Loss: 3.911331367492676 Epoch: 5/30 Loss: 3.850355715080253 Epoch: 5/30 Loss: 3.8214057908058168 Epoch: 5/30 Loss: 3.809553246974945 Epoch: 5/30 Loss: 3.8232222619056704 Epoch: 5/30 Loss: 3.8197561845779417 Epoch: 6/30 Loss: 3.7761310925831655 Epoch: 6/30 Loss: 3.7353790612220763 Epoch: 6/30 Loss: 3.7252446403503416 Epoch: 6/30 Loss: 3.729586566925049 Epoch: 6/30 Loss: 3.7215491671562195 Epoch: 7/30 Loss: 3.6940583658365402 Epoch: 7/30 Loss: 3.6491436610221863 Epoch: 7/30 Loss: 3.6552856369018554 Epoch: 7/30 Loss: 3.6646816473007204 Epoch: 7/30 Loss: 3.668620755672455 Epoch: 8/30 Loss: 3.611472965144425 Epoch: 8/30 Loss: 3.5726354541778567 Epoch: 8/30 Loss: 3.589263671875 Epoch: 8/30 Loss: 3.5918682265281676 Epoch: 8/30 Loss: 3.5941107330322266 Epoch: 9/30 Loss: 3.548078870479274 Epoch: 9/30 Loss: 3.510521921157837 Epoch: 9/30 Loss: 3.5163067588806154 Epoch: 9/30 Loss: 3.527659899234772 Epoch: 9/30 Loss: 3.526112545490265 Epoch: 10/30 Loss: 3.475713120702604 Epoch: 10/30 Loss: 3.4444041004180908 Epoch: 10/30 Loss: 3.4463197193145754 Epoch: 10/30 Loss: 3.468018494606018 Epoch: 10/30 Loss: 3.465712972640991 Epoch: 11/30 Loss: 3.4211348967831525 Epoch: 11/30 Loss: 3.379080743789673 Epoch: 11/30 Loss: 3.3891129322052 Epoch: 11/30 Loss: 3.4033216271400453 Epoch: 11/30 Loss: 3.4290796446800234 Epoch: 12/30 Loss: 3.364989779345913 Epoch: 12/30 Loss: 3.32780682182312 Epoch: 12/30 Loss: 3.3318721280097963 Epoch: 12/30 Loss: 3.344575346946716 Epoch: 12/30 Loss: 3.356425541400909 Epoch: 13/30 Loss: 3.3034176787271528 Epoch: 13/30 Loss: 3.269027329444885 Epoch: 13/30 Loss: 3.2948418641090393 Epoch: 13/30 Loss: 3.2907507238388063 Epoch: 13/30 Loss: 3.2979082493782044 Epoch: 14/30 Loss: 3.2550471892459787 Epoch: 14/30 Loss: 3.208519880771637 Epoch: 14/30 Loss: 3.242331328868866 Epoch: 14/30 Loss: 3.239235269546509 Epoch: 14/30 Loss: 3.245745574951172 Epoch: 15/30 Loss: 3.194709895203562 Epoch: 15/30 Loss: 3.149409110069275 Epoch: 15/30 Loss: 3.1730346984863282 Epoch: 15/30 Loss: 3.193666443824768 Epoch: 15/30 Loss: 3.2061328363418578 Epoch: 16/30 Loss: 3.1483796860674302 Epoch: 16/30 Loss: 3.1065406317710877 Epoch: 16/30 Loss: 3.1244652132987976 Epoch: 16/30 Loss: 3.1440410847663878 Epoch: 16/30 Loss: 3.146430268287659 Epoch: 17/30 Loss: 3.1040270747530743 Epoch: 17/30 Loss: 3.0633580613136293 Epoch: 17/30 Loss: 3.074093391418457 Epoch: 17/30 Loss: 3.086872152328491 Epoch: 17/30 Loss: 3.113299153327942 Epoch: 18/30 Loss: 3.0528990580391175 Epoch: 18/30 Loss: 3.017056652545929 Epoch: 18/30 Loss: 3.0252189779281617 Epoch: 18/30 Loss: 3.0593305611610413 Epoch: 18/30 Loss: 3.0659578919410704 Epoch: 19/30 Loss: 3.002933645787489 Epoch: 19/30 Loss: 2.966243000984192 Epoch: 19/30 Loss: 2.9975133166313173 Epoch: 19/30 Loss: 2.9976149559020997 Epoch: 19/30 Loss: 3.0162581768035888 Epoch: 20/30 Loss: 2.966088581183219 Epoch: 20/30 Loss: 2.9232900500297547 Epoch: 20/30 Loss: 2.941220899105072 Epoch: 20/30 Loss: 2.9631529750823975 Epoch: 20/30 Loss: 2.9715343270301817 Epoch: 21/30 Loss: 2.932411232563109 Epoch: 21/30 Loss: 2.888529004573822 Epoch: 21/30 Loss: 2.905654210090637 Epoch: 21/30 Loss: 2.9194550075531005 Epoch: 21/30 Loss: 2.9290501523017882 Epoch: 22/30 Loss: 2.882127876271937 Epoch: 22/30 Loss: 2.843546413421631 Epoch: 22/30 Loss: 2.86730233335495 Epoch: 22/30 Loss: 2.892877109527588 Epoch: 22/30 Loss: 2.8914437890052795 Epoch: 23/30 Loss: 2.8472109110480344 Epoch: 23/30 Loss: 2.7972644090652468 Epoch: 23/30 Loss: 2.826973198413849 Epoch: 23/30 Loss: 2.84661204624176 Epoch: 23/30 Loss: 2.857697295188904 Epoch: 24/30 Loss: 2.8112276293881013 Epoch: 24/30 Loss: 2.7634284324645995 Epoch: 24/30 Loss: 2.789399490356445 Epoch: 24/30 Loss: 2.8077636613845827 Epoch: 24/30 Loss: 2.817365035057068 Epoch: 25/30 Loss: 2.767851111577692 Epoch: 25/30 Loss: 2.735499891757965 Epoch: 25/30 Loss: 2.7528936777114867 Epoch: 25/30 Loss: 2.768033914089203 Epoch: 25/30 Loss: 2.7931802878379823 Epoch: 26/30 Loss: 2.7360093939096073 Epoch: 26/30 Loss: 2.706914391517639 Epoch: 26/30 Loss: 2.72361363363266 Epoch: 26/30 Loss: 2.7326907453536986 Epoch: 26/30 Loss: 2.7498406858444215 Epoch: 27/30 Loss: 2.7023294440031296 Epoch: 27/30 Loss: 2.6692112035751343 Epoch: 27/30 Loss: 2.681900881290436 Epoch: 27/30 Loss: 2.7061347808837892 Epoch: 27/30 Loss: 2.7114641613960266 Epoch: 28/30 Loss: 2.6720938471826474 Epoch: 28/30 Loss: 2.6339118866920472 Epoch: 28/30 Loss: 2.650689570903778 Epoch: 28/30 Loss: 2.6737491626739502 Epoch: 28/30 Loss: 2.6799437975883484 Epoch: 29/30 Loss: 2.6368560205383145 Epoch: 29/30 Loss: 2.5979518666267394 Epoch: 29/30 Loss: 2.6123044695854185 Epoch: 29/30 Loss: 2.642937618255615 Epoch: 29/30 Loss: 2.662935221672058 Epoch: 30/30 Loss: 2.611776029708329 Epoch: 30/30 Loss: 2.573218704223633 Epoch: 30/30 Loss: 2.5892706742286684 Epoch: 30/30 Loss: 2.609111734390259 Epoch: 30/30 Loss: 2.6288430924415587 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) It is said typically a few hundred for the embedding dimension is normally a good choice, so I started with it set to 256. I also initially set the hidden dimension to 500. However with these values set the model did not seem to be minimising the losss enough. SO I increased the embedding dimension to 500 and the hidden dimension to 1000 as this should allow the model to handle more complicated relationships. Typically the number of layers in an LSTM is between 1 and 3, so I set number of layers to 3. I initially set the learning rate to 0.001 but the loss was not decreasing, in fact it possibly was increasing. So I reduced it to 0.0002 and the loss is decreasing. It may be possible to find a slightly more optimal learning rate between these two values but I felt 0.0002 was good enough. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry:, so you know that guy, uh, raise, or not. elaine: oh, i can't. i'm sorry. kramer: well, you know, it's not the same. jerry: i don't know, i know that... you know i think i can get this thing over here. i don't have any money. kramer:(to jerry) hey. you got this straight? hey, look, i got a lot better than ya. susan:(to jerry) hey, you know what, what about this? george: what? i mean, you know, i don't know what i mean.. jerry: i can't believe i saw that guy who has a good idea for the himalayan in gymnastics food. kramer: well, i got a feeling about you two.(to jerry) hey. elaine: hey. jerry: hey. george: hey, how you doing? kramer: well, you know, i was wondering, i was just wondering... i have a very good feeling about this guy. i don't know what to do. jerry:(to kramer) you know, you don't have anything in the first place. elaine: well, i guess i can see the whole story. jerry:(pointing) what is that? jerry: oh, i was thinking of myself. you know what you think? i mean, you think i have an idea, you have no idea how much i am about it. but, if you don't mind, i can't stand you! i can't believe this is the first time i ever ever heard of it. jerry: i don't understand how it was such an attractive woman... she had a good time. elaine: oh, yeah, i got it. i gotta see if i could get a picture.(he leaves) george:(to elaine) so, what do you think of all that? ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown The TV Script is Not PerfectIt's ok if the TV script doesn't make perfect sense. It should look like alternating lines of dialogue, here is one such example of a few generated lines. Example generated script>jerry: what about me?>>jerry: i don't have to wait.>>kramer:(to the sales table)>>elaine:(to jerry) hey, look at this, i'm a good doctor.>>newman:(to elaine) you think i have no idea of this...>>elaine: oh, you better take the phone, and he was a little nervous.>>kramer:(to the phone) hey, hey, jerry, i don't want to be a little bit.(to kramer and jerry) you can't.>>jerry: oh, yeah. i don't even know, i know.>>jerry:(to the phone) oh, i know.>>kramer:(laughing) you know...(to jerry) you don't know.You can see that there are multiple characters that say (somewhat) complete sentences, but it doesn't have to be perfect! It takes quite a while to get good results, and often, you'll have to use a smaller vocabulary (and discard uncommon words), or get more data. The Seinfeld dataset is about 3.4 MB, which is big enough for our purposes; for script generation you'll want more than 1 MB of text, generally. Submitting This ProjectWhen submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_tv_script_generation.ipynb" and save another copy as an HTML file by clicking "File" -> "Download as.."->"html". Include the "helper.py" and "problem_unittests.py" files in your submission. Once you download these files, compress them into one zip file for submission. ###Code ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # Count the several word occurrence c = Counter(text) vocab_to_int = {} int_to_vocab = {} for (idx,(e,cnt)) in enumerate(c.most_common(),0): vocab_to_int[e] = idx int_to_vocab[idx] = e # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function tokens = { '.' : '<PERIOD>', ',' : '<COMMA>', '"' : '<QUOTATION>', ';' : '<SEMICOLON>', '!' : '<EXCLAMATION>', '?' : '<QUESTION>', '(' : '<OPEN_PAREN>', ')' : '<CLOSE_PAREN>', '-' : '<DASH>', '\n' : '<NEW_LINE>' } return tokens """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import numpy as np import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() print(token_dict) ###Output {'.': '<PERIOD>', ',': '<COMMA>', '"': '<QUOTATION>', ';': '<SEMICOLON>', '!': '<EXCLAMATION>', '?': '<QUESTION>', '(': '<OPEN_PAREN>', ')': '<CLOSE_PAREN>', '-': '<DASH>', '\n': '<NEW_LINE>'} ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function #batch_size_total = batch_size * sequence_length #n_batches = len(words)//batch_size_total features, targets = [], [] for ii in range(len(words)): ii_end = ii + sequence_length if ii_end < len(words): features.append(words[ii:ii_end]) targets.append(words[ii_end]) features = np.asarray(features, dtype=int) targets = np.asarray(targets, dtype=int) # create Tensor datasets data = TensorDataset(torch.from_numpy(features), torch.from_numpy(targets)) # make sure to SHUFFLE your data loader = DataLoader(data, shuffle=True, batch_size=batch_size) # return a dataloader return loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 5, 6, 7, 8, 9], [ 19, 20, 21, 22, 23], [ 22, 23, 24, 25, 26], [ 43, 44, 45, 46, 47], [ 8, 9, 10, 11, 12], [ 28, 29, 30, 31, 32], [ 26, 27, 28, 29, 30], [ 14, 15, 16, 17, 18], [ 4, 5, 6, 7, 8], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 10, 24, 27, 48, 13, 33, 31, 19, 9, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.vocab_size = vocab_size self.output_size = output_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) #self.dropout = nn.Dropout(0.3) self.fc = nn.Linear(hidden_dim, output_size) #self.sig = nn.Sigmoid() def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # embedding and lstm_out nn_input = nn_input.long() embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer #out = self.dropout(lstm_out) output = self.fc(lstm_out) # sigmoid function #out = self.sig(out) # reshape to be batch_size first output = output.view(batch_size, -1, self.output_size) out = output [:, -1] # get last batch of labels # return last sigmoid output and hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function clip=5 # gradient clipping # move data to GPU, if available if(train_on_gpu): rnn.cuda() inp, target = inp.cuda(), target.cuda() # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history hidden = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() # get the output from the model output, hidden = rnn(inp, hidden) # calculate the loss and perform backprop loss = criterion(output, target) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from workspace_utils import active_session def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): with active_session(): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 15 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 256 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 15 epoch(s)... Epoch: 1/15 Loss: 5.532825699806214 Epoch: 1/15 Loss: 4.8629024744033815 Epoch: 1/15 Loss: 4.669433483123779 Epoch: 1/15 Loss: 4.504791158676148 Epoch: 1/15 Loss: 4.428042637825012 Epoch: 1/15 Loss: 4.367772954463959 Epoch: 1/15 Loss: 4.298104788780212 Epoch: 1/15 Loss: 4.2726039743423465 Epoch: 1/15 Loss: 4.24163552904129 Epoch: 1/15 Loss: 4.206749546051025 Epoch: 1/15 Loss: 4.198954015254975 Epoch: 1/15 Loss: 4.166087312221527 Epoch: 1/15 Loss: 4.141734188556671 Epoch: 2/15 Loss: 4.046153443516593 Epoch: 2/15 Loss: 3.9560570011138916 Epoch: 2/15 Loss: 3.9361091833114625 Epoch: 2/15 Loss: 3.944333690166473 Epoch: 2/15 Loss: 3.9290042114257813 Epoch: 2/15 Loss: 3.9216447649002073 Epoch: 2/15 Loss: 3.9201399416923524 Epoch: 2/15 Loss: 3.9176893124580383 Epoch: 2/15 Loss: 3.9068938250541687 Epoch: 2/15 Loss: 3.9046198434829713 Epoch: 2/15 Loss: 3.9057768349647524 Epoch: 2/15 Loss: 3.887667184829712 Epoch: 2/15 Loss: 3.9130668120384215 Epoch: 3/15 Loss: 3.8184306687983933 Epoch: 3/15 Loss: 3.7451746921539306 Epoch: 3/15 Loss: 3.728155478000641 Epoch: 3/15 Loss: 3.7250712056159974 Epoch: 3/15 Loss: 3.745212097644806 Epoch: 3/15 Loss: 3.75275874710083 Epoch: 3/15 Loss: 3.74138139629364 Epoch: 3/15 Loss: 3.7362422189712525 Epoch: 3/15 Loss: 3.742794972896576 Epoch: 3/15 Loss: 3.754491403102875 Epoch: 3/15 Loss: 3.7569237914085387 Epoch: 3/15 Loss: 3.795139883995056 Epoch: 3/15 Loss: 3.7469643139839173 Epoch: 4/15 Loss: 3.6624901026518106 Epoch: 4/15 Loss: 3.601311396598816 Epoch: 4/15 Loss: 3.6135661435127258 Epoch: 4/15 Loss: 3.612563529968262 Epoch: 4/15 Loss: 3.6107242093086245 Epoch: 4/15 Loss: 3.634239720821381 Epoch: 4/15 Loss: 3.6241551036834716 Epoch: 4/15 Loss: 3.6360190949440003 Epoch: 4/15 Loss: 3.629854612350464 Epoch: 4/15 Loss: 3.638748689174652 Epoch: 4/15 Loss: 3.660061673641205 Epoch: 4/15 Loss: 3.6517494859695434 Epoch: 4/15 Loss: 3.6782753829956056 Epoch: 5/15 Loss: 3.5748015845154093 Epoch: 5/15 Loss: 3.5030285787582396 Epoch: 5/15 Loss: 3.529293653011322 Epoch: 5/15 Loss: 3.544752722263336 Epoch: 5/15 Loss: 3.5262277255058287 Epoch: 5/15 Loss: 3.5269879837036133 Epoch: 5/15 Loss: 3.5471931715011595 Epoch: 5/15 Loss: 3.537584321975708 Epoch: 5/15 Loss: 3.562373523712158 Epoch: 5/15 Loss: 3.5504064817428587 Epoch: 5/15 Loss: 3.5773405966758727 Epoch: 5/15 Loss: 3.593911103248596 Epoch: 5/15 Loss: 3.5838500723838806 Epoch: 6/15 Loss: 3.515779958543886 Epoch: 6/15 Loss: 3.4414275498390197 Epoch: 6/15 Loss: 3.4355605812072754 Epoch: 6/15 Loss: 3.4684629378318785 Epoch: 6/15 Loss: 3.4434701709747313 Epoch: 6/15 Loss: 3.4645385398864748 Epoch: 6/15 Loss: 3.4650891432762148 Epoch: 6/15 Loss: 3.4813038401603698 Epoch: 6/15 Loss: 3.49388755941391 Epoch: 6/15 Loss: 3.5032606301307676 Epoch: 6/15 Loss: 3.5207064938545227 Epoch: 6/15 Loss: 3.5307855820655822 Epoch: 6/15 Loss: 3.51517715883255 Epoch: 7/15 Loss: 3.4456181745165027 Epoch: 7/15 Loss: 3.3771461005210877 Epoch: 7/15 Loss: 3.3846773090362547 Epoch: 7/15 Loss: 3.4048191170692443 Epoch: 7/15 Loss: 3.4103379836082457 Epoch: 7/15 Loss: 3.423795045852661 Epoch: 7/15 Loss: 3.4269042444229125 Epoch: 7/15 Loss: 3.411906246185303 Epoch: 7/15 Loss: 3.43211283493042 Epoch: 7/15 Loss: 3.463759604930878 Epoch: 7/15 Loss: 3.463076445579529 Epoch: 7/15 Loss: 3.4536395978927614 Epoch: 7/15 Loss: 3.48320840215683 Epoch: 8/15 Loss: 3.4076260366429976 Epoch: 8/15 Loss: 3.3300515875816346 Epoch: 8/15 Loss: 3.3234596576690674 Epoch: 8/15 Loss: 3.357691041469574 Epoch: 8/15 Loss: 3.3792418384552003 Epoch: 8/15 Loss: 3.3656737823486327 Epoch: 8/15 Loss: 3.394780083656311 Epoch: 8/15 Loss: 3.4004516296386718 Epoch: 8/15 Loss: 3.3816783595085145 Epoch: 8/15 Loss: 3.4069102473258974 Epoch: 8/15 Loss: 3.4120297656059266 Epoch: 8/15 Loss: 3.4212848253250123 Epoch: 8/15 Loss: 3.4585192375183107 Epoch: 9/15 Loss: 3.3459856111567823 Epoch: 9/15 Loss: 3.287767780303955 Epoch: 9/15 Loss: 3.2996500387191774 Epoch: 9/15 Loss: 3.30378905582428 Epoch: 9/15 Loss: 3.333864600658417 Epoch: 9/15 Loss: 3.331572470188141 Epoch: 9/15 Loss: 3.3586099162101744 Epoch: 9/15 Loss: 3.3454168720245363 Epoch: 9/15 Loss: 3.3660482664108278 Epoch: 9/15 Loss: 3.3933242354393007 Epoch: 9/15 Loss: 3.373943386554718 Epoch: 9/15 Loss: 3.406001955509186 Epoch: 9/15 Loss: 3.4115171217918396 Epoch: 10/15 Loss: 3.3297511086990466 Epoch: 10/15 Loss: 3.2565266275405884 Epoch: 10/15 Loss: 3.27760705947876 Epoch: 10/15 Loss: 3.276241961479187 Epoch: 10/15 Loss: 3.292051549911499 Epoch: 10/15 Loss: 3.3008588137626647 Epoch: 10/15 Loss: 3.296488829612732 Epoch: 10/15 Loss: 3.3341244072914122 Epoch: 10/15 Loss: 3.3363446407318116 Epoch: 10/15 Loss: 3.3583689193725585 Epoch: 10/15 Loss: 3.3426983699798583 Epoch: 10/15 Loss: 3.364784192085266 Epoch: 10/15 Loss: 3.3697974729537963 Epoch: 11/15 Loss: 3.30349520829932 Epoch: 11/15 Loss: 3.2400580887794495 Epoch: 11/15 Loss: 3.258445496082306 Epoch: 11/15 Loss: 3.257075644016266 Epoch: 11/15 Loss: 3.2616396007537842 Epoch: 11/15 Loss: 3.279477642059326 Epoch: 11/15 Loss: 3.282373327732086 Epoch: 11/15 Loss: 3.2984293656349184 Epoch: 11/15 Loss: 3.3059213371276854 Epoch: 11/15 Loss: 3.3199121255874635 Epoch: 11/15 Loss: 3.335271245479584 Epoch: 11/15 Loss: 3.3375997610092165 Epoch: 11/15 Loss: 3.325686914920807 Epoch: 12/15 Loss: 3.266997230311296 Epoch: 12/15 Loss: 3.2111249437332154 Epoch: 12/15 Loss: 3.216985863685608 Epoch: 12/15 Loss: 3.2227586827278136 Epoch: 12/15 Loss: 3.259324100971222 Epoch: 12/15 Loss: 3.255472243309021 Epoch: 12/15 Loss: 3.2459015679359435 Epoch: 12/15 Loss: 3.2820868468284607 Epoch: 12/15 Loss: 3.2822631974220275 Epoch: 12/15 Loss: 3.2923036961555483 Epoch: 12/15 Loss: 3.2835958876609803 Epoch: 12/15 Loss: 3.3187372236251833 Epoch: 12/15 Loss: 3.331912058353424 Epoch: 13/15 Loss: 3.244559086513224 Epoch: 13/15 Loss: 3.18434060382843 Epoch: 13/15 Loss: 3.1857465381622316 Epoch: 13/15 Loss: 3.202395000934601 Epoch: 13/15 Loss: 3.2047086901664734 Epoch: 13/15 Loss: 3.2394026832580565 Epoch: 13/15 Loss: 3.228401366233826 Epoch: 13/15 Loss: 3.2566629428863525 Epoch: 13/15 Loss: 3.257145313739777 Epoch: 13/15 Loss: 3.2559934039115905 Epoch: 13/15 Loss: 3.297042961597443 Epoch: 13/15 Loss: 3.2976802291870118 Epoch: 13/15 Loss: 3.2991899905204773 Epoch: 14/15 Loss: 3.2246991827761056 Epoch: 14/15 Loss: 3.1642752180099487 Epoch: 14/15 Loss: 3.177460174560547 Epoch: 14/15 Loss: 3.1856022624969484 Epoch: 14/15 Loss: 3.1972383599281313 Epoch: 14/15 Loss: 3.207955976009369 Epoch: 14/15 Loss: 3.2303984208106993 Epoch: 14/15 Loss: 3.214177114486694 Epoch: 14/15 Loss: 3.2492737979888915 Epoch: 14/15 Loss: 3.250202163219452 Epoch: 14/15 Loss: 3.2708270101547243 Epoch: 14/15 Loss: 3.266427955150604 Epoch: 14/15 Loss: 3.2689873123168947 Epoch: 15/15 Loss: 3.2057445130481073 Epoch: 15/15 Loss: 3.1529199509620667 Epoch: 15/15 Loss: 3.1448832812309266 Epoch: 15/15 Loss: 3.1661043372154234 Epoch: 15/15 Loss: 3.183661512851715 Epoch: 15/15 Loss: 3.1891458773612977 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** I trained the network with the following hyperparameters. - sequence_length = 10, since the average number of word in each line is 5, setting a sequence length of 10 could guarantee that in average the network has information on 2 different lines to extract better the context´- num_epochs = 15, since it is a moderate big network I thought that 15 epochs could be traversed in a few hours and than analzying the trend in the loss I could decide if training more or if the results are sufficient- learning_rate = 0.001, in all the networks trained during the course I always experience a sufficient performance with this learning rate and therefore I used it also here- embedding_dim = 256, in the sentiment Analysis network I used a embedding size of 400. Having an embedding dimension of 400 with 46k words it generates 18 milion parameters. In order to reduce the number of parameters I tried to cut the embedding dimension to 256. - hidden_dim = 256, here I used the value used in the Sentiment Analysis RNN- n_layers = 2, usually the suggested number of hidden layers is between 2 and 3. Again to keep the dimension of the network limited I decided to use 2 layers (note: this was the same value used in the Sentiment Analysis RNN)With this parameters I obtained a training loss of 3.26 that is better thatn the required one (3.5) and I decided to stick with this hyperparameters for this project. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code import numpy as np # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:45: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function vocab = set(text) vocab_to_int = {} int_to_vocab = {} for i, word in enumerate(vocab): vocab_to_int[word] = i int_to_vocab[i] = word # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token_dict = { '.':'||period||', ',':'||comma||', '"':'||quotation_mark||', ';':'||semicolon||', '!':'||exclamation_mark||', '?':'||question_mark||', '(':'||left_parentheses||', ')':'||right_parentheses||', '-':'||dash||', '\n':'||return||', } return token_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function n_batches = len(words)//batch_size print(n_batches) # only full batches words = words[:n_batches*batch_size] x, y = [], [] for i in range(0, len(words)-sequence_length): x_batch = words[i:i+sequence_length] y_batch = words[i+sequence_length] x.append(x_batch) y.append(y_batch) data = TensorDataset(torch.from_numpy(np.asarray(x)), torch.from_numpy(np.array(y))) dataloader = DataLoader(data, shuffle=True, batch_size = batch_size) # return a dataloader return dataloader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output 5 torch.Size([10, 5]) tensor([[ 12, 13, 14, 15, 16], [ 27, 28, 29, 30, 31], [ 40, 41, 42, 43, 44], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 1, 2, 3, 4, 5], [ 35, 36, 37, 38, 39], [ 2, 3, 4, 5, 6], [ 33, 34, 35, 36, 37], [ 38, 39, 40, 41, 42]]) torch.Size([10]) tensor([ 17, 32, 45, 28, 11, 6, 40, 7, 38, 43]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers # embedding and LSTM layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # dropout layer #self.dropout = nn.Dropout(0.3) # linear and sigmoid layers self.fc = nn.Linear(hidden_dim, output_size) #self.sig = nn.Sigmoid() def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # embeddings and lstm_out nn_input = nn_input.long() embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer #out = self.dropout(lstm_out) output = self.fc(lstm_out) # reshape to be batch_size first output = output.view(batch_size, -1, self.output_size) output = output[:, -1] # get last batch of labels # return one batch of output word scores and the hidden state return output, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function clip=5 # gradient clipping # move data to GPU, if available if(train_on_gpu): inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization hidden = tuple([each.data for each in hidden]) rnn.zero_grad() output, hidden = rnn(inp, hidden) #print(output.shape) #print(hidden) #print(output) loss = criterion(output.squeeze(), target.long()) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model #print(loss.item()) return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = .001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 5000 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.506498638153076 Epoch: 1/10 Loss: 4.877447241783142 Epoch: 1/10 Loss: 4.644863019943237 Epoch: 1/10 Loss: 4.550259655952454 Epoch: 1/10 Loss: 4.485655527114869 Epoch: 1/10 Loss: 4.377468444824219 Epoch: 1/10 Loss: 4.3330537147521975 Epoch: 1/10 Loss: 4.297451208114624 Epoch: 1/10 Loss: 4.272087756633758 Epoch: 1/10 Loss: 4.234725869178772 Epoch: 1/10 Loss: 4.201399923324585 Epoch: 1/10 Loss: 4.192778712272644 Epoch: 1/10 Loss: 4.18784255695343 Epoch: 2/10 Loss: 4.060189198117611 Epoch: 2/10 Loss: 3.9615867052078246 Epoch: 2/10 Loss: 3.9691027655601503 Epoch: 2/10 Loss: 3.9519200410842896 Epoch: 2/10 Loss: 3.9647532691955565 Epoch: 2/10 Loss: 3.934483114242554 Epoch: 2/10 Loss: 3.9386162099838256 Epoch: 2/10 Loss: 3.9188381514549255 Epoch: 2/10 Loss: 3.9008119230270384 Epoch: 2/10 Loss: 3.9270327596664427 Epoch: 2/10 Loss: 3.9407107014656066 Epoch: 2/10 Loss: 3.9228728451728823 Epoch: 2/10 Loss: 3.934419768333435 Epoch: 3/10 Loss: 3.8343563892624597 Epoch: 3/10 Loss: 3.7426507859230043 Epoch: 3/10 Loss: 3.7557671813964846 Epoch: 3/10 Loss: 3.7736143598556517 Epoch: 3/10 Loss: 3.7458421902656553 Epoch: 3/10 Loss: 3.7396921286582945 Epoch: 3/10 Loss: 3.781070989608765 Epoch: 3/10 Loss: 3.7556300292015075 Epoch: 3/10 Loss: 3.7549902181625368 Epoch: 3/10 Loss: 3.773991184234619 Epoch: 3/10 Loss: 3.7551934151649475 Epoch: 3/10 Loss: 3.7813932132720947 Epoch: 3/10 Loss: 3.7605673551559446 Epoch: 4/10 Loss: 3.687348848039454 Epoch: 4/10 Loss: 3.6174276361465454 Epoch: 4/10 Loss: 3.632415452003479 Epoch: 4/10 Loss: 3.60900665807724 Epoch: 4/10 Loss: 3.6264643836021424 Epoch: 4/10 Loss: 3.652281243801117 Epoch: 4/10 Loss: 3.6259088106155395 Epoch: 4/10 Loss: 3.641796570777893 Epoch: 4/10 Loss: 3.608736423969269 Epoch: 4/10 Loss: 3.6658333034515382 Epoch: 4/10 Loss: 3.64899453496933 Epoch: 4/10 Loss: 3.6710940074920653 Epoch: 4/10 Loss: 3.671676317214966 Epoch: 5/10 Loss: 3.593381263746703 Epoch: 5/10 Loss: 3.5083509378433226 Epoch: 5/10 Loss: 3.5186539788246156 Epoch: 5/10 Loss: 3.526905979633331 Epoch: 5/10 Loss: 3.526041862487793 Epoch: 5/10 Loss: 3.540880611896515 Epoch: 5/10 Loss: 3.5590038523674012 Epoch: 5/10 Loss: 3.555765299320221 Epoch: 5/10 Loss: 3.5798491163253785 Epoch: 5/10 Loss: 3.5680856795310976 Epoch: 5/10 Loss: 3.5748853750228884 Epoch: 5/10 Loss: 3.5902964310646057 Epoch: 5/10 Loss: 3.60514697933197 Epoch: 6/10 Loss: 3.52073567268277 Epoch: 6/10 Loss: 3.434302396297455 Epoch: 6/10 Loss: 3.429089115142822 Epoch: 6/10 Loss: 3.467383470535278 Epoch: 6/10 Loss: 3.461300371170044 Epoch: 6/10 Loss: 3.477927261829376 Epoch: 6/10 Loss: 3.488366159915924 Epoch: 6/10 Loss: 3.5074389123916627 Epoch: 6/10 Loss: 3.479556882381439 Epoch: 6/10 Loss: 3.5131272134780884 Epoch: 6/10 Loss: 3.5079288334846495 Epoch: 6/10 Loss: 3.5293037824630735 Epoch: 6/10 Loss: 3.550463225841522 Epoch: 7/10 Loss: 3.45417728034918 Epoch: 7/10 Loss: 3.394913876056671 Epoch: 7/10 Loss: 3.393556586742401 Epoch: 7/10 Loss: 3.4119445657730103 Epoch: 7/10 Loss: 3.420303556442261 Epoch: 7/10 Loss: 3.417772924423218 Epoch: 7/10 Loss: 3.451010533809662 Epoch: 7/10 Loss: 3.4430946741104127 Epoch: 7/10 Loss: 3.4528610763549805 Epoch: 7/10 Loss: 3.4568219618797302 Epoch: 7/10 Loss: 3.452462176799774 Epoch: 7/10 Loss: 3.484591769218445 Epoch: 7/10 Loss: 3.4895895872116087 Epoch: 8/10 Loss: 3.409822672359214 Epoch: 8/10 Loss: 3.341217004299164 Epoch: 8/10 Loss: 3.3462885613441467 Epoch: 8/10 Loss: 3.3690835256576537 Epoch: 8/10 Loss: 3.3675912661552427 Epoch: 8/10 Loss: 3.374692803859711 Epoch: 8/10 Loss: 3.391706500530243 Epoch: 8/10 Loss: 3.396349504947662 Epoch: 8/10 Loss: 3.4337016572952272 Epoch: 8/10 Loss: 3.4108635573387147 Epoch: 8/10 Loss: 3.427956174850464 Epoch: 8/10 Loss: 3.4229448461532592 Epoch: 8/10 Loss: 3.441431237220764 Epoch: 9/10 Loss: 3.366252738335901 Epoch: 9/10 Loss: 3.300349271774292 Epoch: 9/10 Loss: 3.31926242685318 Epoch: 9/10 Loss: 3.2994600176811217 Epoch: 9/10 Loss: 3.3354625854492186 Epoch: 9/10 Loss: 3.3441440467834473 Epoch: 9/10 Loss: 3.3583695521354677 Epoch: 9/10 Loss: 3.3639197597503663 Epoch: 9/10 Loss: 3.3809996342658994 Epoch: 9/10 Loss: 3.371726893424988 Epoch: 9/10 Loss: 3.3805938386917114 Epoch: 9/10 Loss: 3.423382860183716 Epoch: 9/10 Loss: 3.4237439546585082 Epoch: 10/10 Loss: 3.3301968308519725 Epoch: 10/10 Loss: 3.2772505798339844 Epoch: 10/10 Loss: 3.28263094997406 Epoch: 10/10 Loss: 3.2998509521484376 Epoch: 10/10 Loss: 3.299762092113495 Epoch: 10/10 Loss: 3.299778486251831 Epoch: 10/10 Loss: 3.319560504436493 Epoch: 10/10 Loss: 3.3200579319000245 Epoch: 10/10 Loss: 3.333797775268555 Epoch: 10/10 Loss: 3.3373168268203734 Epoch: 10/10 Loss: 3.3615681343078614 Epoch: 10/10 Loss: 3.380522684574127 Epoch: 10/10 Loss: 3.396915725708008 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)Tried many combination ofr hyperparameter and dropout.1. **Basic params to test model functionality -** * sequence_length = 10 * batch_size=50 * num_epochs=1 * learning_rate = 0.001 * vocab_size=len(vocab_to_int) +1 * output_size=vocab_size * embedding_dim=50 * hidden_dim=10 * n_layers=2 **Result** - Training was happining 2. **Set 1** - Increased hidden dimension only * sequence_length = 10 * batch_size=50 * num_epochs=1 * learning_rate = 0.001 * vocab_size=len(vocab_to_int) +1 * output_size=vocab_size * embedding_dim=50 * hidden_dim=128 * n_layers=2 **Result** - loss was stuck ~5 and not decreasing beyond 3. **Set 2** -- Increased hidden and embedding dimension * sequence_length = 20 * batch_size=50 * num_epochs=1 * learning_rate = 0.001 * vocab_size=len(vocab_to_int) +1 * output_size=vocab_size * embedding_dim=100 * hidden_dim=128 * n_layers=2 **Result** - again loss was stuck ~5 and not decreasing beyond 4. **Set 3** -- Increased hidden dimension more and batch size * sequence_length = 10 * batch_size=128 * num_epochs=2 * learning_rate = 0.01 * vocab_size=len(vocab_to_int) +1 * output_size=vocab_size * embedding_dim=100 * hidden_dim=256 * n_layers=2 **Result** - loss was increasing and decreasing5. **Set 4** -- Increased epochs and embedding dimension and removed +1 from vacab size as no padding here * sequence_length = 10 * batch_size=128 * num_epochs=20 * learning_rate = 0.01 * vocab_size=len(vocab_to_int) no padding * output_size=vocab_size * embedding_dim=300 * hidden_dim=256 * n_layers=2 **Result** - loss was decreasing in start but stable after 10 epochs6. **Set 5** -- decreased embedding dimension to 200 and removed dropout layer * sequence_length = 10 * batch_size=128 * num_epochs=10 * learning_rate = 0.001 * vocab_size=len(vocab_to_int) no padding * output_size=vocab_size * embedding_dim=200 * hidden_dim=256 * n_layers=2 **Result** - Finally Loss: 3.396915725708008, script also seems okay. 7. **Set 6** -- Increased embedding dimension to 300 and 3 LSTM layers * sequence_length = 10 * batch_size=128 * num_epochs=10 * learning_rate = 0.001 * vocab_size=len(vocab_to_int) no padding * output_size=vocab_size * embedding_dim=300 * hidden_dim=256 * n_layers=3 **Result** - Final loss is 3.476551958018685, and not happy with script final sumission is with set 5 * Kept sequence_length = 10 , sentences in TV script in the dataset are in similar length * embedding_dim=300 is standard * hidden_dim=256 From sentiment mini project * n_layers=2 From sentiment mini project, tried with 3 as well but didnt get better results. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:48: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(texts): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ vocab_to_int = {} int_to_vocab = {} # # TODO: Implement Function # # generate tokens by splitting # tokens = [word for word in text.split() for text in texts] # #remove duplicates # tokens = list(dict.fromkeys(tokens)) words = Counter(texts) #sort words # sorted_words = sorted(words, key= words.get, reverse = True) for i, token in enumerate(words): vocab_to_int[token] = i int_to_vocab[i] = token # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return { '.':'|dot|', ',':'|comma|', '"':'|quote|', ';':'|semicolon|', '!':'|exclamation|', '?':'|question|', '(':'|open_paren|', ')':'|close_parn|', '-':'|dash|', '\n':'|newline|' } print(token_lookup()) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output {'.': '|dot|', ',': '|comma|', '"': '|quote|', ';': '|semicolon|', '!': '|exclamation|', '?': '|question|', '(': '|open_paren|', ')': '|close_parn|', '-': '|dash|', '\n': '|newline|'} Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size, verbose = 1): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ words = list(words) # TODO: Implement function # print('words are {}, sequence_length is {}, batch size is {}'.format(words, sequence_length, batch_size)) if len(words) <= sequence_length: raise ValueError('words must be longer than sequence_length') my_x = [] my_y = [] for _ in range(len(words)-sequence_length): if len(words) % 10000 == 0: if verbose: print('word length is {}'.format(len(words))) my_x.append([words[i] for i in range(sequence_length)]) my_y.append(words[sequence_length]) words.pop(0) # print('myx is {}, myy is {}'.format(my_x,my_y)) tensor_x = torch.stack([torch.Tensor(i) for i in my_x]).type(torch.LongTensor) # transform to torch tensors # tensor_y = torch.stack([torch.Tensor([y]) for y in my_y]) tensor_y = torch.Tensor(my_y).type(torch.LongTensor) dataset = TensorDataset(tensor_x,tensor_y) dataloader = DataLoader(dataset,batch_size = batch_size) # return a dataloader return dataloader # there is no test for this function, but you are encouraged to create # print statements and tests of your own # next(iter(dataloader)) ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # store all the variables self.vocab_size = vocab_size self.output_size = output_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers # set class variables print('embedding is accepting {} and {}'.format(vocab_size,embedding_dim)) self.embedding = nn.Embedding(vocab_size, embedding_dim) self.gru1 = nn.GRU(input_size=embedding_dim, hidden_size= hidden_dim, num_layers = n_layers, dropout=dropout, batch_first= True) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # define model layers self.fc1 = nn.Linear(hidden_dim, output_size) self.dropout = nn.Dropout(dropout) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) #embeddings # print('nn_input is {}'.format(nn_input)) output = self.embedding(nn_input) ## RNN layer # print(embedded_output) # print(hidden) output, hidden = self.lstm(output, hidden) # print('using hidden shape {}'.format(hidden.shape)) output = output.contiguous().view(-1, self.hidden_dim) output = self.fc1(output) # reshape into (batch_size, seq_length, output_size) output = output.view(batch_size, -1, self.output_size) # get last batch output = output[:,-1] # print('final output shape {}'.format(output.shape)) # return one batch of output word scores and the hidden state return output, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function weight = next(self.parameters()).data # print('weight is {}'.format(weight.shape)) if torch.cuda.is_available(): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) # hidden = torch.randn(self.n_layers, batch_size, self.hidden_dim).cuda() # print('using cuda shape {}'.format(hidden.shape)) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden # initialize hidden state with zero weights, and move to GPU if available # return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output embedding is accepting 20 and 15 Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ cuda = torch.cuda.is_available # TODO: Implement Function if cuda: # print('using cuda') rnn.cuda() inp = inp.cuda() target = target.cuda() h = tuple(hidden_item.data.cuda() for hidden_item in hidden) output , h = rnn(inp, h) #set zero grads rnn.zero_grad() optimizer.zero_grad() loss = criterion(output, target) # perform backpropagation and optimization loss.backward() optimizer.step() # return the loss over a batch and the hidden state produced by our model # print('h is {}, hidden is {}'.format(h,hidden)) return loss.item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output embedding is accepting 20 and 15 Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100, train_loader = None): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # testing different sequence length sequence_lengths_ = range(8,22) # of words in a sequence # Batch Size batch_size_ = 128 # data loader - do not change # Training parameters # Number of Epochs num_epochs_ = 3 # Learning Rate learning_rate_ = 0.001 # Model parameters # Vocab size vocab_dict = create_lookup_tables(int_text) vocab_size = len(vocab_dict[0]) output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 200 # Number of RNN Layers n_layers = 3 # Show stats for every n number of batches show_every_n_batches_ = 3000 !wget https://s3.amazonaws.com/video.udacity-data.com/topher/2018/May/5b0dea96_workspace-utils/workspace-utils.py !mv workspace-utils.py workspace_utils.py from workspace_utils import active_session # create model and move to gpu if available rnn_ = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: print('training with cuda') rnn_.cuda() # # defining loss and optimization functions for training # optimizer_ = torch.optim.Adam(rnn_.parameters(), lr=learning_rate_) # criterion_ = nn.CrossEntropyLoss() # training the model with active_session(): for sequence_length_ in sequence_lengths_: print('sequence_length of {}'.format(sequence_length_)) # defining loss and optimization functions for training rnn_ = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) optimizer_ = torch.optim.Adam(rnn_.parameters(), lr=learning_rate_) criterion_ = nn.CrossEntropyLoss() train_loader_ = batch_data(int_text, sequence_length_, batch_size_, verbose = 0) trained_rnn = train_rnn(rnn_, batch_size_, optimizer_, criterion_, num_epochs_, show_every_n_batches_, train_loader = train_loader_) ## clean up test model rnn_ = None optimizer_ = None train_loader_ = None trained_rnn = None # Data params # Sequence Length sequence_length = 21 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # vocab_dict = create_lookup_tables(int_text) # len(vocab_dict[0]) # Training parameters # Number of Epochs num_epochs = 20 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_dict = create_lookup_tables(int_text) vocab_size = len(vocab_dict[0])+1 print(type(vocab_size)) print(vocab_size) # vocab_size = 1000 # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 200 # Number of RNN Layers n_layers = 3 # Show stats for every n number of batches show_every_n_batches = 3000 ###Output <class 'int'> 21388 ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ !wget https://s3.amazonaws.com/video.udacity-data.com/topher/2018/May/5b0dea96_workspace-utils/workspace-utils.py !mv workspace-utils.py workspace_utils.py from workspace_utils import active_session # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: print('training with cuda') rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model with active_session(): trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches, train_loader = train_loader) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output --2020-01-05 16:32:21-- https://s3.amazonaws.com/video.udacity-data.com/topher/2018/May/5b0dea96_workspace-utils/workspace-utils.py Resolving s3.amazonaws.com (s3.amazonaws.com)... 52.216.170.197 Connecting to s3.amazonaws.com (s3.amazonaws.com)|52.216.170.197|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 1540 (1.5K) [] Saving to: ‘workspace-utils.py’ workspace-utils.py 100%[===================>] 1.50K --.-KB/s in 0s 2020-01-05 16:32:21 (47.0 MB/s) - ‘workspace-utils.py’ saved [1540/1540] embedding is accepting 21388 and 200 training with cuda Training for 20 epoch(s)... Epoch: 1/20 Loss: 5.091635976314545 Epoch: 1/20 Loss: 4.522566963275274 Epoch: 2/20 Loss: 4.231029295146421 Epoch: 2/20 Loss: 4.051306582609812 Epoch: 3/20 Loss: 3.94787837312275 Epoch: 3/20 Loss: 3.851106468995412 Epoch: 4/20 Loss: 3.7886007534944013 Epoch: 4/20 Loss: 3.7275266621112824 Epoch: 5/20 Loss: 3.6795879172029347 Epoch: 5/20 Loss: 3.633143556038539 Epoch: 6/20 Loss: 3.5952494360692375 Epoch: 6/20 Loss: 3.556723170042038 Epoch: 7/20 Loss: 3.5290843500962454 Epoch: 7/20 Loss: 3.4936336399714154 Epoch: 8/20 Loss: 3.4777449038744153 Epoch: 8/20 Loss: 3.449163283665975 Epoch: 9/20 Loss: 3.439702339813913 Epoch: 9/20 Loss: 3.4093887383937838 Epoch: 10/20 Loss: 3.4012197300239846 Epoch: 10/20 Loss: 3.3731024016539255 Epoch: 11/20 Loss: 3.3698691648390526 Epoch: 11/20 Loss: 3.3411524329980216 Epoch: 12/20 Loss: 3.3388918782097474 Epoch: 12/20 Loss: 3.313706538279851 Epoch: 13/20 Loss: 3.314520687563169 Epoch: 13/20 Loss: 3.2904601511160534 Epoch: 14/20 Loss: 3.2924320061641126 Epoch: 14/20 Loss: 3.268146762688955 Epoch: 15/20 Loss: 3.2754495107247568 Epoch: 15/20 Loss: 3.254682934522629 Epoch: 16/20 Loss: 3.258460097001764 Epoch: 16/20 Loss: 3.233943171262741 Epoch: 17/20 Loss: 3.242279090218173 Epoch: 17/20 Loss: 3.2142629300753276 Epoch: 18/20 Loss: 3.2286074717178788 Epoch: 18/20 Loss: 3.202573269287745 Epoch: 19/20 Loss: 3.2156394934227737 Epoch: 19/20 Loss: 3.18821901456515 Epoch: 20/20 Loss: 3.1974074770864234 Epoch: 20/20 Loss: 3.1709482096036274 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** I tested many different configuration starting with a simpler models due to the limited computing resource for the vest convergence. I tried sequence length 8 to 21 and found that 21 has a fastest convergence. However, due to each model taking a very long time to train, more experiments will be required to find an optimal sequence length and other hyperparameters --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:50: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper import inspect data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ counts = Counter(text) vocab = sorted(counts, key=counts.get, reverse=True) int_to_vocab = {ii: word for ii, word in enumerate(vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ symbolDict = { '.' : '<PERIOD>', ',' : '<COMMA>', '"' : '<QUOTATION_MARK>', ';' : '<SEMICOLON>', '!' : '<EXCLAMATION_MARK>', '?' : '<QUESTION_MARK>', '(' : '<LEFT_PAREN>', ')' : '<RIGHT_PAREN>', '-' : '<DASH>', '\n' : '<NEW_LINE>'} return symbolDict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ n_batches = len(words)//batch_size words = words[:n_batches*batch_size] y_len = len(words) - sequence_length x, y = [], [] for idx in range(0, y_len): idx_end = sequence_length + idx x_batch = words[idx:idx_end] x.append(x_batch) batch_y = words[idx_end] y.append(batch_y) feature_tensor = torch.from_numpy(np.asarray(x)) target_tensor = torch.from_numpy(np.asarray(y)) data = TensorDataset(feature_tensor, target_tensor) data_loader = DataLoader(data, shuffle=True, batch_size=batch_size) return data_loader ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[42, 43, 44, 45, 46], [15, 16, 17, 18, 19], [31, 32, 33, 34, 35], [30, 31, 32, 33, 34], [ 5, 6, 7, 8, 9], [19, 20, 21, 22, 23], [ 9, 10, 11, 12, 13], [23, 24, 25, 26, 27], [37, 38, 39, 40, 41], [44, 45, 46, 47, 48]]) torch.Size([10]) tensor([47, 20, 36, 35, 10, 24, 14, 28, 42, 49]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ batch_size = nn_input.size(0) embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) out = self.fc(lstm_out) out = out.view(batch_size, -1, self.output_size) out = out[:, -1] return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ if(train_on_gpu): rnn.cuda() h = tuple([each.data for each in hidden]) rnn.zero_grad() if(train_on_gpu): inputs, target = inp.cuda(), target.cuda() output, h = rnn(inputs, h) loss = criterion(output, target) loss.backward() nn.utils.clip_grad_norm_(rnn.parameters(), 5) # return the loss over a batch and the hidden state optimizer.step() return loss.item(), h """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 512 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 40 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 128 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 3 # Show stats for every n number of batches show_every_n_batches = 100 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model # trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model # helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 40 epoch(s)... Epoch: 1/40 Loss: 6.295405616760254 Epoch: 1/40 Loss: 5.80665018081665 Epoch: 1/40 Loss: 5.797196516990661 Epoch: 1/40 Loss: 5.7697900390625 Epoch: 1/40 Loss: 5.751341071128845 Epoch: 1/40 Loss: 5.7510121726989745 Epoch: 1/40 Loss: 5.707662725448609 Epoch: 1/40 Loss: 5.4311303663253785 Epoch: 1/40 Loss: 5.130197420120239 Epoch: 1/40 Loss: 4.972960519790649 Epoch: 1/40 Loss: 4.8824619817733765 Epoch: 1/40 Loss: 4.801440367698669 Epoch: 1/40 Loss: 4.735593161582947 Epoch: 1/40 Loss: 4.675324683189392 Epoch: 1/40 Loss: 4.631986718177796 Epoch: 1/40 Loss: 4.59436755657196 Epoch: 1/40 Loss: 4.550986733436584 Epoch: 2/40 Loss: 4.482700009718009 Epoch: 2/40 Loss: 4.443418326377869 Epoch: 2/40 Loss: 4.400814819335937 Epoch: 2/40 Loss: 4.424341266155243 Epoch: 2/40 Loss: 4.376003692150116 Epoch: 2/40 Loss: 4.369593114852905 Epoch: 2/40 Loss: 4.365958843231201 Epoch: 2/40 Loss: 4.3401699638366695 Epoch: 2/40 Loss: 4.336191778182983 Epoch: 2/40 Loss: 4.296621744632721 Epoch: 2/40 Loss: 4.2957856607437135 Epoch: 2/40 Loss: 4.276228833198547 Epoch: 2/40 Loss: 4.287097451686859 Epoch: 2/40 Loss: 4.243658084869384 Epoch: 2/40 Loss: 4.248096067905426 Epoch: 2/40 Loss: 4.238345925807953 Epoch: 2/40 Loss: 4.2611296534538265 Epoch: 3/40 Loss: 4.182126696228136 Epoch: 3/40 Loss: 4.1546294665336605 Epoch: 3/40 Loss: 4.12519321680069 Epoch: 3/40 Loss: 4.109879775047302 Epoch: 3/40 Loss: 4.137878057956695 Epoch: 3/40 Loss: 4.109914824962616 Epoch: 3/40 Loss: 4.130165166854859 Epoch: 3/40 Loss: 4.082552621364593 Epoch: 3/40 Loss: 4.107505435943604 Epoch: 3/40 Loss: 4.107112300395966 Epoch: 3/40 Loss: 4.1013430094718935 Epoch: 3/40 Loss: 4.074317052364349 Epoch: 3/40 Loss: 4.0794916081428525 Epoch: 3/40 Loss: 4.065399646759033 Epoch: 3/40 Loss: 4.053793625831604 Epoch: 3/40 Loss: 4.064567303657531 Epoch: 3/40 Loss: 4.083773424625397 Epoch: 4/40 Loss: 3.9909840019036693 Epoch: 4/40 Loss: 4.006628975868225 Epoch: 4/40 Loss: 3.963618371486664 Epoch: 4/40 Loss: 3.9872169971466063 Epoch: 4/40 Loss: 3.964105315208435 Epoch: 4/40 Loss: 3.935432105064392 Epoch: 4/40 Loss: 3.959433579444885 Epoch: 4/40 Loss: 3.9713794231414794 Epoch: 4/40 Loss: 3.9690206408500672 Epoch: 4/40 Loss: 3.9682229924201966 Epoch: 4/40 Loss: 3.9540217995643614 Epoch: 4/40 Loss: 3.971798229217529 Epoch: 4/40 Loss: 3.9671814918518065 Epoch: 4/40 Loss: 3.950990641117096 Epoch: 4/40 Loss: 3.9649457335472107 Epoch: 4/40 Loss: 3.9183714103698732 Epoch: 4/40 Loss: 3.932960946559906 Epoch: 5/40 Loss: 3.886957454343214 Epoch: 5/40 Loss: 3.8706419801712038 Epoch: 5/40 Loss: 3.871155545711517 Epoch: 5/40 Loss: 3.8602646589279175 Epoch: 5/40 Loss: 3.8603144598007204 Epoch: 5/40 Loss: 3.852443425655365 Epoch: 5/40 Loss: 3.8728827905654906 Epoch: 5/40 Loss: 3.884243245124817 Epoch: 5/40 Loss: 3.876310706138611 Epoch: 5/40 Loss: 3.840295882225037 Epoch: 5/40 Loss: 3.833985369205475 Epoch: 5/40 Loss: 3.868768584728241 Epoch: 5/40 Loss: 3.856507878303528 Epoch: 5/40 Loss: 3.870845365524292 Epoch: 5/40 Loss: 3.85084201335907 Epoch: 5/40 Loss: 3.880948007106781 Epoch: 5/40 Loss: 3.839629361629486 Epoch: 6/40 Loss: 3.7952801454151777 Epoch: 6/40 Loss: 3.791668162345886 Epoch: 6/40 Loss: 3.7634881639480593 Epoch: 6/40 Loss: 3.7595294761657714 Epoch: 6/40 Loss: 3.7662392234802247 Epoch: 6/40 Loss: 3.77467378616333 Epoch: 6/40 Loss: 3.775815877914429 Epoch: 6/40 Loss: 3.78679922580719 Epoch: 6/40 Loss: 3.7752767276763914 Epoch: 6/40 Loss: 3.777498424053192 Epoch: 6/40 Loss: 3.802544696331024 Epoch: 6/40 Loss: 3.7612729811668397 Epoch: 6/40 Loss: 3.7783097934722902 Epoch: 6/40 Loss: 3.8000766587257386 Epoch: 6/40 Loss: 3.7831038355827333 Epoch: 6/40 Loss: 3.757937984466553 Epoch: 6/40 Loss: 3.7868752789497377 Epoch: 7/40 Loss: 3.743608427385912 Epoch: 7/40 Loss: 3.705676968097687 Epoch: 7/40 Loss: 3.6995870661735535 Epoch: 7/40 Loss: 3.7004544353485107 Epoch: 7/40 Loss: 3.7161243748664856 Epoch: 7/40 Loss: 3.711156041622162 Epoch: 7/40 Loss: 3.721444709300995 Epoch: 7/40 Loss: 3.7119625425338745 Epoch: 7/40 Loss: 3.7012072134017946 Epoch: 7/40 Loss: 3.699277074337006 Epoch: 7/40 Loss: 3.701347050666809 Epoch: 7/40 Loss: 3.7014129090309145 Epoch: 7/40 Loss: 3.6882052850723266 Epoch: 7/40 Loss: 3.7217113471031187 Epoch: 7/40 Loss: 3.7116312742233277 Epoch: 7/40 Loss: 3.7142012405395506 Epoch: 7/40 Loss: 3.7124273347854615 Epoch: 8/40 Loss: 3.64532511454102 Epoch: 8/40 Loss: 3.6349867463111876 Epoch: 8/40 Loss: 3.628470141887665 Epoch: 8/40 Loss: 3.635446991920471 Epoch: 8/40 Loss: 3.616869878768921 Epoch: 8/40 Loss: 3.6518490934371948 Epoch: 8/40 Loss: 3.6229884028434753 Epoch: 8/40 Loss: 3.6644326877593993 Epoch: 8/40 Loss: 3.643743782043457 Epoch: 8/40 Loss: 3.632582881450653 Epoch: 8/40 Loss: 3.6628377771377565 Epoch: 8/40 Loss: 3.6410494661331176 Epoch: 8/40 Loss: 3.6723699021339415 Epoch: 8/40 Loss: 3.6630463075637816 Epoch: 8/40 Loss: 3.6748353147506716 Epoch: 8/40 Loss: 3.649612395763397 Epoch: 8/40 Loss: 3.677780649662018 Epoch: 9/40 Loss: 3.5939259241658745 Epoch: 9/40 Loss: 3.571683213710785 Epoch: 9/40 Loss: 3.572504801750183 Epoch: 9/40 Loss: 3.563976306915283 Epoch: 9/40 Loss: 3.585196068286896 Epoch: 9/40 Loss: 3.609772081375122 Epoch: 9/40 Loss: 3.591744203567505 Epoch: 9/40 Loss: 3.6093695425987242 Epoch: 9/40 Loss: 3.610701684951782 Epoch: 9/40 Loss: 3.5989301013946533 Epoch: 9/40 Loss: 3.579483392238617 Epoch: 9/40 Loss: 3.621468951702118 Epoch: 9/40 Loss: 3.596694543361664 Epoch: 9/40 Loss: 3.6036853432655334 Epoch: 9/40 Loss: 3.6263876819610594 Epoch: 9/40 Loss: 3.6100056648254393 Epoch: 9/40 Loss: 3.60446980714798 Epoch: 10/40 Loss: 3.546570563147254 Epoch: 10/40 Loss: 3.5193035292625425 Epoch: 10/40 Loss: 3.527236454486847 Epoch: 10/40 Loss: 3.5315622735023497 Epoch: 10/40 Loss: 3.5405736994743346 Epoch: 10/40 Loss: 3.5505992460250853 Epoch: 10/40 Loss: 3.540771176815033 Epoch: 10/40 Loss: 3.558017601966858 Epoch: 10/40 Loss: 3.5566860485076903 Epoch: 10/40 Loss: 3.5459209084510803 Epoch: 10/40 Loss: 3.5672666001319886 Epoch: 10/40 Loss: 3.5641508007049563 Epoch: 10/40 Loss: 3.5496798038482664 Epoch: 10/40 Loss: 3.574055378437042 Epoch: 10/40 Loss: 3.5617594385147093 Epoch: 10/40 Loss: 3.559128615856171 Epoch: 10/40 Loss: 3.5679479455947876 Epoch: 11/40 Loss: 3.506722019073811 Epoch: 11/40 Loss: 3.4964158725738526 Epoch: 11/40 Loss: 3.4934451007843017 Epoch: 11/40 Loss: 3.516865141391754 Epoch: 11/40 Loss: 3.504990770816803 Epoch: 11/40 Loss: 3.504933135509491 Epoch: 11/40 Loss: 3.5081810975074768 Epoch: 11/40 Loss: 3.5264525747299196 Epoch: 11/40 Loss: 3.5046090054512025 Epoch: 11/40 Loss: 3.5161074209213257 Epoch: 11/40 Loss: 3.527113344669342 Epoch: 11/40 Loss: 3.5243750500679014 Epoch: 11/40 Loss: 3.498313910961151 Epoch: 11/40 Loss: 3.525337574481964 Epoch: 11/40 Loss: 3.521401822566986 Epoch: 11/40 Loss: 3.5258352732658387 Epoch: 11/40 Loss: 3.527318332195282 Epoch: 12/40 Loss: 3.476656978011977 Epoch: 12/40 Loss: 3.450390686988831 Epoch: 12/40 Loss: 3.4417812037467956 Epoch: 12/40 Loss: 3.460411469936371 Epoch: 12/40 Loss: 3.4699028301239014 Epoch: 12/40 Loss: 3.4750412702560425 Epoch: 12/40 Loss: 3.472771079540253 Epoch: 12/40 Loss: 3.4660913157463074 Epoch: 12/40 Loss: 3.4755796074867247 Epoch: 12/40 Loss: 3.502383146286011 Epoch: 12/40 Loss: 3.486322202682495 Epoch: 12/40 Loss: 3.484312505722046 Epoch: 12/40 Loss: 3.497102077007294 Epoch: 12/40 Loss: 3.490264842510223 Epoch: 12/40 Loss: 3.4757595610618592 Epoch: 12/40 Loss: 3.502481999397278 Epoch: 12/40 Loss: 3.4794949007034304 Epoch: 13/40 Loss: 3.4322432051313685 Epoch: 13/40 Loss: 3.4397751021385194 Epoch: 13/40 Loss: 3.4296371936798096 Epoch: 13/40 Loss: 3.4359394812583925 Epoch: 13/40 Loss: 3.434664399623871 Epoch: 13/40 Loss: 3.422861933708191 Epoch: 13/40 Loss: 3.4323301005363462 Epoch: 13/40 Loss: 3.4305405473709105 Epoch: 13/40 Loss: 3.4646142148971557 Epoch: 13/40 Loss: 3.4647024202346803 Epoch: 13/40 Loss: 3.445142068862915 Epoch: 13/40 Loss: 3.4573641347885133 Epoch: 13/40 Loss: 3.465134286880493 Epoch: 13/40 Loss: 3.4545325469970702 Epoch: 13/40 Loss: 3.4514136958122252 Epoch: 13/40 Loss: 3.4467888617515565 Epoch: 13/40 Loss: 3.4437260174751283 Epoch: 14/40 Loss: 3.418311859699006 Epoch: 14/40 Loss: 3.368879249095917 Epoch: 14/40 Loss: 3.3830223059654236 Epoch: 14/40 Loss: 3.401392252445221 Epoch: 14/40 Loss: 3.3881922268867495 Epoch: 14/40 Loss: 3.399292998313904 Epoch: 14/40 Loss: 3.4179391717910765 Epoch: 14/40 Loss: 3.409709415435791 Epoch: 14/40 Loss: 3.418008463382721 Epoch: 14/40 Loss: 3.4281705379486085 Epoch: 14/40 Loss: 3.4242951536178587 Epoch: 14/40 Loss: 3.4236558198928835 Epoch: 14/40 Loss: 3.413107385635376 Epoch: 14/40 Loss: 3.4205154633522032 Epoch: 14/40 Loss: 3.431173324584961 Epoch: 14/40 Loss: 3.440660014152527 Epoch: 14/40 Loss: 3.4360440230369567 Epoch: 15/40 Loss: 3.3668645679527986 Epoch: 15/40 Loss: 3.353421995639801 Epoch: 15/40 Loss: 3.3431429624557496 Epoch: 15/40 Loss: 3.35803386926651 Epoch: 15/40 Loss: 3.3600885033607484 Epoch: 15/40 Loss: 3.3828885626792906 Epoch: 15/40 Loss: 3.3685464119911193 Epoch: 15/40 Loss: 3.3805907797813415 Epoch: 15/40 Loss: 3.386972198486328 Epoch: 15/40 Loss: 3.398211431503296 Epoch: 15/40 Loss: 3.407992901802063 Epoch: 15/40 Loss: 3.3943982195854185 Epoch: 15/40 Loss: 3.400393536090851 Epoch: 15/40 Loss: 3.4144240856170653 Epoch: 15/40 Loss: 3.4137556076049806 Epoch: 15/40 Loss: 3.4087609386444093 Epoch: 15/40 Loss: 3.425365447998047 Epoch: 16/40 Loss: 3.3526262442270913 Epoch: 16/40 Loss: 3.341873707771301 Epoch: 16/40 Loss: 3.335239999294281 Epoch: 16/40 Loss: 3.3401453590393064 Epoch: 16/40 Loss: 3.325375301837921 Epoch: 16/40 Loss: 3.353274827003479 Epoch: 16/40 Loss: 3.366937131881714 Epoch: 16/40 Loss: 3.3424195432662964 Epoch: 16/40 Loss: 3.3706952142715454 Epoch: 16/40 Loss: 3.3572868704795837 Epoch: 16/40 Loss: 3.369709508419037 Epoch: 16/40 Loss: 3.3803389120101928 Epoch: 16/40 Loss: 3.3692610931396483 Epoch: 16/40 Loss: 3.366413378715515 Epoch: 16/40 Loss: 3.3921719861030577 Epoch: 16/40 Loss: 3.386460587978363 Epoch: 16/40 Loss: 3.3752875924110413 Epoch: 17/40 Loss: 3.3144431114196777 Epoch: 17/40 Loss: 3.316742401123047 Epoch: 17/40 Loss: 3.3199937248229983 Epoch: 17/40 Loss: 3.3262393426895143 Epoch: 17/40 Loss: 3.3088027143478396 Epoch: 17/40 Loss: 3.316550068855286 Epoch: 17/40 Loss: 3.318686828613281 Epoch: 17/40 Loss: 3.3388957238197325 Epoch: 17/40 Loss: 3.32929988861084 Epoch: 17/40 Loss: 3.3600588726997374 Epoch: 17/40 Loss: 3.3361262679100037 Epoch: 17/40 Loss: 3.3680515551567076 Epoch: 17/40 Loss: 3.3566253852844237 Epoch: 17/40 Loss: 3.33636949300766 Epoch: 17/40 Loss: 3.3561578035354613 Epoch: 17/40 Loss: 3.371836874485016 Epoch: 17/40 Loss: 3.3510951161384583 Epoch: 18/40 Loss: 3.3190926947492234 Epoch: 18/40 Loss: 3.2852808141708376 Epoch: 18/40 Loss: 3.2837573146820067 Epoch: 18/40 Loss: 3.2768738412857057 Epoch: 18/40 Loss: 3.300302140712738 Epoch: 18/40 Loss: 3.2887814974784852 Epoch: 18/40 Loss: 3.329373047351837 Epoch: 18/40 Loss: 3.291519181728363 Epoch: 18/40 Loss: 3.329669234752655 Epoch: 18/40 Loss: 3.330455493927002 Epoch: 18/40 Loss: 3.3390631699562072 Epoch: 18/40 Loss: 3.332003128528595 Epoch: 18/40 Loss: 3.334246401786804 Epoch: 18/40 Loss: 3.3429106092453003 Epoch: 18/40 Loss: 3.33590163230896 Epoch: 18/40 Loss: 3.32009378194809 Epoch: 18/40 Loss: 3.332184455394745 Epoch: 19/40 Loss: 3.30308549793054 Epoch: 19/40 Loss: 3.2467750215530398 Epoch: 19/40 Loss: 3.2841764950752257 Epoch: 19/40 Loss: 3.26810542345047 Epoch: 19/40 Loss: 3.300795569419861 Epoch: 19/40 Loss: 3.2869703912734987 Epoch: 19/40 Loss: 3.287803626060486 Epoch: 19/40 Loss: 3.2797577238082884 Epoch: 19/40 Loss: 3.2960555076599123 Epoch: 19/40 Loss: 3.3062274289131164 Epoch: 19/40 Loss: 3.2897856307029723 Epoch: 19/40 Loss: 3.3016039061546327 Epoch: 19/40 Loss: 3.3236393976211547 Epoch: 19/40 Loss: 3.296950433254242 Epoch: 19/40 Loss: 3.315734574794769 Epoch: 19/40 Loss: 3.3063604927062986 Epoch: 19/40 Loss: 3.3109201407432556 Epoch: 20/40 Loss: 3.250730284562348 Epoch: 20/40 Loss: 3.234354331493378 Epoch: 20/40 Loss: 3.2678548550605773 Epoch: 20/40 Loss: 3.254397292137146 Epoch: 20/40 Loss: 3.265232512950897 Epoch: 20/40 Loss: 3.243854110240936 Epoch: 20/40 Loss: 3.264221966266632 Epoch: 20/40 Loss: 3.2638847398757935 Epoch: 20/40 Loss: 3.27991676568985 Epoch: 20/40 Loss: 3.283143947124481 Epoch: 20/40 Loss: 3.285353283882141 Epoch: 20/40 Loss: 3.278928484916687 Epoch: 20/40 Loss: 3.295120358467102 Epoch: 20/40 Loss: 3.2980913496017457 Epoch: 20/40 Loss: 3.3046781611442566 Epoch: 20/40 Loss: 3.3096171188354493 Epoch: 20/40 Loss: 3.3069554924964906 Epoch: 21/40 Loss: 3.244679498334303 Epoch: 21/40 Loss: 3.22762056350708 Epoch: 21/40 Loss: 3.2130341482162477 Epoch: 21/40 Loss: 3.257251238822937 Epoch: 21/40 Loss: 3.245500326156616 Epoch: 21/40 Loss: 3.248044800758362 Epoch: 21/40 Loss: 3.23320969581604 Epoch: 21/40 Loss: 3.2498206901550293 Epoch: 21/40 Loss: 3.25490740776062 Epoch: 21/40 Loss: 3.27536936044693 Epoch: 21/40 Loss: 3.273723158836365 Epoch: 21/40 Loss: 3.2595191645622252 Epoch: 21/40 Loss: 3.26969612121582 Epoch: 21/40 Loss: 3.2700145125389097 Epoch: 21/40 Loss: 3.2814616417884825 Epoch: 21/40 Loss: 3.284317648410797 Epoch: 21/40 Loss: 3.2850093412399293 Epoch: 22/40 Loss: 3.2248353687583977 Epoch: 22/40 Loss: 3.210673067569733 Epoch: 22/40 Loss: 3.219316337108612 Epoch: 22/40 Loss: 3.224736533164978 Epoch: 22/40 Loss: 3.20661607503891 Epoch: 22/40 Loss: 3.220269646644592 Epoch: 22/40 Loss: 3.239449326992035 Epoch: 22/40 Loss: 3.2214272451400756 Epoch: 22/40 Loss: 3.2332403659820557 Epoch: 22/40 Loss: 3.244079988002777 Epoch: 22/40 Loss: 3.26028422832489 Epoch: 22/40 Loss: 3.2579054737091067 Epoch: 22/40 Loss: 3.264564619064331 Epoch: 22/40 Loss: 3.2539597725868226 Epoch: 22/40 Loss: 3.250880994796753 Epoch: 22/40 Loss: 3.2485162568092347 Epoch: 22/40 Loss: 3.2736807656288147 Epoch: 23/40 Loss: 3.213079464351032 Epoch: 23/40 Loss: 3.1777949571609496 Epoch: 23/40 Loss: 3.1924854588508604 Epoch: 23/40 Loss: 3.2012481927871703 Epoch: 23/40 Loss: 3.210305972099304 Epoch: 23/40 Loss: 3.206139461994171 Epoch: 23/40 Loss: 3.2201529502868653 Epoch: 23/40 Loss: 3.2169682145118714 Epoch: 23/40 Loss: 3.23088502407074 Epoch: 23/40 Loss: 3.2479660868644715 Epoch: 23/40 Loss: 3.2469769072532655 Epoch: 23/40 Loss: 3.2408736181259155 Epoch: 23/40 Loss: 3.2281478953361513 Epoch: 23/40 Loss: 3.2334540367126463 Epoch: 23/40 Loss: 3.249402256011963 Epoch: 23/40 Loss: 3.247013552188873 Epoch: 23/40 Loss: 3.2362549924850463 Epoch: 24/40 Loss: 3.194632408466745 Epoch: 24/40 Loss: 3.1880836606025698 Epoch: 24/40 Loss: 3.173503193855286 Epoch: 24/40 Loss: 3.183918526172638 Epoch: 24/40 Loss: 3.20584801197052 Epoch: 24/40 Loss: 3.186205050945282 Epoch: 24/40 Loss: 3.1768306851387025 Epoch: 24/40 Loss: 3.216845338344574 Epoch: 24/40 Loss: 3.20932669878006 Epoch: 24/40 Loss: 3.2206866693496705 Epoch: 24/40 Loss: 3.210733377933502 Epoch: 24/40 Loss: 3.2292572045326233 Epoch: 24/40 Loss: 3.2176726198196413 Epoch: 24/40 Loss: 3.2254205560684204 Epoch: 24/40 Loss: 3.2309138321876527 Epoch: 24/40 Loss: 3.2119682121276854 Epoch: 24/40 Loss: 3.2441273593902586 Epoch: 25/40 Loss: 3.1714860801155687 Epoch: 25/40 Loss: 3.1597762441635133 Epoch: 25/40 Loss: 3.1504669404029846 Epoch: 25/40 Loss: 3.176701135635376 Epoch: 25/40 Loss: 3.1802252388000487 Epoch: 25/40 Loss: 3.189257822036743 Epoch: 25/40 Loss: 3.1836634182929995 Epoch: 25/40 Loss: 3.19689603805542 Epoch: 25/40 Loss: 3.2035111737251283 Epoch: 25/40 Loss: 3.1948340821266172 Epoch: 25/40 Loss: 3.1971490836143492 Epoch: 25/40 Loss: 3.197871162891388 Epoch: 25/40 Loss: 3.212331852912903 Epoch: 25/40 Loss: 3.216475923061371 Epoch: 25/40 Loss: 3.2174252033233643 Epoch: 25/40 Loss: 3.2194750118255615 Epoch: 25/40 Loss: 3.2181735324859617 Epoch: 26/40 Loss: 3.1584466653512724 Epoch: 26/40 Loss: 3.1307985043525695 Epoch: 26/40 Loss: 3.1511295938491823 Epoch: 26/40 Loss: 3.1561445498466494 Epoch: 26/40 Loss: 3.16102933883667 Epoch: 26/40 Loss: 3.193759162425995 Epoch: 26/40 Loss: 3.167753059864044 Epoch: 26/40 Loss: 3.166281361579895 Epoch: 26/40 Loss: 3.171961977481842 Epoch: 26/40 Loss: 3.204296953678131 Epoch: 26/40 Loss: 3.1796568131446836 Epoch: 26/40 Loss: 3.1957959032058714 Epoch: 26/40 Loss: 3.1802221965789794 Epoch: 26/40 Loss: 3.211048431396484 Epoch: 26/40 Loss: 3.204625527858734 Epoch: 26/40 Loss: 3.200158267021179 Epoch: 26/40 Loss: 3.218621687889099 Epoch: 27/40 Loss: 3.1347438054727323 Epoch: 27/40 Loss: 3.1277751326560974 Epoch: 27/40 Loss: 3.1390751576423646 Epoch: 27/40 Loss: 3.1386599230766294 Epoch: 27/40 Loss: 3.1473884105682375 Epoch: 27/40 Loss: 3.1754218530654907 Epoch: 27/40 Loss: 3.1531568813323974 Epoch: 27/40 Loss: 3.158843629360199 Epoch: 27/40 Loss: 3.161986927986145 Epoch: 27/40 Loss: 3.1675448203086853 Epoch: 27/40 Loss: 3.181237106323242 Epoch: 27/40 Loss: 3.174220552444458 Epoch: 27/40 Loss: 3.193573455810547 Epoch: 27/40 Loss: 3.199631321430206 Epoch: 27/40 Loss: 3.1966242575645447 Epoch: 27/40 Loss: 3.187302920818329 Epoch: 27/40 Loss: 3.179771430492401 Epoch: 28/40 Loss: 3.1253121491019606 Epoch: 28/40 Loss: 3.1078640604019165 Epoch: 28/40 Loss: 3.1200510835647584 Epoch: 28/40 Loss: 3.1352910447120665 Epoch: 28/40 Loss: 3.144666702747345 Epoch: 28/40 Loss: 3.148395698070526 Epoch: 28/40 Loss: 3.132585105895996 Epoch: 28/40 Loss: 3.1533688592910765 Epoch: 28/40 Loss: 3.176629545688629 Epoch: 28/40 Loss: 3.157125232219696 Epoch: 28/40 Loss: 3.136765356063843 Epoch: 28/40 Loss: 3.1768166399002076 Epoch: 28/40 Loss: 3.1646726822853086 Epoch: 28/40 Loss: 3.1582090616226197 Epoch: 28/40 Loss: 3.187243251800537 Epoch: 28/40 Loss: 3.198671405315399 Epoch: 28/40 Loss: 3.1810974311828613 Epoch: 29/40 Loss: 3.1224944304067193 Epoch: 29/40 Loss: 3.0980203342437744 Epoch: 29/40 Loss: 3.10988343000412 Epoch: 29/40 Loss: 3.1138494420051575 Epoch: 29/40 Loss: 3.1158336281776426 Epoch: 29/40 Loss: 3.1383388233184815 Epoch: 29/40 Loss: 3.1335808777809144 Epoch: 29/40 Loss: 3.1291400599479675 Epoch: 29/40 Loss: 3.1391796016693116 Epoch: 29/40 Loss: 3.1284532237052916 Epoch: 29/40 Loss: 3.1609995126724244 Epoch: 29/40 Loss: 3.173295159339905 Epoch: 29/40 Loss: 3.160419499874115 Epoch: 29/40 Loss: 3.1493277525901795 Epoch: 29/40 Loss: 3.1695111894607546 Epoch: 29/40 Loss: 3.178649597167969 Epoch: 29/40 Loss: 3.166031205654144 Epoch: 30/40 Loss: 3.1058018224459167 Epoch: 30/40 Loss: 3.1058628368377685 Epoch: 30/40 Loss: 3.103884320259094 Epoch: 30/40 Loss: 3.11926878452301 Epoch: 30/40 Loss: 3.1035250329971316 Epoch: 30/40 Loss: 3.1187919187545776 Epoch: 30/40 Loss: 3.127573127746582 Epoch: 30/40 Loss: 3.1092315220832827 Epoch: 30/40 Loss: 3.1376067280769346 Epoch: 30/40 Loss: 3.119958481788635 Epoch: 30/40 Loss: 3.1435403394699097 Epoch: 30/40 Loss: 3.1425402975082397 Epoch: 30/40 Loss: 3.1489040541648863 Epoch: 30/40 Loss: 3.1570923924446106 Epoch: 30/40 Loss: 3.164622006416321 Epoch: 30/40 Loss: 3.17054402589798 Epoch: 30/40 Loss: 3.1326127076148986 Epoch: 31/40 Loss: 3.0954199750372706 Epoch: 31/40 Loss: 3.0836986660957337 Epoch: 31/40 Loss: 3.1009942626953126 Epoch: 31/40 Loss: 3.0943004179000853 Epoch: 31/40 Loss: 3.105739517211914 Epoch: 31/40 Loss: 3.0955708718299864 Epoch: 31/40 Loss: 3.1216368436813355 Epoch: 31/40 Loss: 3.114381875991821 Epoch: 31/40 Loss: 3.103736016750336 Epoch: 31/40 Loss: 3.1147751355171205 Epoch: 31/40 Loss: 3.1347358417510987 Epoch: 31/40 Loss: 3.1213193845748903 Epoch: 31/40 Loss: 3.1320442962646484 Epoch: 31/40 Loss: 3.123191270828247 Epoch: 31/40 Loss: 3.1390389704704287 Epoch: 31/40 Loss: 3.161129581928253 Epoch: 31/40 Loss: 3.1685166549682617 Epoch: 32/40 Loss: 3.089466184589034 Epoch: 32/40 Loss: 3.0725114440917967 Epoch: 32/40 Loss: 3.083483488559723 Epoch: 32/40 Loss: 3.083820221424103 Epoch: 32/40 Loss: 3.0990681624412537 Epoch: 32/40 Loss: 3.0928625011444093 Epoch: 32/40 Loss: 3.095714304447174 Epoch: 32/40 Loss: 3.0866333127021788 Epoch: 32/40 Loss: 3.111944947242737 Epoch: 32/40 Loss: 3.090879271030426 Epoch: 32/40 Loss: 3.1115441870689393 Epoch: 32/40 Loss: 3.1197412753105165 Epoch: 32/40 Loss: 3.128634970188141 Epoch: 32/40 Loss: 3.1350068163871767 Epoch: 32/40 Loss: 3.1211376357078553 Epoch: 32/40 Loss: 3.1395605635643005 Epoch: 32/40 Loss: 3.1361198830604553 Epoch: 33/40 Loss: 3.086585545370765 Epoch: 33/40 Loss: 3.072260582447052 Epoch: 33/40 Loss: 3.0543723726272582 Epoch: 33/40 Loss: 3.0772309589385984 Epoch: 33/40 Loss: 3.081868813037872 Epoch: 33/40 Loss: 3.069645149707794 Epoch: 33/40 Loss: 3.0883045196533203 Epoch: 33/40 Loss: 3.0884637570381166 Epoch: 33/40 Loss: 3.066096429824829 Epoch: 33/40 Loss: 3.1002284812927248 Epoch: 33/40 Loss: 3.1117766952514647 Epoch: 33/40 Loss: 3.0956111335754395 Epoch: 33/40 Loss: 3.1122912979125976 Epoch: 33/40 Loss: 3.124182946681976 Epoch: 33/40 Loss: 3.119167468547821 Epoch: 33/40 Loss: 3.145171067714691 Epoch: 33/40 Loss: 3.132662398815155 Epoch: 34/40 Loss: 3.0590222676595054 Epoch: 34/40 Loss: 3.0496167302131654 Epoch: 34/40 Loss: 3.060490138530731 Epoch: 34/40 Loss: 3.066323843002319 Epoch: 34/40 Loss: 3.080504348278046 Epoch: 34/40 Loss: 3.077186484336853 Epoch: 34/40 Loss: 3.0733182311058043 Epoch: 34/40 Loss: 3.0917574262619016 Epoch: 34/40 Loss: 3.086994228363037 Epoch: 34/40 Loss: 3.1016873049736025 Epoch: 34/40 Loss: 3.0834479784965514 Epoch: 34/40 Loss: 3.1063265109062197 Epoch: 34/40 Loss: 3.085716173648834 Epoch: 34/40 Loss: 3.10706595659256 Epoch: 34/40 Loss: 3.0997568130493165 Epoch: 34/40 Loss: 3.101032466888428 Epoch: 34/40 Loss: 3.1156568002700804 Epoch: 35/40 Loss: 3.047261726771686 Epoch: 35/40 Loss: 3.0457681012153626 Epoch: 35/40 Loss: 3.022852544784546 Epoch: 35/40 Loss: 3.0514315795898437 Epoch: 35/40 Loss: 3.053847212791443 Epoch: 35/40 Loss: 3.06408616065979 Epoch: 35/40 Loss: 3.075976297855377 Epoch: 35/40 Loss: 3.0845091462135317 Epoch: 35/40 Loss: 3.073545527458191 Epoch: 35/40 Loss: 3.085630292892456 Epoch: 35/40 Loss: 3.06376736164093 Epoch: 35/40 Loss: 3.085243489742279 Epoch: 35/40 Loss: 3.0964259552955626 Epoch: 35/40 Loss: 3.094741454124451 Epoch: 35/40 Loss: 3.093990330696106 Epoch: 35/40 Loss: 3.1147731733322144 Epoch: 35/40 Loss: 3.1252348017692566 Epoch: 36/40 Loss: 3.0619314613071738 Epoch: 36/40 Loss: 3.043056778907776 Epoch: 36/40 Loss: 3.0420741748809816 Epoch: 36/40 Loss: 3.045200390815735 Epoch: 36/40 Loss: 3.016583435535431 Epoch: 36/40 Loss: 3.051652591228485 Epoch: 36/40 Loss: 3.048303759098053 Epoch: 36/40 Loss: 3.053185682296753 Epoch: 36/40 Loss: 3.044936332702637 Epoch: 36/40 Loss: 3.0767464208602906 Epoch: 36/40 Loss: 3.060809335708618 Epoch: 36/40 Loss: 3.0594623255729676 Epoch: 36/40 Loss: 3.075792133808136 Epoch: 36/40 Loss: 3.1087145352363588 Epoch: 36/40 Loss: 3.1005871272087098 Epoch: 36/40 Loss: 3.0985249614715578 Epoch: 36/40 Loss: 3.109562575817108 Epoch: 37/40 Loss: 3.039649987051673 Epoch: 37/40 Loss: 3.0196944093704223 Epoch: 37/40 Loss: 3.0304143905639647 Epoch: 37/40 Loss: 3.0496555590629577 Epoch: 37/40 Loss: 3.0501211714744567 Epoch: 37/40 Loss: 3.046262447834015 Epoch: 37/40 Loss: 3.039147734642029 Epoch: 37/40 Loss: 3.0401566457748412 Epoch: 37/40 Loss: 3.058485963344574 Epoch: 37/40 Loss: 3.0435601663589478 Epoch: 37/40 Loss: 3.0519022655487063 Epoch: 37/40 Loss: 3.076683769226074 Epoch: 37/40 Loss: 3.0770651078224183 Epoch: 37/40 Loss: 3.0736726331710815 Epoch: 37/40 Loss: 3.087305688858032 Epoch: 37/40 Loss: 3.0911040019989016 Epoch: 37/40 Loss: 3.09265513420105 Epoch: 38/40 Loss: 3.0268066453595535 Epoch: 38/40 Loss: 3.0059891390800475 Epoch: 38/40 Loss: 3.022848274707794 Epoch: 38/40 Loss: 3.047044599056244 Epoch: 38/40 Loss: 3.0246161103248594 Epoch: 38/40 Loss: 3.0512567067146303 Epoch: 38/40 Loss: 3.0230589652061464 Epoch: 38/40 Loss: 3.0349004793167116 Epoch: 38/40 Loss: 3.055660412311554 Epoch: 38/40 Loss: 3.0587748074531556 Epoch: 38/40 Loss: 3.053401825428009 Epoch: 38/40 Loss: 3.050684370994568 Epoch: 38/40 Loss: 3.065198554992676 Epoch: 38/40 Loss: 3.070618669986725 Epoch: 38/40 Loss: 3.0634470272064207 Epoch: 38/40 Loss: 3.0640885925292967 Epoch: 38/40 Loss: 3.0807826352119445 Epoch: 39/40 Loss: 3.021529882512194 Epoch: 39/40 Loss: 2.992088301181793 Epoch: 39/40 Loss: 3.011819338798523 Epoch: 39/40 Loss: 3.009713976383209 Epoch: 39/40 Loss: 3.0200268173217775 Epoch: 39/40 Loss: 3.0201913595199583 Epoch: 39/40 Loss: 3.0382388114929197 Epoch: 39/40 Loss: 3.024594168663025 Epoch: 39/40 Loss: 3.0410870265960694 Epoch: 39/40 Loss: 3.043372585773468 Epoch: 39/40 Loss: 3.065853326320648 Epoch: 39/40 Loss: 3.0604931783676146 Epoch: 39/40 Loss: 3.0662604355812073 Epoch: 39/40 Loss: 3.0718659567832947 Epoch: 39/40 Loss: 3.0753650856018067 Epoch: 39/40 Loss: 3.0663579082489014 Epoch: 39/40 Loss: 3.06232497215271 Epoch: 40/40 Loss: 3.004919931398216 Epoch: 40/40 Loss: 2.978828547000885 Epoch: 40/40 Loss: 3.0072986698150634 Epoch: 40/40 Loss: 3.0013407492637634 Epoch: 40/40 Loss: 3.0154279041290284 Epoch: 40/40 Loss: 3.0168230056762697 Epoch: 40/40 Loss: 3.0233750534057617 Epoch: 40/40 Loss: 3.02440927028656 Epoch: 40/40 Loss: 3.019312882423401 Epoch: 40/40 Loss: 3.0260395884513853 Epoch: 40/40 Loss: 3.0328040409088133 Epoch: 40/40 Loss: 3.0498186683654787 Epoch: 40/40 Loss: 3.057143015861511 Epoch: 40/40 Loss: 3.056639790534973 Epoch: 40/40 Loss: 3.070470190048218 Epoch: 40/40 Loss: 3.062474200725555 Epoch: 40/40 Loss: 3.0681377267837524 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** I looked at the examples in the RNN lesson for most of my parameters. For the sequence length, I originally used 100 but noticed that it was taking far too long to train, so I scaled it down to 10. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() # TypeError: can't convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first. # current_seq = current_seq.cpu() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output _____no_output_____ ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # return tuple return (None, None) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # return a dataloader return None # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables # define model layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state return None, None def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return None, None # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = # of words in a sequence # Batch Size batch_size = # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = # Learning Rate learning_rate = # Model parameters # Vocab size vocab_size = # Output size output_size = # Embedding Dimension embedding_dim = # Hidden Dimension hidden_dim = # Number of RNN Layers n_layers = # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # counter = Counter(text) vocab_to_int = {w: idx for idx, w in enumerate(set(text))} int_to_vocab = {idx: w for w, idx in vocab_to_int.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function lookup = { ".": "period", ",": "comma", '"': "quotation", ";": "semicolon", "!": "exclame", "?": "question", "(": "l_paren", ")": "r_paren", "-": "dash", "\n": "return" } return {k: f"||{v}||" for k, v in lookup.items()} """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ n_batches = int(len(words) / batch_size) words = words[:n_batches*batch_size] y_len = len(words) - sequence_length features = [] targets = [] for idx in range(0, y_len): idx_end = sequence_length + idx features.append(words[idx:idx_end]) targets.append(words[idx_end]) # create Tensor datasets features = torch.from_numpy(np.asarray(features)).to(torch.int64) targets = torch.from_numpy(np.asarray(targets)).to(torch.int64) data = TensorDataset(features, targets) data_loader = DataLoader(data, shuffle=False, batch_size=batch_size) return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.dropout = nn.Dropout(dropout) self.fc = nn.Linear(hidden_dim, output_size) # self.sig = nn.Sigmoid() def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) nn_input = nn_input.long() embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) out = self.dropout(lstm_out) out = self.fc(out) # out = self.sig(out) out = out.view(batch_size, -1, self.output_size) out = out[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization hidden = tuple([h.data for h in hidden]) rnn.zero_grad() # get the output from the model output, hidden = rnn(inp, hidden) # calculate the loss and perform backprop loss = criterion(output, target) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ # commenting out. This tests library doesn't function properly on Windows # tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 20 # of words in a sequence # Batch Size batch_size = 256 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 16 # Learning Rate learning_rate = .001 # Model parameters # Vocab size vocab_size = len(int_to_vocab) print(f"Vocab Size: {vocab_size}") # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 256 # Hidden Dimension hidden_dim = 512 print(f"Hidden Size {hidden_dim}") # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output Vocab Size: 21388 Hidden Size 512 ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 16 epoch(s)... Epoch: 1/16 Loss: 5.455310563564301 Epoch: 1/16 Loss: 4.772419750213623 Epoch: 1/16 Loss: 4.716299479007721 Epoch: 1/16 Loss: 4.552140981197357 Epoch: 1/16 Loss: 4.434564594268799 Epoch: 1/16 Loss: 4.512522238254547 Epoch: 2/16 Loss: 4.353542388273765 Epoch: 2/16 Loss: 4.112563259601593 Epoch: 2/16 Loss: 4.209814462661743 Epoch: 2/16 Loss: 4.132946473121643 Epoch: 2/16 Loss: 4.082923572540283 Epoch: 2/16 Loss: 4.201064155101776 Epoch: 3/16 Loss: 4.1108441537176 Epoch: 3/16 Loss: 3.927784694671631 Epoch: 3/16 Loss: 4.032104474544525 Epoch: 3/16 Loss: 3.9623236584663393 Epoch: 3/16 Loss: 3.9091508259773255 Epoch: 3/16 Loss: 4.037691452503204 Epoch: 4/16 Loss: 3.9651220259564575 Epoch: 4/16 Loss: 3.8103473734855653 Epoch: 4/16 Loss: 3.9093316793441772 Epoch: 4/16 Loss: 3.853048634529114 Epoch: 4/16 Loss: 3.798801118373871 Epoch: 4/16 Loss: 3.926910074710846 Epoch: 5/16 Loss: 3.862949095810418 Epoch: 5/16 Loss: 3.713429450035095 Epoch: 5/16 Loss: 3.817374423980713 Epoch: 5/16 Loss: 3.7699388189315797 Epoch: 5/16 Loss: 3.7059623708724976 Epoch: 5/16 Loss: 3.840308710575104 Epoch: 6/16 Loss: 3.7823584436278863 Epoch: 6/16 Loss: 3.642212465763092 Epoch: 6/16 Loss: 3.7474600033760073 Epoch: 6/16 Loss: 3.6987796382904055 Epoch: 6/16 Loss: 3.6360070123672483 Epoch: 6/16 Loss: 3.7746032824516296 Epoch: 7/16 Loss: 3.7149494176963582 Epoch: 7/16 Loss: 3.5838490104675294 Epoch: 7/16 Loss: 3.6858344054222107 Epoch: 7/16 Loss: 3.6417576298713685 Epoch: 7/16 Loss: 3.5735020847320556 Epoch: 7/16 Loss: 3.7180045647621154 Epoch: 8/16 Loss: 3.6615983006427877 Epoch: 8/16 Loss: 3.534547165393829 Epoch: 8/16 Loss: 3.6369629769325256 Epoch: 8/16 Loss: 3.588692858219147 Epoch: 8/16 Loss: 3.5269871506690977 Epoch: 8/16 Loss: 3.6620579299926757 Epoch: 9/16 Loss: 3.614403916278424 Epoch: 9/16 Loss: 3.492366225242615 Epoch: 9/16 Loss: 3.5886473517417907 Epoch: 9/16 Loss: 3.5463910126686096 Epoch: 9/16 Loss: 3.481283280849457 Epoch: 9/16 Loss: 3.6196661958694456 Epoch: 10/16 Loss: 3.5720256781650828 Epoch: 10/16 Loss: 3.46034694480896 Epoch: 10/16 Loss: 3.5504080929756165 Epoch: 10/16 Loss: 3.5089728603363035 Epoch: 10/16 Loss: 3.444026230335236 Epoch: 10/16 Loss: 3.5788377642631533 Epoch: 11/16 Loss: 3.534366174971463 Epoch: 11/16 Loss: 3.4309493017196657 Epoch: 11/16 Loss: 3.5150436358451844 Epoch: 11/16 Loss: 3.4690163083076477 Epoch: 11/16 Loss: 3.409424701690674 Epoch: 11/16 Loss: 3.547413890361786 Epoch: 12/16 Loss: 3.500821440532758 Epoch: 12/16 Loss: 3.3976372637748717 Epoch: 12/16 Loss: 3.4833766541481017 Epoch: 12/16 Loss: 3.4366101541519165 Epoch: 12/16 Loss: 3.3768665647506713 Epoch: 12/16 Loss: 3.511057852268219 Epoch: 13/16 Loss: 3.4743638674094743 Epoch: 13/16 Loss: 3.369061732292175 Epoch: 13/16 Loss: 3.4509952960014343 Epoch: 13/16 Loss: 3.4072359261512757 Epoch: 13/16 Loss: 3.358080631732941 Epoch: 13/16 Loss: 3.4801366052627563 Epoch: 14/16 Loss: 3.4446755556706132 Epoch: 14/16 Loss: 3.3490402779579163 Epoch: 14/16 Loss: 3.4264907069206236 Epoch: 14/16 Loss: 3.38200022649765 Epoch: 14/16 Loss: 3.3263862652778626 Epoch: 14/16 Loss: 3.451665801525116 Epoch: 15/16 Loss: 3.4183051986345077 Epoch: 15/16 Loss: 3.323824038028717 Epoch: 15/16 Loss: 3.405555274963379 Epoch: 15/16 Loss: 3.3591946597099303 Epoch: 15/16 Loss: 3.3014762415885923 Epoch: 15/16 Loss: 3.4289697074890135 Epoch: 16/16 Loss: 3.3959099176820153 Epoch: 16/16 Loss: 3.3018528842926025 Epoch: 16/16 Loss: 3.383438117027283 Epoch: 16/16 Loss: 3.3385923748016357 Epoch: 16/16 Loss: 3.279401508808136 Epoch: 16/16 Loss: 3.4071180233955385 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** Shifted the sequence length until the loss started lower than 6 and did not reach a minima before 3.Started with the previously used n_layers and dim sizes then shifted by multiples of 8 and differend embedded to hidden_dim until a correct combination was reached.Interesting note: not using a Counter for encryption worked better than the cournter version. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: and the stare. jerry: oh, yeah, i guess. jerry: so, you want to talk. george: well, it's a lot of pressure. kruger:(to jerry) oh! jerry: oh, you know, i have no idea who the hell is that we have. kramer: oh, no. it's not the one-- kramer:(leaving) hey, hey, i have a great idea. george: you know, it's just a little bit of a woman. jerry: i think we could go down there and talk to him about this. elaine: oh..... george:(to george) what? jerry: what? elaine:(confused) i don't know how to do this. george: what? jerry: i don't care for the rest of the life. kramer: well, i can't find my parents, i know what you want to do. kramer:(entering monk's, then yelling to the door) hey, i have a lot of thinking to do. jerry:(sarcastic) i don't know how you got it. kramer: hey, i have to talk about you. i have a good time to see the other time. kramer: oh, no-- kramer: yeah! i don't know. jerry: what? jerry: well, i was in my house! i mean, if i had a good time for you, i got it. i'm a little nervous about it. elaine: what do you think? george: i know. jerry: oh, i know. i think it's just an odd. george: what? jerry: you know.., i don't want to see you again for a second. i can't believe it. kramer: oh, yeah! yeah, it's a good samaritan trial... kruger:(sarcastic) yeah? ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 200 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: than hazel? george: yeah. well, i don't think so. elaine: you know, i don't even know why. you know what i think of it is? what is this? jerry: i know. i just remembered. i know what i do. jerry: you know what i mean, because i was hoping of gay. kramer:(to the phone) hey, what are ya. jerry: hi. elaine: hi.(to george) hey, what did she say? george: because of course. i mean, i mean you know that i have a little bit. jerry:(still trying to get a menu) well, you should be a pirate.(to jerry) so you can take a look like idiots, or whatever you want to see the truth. jerry:(to kramer) i don't want it. i can't believe you got that. you know i think it's not fair. jerry: oh ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output _____no_output_____ ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # return tuple return (None, None) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # return a dataloader return None # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables # define model layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state return None, None def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return None, None # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = # of words in a sequence # Batch Size batch_size = # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = # Learning Rate learning_rate = # Model parameters # Vocab size vocab_size = # Output size output_size = # Embedding Dimension embedding_dim = # Hidden Dimension hidden_dim = # Number of RNN Layers n_layers = # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function counts = Counter(text) vocab = sorted(counts, key=counts.get, reverse=True) int_to_vocab = {ii: word for ii, word in enumerate(vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function dict_token = {'.': '||period||', ',': '||comma||', '"': '||quotation_mark||', ';': '||semicolon||', '!': '||exclamation_mark||', '?': '||question_mark||', '(': '||left_parentheses||', ')': '||right_parentheses||', '-': '||dash||', '\n': '||return||', } return dict_token """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader from torch import Tensor def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function feature, target = [], [] for idx in range(len(words)-sequence_length-1): feature.append(words[idx:(idx + sequence_length)]) target.append(words[idx+sequence_length]) feature = torch.LongTensor(feature) target = torch.LongTensor(target) data = TensorDataset(feature, target) data_loader = DataLoader(data, shuffle=True, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 1, 2, 3, 4, 5], [ 26, 27, 28, 29, 30], [ 0, 1, 2, 3, 4], [ 37, 38, 39, 40, 41], [ 18, 19, 20, 21, 22], [ 27, 28, 29, 30, 31], [ 32, 33, 34, 35, 36], [ 16, 17, 18, 19, 20], [ 39, 40, 41, 42, 43], [ 14, 15, 16, 17, 18]]) torch.Size([10]) tensor([ 6, 31, 5, 42, 23, 32, 37, 21, 44, 19]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.dropout = nn.Dropout(0.5) self.fc = nn.Linear(hidden_dim, output_size) self.sig = nn.Sigmoid() def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) out = lstm_out.contiguous().view(-1, self.hidden_dim) #out = self.dropout(lstm_out) out = self.fc(out) # reshape into (batch_size, seq_length, output_size) out = out.view(batch_size, -1, self.output_size) # get last batch out = out[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if (train_on_gpu): rnn.cuda() inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization h = tuple([each.data for each in hidden]) rnn.zero_grad() output, h = rnn(inp, h) #print(inp.size(),output.squeeze().size(), target.long().size()) loss = criterion(output.squeeze(), target.long()) loss.backward(retain_graph=True) optimizer.step() loss = float(loss) # return the loss over a batch and the hidden state produced by our model return loss, h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: #print(n_batches, batch_i) print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 100 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int)+1 # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 256 # Hidden Dimensio hidden_dim = 128 # Number of RNN Layers n_layers = 1 # Show stats for ery n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code from workspace_utils import active_session """ DON'T MODIFY ATHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model with active_session(): trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output /opt/conda/lib/python3.6/site-packages/torch/nn/modules/rnn.py:38: UserWarning: dropout option adds dropout after all but last recurrent layer, so non-zero dropout expects num_layers greater than 1, but got dropout=0.5 and num_layers=1 "num_layers={}".format(dropout, num_layers)) ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)I choosed 10 for sequence lengh, since each script (sentence) is not so long.Then, I tested weith following parameters with 0.001 learning rate, 100 batch size.layer:1, hidden_dim:128, Embed:256, loss at each steps during 3 epoch: (4.02, 3.82, 3.64)layer:2, hidden_dim:128, Embed:256, loss at each steps during 3 epoch: (4.23, 4.03, 3.92)layer:2, hidden_dim:256, Embed:256, loss at each steps during 3 epoch: (4.18, 3.89, 3.79)I choosed 1st one, since it has the lowest loss and the smallest size.Finally, after 10 epoch training, the loss 3.13 (the best value is 2.96) is and it meets the criteria 3.5 --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:42: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code import sys try: import torch except: import os os.environ['TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD']='2000000000' # http://pytorch.org/ from os.path import exists from wheel.pep425tags import get_abbr_impl, get_impl_ver, get_abi_tag platform = '{}{}-{}'.format(get_abbr_impl(), get_impl_ver(), get_abi_tag()) cuda_output = !ldconfig -p|grep cudart.so|sed -e 's/.*\.\([0-9]*\)\.\([0-9]*\)$/cu\1\2/' accelerator = cuda_output[0] if exists('/dev/nvidia0') else 'cpu' !{sys.executable} -m pip install -q http://download.pytorch.org/whl/{accelerator}/torch-0.4.1-{platform}-linux_x86_64.whl torchvision >/dev/null ! curl -s https://codeload.github.com/udacity/deep-learning-v2-pytorch/tar.gz/master | tar -xz --strip=2 deep-learning-v2-pytorch-master/project-tv-script-generation/data >/dev/null 2>&1 ! wget https://raw.githubusercontent.com/udacity/deep-learning-v2-pytorch/master/project-tv-script-generation/helper.py >/dev/null 2>&1 ! wget https://raw.githubusercontent.com/udacity/deep-learning-v2-pytorch/master/project-tv-script-generation/problem_unittests.py >/dev/null 2>&1 """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output _____no_output_____ ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # return tuple return (None, None) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # return a dataloader return None # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables # define model layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state return None, None def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return None, None # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = # of words in a sequence # Batch Size batch_size = # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = # Learning Rate learning_rate = # Model parameters # Vocab size vocab_size = # Output size output_size = # Embedding Dimension embedding_dim = # Hidden Dimension hidden_dim = # Number of RNN Layers n_layers = # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown The TV Script is Not PerfectIt's ok if the TV script doesn't make perfect sense. It should look like alternating lines of dialogue, here is one such example of a few generated lines. Example generated script>jerry: what about me?>>jerry: i don't have to wait.>>kramer:(to the sales table)>>elaine:(to jerry) hey, look at this, i'm a good doctor.>>newman:(to elaine) you think i have no idea of this...>>elaine: oh, you better take the phone, and he was a little nervous.>>kramer:(to the phone) hey, hey, jerry, i don't want to be a little bit.(to kramer and jerry) you can't.>>jerry: oh, yeah. i don't even know, i know.>>jerry:(to the phone) oh, i know.>>kramer:(laughing) you know...(to jerry) you don't know.You can see that there are multiple characters that say (somewhat) complete sentences, but it doesn't have to be perfect! It takes quite a while to get good results, and often, you'll have to use a smaller vocabulary (and discard uncommon words), or get more data. The Seinfeld dataset is about 3.4 MB, which is big enough for our purposes; for script generation you'll want more than 1 MB of text, generally. Submitting This ProjectWhen submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_tv_script_generation.ipynb" and save another copy as an HTML file by clicking "File" -> "Download as.."->"html". Include the "helper.py" and "problem_unittests.py" files in your submission. Once you download these files, compress them into one zip file for submission. ###Code ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests import re from string import punctuation from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function vocabulary = Counter(text) int_to_vocab = {i : word for i, word in enumerate(sorted(vocabulary, key=vocabulary.get, reverse=True))} vocab_to_int = {word : i for i, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return { '.': '||period||', ',': '||comma||', '"': '||quotation||', ';': '||semicolon||', '!': '||exclamation||', '?': '||question||', '(': '||left_parenthesis||', ')': '||right_parenthesis||', '-': '||dash||', '\n': '||newline||' } """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function num_batches = (len(words) - sequence_length) // batch_size features = [] targets = [] for i in range(num_batches * batch_size): features.append(words[i:i+sequence_length]) targets.append(words[i+sequence_length]) dataset = TensorDataset(torch.LongTensor(features), torch.LongTensor(targets)) # return a dataloader return DataLoader(dataset, batch_size=batch_size) # there is no test for this function, but you are encouraged to create # print statements and tests of your own print([word for word in range(15)]) for data in batch_data(range(15), 3, 4): print(data) ###Output [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] [tensor([[0, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5]]), tensor([3, 4, 5, 6])] [tensor([[4, 5, 6], [5, 6, 7], [6, 7, 8], [7, 8, 9]]), tensor([ 7, 8, 9, 10])] [tensor([[ 8, 9, 10], [ 9, 10, 11], [10, 11, 12], [11, 12, 13]]), tensor([11, 12, 13, 14])] ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.hidden_dim = hidden_dim self.num_layers = n_layers self.output_size = output_size # define model layers self.embed_input = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, batch_first=True) self.dropout = nn.Dropout(dropout) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.shape[0] x = self.embed_input(nn_input) x, hidden = self.lstm(x, hidden) x = x.contiguous().view(-1, self.hidden_dim) # x = self.dropout(x) x = self.fc(x) x = x.view(batch_size, -1, self.output_size) # return one batch of output word scores and the hidden state return x[:, -1], hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' new_weights = [] # Implement function for name, parameter in self.named_parameters(): if name.startswith('lstm.weight_ih'): new_weight = parameter.data.new(self.num_layers, batch_size, self.hidden_dim).zero_() if train_on_gpu: new_weight = new_weight.cuda() new_weights += [new_weight] # initialize hidden state with zero weights, and move to GPU if available return tuple(new_weights) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: inp, target = inp.cuda(), target.cuda() rnn.zero_grad() hidden = tuple([each.data for each in hidden]) output, hidden_out = rnn(inp, hidden) # perform backpropagation and optimization loss = criterion(output, target) loss.backward() # nn.utils.clip_grad_norm_(rnn.parameters(), 1) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden_out # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 15 # of words in a sequence # Batch Size batch_size = 30 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 60 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = len(vocab_to_int) # Embedding Dimension embedding_dim = 300 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 60 epoch(s)... Epoch: 1/60 Loss: 5.584539404392243 Epoch: 1/60 Loss: 4.978618786811829 Epoch: 1/60 Loss: 4.743197936058045 Epoch: 1/60 Loss: 4.7408830742836 Epoch: 1/60 Loss: 4.796560604572296 Epoch: 1/60 Loss: 4.691383345127106 Epoch: 1/60 Loss: 4.620989734649658 Epoch: 1/60 Loss: 4.5035069065094 Epoch: 1/60 Loss: 4.2975137164592745 Epoch: 1/60 Loss: 4.580089133262634 Epoch: 1/60 Loss: 4.363871543884278 Epoch: 1/60 Loss: 4.470418291568756 Epoch: 1/60 Loss: 4.186340519428253 Epoch: 1/60 Loss: 4.282206547737122 Epoch: 1/60 Loss: 4.192819122314453 Epoch: 1/60 Loss: 4.33475363445282 Epoch: 1/60 Loss: 4.294622162818909 Epoch: 1/60 Loss: 4.451160747051239 Epoch: 1/60 Loss: 4.440550621509552 Epoch: 1/60 Loss: 4.313336195468903 Epoch: 1/60 Loss: 4.309487774848938 Epoch: 1/60 Loss: 4.205012201547623 Epoch: 1/60 Loss: 4.502835605621338 Epoch: 1/60 Loss: 4.315154174804688 Epoch: 1/60 Loss: 4.477178359031678 Epoch: 1/60 Loss: 4.474082582473755 Epoch: 1/60 Loss: 4.332868708610535 Epoch: 1/60 Loss: 4.454158801078797 Epoch: 1/60 Loss: 4.333987774848938 Epoch: 1/60 Loss: 4.245570753097534 Epoch: 1/60 Loss: 4.191190000057221 Epoch: 1/60 Loss: 4.500000421524048 Epoch: 1/60 Loss: 4.312783335208893 Epoch: 1/60 Loss: 4.0926206276416774 Epoch: 1/60 Loss: 4.1326706950664525 Epoch: 1/60 Loss: 4.312404307842255 Epoch: 1/60 Loss: 4.12882629776001 Epoch: 1/60 Loss: 4.399092391729355 Epoch: 1/60 Loss: 4.264918925523758 Epoch: 1/60 Loss: 4.217979504585266 Epoch: 1/60 Loss: 4.194918124675751 Epoch: 1/60 Loss: 4.245503536701202 Epoch: 1/60 Loss: 4.207558061599731 Epoch: 1/60 Loss: 4.386960781574249 Epoch: 1/60 Loss: 4.240934824943542 Epoch: 1/60 Loss: 4.349321382522583 Epoch: 1/60 Loss: 4.556552526950836 Epoch: 1/60 Loss: 4.565672998428345 Epoch: 1/60 Loss: 4.419836859226227 Epoch: 1/60 Loss: 4.430744566679001 Epoch: 1/60 Loss: 4.491157646656037 Epoch: 1/60 Loss: 4.461477841854095 Epoch: 1/60 Loss: 4.483451738595963 Epoch: 1/60 Loss: 4.417303246498108 Epoch: 1/60 Loss: 4.428138305187225 Epoch: 1/60 Loss: 4.4382841343879695 Epoch: 1/60 Loss: 4.290555070877075 Epoch: 1/60 Loss: 4.510940369129181 Epoch: 1/60 Loss: 4.262174345254898 Epoch: 2/60 Loss: 4.429508287945519 Epoch: 2/60 Loss: 4.0317278101444245 Epoch: 2/60 Loss: 4.030819558143616 Epoch: 2/60 Loss: 4.06558516073227 Epoch: 2/60 Loss: 4.132909673452377 Epoch: 2/60 Loss: 4.153683086156845 Epoch: 2/60 Loss: 4.111942491531372 Epoch: 2/60 Loss: 4.052715909957886 Epoch: 2/60 Loss: 3.874140060424805 Epoch: 2/60 Loss: 4.1939811913967135 Epoch: 2/60 Loss: 3.990584184885025 Epoch: 2/60 Loss: 4.126995318889618 Epoch: 2/60 Loss: 3.840491840362549 Epoch: 2/60 Loss: 3.9559146318435667 Epoch: 2/60 Loss: 3.8551442093849184 Epoch: 2/60 Loss: 4.006331790208817 Epoch: 2/60 Loss: 4.020254987716675 Epoch: 2/60 Loss: 4.228961871147156 Epoch: 2/60 Loss: 4.141343107700348 Epoch: 2/60 Loss: 4.0554907076358795 Epoch: 2/60 Loss: 4.055373066902161 Epoch: 2/60 Loss: 3.97321329498291 Epoch: 2/60 Loss: 4.298759968757629 Epoch: 2/60 Loss: 4.109160690307617 Epoch: 2/60 Loss: 4.242182459831238 Epoch: 2/60 Loss: 4.264491364717483 Epoch: 2/60 Loss: 4.132045463562012 Epoch: 2/60 Loss: 4.248043483734131 Epoch: 2/60 Loss: 4.1306860065460205 Epoch: 2/60 Loss: 4.060737189769745 Epoch: 2/60 Loss: 3.9417130317687987 Epoch: 2/60 Loss: 4.29304283285141 Epoch: 2/60 Loss: 4.137231809854508 Epoch: 2/60 Loss: 3.9067204978466035 Epoch: 2/60 Loss: 3.956833998441696 Epoch: 2/60 Loss: 4.113496272802353 Epoch: 2/60 Loss: 3.972088612794876 Epoch: 2/60 Loss: 4.238672315597534 Epoch: 2/60 Loss: 4.08638326048851 Epoch: 2/60 Loss: 4.041441945791244 Epoch: 2/60 Loss: 4.041833787918091 Epoch: 2/60 Loss: 4.058106949567795 Epoch: 2/60 Loss: 4.092928634643554 Epoch: 2/60 Loss: 4.200017159461975 Epoch: 2/60 Loss: 4.119115034103394 Epoch: 2/60 Loss: 4.187801851272583 Epoch: 2/60 Loss: 4.41037546133995 Epoch: 2/60 Loss: 4.3907617893219 Epoch: 2/60 Loss: 4.24628427362442 Epoch: 2/60 Loss: 4.246769404649735 Epoch: 2/60 Loss: 4.2671496539115905 Epoch: 2/60 Loss: 4.289663331031799 Epoch: 2/60 Loss: 4.297907082319259 Epoch: 2/60 Loss: 4.276141669273376 Epoch: 2/60 Loss: 4.198048438787461 Epoch: 2/60 Loss: 4.266749669075012 Epoch: 2/60 Loss: 4.121604875087738 Epoch: 2/60 Loss: 4.362252393245697 Epoch: 2/60 Loss: 4.079461237668991 Epoch: 3/60 Loss: 4.250750797922197 Epoch: 3/60 Loss: 3.9251162407398223 Epoch: 3/60 Loss: 3.914248083591461 Epoch: 3/60 Loss: 3.94316263628006 Epoch: 3/60 Loss: 4.029306303739547 Epoch: 3/60 Loss: 4.083336960792542 Epoch: 3/60 Loss: 4.0299128365516665 Epoch: 3/60 Loss: 4.042876502275467 Epoch: 3/60 Loss: 3.7869373910427093 Epoch: 3/60 Loss: 4.123842885255813 Epoch: 3/60 Loss: 3.9306966569423674 Epoch: 3/60 Loss: 4.0140827729702 Epoch: 3/60 Loss: 3.746992486476898 Epoch: 3/60 Loss: 3.8321164903640748 Epoch: 3/60 Loss: 3.746077346324921 Epoch: 3/60 Loss: 3.8679626944065095 Epoch: 3/60 Loss: 3.910302846431732 Epoch: 3/60 Loss: 4.1163127307891845 Epoch: 3/60 Loss: 4.018224453449249 Epoch: 3/60 Loss: 3.9532341599464416 Epoch: 3/60 Loss: 3.909925265073776 Epoch: 3/60 Loss: 3.8639591455459597 Epoch: 3/60 Loss: 4.18081232213974 Epoch: 3/60 Loss: 3.945679934024811 Epoch: 3/60 Loss: 4.076323775529861 Epoch: 3/60 Loss: 4.16047481584549 Epoch: 3/60 Loss: 4.019626809597016 Epoch: 3/60 Loss: 4.157767161846161 Epoch: 3/60 Loss: 4.025215100288391 Epoch: 3/60 Loss: 3.989033597946167 Epoch: 3/60 Loss: 3.8601762781143187 Epoch: 3/60 Loss: 4.183839636325836 Epoch: 3/60 Loss: 4.022508750200272 Epoch: 3/60 Loss: 3.8207516753673554 Epoch: 3/60 Loss: 3.8664631218910217 Epoch: 3/60 Loss: 3.992371515750885 Epoch: 3/60 Loss: 3.8129169692993163 Epoch: 3/60 Loss: 4.052038418769836 Epoch: 3/60 Loss: 3.994664577484131 Epoch: 3/60 Loss: 3.8779393215179443 Epoch: 3/60 Loss: 3.9145858850479125 Epoch: 3/60 Loss: 3.9229103367328646 Epoch: 3/60 Loss: 3.955868262529373 Epoch: 3/60 Loss: 4.128921581983566 Epoch: 3/60 Loss: 4.026408871173858 Epoch: 3/60 Loss: 4.058253768444061 Epoch: 3/60 Loss: 4.234986638069153 Epoch: 3/60 Loss: 4.196707132339477 Epoch: 3/60 Loss: 4.074207115650177 Epoch: 3/60 Loss: 4.104648168563843 Epoch: 3/60 Loss: 4.12827761554718 Epoch: 3/60 Loss: 4.132703597545624 Epoch: 3/60 Loss: 4.090524292230606 Epoch: 3/60 Loss: 4.1452890601158146 Epoch: 3/60 Loss: 4.129444852590561 Epoch: 3/60 Loss: 4.151323220014572 Epoch: 3/60 Loss: 3.975802195549011 Epoch: 3/60 Loss: 4.234117865085602 Epoch: 3/60 Loss: 3.9730878348350527 Epoch: 4/60 Loss: 4.184733656923408 Epoch: 4/60 Loss: 3.914286875963211 Epoch: 4/60 Loss: 3.865648806810379 Epoch: 4/60 Loss: 3.9025143425464632 Epoch: 4/60 Loss: 3.9858370382785795 Epoch: 4/60 Loss: 4.020926055908203 Epoch: 4/60 Loss: 3.918301112651825 Epoch: 4/60 Loss: 3.9387994062900544 Epoch: 4/60 Loss: 3.6834995160102846 Epoch: 4/60 Loss: 4.005870884895325 Epoch: 4/60 Loss: 3.880285642147064 Epoch: 4/60 Loss: 3.940782643079758 Epoch: 4/60 Loss: 3.660971079349518 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** The biggest change happend when I removed the dropout that I originally had. This changed my model to never go below a loss of 4.0 to beeing able to converge. The reasoning for not doing dropout is that we are not afraid of overfitting, we are actually trying to recreate seinfeld scripts as good as possible.Suddenly the model was able to converge, and I just left the other parameters as they were at that moment. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /usr/local/lib/python3.5/dist-packages/ipykernel_launcher.py:37: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) text[:50] ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function vocab_to_int = {word:i for i,word in enumerate(set(text))} int_to_vocab = {i:word for i,word in enumerate(set(text))} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". - Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** ) ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function punc = {'.':'||Period||', ',':'||Comma||', '"':'||Quatation_mark||', ';':'||Semicolon||', '!':'||Exclamation_mark||', '?':'||Question_mark||', '(':'||Left_parentheses||', ')':'||Right_parentheses||', '-':'||Dash||', '\n':'||Return||' } return punc """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code import torch """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): n_batches = len(words)//batch_size # only full batches words = words[:n_batches*batch_size] y_len = len(words) - sequence_length x, y = [], [] for idx in range(0, y_len): idx_end = sequence_length + idx x_batch = words[idx:idx_end] x.append(x_batch) # print("feature: ",x_batch) batch_y = words[idx_end] # print("target: ", batch_y) y.append(batch_y) # create Tensor datasets data = TensorDataset(torch.from_numpy(np.asarray(x)), torch.from_numpy(np.asarray(y))) # make sure the SHUFFLE your training data data_loader = DataLoader(data, shuffle=False, batch_size=batch_size) # return a dataloader #print(x) #print(y) return data_loader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function #words = torch.tensor(words) word_len = len(words)// batch_size words = words[:word_len*batch_size] y_len = len(words) - sequence_length x, y = [], [] for idx in range(y_len): idx_max = sequence_length + idx x_data = words[idx:idx_max] y_data = words[idx_max] x.append(x_data) y.append(y_data) data = TensorDataset(torch.tensor(x), torch.tensor(y)) data_loader = torch.utils.data.DataLoader(data, shuffle = False, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # set class variables self.vocab_size= vocab_size self.output_size= output_size self.embedding_dim= embedding_dim self.hidden_dim= hidden_dim self.n_layers= n_layers # define model layers self.embed = nn.Embedding(vocab_size, embedding_dim) self.gru = nn.LSTM(embedding_dim, hidden_size = hidden_dim ,num_layers= n_layers, batch_first=True, dropout = dropout) self.fc = nn.Linear(hidden_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, output_size) self.dropout = nn.Dropout(dropout) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # nn_input = nn_input.to(torch.int64) # print(nn_input.shape) batch_size = nn_input.size(0) embeddings = self.embed(nn_input) # print(embeddings.shape) lstm_out, hidden = self.gru(embeddings, hidden) # print(lstm_out.shape) # print(hidden[0].shape) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) #out = self.dropout(lstm_out) # print(out.shape) out = self.fc(lstm_out) out = self.fc2(out) out = out.view(batch_size, -1, self.output_size) # print(out[:, -1].shape) # return one batch of output word scores and the hidden state return out[:, -1], hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function weight = next(self.parameters()).data #print(weight.shape) #print(weight) if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda() ,weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_() ,weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) # initialize hidden state with zero weights, and move to GPU if available return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function if train_on_gpu: inp, target = inp.cuda(), target.cuda() h = tuple([each.data for each in hidden]) rnn.zero_grad() output, h = rnn(inp,h ) loss = criterion(output, target) #loss =criterion(output.squeeze(0), target.long()) nn.utils.clip_grad_norm_(rnn.parameters(), 5) # move data to GPU, if available loss.backward() optimizer.step() # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 12 # of words in a sequence # Batch Size batch_size = 256 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 30 # Learning Rate learning_rate = 0.002 # Model parameters # Vocab size vocab_size = len(vocab_to_int.keys()) # Output size output_size = len(set(int_text))+1 # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 1000 len(set(int_text))+1 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code %%time from workspace_utils import active_session with active_session(): # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') # """ # DON'T MODIFY ANYTHING IN THIS CELL # """ # # create model and move to gpu if available # rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) # if train_on_gpu: # rnn.cuda() # # defining loss and optimization functions for training # optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) # criterion = nn.CrossEntropyLoss() # # training the model # trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # # saving the trained model # helper.save_model('./save/trained_rnn', trained_rnn) # print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** Below are the reasons for deciding the model hyperparameters- Sequence_lengths - I tried smaller sequence_lengths for an epoch and found that smaller sequence lengths train and converges faster. However it did not coverge faster.- Batch size - Lower the batch size higher the training time. So increased the batch size to nominal level. Also it depends on the capacity of the server. - hidden_dim - More the hidden dimension means more the number of LSTM cells. I settled down with 256 because it should not have vanishing gradient issue. - Number of Layers - I selected the number as 3. More the layers the network will be deep. So it might have vanishing gradient problem. - Learning rate - I started with 0.01 as the learning rate and the loss did not decrease much. So settled down with 0.002. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:55: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46366 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function vocab_to_int = {} int_to_vocab = {} for word in text: if word not in vocab_to_int: word_id = len(vocab_to_int) vocab_to_int[word] = word_id int_to_vocab[word_id] = word # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return { '.': '||Period||', ',': "||Comma||", '"': "||QuotationMark||", ';': "||Semicolon||", '!': "||ExclamationMark||", '?': "||QuestionMark||", '(': "||LeftParentheses||", ')': "||RightParentheses||", '-': "||Dash||", '\n': "||Return||" } """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() print(list(vocab_to_int)[:100]) ###Output ['this', 'is', 'out', '||period||', 'and', 'one', 'of', 'the', 'single', 'most', 'enjoyable', 'experiences', 'life', 'people', 'did', 'you', 'ever', 'hear', 'talking', 'about', 'we', 'should', 'go', '||questionmark||', 'what', 'theyre', 'whole', 'thing', '||comma||', 'were', 'all', 'now', 'no', 'home', 'not', 'person', 'here', '||exclamationmark||', 'there', 'are', 'trying', 'to', 'find', 'us', 'they', 'dont', 'know', 'where', '||leftparentheses||', 'on', 'an', 'imaginary', 'phone', '||rightparentheses||', 'ring', 'i', 'cant', 'him', 'he', 'didnt', 'tell', 'me', 'was', 'going', 'must', 'have', 'gone', 'wanna', 'get', 'ready', 'pick', 'clothes', 'right', 'take', 'shower', 'cash', 'your', 'friends', 'car', 'spot', 'reservation', 'then', 'youre', 'standing', 'around', 'do', 'gotta', 'be', 'getting', 'back', 'once', 'sleep', 'up', 'again', 'tomorrow', 'in', 'its', 'my', 'feeling', 'youve'] ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function n_samples = len(words) - sequence_length + 1 features = np.zeros((n_samples, sequence_length)) targets = np.zeros(n_samples) for i in range(n_samples): start = i end = i+sequence_length features[i, :] = words[start:end] if end == len(words): targets[i] = words[0] else: targets[i] = words[end] print(features.shape, targets.shape) return DataLoader(TensorDataset(torch.from_numpy(features), torch.from_numpy(targets)), shuffle=True, batch_size=batch_size) # there is no test for this function, but you are encouraged to create # print statements and tests of your own loader = batch_data([1,2,3,4,5,6,7], 4, 1) for i_batch, sample_batched in enumerate(loader): print(i_batch, sample_batched) ###Output (4, 4) (4,) 0 [tensor([[1., 2., 3., 4.]], dtype=torch.float64), tensor([5.], dtype=torch.float64)] 1 [tensor([[4., 5., 6., 7.]], dtype=torch.float64), tensor([1.], dtype=torch.float64)] 2 [tensor([[3., 4., 5., 6.]], dtype=torch.float64), tensor([7.], dtype=torch.float64)] 3 [tensor([[2., 3., 4., 5.]], dtype=torch.float64), tensor([6.], dtype=torch.float64)] ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output (46, 5) (46,) torch.Size([10, 5]) tensor([[19., 20., 21., 22., 23.], [ 4., 5., 6., 7., 8.], [42., 43., 44., 45., 46.], [27., 28., 29., 30., 31.], [ 1., 2., 3., 4., 5.], [26., 27., 28., 29., 30.], [12., 13., 14., 15., 16.], [15., 16., 17., 18., 19.], [41., 42., 43., 44., 45.], [ 7., 8., 9., 10., 11.]], dtype=torch.float64) torch.Size([10]) tensor([24., 9., 47., 32., 6., 31., 17., 20., 46., 12.], dtype=torch.float64) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn def one_hot(v, vocab_size): r = torch.zeros((v.shape[0], v.shape[1], vocab_size), dtype=torch.float) for batch in range(v.shape[0]): for word in range(v.shape[1]): #print(v[batch,word].int()) r[batch, word, v[batch, word].int()] = 1. if train_on_gpu: r = r.cuda() return r class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.vocab_size = vocab_size self.output_size = output_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers self.dropout = dropout #print(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout) #print(embedding_dim) # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function #one_hot_input = one_hot(nn_input, self.vocab_size) #print(nn_input.shape, nn_input.dtype) embedding = self.embedding(nn_input.long()) #print(nn_input.shape, one_hot_input.shape) s, h_1 = self.lstm(embedding, hidden) #print("s.shape", s.shape) s = s[:, -1, :] #print("s_.shape", s.shape) #print(h_1[0].shape, h_1[1].shape) s = s.contiguous().view(-1, self.hidden_dim) out = self.fc(s) #print(out.shape) # return one batch of output word scores and the hidden state return out, h_1 def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function #print("init_hidden", batch_size) # initialize hidden state with zero weights, and move to GPU if available h_0 = torch.zeros((self.n_layers, batch_size, self.hidden_dim), dtype=torch.float) c_0 = torch.zeros((self.n_layers, batch_size, self.hidden_dim), dtype=torch.float) if train_on_gpu: h_0 = h_0.cuda() c_0 = c_0.cuda() return (h_0, c_0) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def one_hot_target(v, vocab_size): r = torch.zeros((v.shape[0], vocab_size), dtype=torch.float) for batch in range(v.shape[0]): r[batch, v[batch]] = 1. if train_on_gpu: r = r.cuda() return r def detach_hidden(h): if isinstance(h, torch.Tensor): return h.detach() else: return tuple(detach_hidden(v) for v in h) def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function inp = inp.cuda() rnn.zero_grad() out, hidden = rnn(inp, hidden) # move data to GPU, if available out = out.cuda() # perform backpropagation and optimization #target_one_hot = one_hot_target(target, out.shape[1]) #_, out_max = out.max(dim=1) #print(target.shape, out.shape, out_max.shape, target_one_hot.shape) #print(type(target), type(out), type(out_max), type(target_one_hot)) #print(target.dtype, out.dtype, out_max.dtype, target_one_hot.dtype) loss = criterion(out, target.long().cuda()) loss.backward() nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), detach_hidden(hidden) # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] batch_avg_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): print(f'Epoch {epoch_i}') # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: avg = np.average(batch_losses) print('Epoch: {:>4}/{:<4} Batch: {} Loss: {}\n'.format( epoch_i, n_epochs, batch_i, avg)) batch_losses = [] batch_avg_losses = avg torch.cuda.empty_cache() print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_avg_losses))) # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 15 # of words in a sequence # Batch Size batch_size = 100 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(int_to_vocab) print(len(int_text), vocab_size) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 800 # Number of RNN Layers n_layers = 3 # Show stats for every n number of batches show_every_n_batches = 1000 ###Output 892114 21387 ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch 1 Epoch: 1/10 Batch: 1000 Loss: 5.853621798992157 Epoch: 1/10 Batch: 2000 Loss: 5.244606633424759 Epoch: 1/10 Batch: 3000 Loss: 4.803017456054688 Epoch: 1/10 Batch: 4000 Loss: 4.637760216712952 Epoch: 1/10 Batch: 5000 Loss: 4.531850752353669 Epoch: 1/10 Batch: 6000 Loss: 4.470599411249161 Epoch: 1/10 Batch: 7000 Loss: 4.41624275636673 Epoch: 1/10 Batch: 8000 Loss: 4.38442890548706 Epoch: 1/10 Loss: 4.38442890548706 Epoch 2 Epoch: 2/10 Batch: 1000 Loss: 4.242424337768356 Epoch: 2/10 Batch: 2000 Loss: 4.149412917852402 Epoch: 2/10 Batch: 3000 Loss: 4.138409474134445 Epoch: 2/10 Batch: 4000 Loss: 4.113071617841721 Epoch: 2/10 Batch: 5000 Loss: 4.102521020889283 Epoch: 2/10 Batch: 6000 Loss: 4.0857564868927 Epoch: 2/10 Batch: 7000 Loss: 4.048622624874115 Epoch: 2/10 Batch: 8000 Loss: 4.047781325817108 Epoch: 2/10 Loss: 4.047781325817108 Epoch 3 Epoch: 3/10 Batch: 1000 Loss: 3.969946078370475 Epoch: 3/10 Batch: 2000 Loss: 3.86342317032814 Epoch: 3/10 Batch: 3000 Loss: 3.85399765753746 Epoch: 3/10 Batch: 4000 Loss: 3.873039680480957 Epoch: 3/10 Batch: 5000 Loss: 3.8547728328704833 Epoch: 3/10 Batch: 6000 Loss: 3.8629228987693787 Epoch: 3/10 Batch: 7000 Loss: 3.859683215856552 Epoch: 3/10 Batch: 8000 Loss: 3.8698759377002716 Epoch: 3/10 Loss: 3.8698759377002716 Epoch 4 Epoch: 4/10 Batch: 1000 Loss: 3.7800804308961293 Epoch: 4/10 Batch: 2000 Loss: 3.681982980489731 Epoch: 4/10 Batch: 3000 Loss: 3.690797383785248 Epoch: 4/10 Batch: 4000 Loss: 3.7203687834739685 Epoch: 4/10 Batch: 5000 Loss: 3.718963539123535 Epoch: 4/10 Batch: 6000 Loss: 3.7331083700656893 Epoch: 4/10 Batch: 7000 Loss: 3.73202507686615 Epoch: 4/10 Batch: 8000 Loss: 3.751604646921158 Epoch: 4/10 Loss: 3.751604646921158 Epoch 5 Epoch: 5/10 Batch: 1000 Loss: 3.6497513016706207 Epoch: 5/10 Batch: 2000 Loss: 3.5666191935539246 Epoch: 5/10 Batch: 3000 Loss: 3.5738594584465027 Epoch: 5/10 Batch: 4000 Loss: 3.596497260093689 Epoch: 5/10 Batch: 5000 Loss: 3.6187335658073425 Epoch: 5/10 Batch: 6000 Loss: 3.602631780385971 Epoch: 5/10 Batch: 7000 Loss: 3.6169976077079773 Epoch: 5/10 Batch: 8000 Loss: 3.617536381483078 Epoch: 5/10 Loss: 3.617536381483078 Epoch 6 Epoch: 6/10 Batch: 1000 Loss: 3.534330853318746 Epoch: 6/10 Batch: 2000 Loss: 3.4614045357704164 Epoch: 6/10 Batch: 3000 Loss: 3.4708561041355135 Epoch: 6/10 Batch: 4000 Loss: 3.4790310962200164 Epoch: 6/10 Batch: 5000 Loss: 3.503310553073883 Epoch: 6/10 Batch: 6000 Loss: 3.504567188501358 Epoch: 6/10 Batch: 7000 Loss: 3.528929073572159 Epoch: 6/10 Batch: 8000 Loss: 3.536658666372299 Epoch: 6/10 Loss: 3.536658666372299 Epoch 7 Epoch: 7/10 Batch: 1000 Loss: 3.457180223137311 Epoch: 7/10 Batch: 2000 Loss: 3.3559438667297363 Epoch: 7/10 Batch: 3000 Loss: 3.3687479209899904 Epoch: 7/10 Batch: 4000 Loss: 3.388079210996628 Epoch: 7/10 Batch: 5000 Loss: 3.424742641210556 Epoch: 7/10 Batch: 6000 Loss: 3.421554022073746 Epoch: 7/10 Batch: 7000 Loss: 3.4435657577514647 Epoch: 7/10 Batch: 8000 Loss: 3.453924249649048 Epoch: 7/10 Loss: 3.453924249649048 Epoch 8 Epoch: 8/10 Batch: 1000 Loss: 3.364710630941118 Epoch: 8/10 Batch: 2000 Loss: 3.269726131916046 Epoch: 8/10 Batch: 3000 Loss: 3.302654886007309 Epoch: 8/10 Batch: 4000 Loss: 3.3127076342105863 Epoch: 8/10 Batch: 5000 Loss: 3.332404126405716 Epoch: 8/10 Batch: 6000 Loss: 3.3291565313339233 Epoch: 8/10 Batch: 7000 Loss: 3.368938497543335 Epoch: 8/10 Batch: 8000 Loss: 3.377081280231476 Epoch: 8/10 Loss: 3.377081280231476 Epoch 9 Epoch: 9/10 Batch: 1000 Loss: 3.2800091848219513 Epoch: 9/10 Batch: 2000 Loss: 3.215510542869568 Epoch: 9/10 Batch: 3000 Loss: 3.2248386573791503 Epoch: 9/10 Batch: 4000 Loss: 3.2357929401397705 Epoch: 9/10 Batch: 5000 Loss: 3.257990814447403 Epoch: 9/10 Batch: 6000 Loss: 3.270929653644562 Epoch: 9/10 Batch: 7000 Loss: 3.2904696140289307 Epoch: 9/10 Batch: 8000 Loss: 3.3084900839328766 Epoch: 9/10 Loss: 3.3084900839328766 Epoch 10 Epoch: 10/10 Batch: 1000 Loss: 3.2151777885780555 Epoch: 10/10 Batch: 2000 Loss: 3.133549928188324 Epoch: 10/10 Batch: 3000 Loss: 3.155182463645935 Epoch: 10/10 Batch: 4000 Loss: 3.153361447095871 Epoch: 10/10 Batch: 5000 Loss: 3.1879862921237945 Epoch: 10/10 Batch: 6000 Loss: 3.220042049884796 Epoch: 10/10 Batch: 7000 Loss: 3.2258312377929688 Epoch: 10/10 Batch: 8000 Loss: 3.2454964752197264 Epoch: 10/10 Loss: 3.2454964752197264 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:**My strategy to find the hyperparameters was, as always, trial-and-error. I tried more than 10 settings since I couldn't get the good loss. But it turned out that the real problem with my model was not the hyperparameters, but it was the dropout layer after FC layer. I could get very good loss after removing the dropout layer.I first used learning_rate=0.01, but the loss was increased with the learning rate, so I reduced it to 0.001. Then the loss started to decrease.I chose the embedding_dim based on the advice in the word2vec lecture. I first started with much larger embedding_dims like 1000. But after reviewing some of the materials about word embedding, I realized that bigger embedding_dim is not needed in this project.Regarding the size of the model, I first started with much smaller models, e.g. hidden_dim=200 and n_layers=2. I couldn't get a good loss with such a small model, so I enlarged the model. But I didn't increase the n_layers more than 3 based on the advice given in "Hyperparameters" lecture(Number of Hidden Units/Layers section and RNN Hyperparameters section).The final question is how to set the sequence_length. I first looked at the average number of words in each line, which is about 5. I wanted the model to be aware of, at least, the last two~three sentences, so I chose 15. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq.cpu(), -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function chars = tuple(set(text)) int_to_vocab = dict(enumerate(chars,1)) vocab_to_int = {ch: ii for ii, ch in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token = { '.' : '||Period||', ',' : '||Comma||', '"' : '||Quotation_Mark}}', ';' : '||Semicolon||', '!' : '||Exclamation_Mark||', '?' : '||Question_Mark||', '(' : '||Left_Parentheses||', ')' : '||Right_Parentheses||', '-' : '||Dash||', '\n': '||Return||' } return token """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() import torch torch.backends.cudnn.enabled=False ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function len_words = len(words) feature_tensors = [] target_tensors = [] for idx in range(0,len_words-sequence_length): if (idx+sequence_length < len_words): feature_tensors.append(words[idx:idx+sequence_length]) target_tensors.append(words[idx+sequence_length]) data = TensorDataset(torch.LongTensor(feature_tensors), (torch.LongTensor(target_tensors))) data_loader = DataLoader(data, shuffle=True, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[18, 19, 20, 21, 22], [33, 34, 35, 36, 37], [38, 39, 40, 41, 42], [25, 26, 27, 28, 29], [39, 40, 41, 42, 43], [26, 27, 28, 29, 30], [10, 11, 12, 13, 14], [27, 28, 29, 30, 31], [ 8, 9, 10, 11, 12], [15, 16, 17, 18, 19]]) torch.Size([10]) tensor([23, 38, 43, 30, 44, 31, 15, 32, 13, 20]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers # embedding and lstm layers self.embed = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # dropout layer self.dropout = nn.Dropout(0.1) # linear and sigmoid layers self.fc = nn.Linear(hidden_dim, output_size) def forward(self, x, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function (x is batch_size x seq_length) batch_size = x.size(0) # pass through embedding layer and lstm embeds = self.embed(x.long()) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm outputs (in order) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout for regularization and pass through fully-connected layer out = self.dropout(lstm_out) out = self.fc(out) # get the last batch of word scores out = out.view(batch_size, -1, self.output_size) last_batch_scores = out[:, -1] # return one batch of output word scores and the hidden state return last_batch_scores, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inputs, targets, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): inputs, targets = inputs.cuda(), targets.cuda() # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history hidden = tuple([each.data for each in hidden]) # perform backpropagation and optimization # zero accumulated gradients rnn.zero_grad() # get the output from the model output, hidden = rnn(inputs, hidden) # calculate the loss and perform backprop loss = criterion(output.squeeze(), targets.long()) loss.backward() # help prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 15 # of words in a sequence # Batch Size batch_size = 256 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 20 # Learning Rate learning_rate = 0.0005 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = len(vocab_to_int) # Embedding Dimension embedding_dim = 256 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) print(rnn) if train_on_gpu: print("Training on gpu") rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output RNN( (embed): Embedding(21388, 256) (lstm): LSTM(256, 256, num_layers=2, batch_first=True, dropout=0.5) (dropout): Dropout(p=0.1) (fc): Linear(in_features=256, out_features=21388, bias=True) ) Training on gpu Training for 20 epoch(s)... Epoch: 1/20 Loss: 5.597207285881042 Epoch: 1/20 Loss: 4.945136706352234 Epoch: 1/20 Loss: 4.688877922058105 Epoch: 1/20 Loss: 4.557778511524201 Epoch: 1/20 Loss: 4.472045307159424 Epoch: 1/20 Loss: 4.3908713493347165 Epoch: 2/20 Loss: 4.280853354591664 Epoch: 2/20 Loss: 4.18701998090744 Epoch: 2/20 Loss: 4.147230245113373 Epoch: 2/20 Loss: 4.138403913497925 Epoch: 2/20 Loss: 4.110214523315429 Epoch: 2/20 Loss: 4.059590896606445 Epoch: 3/20 Loss: 4.031055136182444 Epoch: 3/20 Loss: 3.9617759823799132 Epoch: 3/20 Loss: 3.9564146003723146 Epoch: 3/20 Loss: 3.9414126343727114 Epoch: 3/20 Loss: 3.927466591835022 Epoch: 3/20 Loss: 3.9192955713272095 Epoch: 4/20 Loss: 3.8769721621420326 Epoch: 4/20 Loss: 3.8304171710014345 Epoch: 4/20 Loss: 3.814621898174286 Epoch: 4/20 Loss: 3.8046879591941836 Epoch: 4/20 Loss: 3.8182865715026857 Epoch: 4/20 Loss: 3.806731687068939 Epoch: 5/20 Loss: 3.756708551955417 Epoch: 5/20 Loss: 3.7152124028205873 Epoch: 5/20 Loss: 3.7155078110694886 Epoch: 5/20 Loss: 3.7212602343559267 Epoch: 5/20 Loss: 3.720372211933136 Epoch: 5/20 Loss: 3.7307218408584593 Epoch: 6/20 Loss: 3.6717124288159657 Epoch: 6/20 Loss: 3.6385444107055664 Epoch: 6/20 Loss: 3.642626296043396 Epoch: 6/20 Loss: 3.6448024158477783 Epoch: 6/20 Loss: 3.634449579715729 Epoch: 6/20 Loss: 3.65169495344162 Epoch: 7/20 Loss: 3.602716451011053 Epoch: 7/20 Loss: 3.557685826301575 Epoch: 7/20 Loss: 3.574955069065094 Epoch: 7/20 Loss: 3.5812946939468384 Epoch: 7/20 Loss: 3.5875872387886045 Epoch: 7/20 Loss: 3.589073181629181 Epoch: 8/20 Loss: 3.5334425982905597 Epoch: 8/20 Loss: 3.5055549998283384 Epoch: 8/20 Loss: 3.5164567112922667 Epoch: 8/20 Loss: 3.5271290922164917 Epoch: 8/20 Loss: 3.5304792709350585 Epoch: 8/20 Loss: 3.5377687726020812 Epoch: 9/20 Loss: 3.4811665481183587 Epoch: 9/20 Loss: 3.450687542915344 Epoch: 9/20 Loss: 3.4531266360282897 Epoch: 9/20 Loss: 3.4672906193733217 Epoch: 9/20 Loss: 3.4922217712402346 Epoch: 9/20 Loss: 3.483692674160004 Epoch: 10/20 Loss: 3.441195634564733 Epoch: 10/20 Loss: 3.4057532148361207 Epoch: 10/20 Loss: 3.4243404693603514 Epoch: 10/20 Loss: 3.4185665636062623 Epoch: 10/20 Loss: 3.4349712772369383 Epoch: 10/20 Loss: 3.435743576526642 Epoch: 11/20 Loss: 3.395347802135033 Epoch: 11/20 Loss: 3.3523110408782957 Epoch: 11/20 Loss: 3.369799837112427 Epoch: 11/20 Loss: 3.385363309383392 Epoch: 11/20 Loss: 3.404648055076599 Epoch: 11/20 Loss: 3.406935683250427 Epoch: 12/20 Loss: 3.3569239232598282 Epoch: 12/20 Loss: 3.3299567284584044 Epoch: 12/20 Loss: 3.333758858203888 Epoch: 12/20 Loss: 3.3565344247817994 Epoch: 12/20 Loss: 3.3535110931396486 Epoch: 12/20 Loss: 3.3671498990058897 Epoch: 13/20 Loss: 3.3291901742539753 Epoch: 13/20 Loss: 3.2964145069122313 Epoch: 13/20 Loss: 3.3002819323539736 Epoch: 13/20 Loss: 3.3061969776153566 Epoch: 13/20 Loss: 3.3083550405502318 Epoch: 13/20 Loss: 3.3414688987731935 Epoch: 14/20 Loss: 3.2864690192831243 Epoch: 14/20 Loss: 3.2616634464263914 Epoch: 14/20 Loss: 3.268913824558258 Epoch: 14/20 Loss: 3.2795535778999327 Epoch: 14/20 Loss: 3.293611352443695 Epoch: 14/20 Loss: 3.316191336631775 Epoch: 15/20 Loss: 3.2559234570196973 Epoch: 15/20 Loss: 3.2291657261848448 Epoch: 15/20 Loss: 3.243384324550629 Epoch: 15/20 Loss: 3.2465188884735108 Epoch: 15/20 Loss: 3.26113570022583 Epoch: 15/20 Loss: 3.2806422657966614 Epoch: 16/20 Loss: 3.2373093950554606 Epoch: 16/20 Loss: 3.205128993034363 Epoch: 16/20 Loss: 3.214359392642975 Epoch: 16/20 Loss: 3.235689097881317 Epoch: 16/20 Loss: 3.2317296509742737 Epoch: 16/20 Loss: 3.2436203575134277 Epoch: 17/20 Loss: 3.210456041301169 Epoch: 17/20 Loss: 3.1856013131141663 Epoch: 17/20 Loss: 3.1873209314346314 Epoch: 17/20 Loss: 3.215623960494995 Epoch: 17/20 Loss: 3.223004135131836 Epoch: 17/20 Loss: 3.220896931171417 Epoch: 18/20 Loss: 3.1717005427775344 Epoch: 18/20 Loss: 3.158070963382721 Epoch: 18/20 Loss: 3.179109445095062 Epoch: 18/20 Loss: 3.185102249622345 Epoch: 18/20 Loss: 3.1850178418159483 Epoch: 18/20 Loss: 3.201482448577881 Epoch: 19/20 Loss: 3.162135840916052 Epoch: 19/20 Loss: 3.1397451519966126 Epoch: 19/20 Loss: 3.146389533996582 Epoch: 19/20 Loss: 3.1490698828697203 Epoch: 19/20 Loss: 3.167155300617218 Epoch: 19/20 Loss: 3.1828755474090578 Epoch: 20/20 Loss: 3.140131360389353 Epoch: 20/20 Loss: 3.122141387939453 Epoch: 20/20 Loss: 3.1299677457809447 Epoch: 20/20 Loss: 3.12221867275238 Epoch: 20/20 Loss: 3.1405500621795652 Epoch: 20/20 Loss: 3.1553693571090697 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** Since the model should be looking at appropriate sentence length for succesfull conversation plot, I chose `sequence_length = 15`. I played a lot around `batch_size` and found out that higher batch sizes (around 128) converges the model faster. Also, `learning_rate` is kept very low so that the model learns smoothly and the training loss decreases after every epoch. `hidden_dim = 256` best performed during the experimental runs and `n_layers = 2` was enough (and faster than 3) to achieve the training loss less than 3.5 for the submission. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq.cpu(), -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry:. elaine: oh my god. jerry: well, you know, i was wondering.. kramer: well, i think you could get together, we can do this. kramer: oh, yeah! elaine: hey. elaine: hey! elaine: oh, hi! george:(to jerry) what?(to kramer) i don't believe this, jerry.(they both move) kramer: well, you gotta get a cab. jerry: oh, no! that's what i did. elaine: i don't know how to get you. i don't want to get it. jerry: what are you doing? elaine: i can't believe this! jerry: oh, no... kramer:(pointing at the counter) what about the drake? george: i don't know. george: i think you were going to be in the car. kramer: well, i'm not going to get some sleep. elaine:(to jerry) hey, i gotta go to the movies.(to jerry) i know you. kramer: yeah! jerry: i know. george: what? why don't you just sit here in the shower? jerry: i know. elaine:(to jerry) i don't think so. i mean, i was thinking i could do a good 'hello' about the show. george: i think i should. jerry: well, what about the guy that was wearing a cape?! elaine:(laughs.) you know what? jerry: what is that? jerry: i don't know. elaine: i don't want to tell you something. you know what i do. i'm not going in... jerry: oh, i think i was just curious. kramer: yeah, that's a lot of pressure than a man. kramer:(pointing) oh, that's the way i ever saw. ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function vocab_to_int = {} int_to_vocab = {} # Start from 0, no need for a special character for padding index = 0 for word in text: if word not in vocab_to_int: vocab_to_int[word] = index int_to_vocab[index] = word index = index + 1 # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function punctuation_to_token = {} punctuation_to_token["."] = "||Period||" punctuation_to_token[","] = "||Comma||" punctuation_to_token['"'] = "||Quotation_Mark||" punctuation_to_token[';'] = "||Semicolon||" punctuation_to_token['!'] = "||Exclamation_Mark||" punctuation_to_token['?'] = "||Question_Mark||" punctuation_to_token['('] = "||Left_Parentheses||" punctuation_to_token[')'] = "||Right_Parentheses||" punctuation_to_token["-"] = "||Dash||" punctuation_to_token["\n"] = "||Return||" return punctuation_to_token """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function features_count = len(words) - sequence_length features = np.zeros((features_count, sequence_length), dtype=int) targets = np.zeros((features_count, 1), dtype=int) for ii in range(features_count): start = ii end = start + sequence_length # This is guaranteed to be < len(words) features[ii, :] = words[start : end] targets[ii] = words[end] train_test_fraction = 0.9 split_idx = int(len(features) * train_test_fraction) train_x, valid_x = features[:split_idx], features[split_idx:] train_y, valid_y = targets[:split_idx], targets[split_idx:] train_dataset = TensorDataset(torch.from_numpy(train_x), torch.from_numpy(train_y).squeeze()) validation_dataset = TensorDataset(torch.from_numpy(valid_x), torch.from_numpy(valid_y).squeeze()) train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size) validation_dataloader = DataLoader(validation_dataset, shuffle=True, batch_size=batch_size) # return a dataloader return train_dataloader, validation_dataloader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader, _ = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 19, 20, 21, 22, 23], [ 30, 31, 32, 33, 34], [ 10, 11, 12, 13, 14], [ 6, 7, 8, 9, 10], [ 31, 32, 33, 34, 35], [ 38, 39, 40, 41, 42], [ 27, 28, 29, 30, 31], [ 25, 26, 27, 28, 29], [ 39, 40, 41, 42, 43], [ 33, 34, 35, 36, 37]]) torch.Size([10]) tensor([ 24, 35, 15, 11, 36, 43, 32, 30, 44, 38]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) # dropout not used self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, batch_first=True, dropout=0) # self.dropout = nn.Dropout(dropout) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) x = self.embedding(nn_input) out, hidden = self.lstm(x, hidden) # Removed the dropout # out = self.dropout(out) # Flatten, input to dense layer out = out.contiguous().view(-1, self.hidden_dim) out = self.fc(out) out = out.view(batch_size, -1, self.output_size) # return one batch of output word scores and the hidden state return out[:, -1], hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization hidden = tuple([each.data for each in hidden]) rnn.zero_grad() output, h = rnn(inp, hidden) loss = criterion(output.squeeze(), target.long()) loss.backward() clip=5 # gradient clipping nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ save_path = "trained_rnn.pt" def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100, dev_mode=False): batch_losses = [] valid_loss_min = np.Inf best_model = rnn rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) dev_mode_counter = 0 for batch_i, (inputs, labels) in enumerate(train_loader, 1): if dev_mode and dev_mode_counter > 3: break dev_mode_counter += 1 # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if dev_mode or (batch_i % show_every_n_batches) == 0: print('Epoch: {:>4}/{:<4} Training loss: {}'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # Validation loss rnn.eval() with torch.no_grad(): val_h = rnn.init_hidden(batch_size) val_losses = [] validation_counter = 0 val_batches = len(validation_loader.dataset) // batch_size for val_batch, (val_inputs, val_labels) in enumerate(validation_loader, 1): if dev_mode and validation_counter > 3: break validation_counter += 1 # make sure you iterate over completely full batches, only if(val_batch > val_batches): break # Creating new variables for the hidden state val_h = tuple([each.data for each in val_h]) if(train_on_gpu): val_inputs, val_labels = val_inputs.cuda(), val_labels.cuda() val_output, val_h = rnn(val_inputs, val_h) val_loss = criterion(val_output.squeeze(), val_labels.long()) val_losses.append(val_loss.item()) rnn.train() valid_loss = np.mean(val_losses) print("Validation Loss: {:.6f}\n".format(valid_loss)) if valid_loss <= valid_loss_min: print(f"Old valid_loss_min ({valid_loss_min}), new valid_loss ({valid_loss}). Saving the model.") torch.save(rnn.state_dict(), save_path) valid_loss_min = valid_loss # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 8 # of words in a sequence # Batch Size batch_size = 64 # data loader - do not change train_loader, validation_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 dev_mode = False # Model parameters # Vocab size vocab_size = len(vocab_to_int) # No need for zero-padding # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 500 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = int(len(train_loader.dataset)//batch_size / 5) ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from workspace_utils import active_session # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model with active_session(): trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches, dev_mode=dev_mode) # saving the trained model # helper.save_model('./save/trained_rnn', trained_rnn) # print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Training loss: 4.757854051255476 Epoch: 1/10 Training loss: 4.244379404960471 Epoch: 1/10 Training loss: 4.12962354517116 Epoch: 1/10 Training loss: 4.052596922745597 Epoch: 1/10 Training loss: 4.00840830118735 Validation Loss: 4.354143 Old valid_loss_min (inf), new valid_loss (4.354142875869926). Saving the model. Epoch: 2/10 Training loss: 3.7558324923311965 Epoch: 2/10 Training loss: 3.7620827691780234 Epoch: 2/10 Training loss: 3.7922432279149674 Epoch: 2/10 Training loss: 3.7780646311424317 Epoch: 2/10 Training loss: 3.7999744747871893 Validation Loss: 4.369741 Epoch: 3/10 Training loss: 3.514387589424623 Epoch: 3/10 Training loss: 3.554930131812645 Epoch: 3/10 Training loss: 3.5986679902158443 Epoch: 3/10 Training loss: 3.617089119599891 Epoch: 3/10 Training loss: 3.6443392696395818 Validation Loss: 4.434229 Epoch: 4/10 Training loss: 3.3298647260228775 Epoch: 4/10 Training loss: 3.3916470419129987 Epoch: 4/10 Training loss: 3.433064693471453 Epoch: 4/10 Training loss: 3.479323778270297 Epoch: 4/10 Training loss: 3.5277685745630003 Validation Loss: 4.527420 Epoch: 5/10 Training loss: 3.1797384595243803 Epoch: 5/10 Training loss: 3.241211139333823 Epoch: 5/10 Training loss: 3.3131291909063894 Epoch: 5/10 Training loss: 3.345803231345367 Epoch: 5/10 Training loss: 3.3945727029992745 Validation Loss: 4.648780 Epoch: 6/10 Training loss: 3.046087589668724 Epoch: 6/10 Training loss: 3.1217415750905686 Epoch: 6/10 Training loss: 3.1935753337697426 Epoch: 6/10 Training loss: 3.2401476218055185 Epoch: 6/10 Training loss: 3.287457555354283 Validation Loss: 4.763307 Epoch: 7/10 Training loss: 2.948822335543125 Epoch: 7/10 Training loss: 3.0267605736893266 Epoch: 7/10 Training loss: 3.0821627108116654 Epoch: 7/10 Training loss: 3.1334047317504883 Epoch: 7/10 Training loss: 3.196608396581845 Validation Loss: 4.856435 Epoch: 8/10 Training loss: 2.8503221546620097 Epoch: 8/10 Training loss: 2.9218662947285647 Epoch: 8/10 Training loss: 3.000046319722084 Epoch: 8/10 Training loss: 3.0440855964145226 Epoch: 8/10 Training loss: 3.1074035792960832 Validation Loss: 4.971439 Epoch: 9/10 Training loss: 2.759586052668432 Epoch: 9/10 Training loss: 2.843286538703739 Epoch: 9/10 Training loss: 2.92232500342745 Epoch: 9/10 Training loss: 2.9734146603078373 Epoch: 9/10 Training loss: 3.032673814943845 Validation Loss: 5.062698 Epoch: 10/10 Training loss: 2.6831030471717376 Epoch: 10/10 Training loss: 2.7677098041323847 Epoch: 10/10 Training loss: 2.8633623726579858 Epoch: 10/10 Training loss: 2.918185781415785 Epoch: 10/10 Training loss: 2.9696068574157355 Validation Loss: 5.161663 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) *Dropout*: I intially used a drop-out probability of 0.5, but found that the model was underfitting and the training error couldn't reach the requested max 0f 3.5. So I changed the hyper-parameter to 0, making the model effectively not use dropout. This resulted in a final training loss of 2.97. *sequence_length*: By looking at some examples from the training corpus, 8 looked like a reasonable value. *batch_size*: 64 is a standard value, and no out-of-memory errors happened. *num_epochs*: 10 was enough to go below the requested 3.5 training loss. *learning_rate*: 0.001 resulted in the model learning in 10 epochs, and decreasing the training error. *n_layers*: 2, or 3 are common values. I choose 2 and the results were satisfactory. *hidden_dim*: Choose 256 from my previous experinece with the sentiment analysis exercise. The results turned out to be satisfactory. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() # trained_rnn = helper.load_model('./save/trained_rnn') # load the model that got the best validation accuracy trained_rnn.load_state_dict(torch.load(save_path)) ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: you have a little bit of the whole day of the way to the hospital. jerry: i dont think so. jerry: so, i can't go. elaine: well, i think i can get a lot to do with a few. you know, i just wanted to be a great way. jerry: well, i can't believe i was just going to be a little more than a little good thing. elaine:(to the phone) i got a lot of time. elaine:(looking at george) i think i can do anything. elaine: i think you know.. elaine:(smiling) yeah, i don't want any money. george: you don't know? kramer: well, i'm not gonna go back to the hospital...(george enters) kramer: well, i think you got your own life, and you can just go.(she turns) what are you doing? jerry: yeah, i don't even think i can get the car! kramer: no, i'm sorry. you know how i got the same life in a lot of a lot, you know what i think i do like? jerry: no, no, no, i can't get my money. jerry: i know i was just wondering what i can. jerry: i know, i don't even think so. kramer:(leaving) i can't tell you what, i'm sorry. jerry: i have to get it back and just take a drink to a few time, i got the way you think i could get out of your car? george: i don't know how you said, you know i know, i know what, i can't tell you what, i think you got it? george: i know, i don't know what, i can't... elaine: what? what is that?(to jerry) i don't think i can... jerry: ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_count = Counter(text) vocab = sorted(word_count, key=word_count.get, reverse=True) vocab_to_int = dict([(w,ii) for ii, w in enumerate(vocab)]) int_to_vocab = dict([(v,k) for k, v in vocab_to_int.items()]) # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token_dict = { '.' : '<PERIOD>', ',' : '<COMMA>', '"': '<QUOTATION_MARK>', ';': '<SEMICOLON>', '!': '<EXCLAMATION>', '?': '<QUESTION>', '(': '<LEFT_PARA>', ')': '<RIGHT_PARA>', '-': '<DASH>', '\n': '<RET>' } return token_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() len(int_text) ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader import numpy as np def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function possible_batches = len(words)//batch_size words = words[:possible_batches*batch_size] feature = np.array([words[i:(i+sequence_length)] for i in range(len(words)-sequence_length)]) target = np.array([words[i+sequence_length] for i in range(len(words)-sequence_length)]) feature_tensor, target_tensor = torch.from_numpy(feature), torch.from_numpy(target) data = TensorDataset(feature_tensor, target_tensor) data_loader = DataLoader(data,shuffle=True, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 36, 37, 38, 39, 40], [ 4, 5, 6, 7, 8], [ 26, 27, 28, 29, 30], [ 25, 26, 27, 28, 29], [ 33, 34, 35, 36, 37], [ 16, 17, 18, 19, 20], [ 27, 28, 29, 30, 31], [ 11, 12, 13, 14, 15], [ 43, 44, 45, 46, 47], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 41, 9, 31, 30, 38, 21, 32, 16, 48, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # set class variables # define model layers self.embeddings = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) #self.dropout = nn.Dropout(0.25) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) nn_input = nn_input.long() emb = self.embeddings(nn_input) lstm_out, hidden = self.lstm(emb, hidden) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) #out = self.dropout(out) # Removing dropout to improve model training. out = self.fc(lstm_out) out = out.view(batch_size, -1, self.output_size) out = out[:,-1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function weight = next(self.parameters()).data # initialize hidden state with zero weights, and move to GPU if available l1 = weight.new(self.n_layers, batch_size, self.hidden_dim).zero_() l2 = weight.new(self.n_layers, batch_size, self.hidden_dim).zero_() if train_on_gpu: hidden = (l1.cuda(), l2.cuda()) else : hidden = (l1, l2) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: inp, target = inp.cuda(), target.cuda() h = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() # perform backpropagation and optimization out, h = rnn(inp, h) loss = criterion(out, target) loss.backward() nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_rnn` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() min_loss = 3.2 print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): counter = 0 # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): counter += 1 print('Training batch {}...'.format(counter), end='\r', flush=True) # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: avg_loss = np.average(batch_losses) print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, avg_loss)) if avg_loss < min_loss: print('loss decreased {:.6f} --> {:.6f}, Saving model..'.format(min_loss, avg_loss,)) helper.save_model('./save/trained_rnn', rnn) min_loss = avg_loss batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 256 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 300 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() """ DON'T MODIFY ANYTHING IN THIS CELL """ # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.371952863693237 loss decreased 9.181360 --> 5.371953, Saving model.. ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** :I consulted online papers, articles and tutorials for selecting hyperparams. Unfortunately, hyperparam tuning is extreamly resource intensive task. I intended to start with most commonly used value and experiment by changing values slightly._One of the key learning I had that I started to replicate the model used in sentiment RNN. In doing so I kept my last layer as sigmoid without realizing that unlike sentiment which could 0/1. I needed multi-class classification. After spending 5 hours of my GPU time where the loss did not decline below 9.2. I started looking in code and realized my mistake. After correct my loss quickly declined from 5.7 to 3.9 and just two epochs._- `sequence_length`: 10 appears to be most commonly used value. The logic is stated to be that it is slightly ablive average length of english words (~6-7).- `batch_size` : Batch size suggested in litrature is 3(32, 64, 128, 256). Depending on the memory size available. I have chosen 256.- `num_epochs` : I started experiment with having 20 epochs. After training for 6 epochs my loss came down from 9.8 to 9.23. The loss was declining but very slowly. I consulted online articles and on forums. Hence suggested epochs were between 30 t0 60. I trained model for 35 epochs.- `learning_rate` : After experiment with (0.1, 0.01, 0.001). 0.001 was optimal for me. At 0.01 the loss was not declining at all even after 10 epochs.- `vocab_size`: As per the given text corpus. - `output_size`: Output size is equal to vocab size. Each word in vocab has probablity attached and word with highest probablity is selected as next word.- `embedding_dim`: As suggested in course the embedding dim should be between 200-300.- `hidden_dim`: Hidden Dimension is selected in the range between 200 and 500 as indicated in the course lectures.- `n_layers`: According to litrature, two hidden layers are sufficient any arbitatry function.**References used:** 1. [The Number of Hidden Layers](https://www.researchgate.net/post/How_to_decide_the_number_of_hidden_layers_and_nodes_in_a_hidden_layer)2. [How many hidden units should I use?](http://www.faqs.org/faqs/ai-faq/neural-nets/part3/section-10.html) ###Code rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:41: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ counts = Counter(text) sorted_vocab = sorted(counts, key=counts.get, reverse=True) int_to_vocab = {ii: word for ii , word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # encode the text encoded = np.array([vocab_to_int[word] for word in text]) return (vocab_to_int, int_to_vocab) #counts = Counter(words) #vocab = sorted(counts, key=counts.get, reverse=True) #vocab_to_int = {word: ii for ii, word in enumerate(vocab, 1)} """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function tokens = dict() tokens['.'] = '<PERIOD>' tokens[','] = '<COMMA>' tokens['"'] = '<QUOTATION_MARK>' tokens[';'] = '<SEMICOLON>' tokens['!'] = '<EXCLAMATION_MARK>' tokens['?'] = '<QUESTION_MARK>' tokens['('] = '<LEFT_PAREN>' tokens[')'] = '<RIGHT_PAREN>' tokens['?'] = '<QUESTION_MARK>' tokens['-'] = '<DASH>' tokens['\n'] = '<NEW_LINE>' return tokens """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code def pad_features(reviews_ints, seq_length): ''' Return features of review_ints, where each review is padded with 0's or truncated to the input seq_length. ''' # getting the correct rows x cols shape features = np.zeros((len(reviews_ints), seq_length), dtype=int) # for each review, I grab that review and for i, row in enumerate(reviews_ints): features[i, -len(row):] = np.array(row)[:seq_length] return features from torch.utils.data import TensorDataset, DataLoader import numpy as np def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ n_batches = len(words)//batch_size # only full batches words = words[:n_batches*batch_size] # TODO: Implement function features, targets = [], [] for idx in range(0, (len(words) - sequence_length) ): features.append(words[idx : idx + sequence_length]) targets.append(words[idx + sequence_length]) #print(features) #print(targets) data = TensorDataset(torch.from_numpy(np.asarray(features)), torch.from_numpy(np.asarray(targets))) data_loader = torch.utils.data.DataLoader(data, shuffle=True , batch_size = batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 32, 33, 34, 35, 36], [ 0, 1, 2, 3, 4], [ 14, 15, 16, 17, 18], [ 15, 16, 17, 18, 19], [ 34, 35, 36, 37, 38], [ 24, 25, 26, 27, 28], [ 9, 10, 11, 12, 13], [ 37, 38, 39, 40, 41], [ 19, 20, 21, 22, 23], [ 41, 42, 43, 44, 45]]) torch.Size([10]) tensor([ 37, 5, 19, 20, 39, 29, 14, 42, 24, 46]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() self.n_layers = n_layers self.hidden_dim = hidden_dim self.output_size = output_size self.token = token_lookup() self.vocab_to_int, self.int_to_vocab = create_lookup_tables(set(text)) # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, self.hidden_dim, self.n_layers, dropout=dropout, batch_first=True) self.dropout = nn.Dropout(dropout) self.fc = nn.Linear(hidden_dim, self.output_size) self.sig = nn.Sigmoid() def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # embeddings and lstm_out embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer output = self.fc(lstm_out) # reshape to be batch_size first output = output.view(batch_size, -1, self.output_size) out = output[:, -1] # get last batch of labels # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # move model to GPU, if available if(train_on_gpu): rnn.cuda() # # Creating new variables for the hidden state, otherwise # # we'd backprop through the entire training history h = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() if(train_on_gpu): inputs, target = inp.cuda(), target.cuda() # print(h[0].data) # get predicted outputs output, h = rnn(inputs, h) # calculate loss loss = criterion(output, target) # optimizer.zero_grad() loss.backward() # 'clip_grad_norm' helps prevent the exploding gradient problem in RNNs / LSTMs nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() return loss.item(), h """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 2 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = 1 # Embedding Dimension embedding_dim = 300 # Hidden Dimension hidden_dim = 250 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 2 epoch(s)... ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function from collections import Counter word_counter = Counter(text) sorted_vocab = sorted(word_counter, key=word_counter.get, reverse=True) int_to_vocab = {index: word for index, word in enumerate(sorted_vocab, 1)} vocab_to_int = {word: index for index, word in int_to_vocab.items() } # return tuple return (vocab_to_int, int_to_vocab) create_lookup_tables """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token_dict = { '.':'||period||', ',':'||comma||', '"':'||quotation_mark||', ';':'||semicolon||', '!':'||exclamation_mark||', '?':'||question_mark||', '(':'||left_parentheses||', ')':'||right_parentheses||', '-':'||dash||', '\n':'||return||', } return token_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() # stats about vocabulary print('Unique words: ', len(vocab_to_int) ) print() # print tokens in first eighty words print('Tokenized text: \n', int_text[0:80]) # print first eighty words print('Tokenized text: \n', [int_to_vocab[token] for token in int_text[0:80] ]) ###Output Unique words: 21388 Tokenized text: [25, 23, 48, 2, 2, 2, 18, 48, 23, 83, 21, 7, 1253, 546, 8783, 7190, 21, 242, 2, 150, 2, 2, 2, 85, 5, 201, 239, 150, 209, 59, 56, 136, 65, 48, 4, 25, 23, 19, 678, 209, 59, 2, 2, 2, 25, 221, 127, 3, 122, 51, 48, 87, 3, 27, 83, 23, 290, 2, 46, 83, 375, 63, 23, 290, 3, 122, 51, 48, 11, 77, 49, 150, 272, 9, 249, 192, 3, 66, 205, 28] Tokenized text: ['this', 'is', 'out', '||period||', '||period||', '||period||', 'and', 'out', 'is', 'one', 'of', 'the', 'single', 'most', 'enjoyable', 'experiences', 'of', 'life', '||period||', 'people', '||period||', '||period||', '||period||', 'did', 'you', 'ever', 'hear', 'people', 'talking', 'about', 'we', 'should', 'go', 'out', '||question_mark||', 'this', 'is', 'what', 'theyre', 'talking', 'about', '||period||', '||period||', '||period||', 'this', 'whole', 'thing', '||comma||', 'were', 'all', 'out', 'now', '||comma||', 'no', 'one', 'is', 'home', '||period||', 'not', 'one', 'person', 'here', 'is', 'home', '||comma||', 'were', 'all', 'out', '||exclamation_mark||', 'there', 'are', 'people', 'trying', 'to', 'find', 'us', '||comma||', 'they', 'dont', 'know'] ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function total_words = len(words) total_seqs = -(-total_words//sequence_length) #calculate the ceiling total sequences features = np.zeros((total_seqs,sequence_length), dtype=int) next_word = 0 for seq_index in range(total_seqs): for word_index in range(sequence_length): features[seq_index, word_index] = words[next_word] if next_word < total_words else 0 next_word += 1 targets = np.array([features[index + 1 if (index + 1 < total_seqs) else index,0] for index in range(total_seqs)]) print("Features shape=",features.shape) print("targets shape=",targets.shape) feature_tensors = torch.from_numpy(features) target_tensors = torch.from_numpy(targets) data = TensorDataset(feature_tensors, target_tensors) data_loader = torch.utils.data.DataLoader(data, shuffle=True, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output Features shape= (10, 5) targets shape= (10,) torch.Size([10, 5]) tensor([[ 5, 6, 7, 8, 9], [ 10, 11, 12, 13, 14], [ 0, 1, 2, 3, 4], [ 45, 46, 47, 48, 49], [ 20, 21, 22, 23, 24], [ 25, 26, 27, 28, 29], [ 30, 31, 32, 33, 34], [ 40, 41, 42, 43, 44], [ 35, 36, 37, 38, 39], [ 15, 16, 17, 18, 19]]) torch.Size([10]) tensor([ 10, 15, 5, 45, 25, 30, 35, 45, 40, 20]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers self.embed = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.drop = nn.Dropout(dropout) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) nn_input = nn_input.long() lstm_output, hidden = self.lstm(self.embed(nn_input), hidden) lstm_output = lstm_output.contiguous() lstm_output = lstm_output.view(-1, self.hidden_dim) output = self.drop(lstm_output) output = self.fc(output) # reshape into (batch_size, seq_length, output_size) output = output.view(batch_size, -1, self.output_size) # get last batch output = output[:, -1] # return one batch of output word scores and the hidden state return output, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available inputs, targets = inp, target if(train_on_gpu): #rnn.cuda() inputs, targets = inp.cuda(), targets.cuda() # perform backpropagation and optimization #grad_clip = 5 hidden = tuple([each.data for each in hidden]) rnn.zero_grad() output, hidden = rnn(inputs, hidden) #print("target size =",targets.shape) #print("target =",targets) loss = criterion(output, targets.long()) loss.backward() #nn.utils.clip_grad_norm_(rnn.parameters(), grad_clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 50 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int)+len(token_dict)+1 # Output size output_size = vocab_size #batch_size # Embedding Dimension embedding_dim = 900 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 3 # Show stats for every n number of batches show_every_n_batches = 70 #500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 50 epoch(s)... Epoch: 1/50 Loss: 6.516255644389561 Epoch: 1/50 Loss: 5.86168315751212 Epoch: 1/50 Loss: 5.606094251360212 Epoch: 1/50 Loss: 5.437839467184884 Epoch: 1/50 Loss: 5.223972858701433 Epoch: 1/50 Loss: 5.197412736075265 Epoch: 1/50 Loss: 5.101003462927682 Epoch: 1/50 Loss: 5.063916070120675 Epoch: 1/50 Loss: 5.006963586807251 Epoch: 2/50 Loss: 4.9118563532829285 Epoch: 2/50 Loss: 4.82100579398019 Epoch: 2/50 Loss: 4.725071457454137 Epoch: 2/50 Loss: 4.766778802871704 Epoch: 2/50 Loss: 4.721484000342233 Epoch: 2/50 Loss: 4.767718843051365 Epoch: 2/50 Loss: 4.772613341467721 Epoch: 2/50 Loss: 4.691116319383894 Epoch: 2/50 Loss: 4.6837110485349385 Epoch: 3/50 Loss: 4.6390357683686645 Epoch: 3/50 Loss: 4.5129719768251695 Epoch: 3/50 Loss: 4.566531099591937 Epoch: 3/50 Loss: 4.564511694226947 Epoch: 3/50 Loss: 4.495224452018737 Epoch: 3/50 Loss: 4.491748929023743 Epoch: 3/50 Loss: 4.477335340636117 Epoch: 3/50 Loss: 4.43922290120806 Epoch: 3/50 Loss: 4.502414808954511 Epoch: 4/50 Loss: 4.4076981509433075 Epoch: 4/50 Loss: 4.325416319710868 Epoch: 4/50 Loss: 4.294022154808045 Epoch: 4/50 Loss: 4.31599246774401 Epoch: 4/50 Loss: 4.313614668164934 Epoch: 4/50 Loss: 4.349859540803092 Epoch: 4/50 Loss: 4.3211626018796645 Epoch: 4/50 Loss: 4.283437265668597 Epoch: 4/50 Loss: 4.2687146254948205 Epoch: 5/50 Loss: 4.237017291433671 Epoch: 5/50 Loss: 4.154844655309405 Epoch: 5/50 Loss: 4.120998999050685 Epoch: 5/50 Loss: 4.130488848686218 Epoch: 5/50 Loss: 4.189718198776245 Epoch: 5/50 Loss: 4.168764836447579 Epoch: 5/50 Loss: 4.155822706222534 Epoch: 5/50 Loss: 4.238966458184379 Epoch: 5/50 Loss: 4.169158591542925 Epoch: 6/50 Loss: 4.081895240966012 Epoch: 6/50 Loss: 3.9977971349443706 Epoch: 6/50 Loss: 4.022027455057416 Epoch: 6/50 Loss: 4.036387862477984 Epoch: 6/50 Loss: 4.025529558318002 Epoch: 6/50 Loss: 4.009703128678458 Epoch: 6/50 Loss: 4.011410593986511 Epoch: 6/50 Loss: 4.039392553056989 Epoch: 6/50 Loss: 4.0283041681562155 Epoch: 7/50 Loss: 3.9071320558295533 Epoch: 7/50 Loss: 3.853223122869219 Epoch: 7/50 Loss: 3.9101293223244804 Epoch: 7/50 Loss: 3.908613521712167 Epoch: 7/50 Loss: 3.8703491824013847 Epoch: 7/50 Loss: 3.9248798983437676 Epoch: 7/50 Loss: 3.9340441976274763 Epoch: 7/50 Loss: 3.899641040393284 Epoch: 7/50 Loss: 3.9076489550726756 Epoch: 8/50 Loss: 3.798497180728351 Epoch: 8/50 Loss: 3.7275115864617483 Epoch: 8/50 Loss: 3.73186023575919 Epoch: 8/50 Loss: 3.7462349789483205 Epoch: 8/50 Loss: 3.8472062179020474 Epoch: 8/50 Loss: 3.8653225455965314 Epoch: 8/50 Loss: 3.8133172171456473 Epoch: 8/50 Loss: 3.76356018951961 Epoch: 8/50 Loss: 3.7923459018979755 Epoch: 9/50 Loss: 3.6809697922538307 Epoch: 9/50 Loss: 3.619913159097944 Epoch: 9/50 Loss: 3.6286987577165877 Epoch: 9/50 Loss: 3.676372402054923 Epoch: 9/50 Loss: 3.6288090569632394 Epoch: 9/50 Loss: 3.725093626976013 Epoch: 9/50 Loss: 3.6889643941606796 Epoch: 9/50 Loss: 3.6597681965146744 Epoch: 9/50 Loss: 3.723722553253174 Epoch: 10/50 Loss: 3.6088688776773563 Epoch: 10/50 Loss: 3.562079051562718 Epoch: 10/50 Loss: 3.5630919013704574 Epoch: 10/50 Loss: 3.54389466217586 Epoch: 10/50 Loss: 3.609085536003113 Epoch: 10/50 Loss: 3.5493982076644897 Epoch: 10/50 Loss: 3.547520194734846 Epoch: 10/50 Loss: 3.6135632174355643 Epoch: 10/50 Loss: 3.557408319200788 Epoch: 11/50 Loss: 3.4951177782872143 Epoch: 11/50 Loss: 3.460303432600839 Epoch: 11/50 Loss: 3.432663583755493 Epoch: 11/50 Loss: 3.460532181603568 Epoch: 11/50 Loss: 3.494903039932251 Epoch: 11/50 Loss: 3.453531149455479 Epoch: 11/50 Loss: 3.5079573358808247 Epoch: 11/50 Loss: 3.4683453900473458 Epoch: 11/50 Loss: 3.4621589251926967 Epoch: 12/50 Loss: 3.41192371003768 Epoch: 12/50 Loss: 3.30539379460471 Epoch: 12/50 Loss: 3.3282538516180855 Epoch: 12/50 Loss: 3.378475890840803 Epoch: 12/50 Loss: 3.37649895804269 Epoch: 12/50 Loss: 3.443336132594517 Epoch: 12/50 Loss: 3.366505377633231 Epoch: 12/50 Loss: 3.4109419754573276 Epoch: 12/50 Loss: 3.4324763093675887 Epoch: 13/50 Loss: 3.330062797840904 Epoch: 13/50 Loss: 3.207138296536037 Epoch: 13/50 Loss: 3.219822716712952 Epoch: 13/50 Loss: 3.264945374216352 Epoch: 13/50 Loss: 3.2873015778405326 Epoch: 13/50 Loss: 3.2862890788487027 Epoch: 13/50 Loss: 3.3536178827285767 Epoch: 13/50 Loss: 3.34047327041626 Epoch: 13/50 Loss: 3.334790475027902 Epoch: 14/50 Loss: 3.2412937230923595 Epoch: 14/50 Loss: 3.138429239818028 Epoch: 14/50 Loss: 3.1816776309694563 Epoch: 14/50 Loss: 3.189485151427133 Epoch: 14/50 Loss: 3.1695362976619177 Epoch: 14/50 Loss: 3.2195068291255406 Epoch: 14/50 Loss: 3.2253613335745674 Epoch: 14/50 Loss: 3.224652978352138 Epoch: 14/50 Loss: 3.2669188465390886 Epoch: 15/50 Loss: 3.170200326863457 Epoch: 15/50 Loss: 3.0629969188145227 Epoch: 15/50 Loss: 3.065439278738839 Epoch: 15/50 Loss: 3.0849928549357823 Epoch: 15/50 Loss: 3.1504097325461253 Epoch: 15/50 Loss: 3.161905942644392 Epoch: 15/50 Loss: 3.1909539188657488 Epoch: 15/50 Loss: 3.139255288669041 Epoch: 15/50 Loss: 3.1657412937709264 Epoch: 16/50 Loss: 3.0826417873887455 Epoch: 16/50 Loss: 2.998731357710702 Epoch: 16/50 Loss: 3.0324170998164584 Epoch: 16/50 Loss: 3.0150287117276875 Epoch: 16/50 Loss: 3.0433710302625383 Epoch: 16/50 Loss: 3.05235926423754 Epoch: 16/50 Loss: 3.0695734534944807 Epoch: 16/50 Loss: 3.1143928936549594 Epoch: 16/50 Loss: 3.1514809540339876 Epoch: 17/50 Loss: 3.0037588231703816 Epoch: 17/50 Loss: 2.961268677030291 Epoch: 17/50 Loss: 2.9737984146390644 Epoch: 17/50 Loss: 2.9536712646484373 Epoch: 17/50 Loss: 2.957389143535069 Epoch: 17/50 Loss: 2.98039288520813 Epoch: 17/50 Loss: 3.009908495630537 Epoch: 17/50 Loss: 3.0398860590798513 Epoch: 17/50 Loss: 3.043190012659345 Epoch: 18/50 Loss: 2.9358325846054973 Epoch: 18/50 Loss: 2.85151687008994 Epoch: 18/50 Loss: 2.8962000949042186 Epoch: 18/50 Loss: 2.8820817981447493 Epoch: 18/50 Loss: 2.9156526156834195 Epoch: 18/50 Loss: 2.9500359092439923 Epoch: 18/50 Loss: 2.9240504843848094 Epoch: 18/50 Loss: 2.916211932046073 Epoch: 18/50 Loss: 3.00678756577628 Epoch: 19/50 Loss: 2.890795670888003 Epoch: 19/50 Loss: 2.8178381170545306 Epoch: 19/50 Loss: 2.8047392436436245 Epoch: 19/50 Loss: 2.8163665396826607 Epoch: 19/50 Loss: 2.8722220863614765 Epoch: 19/50 Loss: 2.8969897406441825 Epoch: 19/50 Loss: 2.8188178982053484 Epoch: 19/50 Loss: 2.8891391481672013 Epoch: 19/50 Loss: 2.9413866690226964 Epoch: 20/50 Loss: 2.8249790773672214 Epoch: 20/50 Loss: 2.7369032996041436 Epoch: 20/50 Loss: 2.7509697811944145 Epoch: 20/50 Loss: 2.748047545978001 Epoch: 20/50 Loss: 2.7799260139465334 Epoch: 20/50 Loss: 2.848640581539699 Epoch: 20/50 Loss: 2.8492121832711357 Epoch: 20/50 Loss: 2.815487129347665 Epoch: 20/50 Loss: 2.863896700314113 Epoch: 21/50 Loss: 2.7544435893788055 Epoch: 21/50 Loss: 2.68363504750388 Epoch: 21/50 Loss: 2.6715673446655273 Epoch: 21/50 Loss: 2.7067603656223844 Epoch: 21/50 Loss: 2.7482503618512837 Epoch: 21/50 Loss: 2.760567767279489 Epoch: 21/50 Loss: 2.753515352521624 Epoch: 21/50 Loss: 2.7945878744125365 Epoch: 21/50 Loss: 2.7866214888436454 Epoch: 22/50 Loss: 2.708164749776616 Epoch: 22/50 Loss: 2.670598237855094 Epoch: 22/50 Loss: 2.664269505228315 Epoch: 22/50 Loss: 2.6822616338729857 Epoch: 22/50 Loss: 2.7025517327444892 Epoch: 22/50 Loss: 2.6802537986210413 Epoch: 22/50 Loss: 2.7026992525373186 Epoch: 22/50 Loss: 2.75240889276777 Epoch: 22/50 Loss: 2.783597666876657 Epoch: 23/50 Loss: 2.646365043871543 Epoch: 23/50 Loss: 2.558629730769566 Epoch: 23/50 Loss: 2.6195249353136334 Epoch: 23/50 Loss: 2.630699368885585 Epoch: 23/50 Loss: 2.6271732994488306 Epoch: 23/50 Loss: 2.636791239465986 Epoch: 23/50 Loss: 2.6835559913090297 Epoch: 23/50 Loss: 2.650826971871512 Epoch: 23/50 Loss: 2.6798359530312674 Epoch: 24/50 Loss: 2.6136786411790287 Epoch: 24/50 Loss: 2.5360992772238595 Epoch: 24/50 Loss: 2.5446895360946655 Epoch: 24/50 Loss: 2.5672266585486274 Epoch: 24/50 Loss: 2.6107143538338797 Epoch: 24/50 Loss: 2.632528281211853 Epoch: 24/50 Loss: 2.6251633405685424 Epoch: 24/50 Loss: 2.616268335069929 Epoch: 24/50 Loss: 2.6523405790328978 Epoch: 25/50 Loss: 2.5714397798566258 Epoch: 25/50 Loss: 2.4533538137163435 Epoch: 25/50 Loss: 2.51357182094029 Epoch: 25/50 Loss: 2.469906779697963 Epoch: 25/50 Loss: 2.5584763833454676 Epoch: 25/50 Loss: 2.5740460804530554 Epoch: 25/50 Loss: 2.5934419087001257 Epoch: 25/50 Loss: 2.591300926889692 Epoch: 25/50 Loss: 2.6154568433761596 Epoch: 26/50 Loss: 2.52015519843382 Epoch: 26/50 Loss: 2.476429765565055 Epoch: 26/50 Loss: 2.4495496273040773 Epoch: 26/50 Loss: 2.4376726491110667 Epoch: 26/50 Loss: 2.549856812613351 Epoch: 26/50 Loss: 2.509986468723842 Epoch: 26/50 Loss: 2.5428796121052333 Epoch: 26/50 Loss: 2.512659696170262 Epoch: 26/50 Loss: 2.5556471177509854 Epoch: 27/50 Loss: 2.490535054136725 Epoch: 27/50 Loss: 2.3894227947507587 Epoch: 27/50 Loss: 2.426471178872245 Epoch: 27/50 Loss: 2.437322703429631 Epoch: 27/50 Loss: 2.4460490754672457 Epoch: 27/50 Loss: 2.4874588012695313 Epoch: 27/50 Loss: 2.4904942767960683 Epoch: 27/50 Loss: 2.4763526099068778 Epoch: 27/50 Loss: 2.5548475180353436 Epoch: 28/50 Loss: 2.4073703665943706 Epoch: 28/50 Loss: 2.372792223521641 Epoch: 28/50 Loss: 2.4123150587081907 Epoch: 28/50 Loss: 2.3972943578447614 Epoch: 28/50 Loss: 2.40703364440373 Epoch: 28/50 Loss: 2.4301648003714424 Epoch: 28/50 Loss: 2.4399937646729604 Epoch: 28/50 Loss: 2.4954469612666537 Epoch: 28/50 Loss: 2.455768745286124 Epoch: 29/50 Loss: 2.397683172541506 Epoch: 29/50 Loss: 2.3238330466406687 Epoch: 29/50 Loss: 2.363295521054949 Epoch: 29/50 Loss: 2.370130135331835 Epoch: 29/50 Loss: 2.3698825052806307 Epoch: 29/50 Loss: 2.3478225231170655 Epoch: 29/50 Loss: 2.4040791170937674 Epoch: 29/50 Loss: 2.423765894344875 Epoch: 29/50 Loss: 2.4463464055742534 Epoch: 30/50 Loss: 2.360941117300707 Epoch: 30/50 Loss: 2.2716475333486286 Epoch: 30/50 Loss: 2.3091679113251824 Epoch: 30/50 Loss: 2.3252052579607283 Epoch: 30/50 Loss: 2.344332524708339 Epoch: 30/50 Loss: 2.333526756082262 Epoch: 30/50 Loss: 2.403758772781917 Epoch: 30/50 Loss: 2.3961522681372505 Epoch: 30/50 Loss: 2.4205439959253585 Epoch: 31/50 Loss: 2.3118451772367252 Epoch: 31/50 Loss: 2.2471893974712915 Epoch: 31/50 Loss: 2.2583816902978078 Epoch: 31/50 Loss: 2.285195175239018 Epoch: 31/50 Loss: 2.316822532245091 Epoch: 31/50 Loss: 2.3036232488495965 Epoch: 31/50 Loss: 2.350875776154654 Epoch: 31/50 Loss: 2.350268871443612 Epoch: 31/50 Loss: 2.3632922547204154 Epoch: 32/50 Loss: 2.2948824254905476 Epoch: 32/50 Loss: 2.1964548945426943 Epoch: 32/50 Loss: 2.2358834062303816 Epoch: 32/50 Loss: 2.29040002652577 Epoch: 32/50 Loss: 2.269745818206242 Epoch: 32/50 Loss: 2.3250842690467834 Epoch: 32/50 Loss: 2.3078527859279085 Epoch: 32/50 Loss: 2.335926515715463 Epoch: 32/50 Loss: 2.333018832547324 Epoch: 33/50 Loss: 2.2480527539463604 Epoch: 33/50 Loss: 2.195439977305276 Epoch: 33/50 Loss: 2.193083245413644 Epoch: 33/50 Loss: 2.2359470350401742 Epoch: 33/50 Loss: 2.2497006143842424 Epoch: 33/50 Loss: 2.2203555396624974 Epoch: 33/50 Loss: 2.2936851058687484 Epoch: 33/50 Loss: 2.2817083733422416 Epoch: 33/50 Loss: 2.30333331823349 Epoch: 34/50 Loss: 2.212402143899132 Epoch: 34/50 Loss: 2.1554777060236248 Epoch: 34/50 Loss: 2.169258538314274 Epoch: 34/50 Loss: 2.2345673067229135 Epoch: 34/50 Loss: 2.216732505389622 Epoch: 34/50 Loss: 2.2413916860307967 Epoch: 34/50 Loss: 2.268501889705658 Epoch: 34/50 Loss: 2.259492937156132 Epoch: 34/50 Loss: 2.273309544154576 Epoch: 35/50 Loss: 2.193591191488154 Epoch: 35/50 Loss: 2.107555329799652 Epoch: 35/50 Loss: 2.154343914985657 Epoch: 35/50 Loss: 2.177243222509112 Epoch: 35/50 Loss: 2.1875601496015276 Epoch: 35/50 Loss: 2.178527656623295 Epoch: 35/50 Loss: 2.2283037321908132 Epoch: 35/50 Loss: 2.221361233506884 Epoch: 35/50 Loss: 2.215214955806732 Epoch: 36/50 Loss: 2.1895538954173817 Epoch: 36/50 Loss: 2.0828058736664907 Epoch: 36/50 Loss: 2.1126391615186417 Epoch: 36/50 Loss: 2.1754099488258363 Epoch: 36/50 Loss: 2.1345284359795706 Epoch: 36/50 Loss: 2.150758901664189 Epoch: 36/50 Loss: 2.212748488358089 Epoch: 36/50 Loss: 2.1947893227849686 Epoch: 36/50 Loss: 2.2178100058010646 Epoch: 37/50 Loss: 2.14756804003435 Epoch: 37/50 Loss: 2.093848650796073 Epoch: 37/50 Loss: 2.0984077283314297 Epoch: 37/50 Loss: 2.1372158527374268 Epoch: 37/50 Loss: 2.1128433159419466 Epoch: 37/50 Loss: 2.127329615184239 Epoch: 37/50 Loss: 2.1619282279695784 Epoch: 37/50 Loss: 2.198799615246909 Epoch: 37/50 Loss: 2.1974464212145124 Epoch: 38/50 Loss: 2.1070261247017803 Epoch: 38/50 Loss: 2.0460262605122157 Epoch: 38/50 Loss: 2.0947006719452994 Epoch: 38/50 Loss: 2.1200811113630023 Epoch: 38/50 Loss: 2.0880778840609957 Epoch: 38/50 Loss: 2.125659843853542 Epoch: 38/50 Loss: 2.097272608961378 Epoch: 38/50 Loss: 2.1315091473715646 Epoch: 38/50 Loss: 2.161464047431946 Epoch: 39/50 Loss: 2.073323145508766 Epoch: 39/50 Loss: 1.996128533567701 Epoch: 39/50 Loss: 2.0733177168028694 Epoch: 39/50 Loss: 2.053796071665628 Epoch: 39/50 Loss: 2.070925656386784 Epoch: 39/50 Loss: 2.1071492859295438 Epoch: 39/50 Loss: 2.135227647849492 Epoch: 39/50 Loss: 2.1293258445603507 Epoch: 39/50 Loss: 2.1107798116547722 Epoch: 40/50 Loss: 2.079432239427286 Epoch: 40/50 Loss: 2.0094535640307836 Epoch: 40/50 Loss: 1.995458584172385 Epoch: 40/50 Loss: 2.0292436923299517 Epoch: 40/50 Loss: 2.061707774230412 Epoch: 40/50 Loss: 2.0463828495570593 Epoch: 40/50 Loss: 2.05095888376236 Epoch: 40/50 Loss: 2.1283125604901993 Epoch: 40/50 Loss: 2.1141879779951913 Epoch: 41/50 Loss: 2.031243524130653 Epoch: 41/50 Loss: 1.9578698260443552 Epoch: 41/50 Loss: 1.9845003162111554 Epoch: 41/50 Loss: 1.9913522464888436 Epoch: 41/50 Loss: 2.0257262127740043 Epoch: 41/50 Loss: 2.0494320477758134 Epoch: 41/50 Loss: 2.0626709393092564 Epoch: 41/50 Loss: 2.0784010427338737 Epoch: 41/50 Loss: 2.0912981033325195 Epoch: 42/50 Loss: 2.0037383437156677 Epoch: 42/50 Loss: 1.9415868367467608 Epoch: 42/50 Loss: 1.9817078743662153 Epoch: 42/50 Loss: 1.9720311369214738 Epoch: 42/50 Loss: 1.9629854832376752 Epoch: 42/50 Loss: 2.028129836491176 Epoch: 42/50 Loss: 2.0672629714012145 Epoch: 42/50 Loss: 2.0489289709499903 Epoch: 42/50 Loss: 2.083579102584294 Epoch: 43/50 Loss: 1.9823575756129097 Epoch: 43/50 Loss: 1.94189521414893 Epoch: 43/50 Loss: 1.952587684563228 Epoch: 43/50 Loss: 1.9672427126339505 Epoch: 43/50 Loss: 1.9639653512409756 Epoch: 43/50 Loss: 1.9870473487036568 Epoch: 43/50 Loss: 2.040774977207184 Epoch: 43/50 Loss: 2.042361239024571 Epoch: 43/50 Loss: 2.079042250769479 Epoch: 44/50 Loss: 1.9751747408333946 Epoch: 44/50 Loss: 1.9321264488356453 Epoch: 44/50 Loss: 1.9261466554233007 Epoch: 44/50 Loss: 1.9487266302108766 Epoch: 44/50 Loss: 1.9478412406785148 Epoch: 44/50 Loss: 2.0103042040552412 Epoch: 44/50 Loss: 1.9482695136751447 Epoch: 44/50 Loss: 1.9953678011894227 Epoch: 44/50 Loss: 1.980255617414202 Epoch: 45/50 Loss: 1.94035126005902 Epoch: 45/50 Loss: 1.888668635913304 Epoch: 45/50 Loss: 1.9094037822314671 Epoch: 45/50 Loss: 1.9335040722574506 Epoch: 45/50 Loss: 1.9291460343769617 Epoch: 45/50 Loss: 1.978906694480351 Epoch: 45/50 Loss: 1.9601030741419112 Epoch: 45/50 Loss: 1.9625840170042856 Epoch: 45/50 Loss: 2.0294213856969563 Epoch: 46/50 Loss: 1.9146682663875467 Epoch: 46/50 Loss: 1.8680640425000872 Epoch: 46/50 Loss: 1.9046074713979448 Epoch: 46/50 Loss: 1.8957474981035505 Epoch: 46/50 Loss: 1.9411181279591152 Epoch: 46/50 Loss: 1.9756375244685582 Epoch: 46/50 Loss: 1.9517411981310164 Epoch: 46/50 Loss: 1.9813563755580357 Epoch: 46/50 Loss: 1.9896019441740853 Epoch: 47/50 Loss: 1.9192617149914013 Epoch: 47/50 Loss: 1.8236660957336426 Epoch: 47/50 Loss: 1.8716544730322702 Epoch: 47/50 Loss: 1.925037567956107 Epoch: 47/50 Loss: 1.9364051750728062 Epoch: 47/50 Loss: 1.9612844671521867 Epoch: 47/50 Loss: 1.9387702907834734 Epoch: 47/50 Loss: 1.9293441465922765 Epoch: 47/50 Loss: 1.9413581252098084 Epoch: 48/50 Loss: 1.8936279915711458 Epoch: 48/50 Loss: 1.8557534098625184 Epoch: 48/50 Loss: 1.858554037979671 Epoch: 48/50 Loss: 1.8771869897842408 Epoch: 48/50 Loss: 1.8929686750684465 Epoch: 48/50 Loss: 1.9068133916173662 Epoch: 48/50 Loss: 1.910611379146576 Epoch: 48/50 Loss: 1.9103894063404627 Epoch: 48/50 Loss: 1.9444267698696682 Epoch: 49/50 Loss: 1.875596606556107 Epoch: 49/50 Loss: 1.7928036161831447 Epoch: 49/50 Loss: 1.8528374859264918 Epoch: 49/50 Loss: 1.8323426536151342 Epoch: 49/50 Loss: 1.884366135937827 Epoch: 49/50 Loss: 1.8988481266157968 Epoch: 49/50 Loss: 1.8809922899518694 Epoch: 49/50 Loss: 1.9080183369772774 Epoch: 49/50 Loss: 1.9551747270992823 Epoch: 50/50 Loss: 1.87488573438981 Epoch: 50/50 Loss: 1.7990901947021485 Epoch: 50/50 Loss: 1.7799692153930664 Epoch: 50/50 Loss: 1.8696739111627851 Epoch: 50/50 Loss: 1.809240927015032 Epoch: 50/50 Loss: 1.8521770409175329 Epoch: 50/50 Loss: 1.8830704859324865 Epoch: 50/50 Loss: 1.9068744455065045 Epoch: 50/50 Loss: 1.88719231401171 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** 1. Dummy parameters to fine tune the first run: * sequence_length = 20 * batch_size=200 * num_epochs=1 * learning_rate = 0.01 * vocab_size=len(vocab_to_int) * output_size=1 * embedding_dim=15 * hidden_dim=10 * n_layers=22. It kept blowing up until I changed output_size to vocab_size, although this run didn't produce very good results and the loss was high. * sequence_length = 50 * batch_size=128 by sugestions in previous lessons * num_epochs=20 * learning_rate = 0.01 * vocab_size=len(vocab_to_int)+1 * output_size=vocab_size * embedding_dim=400 like in the sentiment rnn * hidden_dim=256 like in sentiment rnn * n_layers=2 like in sentiment rnn3. Great improvements in results and find that loss got near 3.0 by epoch 25 so I stopped there to test results. * sequence_length = 50 * batch_size=128 by sugestions in previous lessons * num_epochs=20 * learning_rate = 0.001 * vocab_size=len(vocab_to_int)+len(token_dict)+1 * output_size=vocab_size * embedding_dim=400 like in the sentiment rnn * hidden_dim=256 like in sentiment rnn * n_layers=3 4. Loss reduced to 2.73, but the first line looks weird, ex. "kramer: carl: stan: chiropractor: cops debby: dated!" * sequence_length = 20 * batch_size=128 by sugestions in previous lessons * num_epochs=30 * learning_rate = 0.001 * vocab_size=len(vocab_to_int)+len(token_dict)+1 * output_size=vocab_size * embedding_dim=400 like in the sentiment rnn * hidden_dim=256 like in sentiment rnn * n_layers=3 5. Loss reduced to 1.89, and the generated text looks much much better. I think I'm done * sequence_length = 10 * batch_size=128 by sugestions in previous lessons * num_epochs=50 * learning_rate = 0.001 * vocab_size=len(vocab_to_int)+len(token_dict)+1 * output_size=vocab_size * embedding_dim=900 * hidden_dim=512 * n_layers=3 --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'kramer' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:39: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_iter5_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output _____no_output_____ ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # return tuple return (None, None) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # return a dataloader return None # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables # define model layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state return None, None def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return None, None # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = # of words in a sequence # Batch Size batch_size = # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = # Learning Rate learning_rate = # Model parameters # Vocab size vocab_size = # Output size output_size = # Embedding Dimension embedding_dim = # Hidden Dimension hidden_dim = # Number of RNN Layers n_layers = # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def word_counts_sorted(words): word_count = Counter(words) word_count_sorted = sorted(word_count.items(), key=lambda t: t[1], reverse=True) return [w[0] for w in word_count_sorted] def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function words_sorted_by_freq = word_counts_sorted(text) ## Build a dictionary that maps words to integers vocab_to_int = dict() i = 0 for w in words_sorted_by_freq: vocab_to_int[w] = i i += 1 int_to_vocab = dict((t[1], t[0]) for t in vocab_to_int.items()) # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code from string import punctuation def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return { '.': '||period||', ',': '||comma||', '"': '||quotation_mark||', ';': '||semicolon||', '!': '||exclamation_mark||', '?': '||question_mark||', '(': '||left_parentheses||', ')': '||right_parentheses||', '-': '||dash||', '\n': '||return||' } """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def _generate_batches(words, batch_size, sequence_length): running_length = 0 batch_x = [] batch_y = [] features = [] targets = [] for i in range(0, len(words)): end = i + sequence_length if end <= len(words) - 1: batch_x.append(words[i: end]) batch_y.append(words[end]) running_length += sequence_length # Yield a batch and start a new batch if running_length % (sequence_length * batch_size) == 0: features.extend(batch_x) targets.extend(batch_y) batch_x = [] batch_y = [] running_length = 0 return torch.from_numpy(np.array(features)), torch.from_numpy(np.array(targets)) def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # Truncate any extra words so we're able to generate full batches num_words_full_batches = len(words) - len(words) % (batch_size * sequence_length) truncated_words = words[:num_words_full_batches] # Generating batches feature_tensors, target_tensors = _generate_batches(truncated_words, batch_size, sequence_length) data = TensorDataset(feature_tensors, target_tensors) # return a dataloader return torch.utils.data.DataLoader(data, shuffle=True, batch_size=batch_size) # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = list(range(50)) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 14, 15, 16, 17, 18], [ 5, 6, 7, 8, 9], [ 21, 22, 23, 24, 25], [ 0, 1, 2, 3, 4], [ 37, 38, 39, 40, 41], [ 16, 17, 18, 19, 20], [ 10, 11, 12, 13, 14], [ 1, 2, 3, 4, 5], [ 38, 39, 40, 41, 42], [ 17, 18, 19, 20, 21]]) torch.Size([10]) tensor([ 19, 10, 26, 5, 42, 21, 15, 6, 43, 22]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # define all layers self.embed = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(num_layers=n_layers, input_size=embedding_dim, hidden_size=hidden_dim, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim, output_size) self.dropout = nn.Dropout(dropout) # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim self.embedding_dim = embedding_dim def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function embed = self.embed(nn_input) lstm_out, hidden = self.lstm(embed, hidden) out = self.fc(lstm_out) # return one batch of output word scores and the hidden state # Take all batches, the last prediction of each sequence and the full # output dimension given by self.output_size return out[:, -1, :], hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available if train_on_gpu: return ( torch.zeros((self.n_layers, batch_size, self.hidden_dim)).cuda(), torch.zeros((self.n_layers, batch_size, self.hidden_dim)).cuda() ) else: return ( torch.zeros((self.n_layers, batch_size, self.hidden_dim)), torch.zeros((self.n_layers, batch_size, self.hidden_dim)) ) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: rnn.cuda() inp = inp.cuda() target = target.cuda() # perform backpropagation and optimization hidden = tuple([each.data for each in hidden]) optimizer.zero_grad() out, hidden = rnn(inp, hidden) loss = criterion(out, target) loss.backward() optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 25 # of words in a sequence # Batch Size batch_size = 100 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 50 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 300 # Hidden Dimension hidden_dim = 128 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from workspace_utils import active_session # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model # Have to make it an active session to avoid workspace from disconnecting with active_session(): trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 50 epoch(s)... Epoch: 1/50 Loss: 5.665978420257568 Epoch: 1/50 Loss: 5.0169265079498295 Epoch: 1/50 Loss: 4.848137440204621 Epoch: 1/50 Loss: 4.682399516105652 Epoch: 1/50 Loss: 4.613057251930237 Epoch: 1/50 Loss: 4.538241837501526 Epoch: 1/50 Loss: 4.478402349948883 Epoch: 1/50 Loss: 4.427395582199097 Epoch: 1/50 Loss: 4.383932968616485 Epoch: 1/50 Loss: 4.367075895309449 Epoch: 1/50 Loss: 4.327775761604309 Epoch: 1/50 Loss: 4.295110981464386 Epoch: 1/50 Loss: 4.274845807075501 Epoch: 1/50 Loss: 4.258869896411896 Epoch: 1/50 Loss: 4.241021359443665 Epoch: 1/50 Loss: 4.238419537067413 Epoch: 1/50 Loss: 4.206550037384033 Epoch: 2/50 Loss: 4.133071528128178 Epoch: 2/50 Loss: 4.072263426303864 Epoch: 2/50 Loss: 4.037250514984131 Epoch: 2/50 Loss: 4.065057234764099 Epoch: 2/50 Loss: 4.014511912822724 Epoch: 2/50 Loss: 4.05269927740097 Epoch: 2/50 Loss: 4.014891406536102 Epoch: 2/50 Loss: 4.021397609233857 Epoch: 2/50 Loss: 4.032319924354553 Epoch: 2/50 Loss: 4.020560225963592 Epoch: 2/50 Loss: 3.999581621170044 Epoch: 2/50 Loss: 4.00228077507019 Epoch: 2/50 Loss: 4.010295090675354 Epoch: 2/50 Loss: 4.016585222721099 Epoch: 2/50 Loss: 4.004399033546448 Epoch: 2/50 Loss: 3.9985734338760377 Epoch: 2/50 Loss: 4.031726098537445 Epoch: 3/50 Loss: 3.936938536180405 Epoch: 3/50 Loss: 3.860738731384277 Epoch: 3/50 Loss: 3.910912787437439 Epoch: 3/50 Loss: 3.855954945087433 Epoch: 3/50 Loss: 3.8701232986450194 Epoch: 3/50 Loss: 3.8690055327415465 Epoch: 3/50 Loss: 3.8590908284187315 Epoch: 3/50 Loss: 3.881987745285034 Epoch: 3/50 Loss: 3.868819770336151 Epoch: 3/50 Loss: 3.913546123981476 Epoch: 3/50 Loss: 3.8865797958374024 Epoch: 3/50 Loss: 3.889278178691864 Epoch: 3/50 Loss: 3.8865809488296508 Epoch: 3/50 Loss: 3.901768548488617 Epoch: 3/50 Loss: 3.8914022479057313 Epoch: 3/50 Loss: 3.8885285482406617 Epoch: 3/50 Loss: 3.8970329217910766 Epoch: 4/50 Loss: 3.820515423648482 Epoch: 4/50 Loss: 3.7834714465141297 Epoch: 4/50 Loss: 3.8036439714431762 Epoch: 4/50 Loss: 3.7685002427101137 Epoch: 4/50 Loss: 3.790644682407379 Epoch: 4/50 Loss: 3.7623613276481627 Epoch: 4/50 Loss: 3.809994971752167 Epoch: 4/50 Loss: 3.799825057506561 Epoch: 4/50 Loss: 3.7838487200737 Epoch: 4/50 Loss: 3.780543348789215 Epoch: 4/50 Loss: 3.815239399433136 Epoch: 4/50 Loss: 3.789267464160919 Epoch: 4/50 Loss: 3.8207636694908143 Epoch: 4/50 Loss: 3.81323193693161 Epoch: 4/50 Loss: 3.8332897081375124 Epoch: 4/50 Loss: 3.8301540651321413 Epoch: 4/50 Loss: 3.8151709957122804 Epoch: 5/50 Loss: 3.7474360824029094 Epoch: 5/50 Loss: 3.719182084083557 Epoch: 5/50 Loss: 3.7361260595321655 Epoch: 5/50 Loss: 3.6891013870239258 Epoch: 5/50 Loss: 3.6923867654800415 Epoch: 5/50 Loss: 3.7283069891929626 Epoch: 5/50 Loss: 3.731324594974518 Epoch: 5/50 Loss: 3.7333002038002014 Epoch: 5/50 Loss: 3.7333198223114015 Epoch: 5/50 Loss: 3.7210554070472717 Epoch: 5/50 Loss: 3.73999888086319 Epoch: 5/50 Loss: 3.7435364503860473 Epoch: 5/50 Loss: 3.7838356423377992 Epoch: 5/50 Loss: 3.757926682472229 Epoch: 5/50 Loss: 3.784348369598389 Epoch: 5/50 Loss: 3.7886485905647276 Epoch: 5/50 Loss: 3.7780577583312986 Epoch: 6/50 Loss: 3.71802559922614 Epoch: 6/50 Loss: 3.671091335296631 Epoch: 6/50 Loss: 3.6540823249816894 Epoch: 6/50 Loss: 3.6713585247993468 Epoch: 6/50 Loss: 3.6624939508438112 Epoch: 6/50 Loss: 3.6760298709869383 Epoch: 6/50 Loss: 3.6858339667320252 Epoch: 6/50 Loss: 3.696845799446106 Epoch: 6/50 Loss: 3.7050984830856324 Epoch: 6/50 Loss: 3.7150109233856203 Epoch: 6/50 Loss: 3.700092813014984 Epoch: 6/50 Loss: 3.7038576493263244 Epoch: 6/50 Loss: 3.7238416905403136 Epoch: 6/50 Loss: 3.7007095093727114 Epoch: 6/50 Loss: 3.7239683785438538 Epoch: 6/50 Loss: 3.7325985765457155 Epoch: 6/50 Loss: 3.725627772808075 Epoch: 7/50 Loss: 3.68162337717941 Epoch: 7/50 Loss: 3.618581917285919 Epoch: 7/50 Loss: 3.628442988872528 Epoch: 7/50 Loss: 3.6433770160675047 Epoch: 7/50 Loss: 3.6348714351654055 Epoch: 7/50 Loss: 3.6389886870384216 Epoch: 7/50 Loss: 3.6667876358032228 Epoch: 7/50 Loss: 3.6417910103797912 Epoch: 7/50 Loss: 3.6606337752342224 Epoch: 7/50 Loss: 3.666503883361816 Epoch: 7/50 Loss: 3.674848457336426 Epoch: 7/50 Loss: 3.66684752702713 Epoch: 7/50 Loss: 3.67286186170578 Epoch: 7/50 Loss: 3.6944026093482973 Epoch: 7/50 Loss: 3.695402255058289 Epoch: 7/50 Loss: 3.707395256519318 Epoch: 7/50 Loss: 3.711767554283142 Epoch: 8/50 Loss: 3.647361376659491 Epoch: 8/50 Loss: 3.5971252851486204 Epoch: 8/50 Loss: 3.5882398381233216 Epoch: 8/50 Loss: 3.5874873690605162 Epoch: 8/50 Loss: 3.6090665702819824 Epoch: 8/50 Loss: 3.6027316541671754 Epoch: 8/50 Loss: 3.6264281067848207 Epoch: 8/50 Loss: 3.6368788180351257 Epoch: 8/50 Loss: 3.6352197766304015 Epoch: 8/50 Loss: 3.6271768832206726 Epoch: 8/50 Loss: 3.6288529925346373 Epoch: 8/50 Loss: 3.669486396312714 Epoch: 8/50 Loss: 3.6805806975364685 Epoch: 8/50 Loss: 3.6501689944267275 Epoch: 8/50 Loss: 3.655951674461365 Epoch: 8/50 Loss: 3.702442397117615 Epoch: 8/50 Loss: 3.6753872385025024 Epoch: 9/50 Loss: 3.6012979908965455 Epoch: 9/50 Loss: 3.5767907948493955 Epoch: 9/50 Loss: 3.574991093158722 Epoch: 9/50 Loss: 3.5742786002159117 Epoch: 9/50 Loss: 3.5751978969573974 Epoch: 9/50 Loss: 3.6051543679237366 Epoch: 9/50 Loss: 3.5989176692962648 Epoch: 9/50 Loss: 3.6182948198318483 Epoch: 9/50 Loss: 3.596789415836334 Epoch: 9/50 Loss: 3.6010834093093873 Epoch: 9/50 Loss: 3.6378290967941282 Epoch: 9/50 Loss: 3.6179610261917112 Epoch: 9/50 Loss: 3.654794400215149 Epoch: 9/50 Loss: 3.6269573378562927 Epoch: 9/50 Loss: 3.6531913776397706 Epoch: 9/50 Loss: 3.6433543601036074 Epoch: 9/50 Loss: 3.666853120803833 Epoch: 10/50 Loss: 3.5737401807931426 Epoch: 10/50 Loss: 3.5578371963500977 Epoch: 10/50 Loss: 3.5428144307136535 Epoch: 10/50 Loss: 3.5437649488449097 Epoch: 10/50 Loss: 3.5719191613197325 Epoch: 10/50 Loss: 3.568979357242584 Epoch: 10/50 Loss: 3.583433915615082 Epoch: 10/50 Loss: 3.582873799800873 Epoch: 10/50 Loss: 3.5797383074760436 Epoch: 10/50 Loss: 3.6051641955375673 Epoch: 10/50 Loss: 3.5982613825798033 Epoch: 10/50 Loss: 3.6116794395446776 Epoch: 10/50 Loss: 3.6152942304611204 Epoch: 10/50 Loss: 3.6286778078079225 Epoch: 10/50 Loss: 3.652248655796051 Epoch: 10/50 Loss: 3.6343882913589476 Epoch: 10/50 Loss: 3.6414488568305967 Epoch: 11/50 Loss: 3.572366839388719 Epoch: 11/50 Loss: 3.532431574344635 Epoch: 11/50 Loss: 3.528107649803162 Epoch: 11/50 Loss: 3.539861231803894 Epoch: 11/50 Loss: 3.5334751214981077 Epoch: 11/50 Loss: 3.5287710666656493 Epoch: 11/50 Loss: 3.55285702085495 Epoch: 11/50 Loss: 3.565562283039093 Epoch: 11/50 Loss: 3.5666876006126405 Epoch: 11/50 Loss: 3.573531065940857 Epoch: 11/50 Loss: 3.5904076161384584 Epoch: 11/50 Loss: 3.6177877674102783 Epoch: 11/50 Loss: 3.5789804401397705 Epoch: 11/50 Loss: 3.622711940765381 Epoch: 11/50 Loss: 3.6155203919410708 Epoch: 11/50 Loss: 3.6008870348930357 Epoch: 11/50 Loss: 3.6378848910331727 Epoch: 12/50 Loss: 3.550605507925965 Epoch: 12/50 Loss: 3.509054733276367 Epoch: 12/50 Loss: 3.5086754894256593 Epoch: 12/50 Loss: 3.5126325273513794 Epoch: 12/50 Loss: 3.547050211429596 Epoch: 12/50 Loss: 3.559761008262634 Epoch: 12/50 Loss: 3.532568666934967 Epoch: 12/50 Loss: 3.5610313258171082 Epoch: 12/50 Loss: 3.5551996307373046 Epoch: 12/50 Loss: 3.564590669631958 Epoch: 12/50 Loss: 3.5497317032814024 Epoch: 12/50 Loss: 3.58452633190155 Epoch: 12/50 Loss: 3.5737342362403868 Epoch: 12/50 Loss: 3.599345323085785 Epoch: 12/50 Loss: 3.570410249233246 Epoch: 12/50 Loss: 3.60769517993927 Epoch: 12/50 Loss: 3.5916245279312133 Epoch: 13/50 Loss: 3.5263778940589066 Epoch: 13/50 Loss: 3.4866138949394228 Epoch: 13/50 Loss: 3.5015867552757265 Epoch: 13/50 Loss: 3.504317081451416 Epoch: 13/50 Loss: 3.5266551666259764 Epoch: 13/50 Loss: 3.4991960911750795 Epoch: 13/50 Loss: 3.547344609260559 Epoch: 13/50 Loss: 3.5538316445350646 Epoch: 13/50 Loss: 3.5248537077903745 Epoch: 13/50 Loss: 3.5384564394950866 Epoch: 13/50 Loss: 3.5632798161506654 Epoch: 13/50 Loss: 3.546135127067566 Epoch: 13/50 Loss: 3.5743777422904968 Epoch: 13/50 Loss: 3.5774786682128905 Epoch: 13/50 Loss: 3.5759130749702455 Epoch: 13/50 Loss: 3.5944788742065428 Epoch: 13/50 Loss: 3.6091462407112123 Epoch: 14/50 Loss: 3.53596449879571 Epoch: 14/50 Loss: 3.4874588069915773 Epoch: 14/50 Loss: 3.4747647271156312 Epoch: 14/50 Loss: 3.488644341945648 Epoch: 14/50 Loss: 3.483150797367096 Epoch: 14/50 Loss: 3.4982693362236024 Epoch: 14/50 Loss: 3.514849506855011 Epoch: 14/50 Loss: 3.5364496116638184 Epoch: 14/50 Loss: 3.5393593997955324 Epoch: 14/50 Loss: 3.537456923007965 Epoch: 14/50 Loss: 3.531864010810852 Epoch: 14/50 Loss: 3.5582237830162047 Epoch: 14/50 Loss: 3.5628165078163145 Epoch: 14/50 Loss: 3.553090453147888 Epoch: 14/50 Loss: 3.5639837021827696 Epoch: 14/50 Loss: 3.5692410712242126 Epoch: 14/50 Loss: 3.58385227060318 Epoch: 15/50 Loss: 3.5146466476368294 Epoch: 15/50 Loss: 3.472718632221222 Epoch: 15/50 Loss: 3.455003091812134 Epoch: 15/50 Loss: 3.486484664440155 Epoch: 15/50 Loss: 3.490838740348816 Epoch: 15/50 Loss: 3.5043194742202757 Epoch: 15/50 Loss: 3.4909178233146667 Epoch: 15/50 Loss: 3.5258136510849 Epoch: 15/50 Loss: 3.5122996978759766 Epoch: 15/50 Loss: 3.5245024442672728 Epoch: 15/50 Loss: 3.5161398115158082 Epoch: 15/50 Loss: 3.557757203578949 Epoch: 15/50 Loss: 3.521192476272583 Epoch: 15/50 Loss: 3.576946927547455 Epoch: 15/50 Loss: 3.556142771720886 Epoch: 15/50 Loss: 3.5786414074897768 Epoch: 15/50 Loss: 3.5669328298568725 Epoch: 16/50 Loss: 3.5173493683404464 Epoch: 16/50 Loss: 3.4612998495101928 Epoch: 16/50 Loss: 3.4822258138656617 Epoch: 16/50 Loss: 3.47709379196167 Epoch: 16/50 Loss: 3.468775255680084 Epoch: 16/50 Loss: 3.494236065387726 Epoch: 16/50 Loss: 3.486546045780182 Epoch: 16/50 Loss: 3.4973472776412966 Epoch: 16/50 Loss: 3.5130592155456544 Epoch: 16/50 Loss: 3.508002788066864 Epoch: 16/50 Loss: 3.521636749267578 Epoch: 16/50 Loss: 3.5167258534431456 Epoch: 16/50 Loss: 3.508400712490082 Epoch: 16/50 Loss: 3.536520465373993 Epoch: 16/50 Loss: 3.5579153928756715 Epoch: 16/50 Loss: 3.556748770236969 Epoch: 16/50 Loss: 3.564290454864502 Epoch: 17/50 Loss: 3.504834327071872 Epoch: 17/50 Loss: 3.4435116424560546 Epoch: 17/50 Loss: 3.4701067690849303 Epoch: 17/50 Loss: 3.465753809928894 Epoch: 17/50 Loss: 3.4586828894615174 Epoch: 17/50 Loss: 3.470047769546509 Epoch: 17/50 Loss: 3.5183913278579713 Epoch: 17/50 Loss: 3.481535150051117 Epoch: 17/50 Loss: 3.505890574455261 Epoch: 17/50 Loss: 3.500228151798248 Epoch: 17/50 Loss: 3.5341903920173645 Epoch: 17/50 Loss: 3.511247148513794 Epoch: 17/50 Loss: 3.5102687582969665 Epoch: 17/50 Loss: 3.5344887800216673 Epoch: 17/50 Loss: 3.5350718722343446 Epoch: 17/50 Loss: 3.5435954203605653 Epoch: 17/50 Loss: 3.5512260165214538 Epoch: 18/50 Loss: 3.4969657536210685 Epoch: 18/50 Loss: 3.4343037805557253 Epoch: 18/50 Loss: 3.4589670886993407 Epoch: 18/50 Loss: 3.426903958320618 Epoch: 18/50 Loss: 3.4694749937057496 Epoch: 18/50 Loss: 3.4789491395950316 Epoch: 18/50 Loss: 3.4861310353279116 Epoch: 18/50 Loss: 3.4753428177833556 Epoch: 18/50 Loss: 3.494155078411102 Epoch: 18/50 Loss: 3.495311378002167 Epoch: 18/50 Loss: 3.4858074102401733 Epoch: 18/50 Loss: 3.5281199479103087 Epoch: 18/50 Loss: 3.5191843485832215 Epoch: 18/50 Loss: 3.536732548713684 Epoch: 18/50 Loss: 3.5391246485710144 Epoch: 18/50 Loss: 3.5482352232933043 Epoch: 18/50 Loss: 3.5482407999038696 Epoch: 19/50 Loss: 3.4856664378597952 Epoch: 19/50 Loss: 3.4369329738616945 Epoch: 19/50 Loss: 3.4337092394828796 Epoch: 19/50 Loss: 3.456515658855438 Epoch: 19/50 Loss: 3.474489695072174 Epoch: 19/50 Loss: 3.4538460121154784 Epoch: 19/50 Loss: 3.4929011044502256 Epoch: 19/50 Loss: 3.4626132864952086 Epoch: 19/50 Loss: 3.4895211181640624 Epoch: 19/50 Loss: 3.5052530069351198 Epoch: 19/50 Loss: 3.499147717952728 Epoch: 19/50 Loss: 3.5201011662483217 Epoch: 19/50 Loss: 3.5147296781539916 Epoch: 19/50 Loss: 3.5303336515426635 Epoch: 19/50 Loss: 3.504849448680878 Epoch: 19/50 Loss: 3.5296687927246095 Epoch: 19/50 Loss: 3.5368871273994444 Epoch: 20/50 Loss: 3.4634800214523467 Epoch: 20/50 Loss: 3.4254993944168093 Epoch: 20/50 Loss: 3.4283327651023865 Epoch: 20/50 Loss: 3.4339080848693846 Epoch: 20/50 Loss: 3.4674853706359863 Epoch: 20/50 Loss: 3.441847899436951 Epoch: 20/50 Loss: 3.466998637676239 Epoch: 20/50 Loss: 3.490763847351074 Epoch: 20/50 Loss: 3.4636169214248658 Epoch: 20/50 Loss: 3.492629252433777 Epoch: 20/50 Loss: 3.487670637130737 Epoch: 20/50 Loss: 3.487798150539398 Epoch: 20/50 Loss: 3.5223937454223635 Epoch: 20/50 Loss: 3.5164123353958128 Epoch: 20/50 Loss: 3.5432417297363283 Epoch: 20/50 Loss: 3.4989303488731385 Epoch: 20/50 Loss: 3.5367606053352354 Epoch: 21/50 Loss: 3.481539615136763 Epoch: 21/50 Loss: 3.4320286607742307 Epoch: 21/50 Loss: 3.4493483858108522 Epoch: 21/50 Loss: 3.4255937213897707 Epoch: 21/50 Loss: 3.424235634326935 Epoch: 21/50 Loss: 3.4326418628692625 Epoch: 21/50 Loss: 3.4564402961730956 Epoch: 21/50 Loss: 3.452912940979004 Epoch: 21/50 Loss: 3.47379363489151 Epoch: 21/50 Loss: 3.4849308700561523 Epoch: 21/50 Loss: 3.488367651939392 Epoch: 21/50 Loss: 3.5065493931770324 Epoch: 21/50 Loss: 3.4910193247795105 Epoch: 21/50 Loss: 3.5322557706832884 Epoch: 21/50 Loss: 3.5088390069007875 Epoch: 21/50 Loss: 3.4959770379066466 Epoch: 21/50 Loss: 3.5131883645057678 Epoch: 22/50 Loss: 3.467194741241659 Epoch: 22/50 Loss: 3.4074358706474306 Epoch: 22/50 Loss: 3.446991012573242 Epoch: 22/50 Loss: 3.4414027194976806 Epoch: 22/50 Loss: 3.4316752276420592 Epoch: 22/50 Loss: 3.4447440924644472 Epoch: 22/50 Loss: 3.4299200592041017 Epoch: 22/50 Loss: 3.4482819442749024 Epoch: 22/50 Loss: 3.45684245634079 Epoch: 22/50 Loss: 3.48458287191391 Epoch: 22/50 Loss: 3.4497800693511964 Epoch: 22/50 Loss: 3.4729273228645323 Epoch: 22/50 Loss: 3.491223934173584 Epoch: 22/50 Loss: 3.5018385586738585 Epoch: 22/50 Loss: 3.5101219458580015 Epoch: 22/50 Loss: 3.5024631695747375 Epoch: 22/50 Loss: 3.5022378697395324 Epoch: 23/50 Loss: 3.449942881591593 Epoch: 23/50 Loss: 3.4050429649353027 Epoch: 23/50 Loss: 3.4246144828796385 Epoch: 23/50 Loss: 3.4011668257713317 Epoch: 23/50 Loss: 3.460912655353546 Epoch: 23/50 Loss: 3.433430491447449 Epoch: 23/50 Loss: 3.41539359998703 Epoch: 23/50 Loss: 3.444561444759369 Epoch: 23/50 Loss: 3.457598660945892 Epoch: 23/50 Loss: 3.4738542895317077 Epoch: 23/50 Loss: 3.4578466987609864 Epoch: 23/50 Loss: 3.481058517456055 Epoch: 23/50 Loss: 3.4806779255867006 Epoch: 23/50 Loss: 3.4673849601745603 Epoch: 23/50 Loss: 3.483893452167511 Epoch: 23/50 Loss: 3.499702574253082 Epoch: 23/50 Loss: 3.509336708068848 Epoch: 24/50 Loss: 3.447741306928692 Epoch: 24/50 Loss: 3.388996314048767 Epoch: 24/50 Loss: 3.4037780513763427 Epoch: 24/50 Loss: 3.4259408955574036 Epoch: 24/50 Loss: 3.4193519945144653 Epoch: 24/50 Loss: 3.4424388389587404 Epoch: 24/50 Loss: 3.425782106399536 Epoch: 24/50 Loss: 3.4528023481369017 Epoch: 24/50 Loss: 3.4385888028144835 Epoch: 24/50 Loss: 3.4520001974105834 Epoch: 24/50 Loss: 3.4663240399360657 Epoch: 24/50 Loss: 3.4584046430587767 Epoch: 24/50 Loss: 3.4756621322631838 Epoch: 24/50 Loss: 3.458785279750824 Epoch: 24/50 Loss: 3.5087973170280455 Epoch: 24/50 Loss: 3.4974903950691223 Epoch: 24/50 Loss: 3.4996256709098814 Epoch: 25/50 Loss: 3.4409126203768245 Epoch: 25/50 Loss: 3.4045880880355837 Epoch: 25/50 Loss: 3.3879650592803956 Epoch: 25/50 Loss: 3.4057058668136597 Epoch: 25/50 Loss: 3.4344066491127014 Epoch: 25/50 Loss: 3.428789680480957 Epoch: 25/50 Loss: 3.4367405586242676 Epoch: 25/50 Loss: 3.431917269706726 Epoch: 25/50 Loss: 3.431472014427185 Epoch: 25/50 Loss: 3.4526203370094297 Epoch: 25/50 Loss: 3.4506980090141295 Epoch: 25/50 Loss: 3.463947217464447 Epoch: 25/50 Loss: 3.47091597032547 Epoch: 25/50 Loss: 3.4849835686683655 Epoch: 25/50 Loss: 3.4908282761573792 Epoch: 25/50 Loss: 3.4707229528427126 Epoch: 25/50 Loss: 3.4920355944633483 Epoch: 26/50 Loss: 3.4291356466503378 Epoch: 26/50 Loss: 3.393321813106537 Epoch: 26/50 Loss: 3.4032944736480712 Epoch: 26/50 Loss: 3.4169971952438356 Epoch: 26/50 Loss: 3.409855649471283 Epoch: 26/50 Loss: 3.4256411895751953 Epoch: 26/50 Loss: 3.408281180858612 Epoch: 26/50 Loss: 3.413796736717224 Epoch: 26/50 Loss: 3.437118050098419 Epoch: 26/50 Loss: 3.444763524055481 Epoch: 26/50 Loss: 3.4659058175086974 Epoch: 26/50 Loss: 3.4697269616127016 Epoch: 26/50 Loss: 3.453572250843048 Epoch: 26/50 Loss: 3.4811980409622194 Epoch: 26/50 Loss: 3.473913890361786 Epoch: 26/50 Loss: 3.4819368462562563 Epoch: 26/50 Loss: 3.507728858947754 Epoch: 27/50 Loss: 3.4229290488034123 Epoch: 27/50 Loss: 3.3815350527763366 Epoch: 27/50 Loss: 3.3882220692634584 Epoch: 27/50 Loss: 3.4153892097473144 Epoch: 27/50 Loss: 3.4003035387992857 Epoch: 27/50 Loss: 3.4159571471214294 Epoch: 27/50 Loss: 3.4230825934410096 Epoch: 27/50 Loss: 3.4361836977005007 Epoch: 27/50 Loss: 3.4516974873542785 Epoch: 27/50 Loss: 3.4236026248931886 Epoch: 27/50 Loss: 3.4673097014427183 Epoch: 27/50 Loss: 3.4413963103294374 Epoch: 27/50 Loss: 3.4566046080589294 Epoch: 27/50 Loss: 3.4574181542396545 Epoch: 27/50 Loss: 3.467266495227814 Epoch: 27/50 Loss: 3.4736825070381165 Epoch: 27/50 Loss: 3.487335155010223 Epoch: 28/50 Loss: 3.431899970047201 Epoch: 28/50 Loss: 3.388866213798523 Epoch: 28/50 Loss: 3.405766252040863 Epoch: 28/50 Loss: 3.4049680228233337 Epoch: 28/50 Loss: 3.409099932670593 Epoch: 28/50 Loss: 3.426530571937561 Epoch: 28/50 Loss: 3.3979711627960203 Epoch: 28/50 Loss: 3.419227174758911 Epoch: 28/50 Loss: 3.433870563983917 Epoch: 28/50 Loss: 3.43893514251709 Epoch: 28/50 Loss: 3.452664625644684 Epoch: 28/50 Loss: 3.4370877785682676 Epoch: 28/50 Loss: 3.4702660803794863 Epoch: 28/50 Loss: 3.479471775531769 Epoch: 28/50 Loss: 3.46084951543808 Epoch: 28/50 Loss: 3.505499315261841 Epoch: 28/50 Loss: 3.474842000007629 Epoch: 29/50 Loss: 3.419697691786939 Epoch: 29/50 Loss: 3.368186450481415 Epoch: 29/50 Loss: 3.4131489787101748 Epoch: 29/50 Loss: 3.3972722849845884 Epoch: 29/50 Loss: 3.395373685836792 Epoch: 29/50 Loss: 3.405561022281647 Epoch: 29/50 Loss: 3.4143018002510073 Epoch: 29/50 Loss: 3.4255487995147704 Epoch: 29/50 Loss: 3.432977017402649 Epoch: 29/50 Loss: 3.432595416545868 Epoch: 29/50 Loss: 3.46607599401474 Epoch: 29/50 Loss: 3.459341167449951 Epoch: 29/50 Loss: 3.4565817108154295 Epoch: 29/50 Loss: 3.4545369091033935 Epoch: 29/50 Loss: 3.4487274169921873 Epoch: 29/50 Loss: 3.4793962984085085 Epoch: 29/50 Loss: 3.4774475412368773 Epoch: 30/50 Loss: 3.4266362702090696 Epoch: 30/50 Loss: 3.3707393894195556 Epoch: 30/50 Loss: 3.4009688816070556 Epoch: 30/50 Loss: 3.41780583524704 Epoch: 30/50 Loss: 3.404806713581085 Epoch: 30/50 Loss: 3.392343162059784 Epoch: 30/50 Loss: 3.4157952556610107 Epoch: 30/50 Loss: 3.394635624885559 Epoch: 30/50 Loss: 3.4278540353775027 Epoch: 30/50 Loss: 3.445987799167633 Epoch: 30/50 Loss: 3.4455573353767397 Epoch: 30/50 Loss: 3.458224308013916 Epoch: 30/50 Loss: 3.465588881969452 Epoch: 30/50 Loss: 3.4900054316520692 Epoch: 30/50 Loss: 3.4472007632255552 Epoch: 30/50 Loss: 3.460874794483185 Epoch: 30/50 Loss: 3.466542109012604 Epoch: 31/50 Loss: 3.4146132845767214 Epoch: 31/50 Loss: 3.3843071036338808 Epoch: 31/50 Loss: 3.3811347498893736 Epoch: 31/50 Loss: 3.4160743136405944 Epoch: 31/50 Loss: 3.3904830989837644 Epoch: 31/50 Loss: 3.4081887464523315 Epoch: 31/50 Loss: 3.417015996456146 Epoch: 31/50 Loss: 3.4328133087158204 Epoch: 31/50 Loss: 3.4275679950714113 Epoch: 31/50 Loss: 3.4138888907432556 Epoch: 31/50 Loss: 3.4186256895065306 Epoch: 31/50 Loss: 3.4532382264137267 Epoch: 31/50 Loss: 3.4611018452644347 Epoch: 31/50 Loss: 3.442553873062134 Epoch: 31/50 Loss: 3.4648084006309507 Epoch: 31/50 Loss: 3.4831327900886535 Epoch: 31/50 Loss: 3.481344985485077 Epoch: 32/50 Loss: 3.417527911395199 Epoch: 32/50 Loss: 3.3604442677497866 Epoch: 32/50 Loss: 3.3931580324172974 Epoch: 32/50 Loss: 3.4039223589897154 Epoch: 32/50 Loss: 3.4109639616012575 Epoch: 32/50 Loss: 3.38839937210083 Epoch: 32/50 Loss: 3.4070618963241577 Epoch: 32/50 Loss: 3.4343809013366697 Epoch: 32/50 Loss: 3.4400498456954955 Epoch: 32/50 Loss: 3.44074022769928 Epoch: 32/50 Loss: 3.4361036224365233 Epoch: 32/50 Loss: 3.4338715047836303 Epoch: 32/50 Loss: 3.4311938066482544 Epoch: 32/50 Loss: 3.4557366423606872 Epoch: 32/50 Loss: 3.452679683685303 Epoch: 32/50 Loss: 3.4605790557861327 Epoch: 32/50 Loss: 3.488764456272125 Epoch: 33/50 Loss: 3.4177266196228637 Epoch: 33/50 Loss: 3.3783233346939086 Epoch: 33/50 Loss: 3.3802886810302732 Epoch: 33/50 Loss: 3.3948074803352357 Epoch: 33/50 Loss: 3.3951561312675476 Epoch: 33/50 Loss: 3.3925180435180664 Epoch: 33/50 Loss: 3.4180615520477295 Epoch: 33/50 Loss: 3.4182900276184083 Epoch: 33/50 Loss: 3.406918329238892 Epoch: 33/50 Loss: 3.4217761926651002 Epoch: 33/50 Loss: 3.432539189338684 Epoch: 33/50 Loss: 3.4301042923927305 Epoch: 33/50 Loss: 3.437365408420563 Epoch: 33/50 Loss: 3.4685841836929323 Epoch: 33/50 Loss: 3.4410782403945923 Epoch: 33/50 Loss: 3.4405807752609254 Epoch: 33/50 Loss: 3.4609785046577453 Epoch: 34/50 Loss: 3.3981646825792526 Epoch: 34/50 Loss: 3.366820156097412 Epoch: 34/50 Loss: 3.371670606613159 Epoch: 34/50 Loss: 3.371401391029358 Epoch: 34/50 Loss: 3.3988847618103026 Epoch: 34/50 Loss: 3.3956813430786132 Epoch: 34/50 Loss: 3.395632528305054 Epoch: 34/50 Loss: 3.408763723373413 Epoch: 34/50 Loss: 3.4014831314086913 Epoch: 34/50 Loss: 3.4170239338874815 Epoch: 34/50 Loss: 3.4300766253471373 Epoch: 34/50 Loss: 3.440293403148651 Epoch: 34/50 Loss: 3.4568836894035337 Epoch: 34/50 Loss: 3.4525123081207276 Epoch: 34/50 Loss: 3.4428206429481505 Epoch: 34/50 Loss: 3.4623633823394777 Epoch: 34/50 Loss: 3.459962866783142 Epoch: 35/50 Loss: 3.397423174808235 Epoch: 35/50 Loss: 3.3756671342849733 Epoch: 35/50 Loss: 3.3613001890182495 Epoch: 35/50 Loss: 3.3961171474456786 Epoch: 35/50 Loss: 3.372838927268982 Epoch: 35/50 Loss: 3.403430688381195 Epoch: 35/50 Loss: 3.381500761985779 Epoch: 35/50 Loss: 3.4086303448677064 Epoch: 35/50 Loss: 3.4180406122207643 Epoch: 35/50 Loss: 3.4112331962585447 Epoch: 35/50 Loss: 3.4186969509124756 Epoch: 35/50 Loss: 3.423111517906189 Epoch: 35/50 Loss: 3.4279802737236023 Epoch: 35/50 Loss: 3.4619605579376223 Epoch: 35/50 Loss: 3.4196023092269896 Epoch: 35/50 Loss: 3.435082646369934 Epoch: 35/50 Loss: 3.46928052854538 Epoch: 36/50 Loss: 3.4028661094597634 Epoch: 36/50 Loss: 3.3608404269218446 Epoch: 36/50 Loss: 3.3967194023132325 Epoch: 36/50 Loss: 3.3871848163604734 Epoch: 36/50 Loss: 3.3849933977127074 Epoch: 36/50 Loss: 3.3803206753730772 Epoch: 36/50 Loss: 3.3983873620033265 Epoch: 36/50 Loss: 3.395652235984802 Epoch: 36/50 Loss: 3.3969650616645812 Epoch: 36/50 Loss: 3.397954665184021 Epoch: 36/50 Loss: 3.431672503948212 Epoch: 36/50 Loss: 3.4284891366958616 Epoch: 36/50 Loss: 3.4296383051872255 Epoch: 36/50 Loss: 3.4335634427070616 Epoch: 36/50 Loss: 3.4464554619789123 Epoch: 36/50 Loss: 3.4287529768943785 Epoch: 36/50 Loss: 3.4475033655166625 Epoch: 37/50 Loss: 3.397083348771754 Epoch: 37/50 Loss: 3.3667666602134703 Epoch: 37/50 Loss: 3.3691899824142455 Epoch: 37/50 Loss: 3.3572460641860964 Epoch: 37/50 Loss: 3.3613343472480772 Epoch: 37/50 Loss: 3.3875691280364992 Epoch: 37/50 Loss: 3.3876871938705446 Epoch: 37/50 Loss: 3.391826536655426 Epoch: 37/50 Loss: 3.416728828430176 Epoch: 37/50 Loss: 3.4138199238777163 Epoch: 37/50 Loss: 3.4239575824737547 Epoch: 37/50 Loss: 3.4176981420516968 Epoch: 37/50 Loss: 3.416066034793854 Epoch: 37/50 Loss: 3.4216342487335205 Epoch: 37/50 Loss: 3.4356573185920714 Epoch: 37/50 Loss: 3.442072382926941 Epoch: 37/50 Loss: 3.4289157180786134 Epoch: 38/50 Loss: 3.382192850112915 Epoch: 38/50 Loss: 3.349146860122681 Epoch: 38/50 Loss: 3.3575784516334535 Epoch: 38/50 Loss: 3.3621047854423525 Epoch: 38/50 Loss: 3.371451317310333 Epoch: 38/50 Loss: 3.366515027523041 Epoch: 38/50 Loss: 3.3611457962989806 Epoch: 38/50 Loss: 3.39907656955719 Epoch: 38/50 Loss: 3.407413489818573 Epoch: 38/50 Loss: 3.4081104788780214 Epoch: 38/50 Loss: 3.4209529714584352 Epoch: 38/50 Loss: 3.4033219838142394 Epoch: 38/50 Loss: 3.424390582084656 Epoch: 38/50 Loss: 3.415353960514069 Epoch: 38/50 Loss: 3.4466467475891114 Epoch: 38/50 Loss: 3.455953017234802 Epoch: 38/50 Loss: 3.4613447947502136 Epoch: 39/50 Loss: 3.395313024520874 Epoch: 39/50 Loss: 3.373696825504303 Epoch: 39/50 Loss: 3.347460768699646 Epoch: 39/50 Loss: 3.348865128993988 Epoch: 39/50 Loss: 3.400273462772369 Epoch: 39/50 Loss: 3.3729868106842043 Epoch: 39/50 Loss: 3.3671986756324768 Epoch: 39/50 Loss: 3.3841803684234617 Epoch: 39/50 Loss: 3.3989872164726256 Epoch: 39/50 Loss: 3.396654706478119 Epoch: 39/50 Loss: 3.425925054550171 Epoch: 39/50 Loss: 3.3959758439064025 Epoch: 39/50 Loss: 3.4115366926193236 Epoch: 39/50 Loss: 3.4170353808403013 Epoch: 39/50 Loss: 3.412957437992096 Epoch: 39/50 Loss: 3.438809636116028 Epoch: 39/50 Loss: 3.443488332748413 Epoch: 40/50 Loss: 3.3813527391537677 Epoch: 40/50 Loss: 3.339853758811951 Epoch: 40/50 Loss: 3.3446488552093507 Epoch: 40/50 Loss: 3.362490334033966 Epoch: 40/50 Loss: 3.3678396859169006 Epoch: 40/50 Loss: 3.3644868097305296 Epoch: 40/50 Loss: 3.3745603289604187 Epoch: 40/50 Loss: 3.400062577724457 Epoch: 40/50 Loss: 3.4006435918807982 Epoch: 40/50 Loss: 3.381911808490753 Epoch: 40/50 Loss: 3.40930841588974 Epoch: 40/50 Loss: 3.3866227765083314 Epoch: 40/50 Loss: 3.4094908175468444 Epoch: 40/50 Loss: 3.4229305148124696 Epoch: 40/50 Loss: 3.4151808800697325 Epoch: 40/50 Loss: 3.4340865106582643 Epoch: 40/50 Loss: 3.428878613471985 Epoch: 41/50 Loss: 3.392590676054143 Epoch: 41/50 Loss: 3.3408016810417176 Epoch: 41/50 Loss: 3.337930257320404 Epoch: 41/50 Loss: 3.3600716986656187 Epoch: 41/50 Loss: 3.352771768569946 Epoch: 41/50 Loss: 3.3762117352485657 Epoch: 41/50 Loss: 3.370789174079895 Epoch: 41/50 Loss: 3.390468698501587 Epoch: 41/50 Loss: 3.398447720527649 Epoch: 41/50 Loss: 3.3988220286369324 Epoch: 41/50 Loss: 3.383274136543274 Epoch: 41/50 Loss: 3.4180361166000366 Epoch: 41/50 Loss: 3.4071858429908755 Epoch: 41/50 Loss: 3.419243507862091 Epoch: 41/50 Loss: 3.414725594520569 Epoch: 41/50 Loss: 3.4135225768089295 Epoch: 41/50 Loss: 3.426509735107422 Epoch: 42/50 Loss: 3.383590370714996 Epoch: 42/50 Loss: 3.3190050106048585 Epoch: 42/50 Loss: 3.3431287603378297 Epoch: 42/50 Loss: 3.336298952102661 Epoch: 42/50 Loss: 3.368992443561554 Epoch: 42/50 Loss: 3.3524561071395875 Epoch: 42/50 Loss: 3.350354950428009 Epoch: 42/50 Loss: 3.3876103892326355 Epoch: 42/50 Loss: 3.3888609623908996 Epoch: 42/50 Loss: 3.3969317746162413 Epoch: 42/50 Loss: 3.4134011268615723 Epoch: 42/50 Loss: 3.388237858772278 Epoch: 42/50 Loss: 3.4020225291252135 Epoch: 42/50 Loss: 3.4219931087493896 Epoch: 42/50 Loss: 3.4083484740257264 Epoch: 42/50 Loss: 3.4148167963027953 Epoch: 42/50 Loss: 3.4425931930541993 Epoch: 43/50 Loss: 3.375084323267783 Epoch: 43/50 Loss: 3.3462657155990603 Epoch: 43/50 Loss: 3.3344435782432558 Epoch: 43/50 Loss: 3.3375595083236695 Epoch: 43/50 Loss: 3.3535454030036926 Epoch: 43/50 Loss: 3.32906648349762 Epoch: 43/50 Loss: 3.367526692867279 Epoch: 43/50 Loss: 3.3691976437568663 Epoch: 43/50 Loss: 3.363544155597687 Epoch: 43/50 Loss: 3.3878619804382324 Epoch: 43/50 Loss: 3.4096454582214357 Epoch: 43/50 Loss: 3.389637119293213 Epoch: 43/50 Loss: 3.4163802700042725 Epoch: 43/50 Loss: 3.4258987402915952 Epoch: 43/50 Loss: 3.415721211910248 Epoch: 43/50 Loss: 3.4342961072921754 Epoch: 43/50 Loss: 3.422231529712677 Epoch: 44/50 Loss: 3.369406045079894 Epoch: 44/50 Loss: 3.3351856956481933 Epoch: 44/50 Loss: 3.3403619170188903 Epoch: 44/50 Loss: 3.335961977958679 Epoch: 44/50 Loss: 3.3703363060951235 Epoch: 44/50 Loss: 3.355019334793091 Epoch: 44/50 Loss: 3.3520416798591612 Epoch: 44/50 Loss: 3.3691199617385865 Epoch: 44/50 Loss: 3.3676410040855407 Epoch: 44/50 Loss: 3.3884952330589293 Epoch: 44/50 Loss: 3.3814213576316834 Epoch: 44/50 Loss: 3.38624174451828 Epoch: 44/50 Loss: 3.398065673351288 Epoch: 44/50 Loss: 3.4117964053153993 Epoch: 44/50 Loss: 3.419586715221405 Epoch: 44/50 Loss: 3.4147786269187925 Epoch: 44/50 Loss: 3.408930099487305 Epoch: 45/50 Loss: 3.3592054422227906 Epoch: 45/50 Loss: 3.3144048976898195 Epoch: 45/50 Loss: 3.3317026901245117 Epoch: 45/50 Loss: 3.3291167817115785 Epoch: 45/50 Loss: 3.3502228317260743 Epoch: 45/50 Loss: 3.340053526878357 Epoch: 45/50 Loss: 3.379807912349701 Epoch: 45/50 Loss: 3.3535975847244264 Epoch: 45/50 Loss: 3.3719024777412416 Epoch: 45/50 Loss: 3.387469253540039 Epoch: 45/50 Loss: 3.380273631095886 Epoch: 45/50 Loss: 3.3840805983543394 Epoch: 45/50 Loss: 3.403504664897919 Epoch: 45/50 Loss: 3.4113366041183473 Epoch: 45/50 Loss: 3.4054740080833437 Epoch: 45/50 Loss: 3.4200008754730225 Epoch: 45/50 Loss: 3.411993911743164 Epoch: 46/50 Loss: 3.354236131250129 Epoch: 46/50 Loss: 3.3408305644989014 Epoch: 46/50 Loss: 3.333773087501526 Epoch: 46/50 Loss: 3.3308417053222654 Epoch: 46/50 Loss: 3.334670443534851 Epoch: 46/50 Loss: 3.3266123671531678 Epoch: 46/50 Loss: 3.360192120552063 Epoch: 46/50 Loss: 3.3677366285324095 Epoch: 46/50 Loss: 3.381415358543396 Epoch: 46/50 Loss: 3.3835021505355836 Epoch: 46/50 Loss: 3.384021110057831 Epoch: 46/50 Loss: 3.3823189463615417 Epoch: 46/50 Loss: 3.3915177450180054 Epoch: 46/50 Loss: 3.384876751422882 Epoch: 46/50 Loss: 3.408671064853668 Epoch: 46/50 Loss: 3.4141172165870666 Epoch: 46/50 Loss: 3.4077017397880556 Epoch: 47/50 Loss: 3.344172126326598 Epoch: 47/50 Loss: 3.310088569164276 Epoch: 47/50 Loss: 3.3360726857185363 Epoch: 47/50 Loss: 3.3217876324653623 Epoch: 47/50 Loss: 3.346633759021759 Epoch: 47/50 Loss: 3.373337470531464 Epoch: 47/50 Loss: 3.349922017097473 Epoch: 47/50 Loss: 3.359698698043823 Epoch: 47/50 Loss: 3.3661910076141357 Epoch: 47/50 Loss: 3.3408558382987974 Epoch: 47/50 Loss: 3.378193076133728 Epoch: 47/50 Loss: 3.365145844459534 Epoch: 47/50 Loss: 3.406579786300659 Epoch: 47/50 Loss: 3.4001359767913817 Epoch: 47/50 Loss: 3.4399686260223388 Epoch: 47/50 Loss: 3.420889828681946 Epoch: 47/50 Loss: 3.4165014286041258 Epoch: 48/50 Loss: 3.347930146536652 Epoch: 48/50 Loss: 3.306180275440216 Epoch: 48/50 Loss: 3.324816905498505 Epoch: 48/50 Loss: 3.322040863037109 Epoch: 48/50 Loss: 3.3335712008476257 Epoch: 48/50 Loss: 3.346799533367157 Epoch: 48/50 Loss: 3.3487579379081724 Epoch: 48/50 Loss: 3.3628708639144897 Epoch: 48/50 Loss: 3.384112669467926 Epoch: 48/50 Loss: 3.362531897544861 Epoch: 48/50 Loss: 3.3722641491889953 Epoch: 48/50 Loss: 3.375770344734192 Epoch: 48/50 Loss: 3.379248173713684 Epoch: 48/50 Loss: 3.40091357421875 Epoch: 48/50 Loss: 3.386629187583923 Epoch: 48/50 Loss: 3.399526786327362 Epoch: 48/50 Loss: 3.4052980132102966 Epoch: 49/50 Loss: 3.3471550594049777 Epoch: 49/50 Loss: 3.30485281085968 Epoch: 49/50 Loss: 3.3259602394104 Epoch: 49/50 Loss: 3.324065264225006 Epoch: 49/50 Loss: 3.365146909236908 Epoch: 49/50 Loss: 3.341756565093994 Epoch: 49/50 Loss: 3.3295235414505004 Epoch: 49/50 Loss: 3.332947335243225 Epoch: 49/50 Loss: 3.348553421974182 Epoch: 49/50 Loss: 3.3743089671134947 Epoch: 49/50 Loss: 3.396255979061127 Epoch: 49/50 Loss: 3.377211248397827 Epoch: 49/50 Loss: 3.3653731598854066 Epoch: 49/50 Loss: 3.369532114982605 Epoch: 49/50 Loss: 3.4002244758605955 Epoch: 49/50 Loss: 3.4094139432907102 Epoch: 49/50 Loss: 3.3950993003845213 Epoch: 50/50 Loss: 3.3460027946115733 Epoch: 50/50 Loss: 3.327750300884247 Epoch: 50/50 Loss: 3.3263371419906616 Epoch: 50/50 Loss: 3.3164320998191834 Epoch: 50/50 Loss: 3.314189978122711 Epoch: 50/50 Loss: 3.3356665539741517 Epoch: 50/50 Loss: 3.327284802913666 Epoch: 50/50 Loss: 3.369710102558136 Epoch: 50/50 Loss: 3.372405698776245 Epoch: 50/50 Loss: 3.3740906744003296 Epoch: 50/50 Loss: 3.3629390926361085 Epoch: 50/50 Loss: 3.3796582608222963 Epoch: 50/50 Loss: 3.3729727053642273 Epoch: 50/50 Loss: 3.374483947753906 Epoch: 50/50 Loss: 3.38959716463089 Epoch: 50/50 Loss: 3.4134062294960024 Epoch: 50/50 Loss: 3.4088366594314574 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)The first attempt I tried was to use a sequence length of 100, with batches of 50 and a LSTM dimension of 128 (2 layers). This resulted in the training process being fairly slow and also the loss fluctuating quite a bit and struggling to reduce beyond say 3.7 loss. I thought increasing the sequence length to 200 and the size of the LSTM unit to 256 would help but it only resulted in making the training process slower and didn't help much with the fluctuating loss.Taking a step back, and looking at the nature of this dataset, there was a clear possible reason for this. The data is that of a TV script that is mostly dialogue, so each contiguous piece of text is a sentence or two at most, and fairly short. Thus, a long sequence length doesn't necessarily help, but could actually hurt the learning process. It also makes the learning process slower as there's no parallelism involved in doing a forward pass and backpropagation in any given sequence, but the parallelisation is done across different batches, where each batch can be processed independently, taking advantage of the GPUs. Larger LSTM dimension of 256 didn't help either.Reverting back to 128 LSTM dimension and reducing the sequence length drastically from 200 to only 25 words, while increasing the batch size to 100 yielded significant improvement, with the training process going much faster, most likely due to increased parallelism and shorter sequences. The training process also started looking significantly healthier, with the loss fluctuating less as it trained through the epochs.The number of epochs tried initially was 10, but that only brought the loss down to about 3.55, but it was clear that the loss can drop further with more epochs, so this was increased to 30, and then to 50. With 50 epochs, we got to a loss of about 3.35 on the final epoch.Embedding dimension of 300 seemed to work well, so I didn't change that parameter much.Learning rate was set to 0.001 and that worked well with some fluctuation in the loss but no massive divergences.So the final model configuration was- 50 epochs- 128 LSTM dimension- 2 hidden layers- 300 embedding dimension- 0.001 learning rate- 25 sequence length- 100 batch sizeresulting in a loss of around 3.35 for the final training epoch. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output.cpu(), dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code import numpy as np import torch # run the cell multiple times to get different results! gen_length = 500 # modify the length to your preference prime_word = 'kramer' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:44: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Keeping your connection alive during long processesIn a local environment, do not run the following script ###Code import signal from contextlib import contextmanager import requests DELAY = INTERVAL = 4 * 60 # interval time in seconds MIN_DELAY = MIN_INTERVAL = 2 * 60 KEEPALIVE_URL = "https://nebula.udacity.com/api/v1/remote/keep-alive" TOKEN_URL = "http://metadata.google.internal/computeMetadata/v1/instance/attributes/keep_alive_token" TOKEN_HEADERS = {"Metadata-Flavor":"Google"} def _request_handler(headers): def _handler(signum, frame): requests.request("POST", KEEPALIVE_URL, headers=headers) return _handler @contextmanager def active_session(delay=DELAY, interval=INTERVAL): """ Example: from workspace_utils import active session with active_session(): # do long-running work here """ token = requests.request("GET", TOKEN_URL, headers=TOKEN_HEADERS).text headers = {'Authorization': "STAR " + token} delay = max(delay, MIN_DELAY) interval = max(interval, MIN_INTERVAL) original_handler = signal.getsignal(signal.SIGALRM) try: signal.signal(signal.SIGALRM, _request_handler(headers)) signal.setitimer(signal.ITIMER_REAL, delay, interval) yield finally: signal.signal(signal.SIGALRM, original_handler) signal.setitimer(signal.ITIMER_REAL, 0) def keep_awake(iterable, delay=DELAY, interval=INTERVAL): """ Example: from workspace_utils import keep_awake for i in keep_awake(range(5)): # do iteration with lots of work here """ with active_session(delay, interval): yield from iterable ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ vocab_to_int = {} int_to_vocab = {} words = set(text) for ii, word in enumerate(words): vocab_to_int[word]=ii int_to_vocab[ii]=word # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ Tokenized_dictionary = {".":"||Period||" ,",":"||Comma||" ,"\"":"||Quotation_Mark||" ,";":"||Semicolon" ,"!":"||Exclamation_mark||" ,"?":"||Question_mark||" ,"(":"||Left_Parentheses||" ,")":"||Right_Parentheses||" ,"-":"||Dash||" ,"\n":"||Return||"} return Tokenized_dictionary """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ features = [] targets = [] n_batches = len(words)//batch_size words = words[:n_batches*batch_size] for idx_start in range(0,len(words)-sequence_length): idx_end = idx_start + sequence_length feature_tensor = words[idx_start:idx_end] features.append(feature_tensor) target_tensor = words[idx_end] targets.append(target_tensor) data = TensorDataset(torch.from_numpy(np.asarray(features)), torch.from_numpy(np.asarray(targets))) dataloader = DataLoader(data, batch_size=batch_size) # return a dataloader return dataloader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers self.embedding = nn.Embedding(num_embeddings = vocab_size, embedding_dim = embedding_dim) self.lstm = nn.LSTM(input_size =embedding_dim, hidden_size = hidden_dim, num_layers = n_layers, batch_first = True, dropout = dropout ) # linear layer self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ batch_size = nn_input.size(0) # embeddings and lstm_out embeds = self.embedding(nn_input) lstm_output, hidden = self.lstm(embeds, hidden) # stack up lstm outputs output = lstm_output.contiguous().view(-1, self.hidden_dim) # fully-connected layer output = self.fc(output) output = output.view(batch_size, -1, self.output_size) output = output[:, -1] # return one batch of output word scores and the hidden state return output, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) # initialize hidden state with zero weights, and move to GPU if available return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # move data to GPU, if available if(train_on_gpu): rnn = rnn.cuda() inputs, target = inp.cuda(), target.cuda() # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history h = tuple([each.data for each in hidden]) # zero accumulated gradients optimizer.zero_grad() # get the output from the model output, h = rnn(inputs, h) # calculate the loss and perform backprop loss = criterion(output, target) loss.backward() nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 16 # Batch Size batch_size = 256 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 400 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ with active_session(): # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.522952121734619 Epoch: 1/10 Loss: 4.754759871959687 Epoch: 1/10 Loss: 4.656247469425201 Epoch: 1/10 Loss: 4.48144774723053 Epoch: 1/10 Loss: 4.354819772243499 Epoch: 1/10 Loss: 4.420807358264923 Epoch: 2/10 Loss: 4.243906981583651 Epoch: 2/10 Loss: 3.9680150237083436 Epoch: 2/10 Loss: 4.038862237930298 Epoch: 2/10 Loss: 3.9595134258270264 Epoch: 2/10 Loss: 3.9117071013450624 Epoch: 2/10 Loss: 4.012768744945526 Epoch: 3/10 Loss: 3.9257868532004214 Epoch: 3/10 Loss: 3.7406112899780273 Epoch: 3/10 Loss: 3.8140684480667115 Epoch: 3/10 Loss: 3.7535563635826112 Epoch: 3/10 Loss: 3.699676116943359 Epoch: 3/10 Loss: 3.807193706035614 Epoch: 4/10 Loss: 3.7294869781874445 Epoch: 4/10 Loss: 3.581225072860718 Epoch: 4/10 Loss: 3.6560447015762327 Epoch: 4/10 Loss: 3.6053649821281435 Epoch: 4/10 Loss: 3.547518718242645 Epoch: 4/10 Loss: 3.6681784377098086 Epoch: 5/10 Loss: 3.5952676674114237 Epoch: 5/10 Loss: 3.46596888589859 Epoch: 5/10 Loss: 3.5328338894844054 Epoch: 5/10 Loss: 3.5102869787216187 Epoch: 5/10 Loss: 3.4422434101104735 Epoch: 5/10 Loss: 3.5584872608184814 Epoch: 6/10 Loss: 3.4939115142046133 Epoch: 6/10 Loss: 3.376741497993469 Epoch: 6/10 Loss: 3.442264214038849 Epoch: 6/10 Loss: 3.423407745838165 Epoch: 6/10 Loss: 3.351679904937744 Epoch: 6/10 Loss: 3.4829579901695253 Epoch: 7/10 Loss: 3.4114400042886044 Epoch: 7/10 Loss: 3.302019403934479 Epoch: 7/10 Loss: 3.357560217857361 Epoch: 7/10 Loss: 3.349112678527832 Epoch: 7/10 Loss: 3.282305521965027 Epoch: 7/10 Loss: 3.4118709349632264 Epoch: 8/10 Loss: 3.350179165571413 Epoch: 8/10 Loss: 3.2463563504219057 Epoch: 8/10 Loss: 3.2926317286491393 Epoch: 8/10 Loss: 3.2892961072921754 Epoch: 8/10 Loss: 3.222636125087738 Epoch: 8/10 Loss: 3.3476591720581053 Epoch: 9/10 Loss: 3.293566507337537 Epoch: 9/10 Loss: 3.1977349667549135 Epoch: 9/10 Loss: 3.2368158712387083 Epoch: 9/10 Loss: 3.241262062072754 Epoch: 9/10 Loss: 3.167059338092804 Epoch: 9/10 Loss: 3.2985173225402833 Epoch: 10/10 Loss: 3.2449350970686393 Epoch: 10/10 Loss: 3.1553981909751894 Epoch: 10/10 Loss: 3.1925506958961485 Epoch: 10/10 Loss: 3.1991492381095887 Epoch: 10/10 Loss: 3.1269894323349 Epoch: 10/10 Loss: 3.2487295141220094 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** I started with the examples provided, and based the hyperparameters with: [sentiment-rnn](https://github.com/udacity/deep-learning-v2-pytorch/blob/master/sentiment-rnn/Sentiment_RNN_Solution.ipynb). Finally I used the following hyperparameters:- **length of a sequence = 16** I set it 16 as a reasonable size of words in a sentence.- **batch size = 256** Keep it as medium size to compute. - **umber of epochs to train for = 10** However in the final result, after the epoch 7 I didn't get any loss greater than 3.5.- **learning rate for an Adam optimizer** I started with a bigger one like 0.01 (It got me a loss bigger than 3.5) and changed it to 0.001.- **vocab size = len(vocab_to_int)** It is the number of uniqe tokens in our vocabulary.- **output size =vocab size** It is to the desired size of the output, it will be the same size as our vocabulary.- **embedding dimension = 400** It is smaller than the vocab_size, a big embedding will require longer time to train (computational complexity), and a small one could not capture the semantics. I keep it based on "sentiment-rnn". - **hidden dimension of the RNN = 256** I keep it based on "sentiment-rnn".- **number of layers/cells the RNN = 2** Use 3 layers could be more time on training. 2 was enoght to get the expected result (a loss less than 3.5) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:44: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ chars = tuple(set(text)) int2char = dict(enumerate(chars)) char2int = {ch:ii for ii, ch in int2char.items()} return (char2int, int2char) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ return { '.': '||period||', ';': '||semicolon||', '"': '||quote||', '!': '||exclamation||', '?': '||question||', '(': '||left_par||', ')': '||right_par||', ',': '||comma||', '-': '||hyphen||', '\n': '||new_line||'} """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ batch_size_total = batch_size*sequence_length n_batches = len(words)//batch_size_total words = words[:n_batches*batch_size_total] x, y = [], [] for n in range(0,len(words)- sequence_length): x.append(words[n:n+sequence_length]) y.append(words[n+sequence_length]) x_ten = torch.from_numpy(np.array(x)) y_ten = torch.from_numpy(np.array(y)) data = TensorDataset(x_ten, y_ten) return torch.utils.data.DataLoader(data, shuffle=True, batch_size=batch_size) # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 21, 22, 23, 24, 25], [ 20, 21, 22, 23, 24], [ 24, 25, 26, 27, 28], [ 33, 34, 35, 36, 37], [ 32, 33, 34, 35, 36], [ 3, 4, 5, 6, 7], [ 5, 6, 7, 8, 9], [ 22, 23, 24, 25, 26], [ 34, 35, 36, 37, 38], [ 0, 1, 2, 3, 4]]) torch.Size([10]) tensor([ 26, 25, 29, 38, 37, 8, 10, 27, 39, 5]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() self.vocab_size = vocab_size self.output_size = output_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers self.dropout = nn.Dropout(0.25) self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout = dropout, batch_first=True) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ batch_size = nn_input.size(0) nn_input = nn_input.long() embed = self.embedding(nn_input) r_output, hidden = self.lstm(embed,hidden) r_output = r_output.contiguous().view(-1,self.hidden_dim) output = self.dropout(r_output) output = self.fc(output) output = output.view(batch_size, -1, self.output_size) out = output[:, -1] return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' weight = next(self.parameters()).data if train_on_gpu: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ if (train_on_gpu): inp, target = inp.cuda(), target.cuda() hidden = tuple([each.data for each in hidden]) rnn.zero_grad() output, hidden = rnn(inp, hidden) loss = criterion(output, target) loss.backward() nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 8 # of words in a sequence # Batch Size batch_size = 256 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 20 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 256 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from workspace_utils import active_session with active_session(): # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 20 epoch(s)... Epoch: 1/20 Loss: 5.472956974983215 Epoch: 1/20 Loss: 4.778247024536133 Epoch: 1/20 Loss: 4.5611457328796385 Epoch: 1/20 Loss: 4.442307324409485 Epoch: 1/20 Loss: 4.37711930513382 Epoch: 1/20 Loss: 4.3269067187309265 Epoch: 2/20 Loss: 4.228359551181345 Epoch: 2/20 Loss: 4.133873756408692 Epoch: 2/20 Loss: 4.120244804382324 Epoch: 2/20 Loss: 4.105042007446289 Epoch: 2/20 Loss: 4.093498089313507 Epoch: 2/20 Loss: 4.064740857124328 Epoch: 3/20 Loss: 4.007802387058309 Epoch: 3/20 Loss: 3.948322859764099 Epoch: 3/20 Loss: 3.9448551321029663 Epoch: 3/20 Loss: 3.9328135671615603 Epoch: 3/20 Loss: 3.922827781200409 Epoch: 3/20 Loss: 3.938111147880554 Epoch: 4/20 Loss: 3.863433227110445 Epoch: 4/20 Loss: 3.8200348558425903 Epoch: 4/20 Loss: 3.8278083066940307 Epoch: 4/20 Loss: 3.8361974730491637 Epoch: 4/20 Loss: 3.819807970523834 Epoch: 4/20 Loss: 3.8445742893218995 Epoch: 5/20 Loss: 3.786066251585262 Epoch: 5/20 Loss: 3.7320729660987855 Epoch: 5/20 Loss: 3.742035280227661 Epoch: 5/20 Loss: 3.7464504222869874 Epoch: 5/20 Loss: 3.755089564323425 Epoch: 5/20 Loss: 3.7483711080551148 Epoch: 6/20 Loss: 3.715162828336332 Epoch: 6/20 Loss: 3.6667286672592163 Epoch: 6/20 Loss: 3.6790166807174685 Epoch: 6/20 Loss: 3.6914181571006774 Epoch: 6/20 Loss: 3.693649087429047 Epoch: 6/20 Loss: 3.697379428386688 Epoch: 7/20 Loss: 3.6426511049514163 Epoch: 7/20 Loss: 3.6315478339195253 Epoch: 7/20 Loss: 3.629756965637207 Epoch: 7/20 Loss: 3.6340033864974974 Epoch: 7/20 Loss: 3.6262159543037416 Epoch: 7/20 Loss: 3.6440613465309144 Epoch: 8/20 Loss: 3.607206752034812 Epoch: 8/20 Loss: 3.5713952860832214 Epoch: 8/20 Loss: 3.5932981367111205 Epoch: 8/20 Loss: 3.587841139793396 Epoch: 8/20 Loss: 3.5928955068588255 Epoch: 8/20 Loss: 3.620823034286499 Epoch: 9/20 Loss: 3.569108201729265 Epoch: 9/20 Loss: 3.525101620197296 Epoch: 9/20 Loss: 3.5365047702789307 Epoch: 9/20 Loss: 3.5620567569732664 Epoch: 9/20 Loss: 3.567617578983307 Epoch: 9/20 Loss: 3.5797277994155885 Epoch: 10/20 Loss: 3.5172681277570246 Epoch: 10/20 Loss: 3.496902190208435 Epoch: 10/20 Loss: 3.516548152446747 Epoch: 10/20 Loss: 3.543080725669861 Epoch: 10/20 Loss: 3.5332755365371704 Epoch: 10/20 Loss: 3.5453475847244262 Epoch: 11/20 Loss: 3.5105559285254473 Epoch: 11/20 Loss: 3.4782037596702575 Epoch: 11/20 Loss: 3.463699842453003 Epoch: 11/20 Loss: 3.50378421831131 Epoch: 11/20 Loss: 3.5058783679008485 Epoch: 11/20 Loss: 3.5173110904693603 Epoch: 12/20 Loss: 3.4706592389341515 Epoch: 12/20 Loss: 3.43311047410965 Epoch: 12/20 Loss: 3.464690296173096 Epoch: 12/20 Loss: 3.4796830520629882 Epoch: 12/20 Loss: 3.4693809962272644 Epoch: 12/20 Loss: 3.491677869796753 Epoch: 13/20 Loss: 3.4579450852780833 Epoch: 13/20 Loss: 3.4266866216659544 Epoch: 13/20 Loss: 3.424931010723114 Epoch: 13/20 Loss: 3.4592221961021425 Epoch: 13/20 Loss: 3.4687773509025575 Epoch: 13/20 Loss: 3.463481078147888 Epoch: 14/20 Loss: 3.433932823350651 Epoch: 14/20 Loss: 3.396617233276367 Epoch: 14/20 Loss: 3.41681413602829 Epoch: 14/20 Loss: 3.434564519405365 Epoch: 14/20 Loss: 3.4537267956733704 Epoch: 14/20 Loss: 3.4544762392044066 Epoch: 15/20 Loss: 3.404739597357574 Epoch: 15/20 Loss: 3.3869185853004455 Epoch: 15/20 Loss: 3.397803156852722 Epoch: 15/20 Loss: 3.396700533390045 Epoch: 15/20 Loss: 3.4292261743545533 Epoch: 15/20 Loss: 3.444297547340393 Epoch: 16/20 Loss: 3.391730428837902 Epoch: 16/20 Loss: 3.360869251728058 Epoch: 16/20 Loss: 3.388628399848938 Epoch: 16/20 Loss: 3.3864743776321413 Epoch: 16/20 Loss: 3.4065000381469726 Epoch: 16/20 Loss: 3.417522574901581 Epoch: 17/20 Loss: 3.3870991328398223 Epoch: 17/20 Loss: 3.354984178543091 Epoch: 17/20 Loss: 3.365598596572876 Epoch: 17/20 Loss: 3.375752248287201 Epoch: 17/20 Loss: 3.392991916179657 Epoch: 17/20 Loss: 3.4017629752159118 Epoch: 18/20 Loss: 3.361126951104652 Epoch: 18/20 Loss: 3.3484280824661257 Epoch: 18/20 Loss: 3.3578254833221437 Epoch: 18/20 Loss: 3.3553472452163695 Epoch: 18/20 Loss: 3.3740733013153075 Epoch: 18/20 Loss: 3.38919611120224 Epoch: 19/20 Loss: 3.3480355240351334 Epoch: 19/20 Loss: 3.3238951878547667 Epoch: 19/20 Loss: 3.3525532855987548 Epoch: 19/20 Loss: 3.3468800201416014 Epoch: 19/20 Loss: 3.3594187479019166 Epoch: 19/20 Loss: 3.371137848854065 Epoch: 20/20 Loss: 3.3330890399321107 Epoch: 20/20 Loss: 3.3095488953590393 Epoch: 20/20 Loss: 3.3195668268203735 Epoch: 20/20 Loss: 3.3446415367126465 Epoch: 20/20 Loss: 3.361153946876526 Epoch: 20/20 Loss: 3.369842571258545 Model Trained and Saved ###Markdown --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:38: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function vocab2int = {word:i for i,word in enumerate(set(text))} int2vocab = {inte:word for inte,word in enumerate(set(text))} # return tuple return vocab2int, int2vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return { '.':'||Period||', ',':'||Comma||', '"':'||Quotation_Mark||', ';':'||Semicolon||', '!':'||Exclamation_Mark||', '?':'||Question_Mark||', '(':'||Left_Parentheses||', ')':'||Right_Parentheses||', '-':'||Dash||', '\n':'||Return||' } """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def get_target(words,idx,window_size=5): R=np.random.randint(1,window_size+1) start=idx-R if (idx-R)>0 else 0 stop=idx +R target_words=words[start:idx]+words[idx+1:stop+1] return list(target_words) def batch_data(words, sequence_length, batch_size=5): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # get number of targets we can make n_targets = len(words) - sequence_length # initialize feature and target feature, target = [], [] # loop through all targets we can make for i in range(n_targets): x = words[i : i+sequence_length] # get some words from the given list y = words[i+sequence_length] # get the next word to be the target feature.append(x) target.append(y) feature_tensor, target_tensor = torch.from_numpy(np.array(feature)), torch.from_numpy(np.array(target)) # create data data = TensorDataset(feature_tensor, target_tensor) # create dataloader dataloader = DataLoader(data, batch_size=batch_size, shuffle=True) # return a dataloader return dataloader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[22, 23, 24, 25, 26], [18, 19, 20, 21, 22], [ 6, 7, 8, 9, 10], [35, 36, 37, 38, 39], [ 0, 1, 2, 3, 4], [20, 21, 22, 23, 24], [17, 18, 19, 20, 21], [ 8, 9, 10, 11, 12], [14, 15, 16, 17, 18], [42, 43, 44, 45, 46]]) torch.Size([10]) tensor([27, 23, 11, 40, 5, 25, 22, 13, 19, 47]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout = dropout, batch_first = True ) self.dropout = nn.Dropout() self.fc = nn.Linear(hidden_dim, output_size) #self.sig = nn.Sigmoid() ###sigmoid not used in generative models?? def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) #out = self.dropout(lstm_out) out = self.fc(lstm_out) out = out.view(batch_size, -1, self.output_size) out = out[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function weight = next(self.parameters()).data # initialize hidden state with zero weights, and move to GPU if available if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): rnn.cuda() if(train_on_gpu): inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization #### Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history hidden = tuple([each.data for each in hidden]) rnn.zero_grad() output, hidden = rnn(inp, hidden) # calculate the loss and perform backprop loss = criterion(output, target) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 1000 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.246990999221802 Epoch: 1/10 Loss: 4.657585704088211 Epoch: 1/10 Loss: 4.45005393075943 Epoch: 1/10 Loss: 4.333704968452453 Epoch: 1/10 Loss: 4.263662850379943 Epoch: 1/10 Loss: 4.229911610841751 Epoch: 2/10 Loss: 4.082900234985739 Epoch: 2/10 Loss: 3.9861891577243806 Epoch: 2/10 Loss: 3.9701928913593294 Epoch: 2/10 Loss: 3.9595058488845827 Epoch: 2/10 Loss: 3.9494157614707945 Epoch: 2/10 Loss: 3.9485573186874388 Epoch: 3/10 Loss: 3.8470129720931006 Epoch: 3/10 Loss: 3.7845678362846376 Epoch: 3/10 Loss: 3.7661884078979493 Epoch: 3/10 Loss: 3.7892973890304567 Epoch: 3/10 Loss: 3.769862293958664 Epoch: 3/10 Loss: 3.780990803003311 Epoch: 4/10 Loss: 3.7146878542786266 Epoch: 4/10 Loss: 3.6415553512573244 Epoch: 4/10 Loss: 3.6499096276760103 Epoch: 4/10 Loss: 3.6678592205047607 Epoch: 4/10 Loss: 3.654672094106674 Epoch: 4/10 Loss: 3.6796951491832735 Epoch: 5/10 Loss: 3.611517976176745 Epoch: 5/10 Loss: 3.5514617977142335 Epoch: 5/10 Loss: 3.5535734639167784 Epoch: 5/10 Loss: 3.571285780906677 Epoch: 5/10 Loss: 3.578174908876419 Epoch: 5/10 Loss: 3.6068078253269196 Epoch: 6/10 Loss: 3.533201336315769 Epoch: 6/10 Loss: 3.4701901757717133 Epoch: 6/10 Loss: 3.4914867269992826 Epoch: 6/10 Loss: 3.494761492729187 Epoch: 6/10 Loss: 3.5154988026618956 Epoch: 6/10 Loss: 3.5346083900928496 Epoch: 7/10 Loss: 3.4750923048487286 Epoch: 7/10 Loss: 3.420525914669037 Epoch: 7/10 Loss: 3.4341518335342407 Epoch: 7/10 Loss: 3.4557393221855164 Epoch: 7/10 Loss: 3.4647683248519896 Epoch: 7/10 Loss: 3.479178802013397 Epoch: 8/10 Loss: 3.410317848514578 Epoch: 8/10 Loss: 3.3603113305568697 Epoch: 8/10 Loss: 3.386174315929413 Epoch: 8/10 Loss: 3.404626386880875 Epoch: 8/10 Loss: 3.4300795192718505 Epoch: 8/10 Loss: 3.4444572412967682 Epoch: 9/10 Loss: 3.3722622063996646 Epoch: 9/10 Loss: 3.3373029968738557 Epoch: 9/10 Loss: 3.3332952313423156 Epoch: 9/10 Loss: 3.3568105165958406 Epoch: 9/10 Loss: 3.3780274176597596 Epoch: 9/10 Loss: 3.398186367034912 Epoch: 10/10 Loss: 3.347148909915093 Epoch: 10/10 Loss: 3.291948429822922 Epoch: 10/10 Loss: 3.310691568374634 Epoch: 10/10 Loss: 3.3340189960002897 Epoch: 10/10 Loss: 3.354156327962875 Epoch: 10/10 Loss: 3.3540609579086302 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** I tried larger sequence lengths like 15 or 20, but it seems the grad decreased slower, with several tests 10 is a good value. Hidden_dims is set as 256 seems good as example shown in course videos. good Loss with 3.29 is obtained as shown on Epoch 10/10(2). --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: suitcases suitcases nyu meets the cabin. jerry: oh, you know what this is? jerry: i was in the apartment last week, but i was just curious, i can't get out of my apartment, and i was gonna go out with you, i don't know why i was just trying to tell her i was a little disappointed, and i was gonna get a little nervous, i don't know. jerry: well knocks up there? kramer: oh, yeah, yeah.(george enters.) oh, hi, hi. george:(looking at jerry) i know, you don't have to get it out of the car. frank:(still holding his hand to the kitchen) kramer:(to jerry) you want you to go? george: i don't know. i was just thinking... you know, i don't know. elaine: i think it should be a very nice place to be a little bit to do this. jerry:(confused) what are you gonna do? i got a little bit to see you and jerry. jerry: what? jerry: i was just curious. elaine: well, i guess, i was in love with the specials. jerry: i know, i don't think so. kramer:(to himself) i can't believe this.(jerry and george enter) george: i think you know. elaine: well, i don't think so. jerry: you know, you don't know. i mean...... kramer: well, you know, it's like a long time. elaine: oh, you don't know why you think you're not gonna have any time to get in the bathroom? you know what? elaine:(looking at his watch) i can't believe what i think. kramer: oh, well, you got a great time. jerry:(to jerry) you see, i don't think so ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter from string import punctuation def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ unique_words = set(text) #unique_words in text counts = Counter(unique_words) #count of unique words vocabulary = sorted(counts, key=counts.get, reverse=True) vocab_to_int = {word: ii for ii, word in enumerate(vocabulary, 0)} #words with corresponding int tokens int_to_vocab = {ii: ch for ch, ii in vocab_to_int.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) from string import punctuation print(punctuation) def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ tokens = dict() tokens['.'] = '<PERIOD>' tokens[','] = '<COMMA>' tokens['"'] = '<QUOTATION_MARK>' tokens[';'] = '<SEMICOLON>' tokens['!'] = '<EXCLAMATION_MARK>' tokens['?'] = '<QUESTION_MARK>' tokens['('] = '<LEFT_PAREN>' tokens[')'] = '<RIGHT_PAREN>' tokens['?'] = '<QUESTION_MARK>' tokens['-'] = '<DASH>' tokens['\n'] = '<NEW_LINE>' return tokens """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # words = words.reshape((batch_size, -1)) target_length = len(words) - sequence_length x, y = [], [] for n in range(target_length): x.append(words[n:n+sequence_length]) #make sequence_len window y.append(words[n+sequence_length]) data = TensorDataset(torch.from_numpy(np.asarray(x)), torch.from_numpy(np.asarray(y))) data_loader = DataLoader(data, shuffle=False, batch_size=batch_size) return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5,lr=0.001): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # define embedding layer self.embedding = nn.Embedding(vocab_size, embedding_dim) ## Define the LSTM self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # Define the final, fully-connected output layer self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ batch_size = nn_input.size(0) # embeddings and lstm_out embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer out = self.fc(lstm_out) # reshape into (batch_size, seq_length, output_size) out = out.view(batch_size, -1, self.output_size) # get last batch out = out[:, -1] return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Create two new tensors with sizes n_layers x batch_size x hidden_dim, # initialized to zero, for hidden state and cell state of LSTM weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # move model to GPU, if available if(train_on_gpu): rnn.cuda() # # Creating new variables for the hidden state, otherwise # # we'd backprop through the entire training history h = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() if(train_on_gpu): inputs, target = inp.cuda(), target.cuda() # print(h[0].data) #inputs, target = inp, target # get predicted outputs output, h = rnn(inputs, h) # calculate loss loss = criterion(output, target) # optimizer.zero_grad() loss.backward() # 'clip_grad_norm' helps prevent the exploding gradient problem in RNNs / LSTMs nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() return loss.item(), h """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code len(int_text) # Data params sequence_length = 10 # of words in a sequence batch_size = 64 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters num_epochs = 10 learning_rate = 0.001 vocab_size = len(vocab_to_int) output_size = vocab_size embedding_dim = 200 hidden_dim = 250 n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./trained_rnn.pt', trained_rnn) ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.626285982608795 Epoch: 1/10 Loss: 5.042195623397827 Epoch: 1/10 Loss: 4.927733078002929 Epoch: 1/10 Loss: 4.748253393173218 Epoch: 1/10 Loss: 4.666325830459595 Epoch: 1/10 Loss: 4.509279230594635 Epoch: 1/10 Loss: 4.4452972702980045 Epoch: 1/10 Loss: 4.491038519382477 Epoch: 1/10 Loss: 4.563551615715027 Epoch: 1/10 Loss: 4.404510603427887 Epoch: 1/10 Loss: 4.495689366340637 Epoch: 1/10 Loss: 4.536718783378601 Epoch: 1/10 Loss: 4.457179727554322 Epoch: 1/10 Loss: 4.391322546482086 Epoch: 1/10 Loss: 4.402498832702637 Epoch: 1/10 Loss: 4.210037431240082 Epoch: 1/10 Loss: 4.251832055568695 Epoch: 1/10 Loss: 4.321867434978485 Epoch: 1/10 Loss: 4.271789047718048 Epoch: 1/10 Loss: 4.208213728904724 Epoch: 1/10 Loss: 4.330883482933045 Epoch: 1/10 Loss: 4.412975255966186 Epoch: 1/10 Loss: 4.4305776352882384 Epoch: 1/10 Loss: 4.380789225578308 Epoch: 1/10 Loss: 4.386799168109894 Epoch: 1/10 Loss: 4.421807224273682 Epoch: 1/10 Loss: 4.33577938747406 Epoch: 2/10 Loss: 4.222767859856034 Epoch: 2/10 Loss: 4.038570663452148 Epoch: 2/10 Loss: 4.059839665412903 Epoch: 2/10 Loss: 4.016582417964935 Epoch: 2/10 Loss: 3.9989163880348206 Epoch: 2/10 Loss: 3.9109033637046813 Epoch: 2/10 Loss: 3.8846182470321655 Epoch: 2/10 Loss: 3.9408162150382995 Epoch: 2/10 Loss: 4.054593029022217 Epoch: 2/10 Loss: 3.9398419728279115 Epoch: 2/10 Loss: 4.035030739784241 Epoch: 2/10 Loss: 4.10122740983963 Epoch: 2/10 Loss: 4.029494116783142 Epoch: 2/10 Loss: 4.001172816753387 Epoch: 2/10 Loss: 3.984822296619415 Epoch: 2/10 Loss: 3.8411126065254213 Epoch: 2/10 Loss: 3.922910849571228 Epoch: 2/10 Loss: 3.958962037563324 Epoch: 2/10 Loss: 3.9063660702705385 Epoch: 2/10 Loss: 3.8479747009277343 Epoch: 2/10 Loss: 4.016427094936371 Epoch: 2/10 Loss: 4.076266962051392 Epoch: 2/10 Loss: 4.098210009098053 Epoch: 2/10 Loss: 4.033592838287354 Epoch: 2/10 Loss: 4.059541031837464 Epoch: 2/10 Loss: 4.063958287239075 Epoch: 2/10 Loss: 4.0333293137550355 Epoch: 3/10 Loss: 3.9757565113937003 Epoch: 3/10 Loss: 3.8758427290916444 Epoch: 3/10 Loss: 3.88838671875 Epoch: 3/10 Loss: 3.824080547571182 Epoch: 3/10 Loss: 3.792986105442047 Epoch: 3/10 Loss: 3.7399016814231874 Epoch: 3/10 Loss: 3.704944464683533 Epoch: 3/10 Loss: 3.7654943051338194 Epoch: 3/10 Loss: 3.872011314868927 Epoch: 3/10 Loss: 3.7711556096076966 Epoch: 3/10 Loss: 3.899056243896484 Epoch: 3/10 Loss: 3.9277945923805238 Epoch: 3/10 Loss: 3.855765347480774 Epoch: 3/10 Loss: 3.827311481952667 Epoch: 3/10 Loss: 3.8326210894584656 Epoch: 3/10 Loss: 3.7160993828773496 Epoch: 3/10 Loss: 3.765183704376221 Epoch: 3/10 Loss: 3.7670102190971373 Epoch: 3/10 Loss: 3.742635353088379 Epoch: 3/10 Loss: 3.723188822746277 Epoch: 3/10 Loss: 3.8859115767478944 Epoch: 3/10 Loss: 3.938003800868988 Epoch: 3/10 Loss: 3.9630267868041993 Epoch: 3/10 Loss: 3.9452022280693053 Epoch: 3/10 Loss: 3.9051348237991332 Epoch: 3/10 Loss: 3.906770224094391 Epoch: 3/10 Loss: 3.872326648235321 Epoch: 4/10 Loss: 3.8213996722167547 Epoch: 4/10 Loss: 3.754813754558563 Epoch: 4/10 Loss: 3.778704234600067 Epoch: 4/10 Loss: 3.7121593329906464 Epoch: 4/10 Loss: 3.6924094767570494 Epoch: 4/10 Loss: 3.615902979373932 Epoch: 4/10 Loss: 3.5962221393585203 Epoch: 4/10 Loss: 3.655794701576233 Epoch: 4/10 Loss: 3.752991834640503 Epoch: 4/10 Loss: 3.650555018424988 Epoch: 4/10 Loss: 3.770229367733002 Epoch: 4/10 Loss: 3.8105051136016845 Epoch: 4/10 Loss: 3.757607269287109 Epoch: 4/10 Loss: 3.7146813192367554 Epoch: 4/10 Loss: 3.6954393348693846 Epoch: 4/10 Loss: 3.609909596443176 Epoch: 4/10 Loss: 3.645623220205307 Epoch: 4/10 Loss: 3.6706583395004273 Epoch: 4/10 Loss: 3.6577448968887327 Epoch: 4/10 Loss: 3.617503483772278 Epoch: 4/10 Loss: 3.7930727858543394 Epoch: 4/10 Loss: 3.831050326347351 Epoch: 4/10 Loss: 3.865900510787964 Epoch: 4/10 Loss: 3.8364789719581602 Epoch: 4/10 Loss: 3.802232730388641 Epoch: 4/10 Loss: 3.8070947279930114 Epoch: 4/10 Loss: 3.7541960186958314 Epoch: 5/10 Loss: 3.7227334587718732 Epoch: 5/10 Loss: 3.6703632040023804 Epoch: 5/10 Loss: 3.7090781960487367 Epoch: 5/10 Loss: 3.6334264216423033 Epoch: 5/10 Loss: 3.5758563318252565 Epoch: 5/10 Loss: 3.5298464245796204 Epoch: 5/10 Loss: 3.5130391240119936 Epoch: 5/10 Loss: 3.568640021800995 Epoch: 5/10 Loss: 3.673930060386658 Epoch: 5/10 Loss: 3.5683663630485536 Epoch: 5/10 Loss: 3.6836147742271423 Epoch: 5/10 Loss: 3.7173752884864806 Epoch: 5/10 Loss: 3.693704773902893 Epoch: 5/10 Loss: 3.639796751022339 Epoch: 5/10 Loss: 3.6266501746177675 Epoch: 5/10 Loss: 3.537646650791168 Epoch: 5/10 Loss: 3.5568584225177764 Epoch: 5/10 Loss: 3.594251932144165 Epoch: 5/10 Loss: 3.593085802555084 Epoch: 5/10 Loss: 3.5424518637657165 Epoch: 5/10 Loss: 3.715118019104004 Epoch: 5/10 Loss: 3.7201204266548156 Epoch: 5/10 Loss: 3.781272727012634 Epoch: 5/10 Loss: 3.749784249782562 Epoch: 5/10 Loss: 3.719280736923218 Epoch: 5/10 Loss: 3.727500115394592 Epoch: 5/10 Loss: 3.682547796726227 Epoch: 6/10 Loss: 3.6491394352735167 Epoch: 6/10 Loss: 3.598791978597641 Epoch: 6/10 Loss: 3.6471619458198545 Epoch: 6/10 Loss: 3.5789610514640806 Epoch: 6/10 Loss: 3.521570070743561 Epoch: 6/10 Loss: 3.4735229415893554 Epoch: 6/10 Loss: 3.4610399765968323 Epoch: 6/10 Loss: 3.506699200630188 Epoch: 6/10 Loss: 3.615067078113556 Epoch: 6/10 Loss: 3.502860247135162 Epoch: 6/10 Loss: 3.614334485054016 Epoch: 6/10 Loss: 3.6802509765625 Epoch: 6/10 Loss: 3.6467618050575257 Epoch: 6/10 Loss: 3.5814969363212588 Epoch: 6/10 Loss: 3.559717480182648 Epoch: 6/10 Loss: 3.470000730037689 Epoch: 6/10 Loss: 3.4977754936218264 Epoch: 6/10 Loss: 3.542849807262421 Epoch: 6/10 Loss: 3.5385200643539427 Epoch: 6/10 Loss: 3.4741253933906555 Epoch: 6/10 Loss: 3.6507114667892457 Epoch: 6/10 Loss: 3.6616494665145876 Epoch: 6/10 Loss: 3.7155288076400756 Epoch: 6/10 Loss: 3.6751344275474547 Epoch: 6/10 Loss: 3.6744229364395142 Epoch: 6/10 Loss: 3.6735162725448607 Epoch: 6/10 Loss: 3.641093776702881 Epoch: 7/10 Loss: 3.592488924154458 Epoch: 7/10 Loss: 3.555366448879242 Epoch: 7/10 Loss: 3.5979912238121035 Epoch: 7/10 Loss: 3.550986848831177 Epoch: 7/10 Loss: 3.47798468542099 Epoch: 7/10 Loss: 3.4244713988304136 Epoch: 7/10 Loss: 3.414913432121277 Epoch: 7/10 Loss: 3.4759127793312072 Epoch: 7/10 Loss: 3.555940191745758 Epoch: 7/10 Loss: 3.4368428192138674 Epoch: 7/10 Loss: 3.575292818069458 Epoch: 7/10 Loss: 3.616502721309662 Epoch: 7/10 Loss: 3.597757300376892 Epoch: 7/10 Loss: 3.542052065372467 Epoch: 7/10 Loss: 3.501235333442688 Epoch: 7/10 Loss: 3.414286627292633 Epoch: 7/10 Loss: 3.436218584537506 Epoch: 7/10 Loss: 3.495600422382355 Epoch: 7/10 Loss: 3.4933184356689453 Epoch: 7/10 Loss: 3.424741901397705 Epoch: 7/10 Loss: 3.598416178703308 Epoch: 7/10 Loss: 3.599672047138214 Epoch: 7/10 Loss: 3.6698138718605042 Epoch: 7/10 Loss: 3.61639994764328 Epoch: 7/10 Loss: 3.6205502710342405 Epoch: 7/10 Loss: 3.622935773849487 Epoch: 7/10 Loss: 3.591764862537384 Epoch: 8/10 Loss: 3.5497302150827883 Epoch: 8/10 Loss: 3.507222337245941 Epoch: 8/10 Loss: 3.562634430885315 Epoch: 8/10 Loss: 3.494962973117828 Epoch: 8/10 Loss: 3.436317138195038 Epoch: 8/10 Loss: 3.391021825313568 Epoch: 8/10 Loss: 3.372903301715851 Epoch: 8/10 Loss: 3.443020212650299 Epoch: 8/10 Loss: 3.5105148310661316 Epoch: 8/10 Loss: 3.4045159673690795 Epoch: 8/10 Loss: 3.5337830901145937 Epoch: 8/10 Loss: 3.5693638768196108 Epoch: 8/10 Loss: 3.5510009489059446 Epoch: 8/10 Loss: 3.499940137863159 Epoch: 8/10 Loss: 3.460319149494171 Epoch: 8/10 Loss: 3.382239278793335 Epoch: 8/10 Loss: 3.3949890727996825 Epoch: 8/10 Loss: 3.4457347383499144 Epoch: 8/10 Loss: 3.460291368961334 Epoch: 8/10 Loss: 3.3889461963176726 Epoch: 8/10 Loss: 3.5622550172805787 Epoch: 8/10 Loss: 3.5656433238983154 Epoch: 8/10 Loss: 3.6259664478302 Epoch: 8/10 Loss: 3.585397023677826 Epoch: 8/10 Loss: 3.5795237004756926 Epoch: 8/10 Loss: 3.5828110337257386 Epoch: 8/10 Loss: 3.5596083903312685 Epoch: 9/10 Loss: 3.507722315189049 Epoch: 9/10 Loss: 3.4664843771457674 Epoch: 9/10 Loss: 3.5297602620124815 Epoch: 9/10 Loss: 3.45001762008667 Epoch: 9/10 Loss: 3.402861466884613 Epoch: 9/10 Loss: 3.35923495388031 Epoch: 9/10 Loss: 3.3372762861251832 Epoch: 9/10 Loss: 3.4206077075004577 Epoch: 9/10 Loss: 3.4675138511657715 Epoch: 9/10 Loss: 3.357544892311096 Epoch: 9/10 Loss: 3.4998889636993407 Epoch: 9/10 Loss: 3.5455175223350524 Epoch: 9/10 Loss: 3.52463206577301 Epoch: 9/10 Loss: 3.463266794681549 Epoch: 9/10 Loss: 3.42004478931427 Epoch: 9/10 Loss: 3.354629065036774 Epoch: 9/10 Loss: 3.360728132247925 Epoch: 9/10 Loss: 3.4150163197517394 Epoch: 9/10 Loss: 3.428225482940674 Epoch: 9/10 Loss: 3.3671119146347044 Epoch: 9/10 Loss: 3.51234423828125 Epoch: 9/10 Loss: 3.530109088420868 Epoch: 9/10 Loss: 3.5903311371803284 Epoch: 9/10 Loss: 3.5549391975402833 Epoch: 9/10 Loss: 3.5448558604717255 Epoch: 9/10 Loss: 3.5492285294532775 Epoch: 9/10 Loss: 3.5203405690193175 Epoch: 10/10 Loss: 3.4694322308285424 Epoch: 10/10 Loss: 3.4350241575241087 Epoch: 10/10 Loss: 3.4964673109054565 Epoch: 10/10 Loss: 3.4268339445590974 Epoch: 10/10 Loss: 3.374123175621033 Epoch: 10/10 Loss: 3.342466145992279 Epoch: 10/10 Loss: 3.3205345120429994 Epoch: 10/10 Loss: 3.385893027305603 Epoch: 10/10 Loss: 3.4253044290542602 Epoch: 10/10 Loss: 3.331146954536438 Epoch: 10/10 Loss: 3.465665825843811 Epoch: 10/10 Loss: 3.516086208343506 Epoch: 10/10 Loss: 3.496067138671875 Epoch: 10/10 Loss: 3.4270591368675234 Epoch: 10/10 Loss: 3.3953236956596373 Epoch: 10/10 Loss: 3.3374750680923464 Epoch: 10/10 Loss: 3.3419807810783384 Epoch: 10/10 Loss: 3.3874538865089416 Epoch: 10/10 Loss: 3.4012483048439024 Epoch: 10/10 Loss: 3.3396986713409422 Epoch: 10/10 Loss: 3.47789173078537 Epoch: 10/10 Loss: 3.5020601248741148 Epoch: 10/10 Loss: 3.564427523136139 Epoch: 10/10 Loss: 3.5341336789131166 Epoch: 10/10 Loss: 3.505482707500458 Epoch: 10/10 Loss: 3.5157456007003782 Epoch: 10/10 Loss: 3.488763710975647 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** sequence_length : sequence length is chosen 10 because for the larger sequence the gradient computations may lead to gradients nearing to zero.batch_size : batch size is chosen 64 to maximize the parallel operations on GPU. The number of examples are more. Hence, batch_size is larger. Also to reach faster convergence during training, a larger batch size is taken.num_epochs : Initially 10 epochs were considered. As the decrease in loss was more evident after observing loss at every epoch, number of epochs were chosen less.learning_rate : Chose a learning rate of 0.001. There was even decrease in loss with this learning rate.embedding_dim : Depending on the vocabulary size which is approx 43k, embedding dimension of 200 was chosen to reduce dimensionality. A large dimension was not chosen because reducing the dimension was the major objective than establishing semantic and syntactic relationships between word embeddings.hidden_dim : Hidden dim of 250 was chosen in order to extract reasonable number of features from words.n_layers : Assumed that the proble was not complex enough to take multiple layers, I experimented with 1 to 3 layers and estimated that 2 layes would suffice. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code ls """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:43: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function print(f"number of words: {len(text)}") counts = Counter(text) vocab = sorted(counts, key=counts.get, reverse=True) print(vocab[0:20]) vocab_to_int = {word: ii for ii, word in enumerate(vocab)} int_to_vocab = {ii: word for ii, word in enumerate(vocab)} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output number of words: 104 ['moe_szyslak', 'mike', 'rotch', 'you', 'your', 'to', 'drink', 'the', 'yeah', 'name', 'on', 'hey', 'one', "i'm", 'gonna', 'my', 'homer', 'not', 'problems', 'should'] Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function punc_dict = { ".": "||Period||", ",": "||Comma||", '"': "||Quotation_Mark||", ";": "||Semicolon||", "!": "||Exclamation_mark||", "?": "||Question_mark||", "(": "||Left_Parentheses||", ")": "||Right_Parentheses||", "-": "||Dash||", "\n": "||Return||", } return punc_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output number of words: 892111 ['||return||', '||period||', '||comma||', '||question_mark||', 'you', 'i', 'the', 'jerry:', 'to', 'a', '||exclamation_mark||', '||left_parentheses||', '||right_parentheses||', 'george:', 'elaine:', 'it', 'kramer:', 'and', 'what', 'that'] ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') print(int_text[0:20]) ###Output [24, 22, 47, 1, 1, 1, 17, 47, 22, 82, 20, 6, 1252, 545, 8782, 7189, 20, 241, 1, 149] ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader import numpy as np def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function n_words = len(words) features = [] targets = [] for i in range(n_words - sequence_length): features.append(words[i:(i+sequence_length)]) targets.append(words[i+sequence_length]) feature_tensors = torch.from_numpy(np.array(features)) target_tensors = torch.from_numpy(np.array(targets)) data = TensorDataset(feature_tensors, target_tensors) data_loader = torch.utils.data.DataLoader(data, shuffle=True, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 44, 45, 46, 47, 48], [ 29, 30, 31, 32, 33], [ 19, 20, 21, 22, 23], [ 3, 4, 5, 6, 7], [ 43, 44, 45, 46, 47], [ 18, 19, 20, 21, 22], [ 32, 33, 34, 35, 36], [ 7, 8, 9, 10, 11], [ 26, 27, 28, 29, 30], [ 40, 41, 42, 43, 44]]) torch.Size([10]) tensor([ 49, 34, 24, 8, 48, 23, 37, 12, 31, 45]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers # embedding and LSTM layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # linear and sigmoid layers self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # embeddings and lstm_out embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer output = self.fc(lstm_out) # reshape into (batch_size, seq_length, output_size) output = output.view(batch_size, -1, self.output_size) # get last batch out = output[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): inp, target = inp.cuda(), target.cuda() # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history hidden = tuple([each.data for each in hidden]) # perform backpropagation and optimization # zero accumulated gradients rnn.zero_grad() # get the output from the model output, hidden = rnn(inp, hidden) # calculate the loss and perform backprop loss = criterion(output.squeeze(), target) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. clip = 5 # gradient clipping nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Batch: {:>6}/{:<6} Loss: {}\n'.format( epoch_i, n_epochs, batch_i, n_batches, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 256 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) print(f"n epoches: {len(train_loader.dataset)//batch_size}") # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 512 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 3 # Show stats for every n number of batches show_every_n_batches = 500 import signal from contextlib import contextmanager import requests DELAY = INTERVAL = 4 * 60 # interval time in seconds MIN_DELAY = MIN_INTERVAL = 2 * 60 KEEPALIVE_URL = "https://nebula.udacity.com/api/v1/remote/keep-alive" TOKEN_URL = "http://metadata.google.internal/computeMetadata/v1/instance/attributes/keep_alive_token" TOKEN_HEADERS = {"Metadata-Flavor":"Google"} def _request_handler(headers): def _handler(signum, frame): requests.request("POST", KEEPALIVE_URL, headers=headers) return _handler @contextmanager def active_session(delay=DELAY, interval=INTERVAL): """ Example: from workspace_utils import active session with active_session(): # do long-running work here """ token = requests.request("GET", TOKEN_URL, headers=TOKEN_HEADERS).text headers = {'Authorization': "STAR " + token} delay = max(delay, MIN_DELAY) interval = max(interval, MIN_INTERVAL) original_handler = signal.getsignal(signal.SIGALRM) try: signal.signal(signal.SIGALRM, _request_handler(headers)) signal.setitimer(signal.ITIMER_REAL, delay, interval) yield finally: signal.signal(signal.SIGALRM, original_handler) signal.setitimer(signal.ITIMER_REAL, 0) ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model with active_session(): trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Batch: 500/3484 Loss: 5.663360884666443 Epoch: 1/10 Batch: 1000/3484 Loss: 4.831448855400086 Epoch: 1/10 Batch: 1500/3484 Loss: 4.542231200695038 Epoch: 1/10 Batch: 2000/3484 Loss: 4.4025792922973634 Epoch: 1/10 Batch: 2500/3484 Loss: 4.33169855928421 Epoch: 1/10 Batch: 3000/3484 Loss: 4.259434262752533 Epoch: 2/10 Batch: 500/3484 Loss: 4.139444394324853 Epoch: 2/10 Batch: 1000/3484 Loss: 4.041079972743988 Epoch: 2/10 Batch: 1500/3484 Loss: 4.017776796817779 Epoch: 2/10 Batch: 2000/3484 Loss: 4.002577679634094 Epoch: 2/10 Batch: 2500/3484 Loss: 3.9782147274017334 Epoch: 2/10 Batch: 3000/3484 Loss: 3.974166464805603 Epoch: 3/10 Batch: 500/3484 Loss: 3.8789712634028457 Epoch: 3/10 Batch: 1000/3484 Loss: 3.8081966495513915 Epoch: 3/10 Batch: 1500/3484 Loss: 3.800468334197998 Epoch: 3/10 Batch: 2000/3484 Loss: 3.780108416557312 Epoch: 3/10 Batch: 2500/3484 Loss: 3.781549256324768 Epoch: 3/10 Batch: 3000/3484 Loss: 3.777507827758789 Epoch: 4/10 Batch: 500/3484 Loss: 3.7015285409562955 Epoch: 4/10 Batch: 1000/3484 Loss: 3.6166465950012205 Epoch: 4/10 Batch: 1500/3484 Loss: 3.635990705490112 Epoch: 4/10 Batch: 2000/3484 Loss: 3.636909219264984 Epoch: 4/10 Batch: 2500/3484 Loss: 3.6534952993392946 Epoch: 4/10 Batch: 3000/3484 Loss: 3.6380959582328796 Epoch: 5/10 Batch: 500/3484 Loss: 3.5673577167638917 Epoch: 5/10 Batch: 1000/3484 Loss: 3.5031520676612855 Epoch: 5/10 Batch: 1500/3484 Loss: 3.5147171349525452 Epoch: 5/10 Batch: 2000/3484 Loss: 3.527718838214874 Epoch: 5/10 Batch: 2500/3484 Loss: 3.505029433250427 Epoch: 5/10 Batch: 3000/3484 Loss: 3.514076425552368 Epoch: 6/10 Batch: 500/3484 Loss: 3.454579778318483 Epoch: 6/10 Batch: 1000/3484 Loss: 3.3850678353309633 Epoch: 6/10 Batch: 1500/3484 Loss: 3.392079020023346 Epoch: 6/10 Batch: 2000/3484 Loss: 3.413806875228882 Epoch: 6/10 Batch: 2500/3484 Loss: 3.417744038105011 Epoch: 6/10 Batch: 3000/3484 Loss: 3.434941940784454 Epoch: 7/10 Batch: 500/3484 Loss: 3.3532950778802237 Epoch: 7/10 Batch: 1000/3484 Loss: 3.291990752220154 Epoch: 7/10 Batch: 1500/3484 Loss: 3.3149483485221864 Epoch: 7/10 Batch: 2000/3484 Loss: 3.331819426059723 Epoch: 7/10 Batch: 2500/3484 Loss: 3.3365014786720275 Epoch: 7/10 Batch: 3000/3484 Loss: 3.345066442012787 Epoch: 8/10 Batch: 500/3484 Loss: 3.276506210245737 Epoch: 8/10 Batch: 1000/3484 Loss: 3.2259902830123903 Epoch: 8/10 Batch: 1500/3484 Loss: 3.2279099283218384 Epoch: 8/10 Batch: 2000/3484 Loss: 3.2522306418418885 Epoch: 8/10 Batch: 2500/3484 Loss: 3.2650704588890074 Epoch: 8/10 Batch: 3000/3484 Loss: 3.275428211212158 Epoch: 9/10 Batch: 500/3484 Loss: 3.211241220071064 Epoch: 9/10 Batch: 1000/3484 Loss: 3.161178931713104 Epoch: 9/10 Batch: 1500/3484 Loss: 3.180769609451294 Epoch: 9/10 Batch: 2000/3484 Loss: 3.1862905921936036 Epoch: 9/10 Batch: 2500/3484 Loss: 3.2103903799057005 Epoch: 9/10 Batch: 3000/3484 Loss: 3.215808619976044 Epoch: 10/10 Batch: 500/3484 Loss: 3.1461442631434617 Epoch: 10/10 Batch: 1000/3484 Loss: 3.1129529523849486 Epoch: 10/10 Batch: 1500/3484 Loss: 3.1034449858665467 Epoch: 10/10 Batch: 2000/3484 Loss: 3.132664776325226 Epoch: 10/10 Batch: 2500/3484 Loss: 3.1426220808029175 Epoch: 10/10 Batch: 3000/3484 Loss: 3.165808174133301 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) I tried two different sequence_lengths: 50 and 10. sequence_length of 10 made the model converge faster, and sequence_length of 50 took very long to run. hidden_dim is the number of units in the hidden layers of our LSTM cells. Usually larger is better performance wise, but the network is larger and trains slower. Common values are 128, 256, 512, etc. I selected a larger value of 512. n_layers is the number of LSTM layers in the network. Typically between 1-3. I selected a larger value of 3. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:43: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_counts = Counter(text) # sorting the words from most to least frequent in text occurrence sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) # create int_to_vocab dictionaries int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # return tuple return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ token = {'.': '||PERIOD||', ',': '||COMMA||', '"': '||QUOTATION_MARK||', ';': '||SEMICOLON||', '!': '||EXCLAMATION_MARK||', '?': '||QUESTION_MARK||', '(': '||LEFT_PAREN||', ')': '||RIGHT_PAREN||', '-': '||DASH||', '\n': '<NEW_LINE>'} return token """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function features = [] target = [] for i_begin in range(0, len(words) - sequence_length): i_end = i_begin + sequence_length features.append(words[i_begin:i_end]) target.append(words[i_end]) torch_features = torch.from_numpy(np.asarray(features)) torch_target = torch.from_numpy(np.asarray(target)) data = TensorDataset(torch_features, torch_target) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]], dtype=torch.int32) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], dtype=torch.int32) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.n_hidden = hidden_dim # define model layers self.embed = nn.Embedding(vocab_size, embedding_dim) #print(self.embed) self.lstm = nn.LSTM(embedding_dim, self.n_hidden, self.n_layers, dropout=dropout, batch_first=True) #print(self.lstm) self.fc = nn.Linear(self.n_hidden, self.output_size) print(self) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # Solve Win10 issue input = torch.tensor(nn_input.detach()).to(torch.int64) input = self.embed(input) output, hidden = self.lstm(input, hidden) output = output.contiguous().view(-1, self.n_hidden) output = self.fc(output) output = output.view(batch_size, -1, self.output_size) out = output[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function weight = next(self.parameters()).data # initialize hidden state with zero weights, and move to GPU if available if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.n_hidden).zero_().cuda(), weight.new(self.n_layers, batch_size, self.n_hidden).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.n_hidden).zero_(), weight.new(self.n_layers, batch_size, self.n_hidden).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output RNN( (embed): Embedding(20, 15) (lstm): LSTM(15, 10, num_layers=2, batch_first=True, dropout=0.5) (fc): Linear(in_features=10, out_features=20, bias=True) ) ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inputs, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function clip = 5 # move data to GPU, if available target = target.long() if(train_on_gpu): rnn.cuda() inputs, target = inputs.cuda(), target.cuda() # perform backpropagation and optimization h = tuple([each.data for each in hidden]) rnn.zero_grad() output, h = rnn(inputs, h) # calculate the loss and perform backprop loss = criterion(output, target) loss.backward() nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output RNN( (embed): Embedding(20, 15) (lstm): LSTM(15, 10, num_layers=2, batch_first=True, dropout=0.5) (fc): Linear(in_features=10, out_features=10, bias=True) ) Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 15 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 300 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output RNN( (embed): Embedding(21388, 300) (lstm): LSTM(300, 512, num_layers=2, batch_first=True, dropout=0.5) (fc): Linear(in_features=512, out_features=21388, bias=True) ) Training for 15 epoch(s)... ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)- num_epochs = 20 and 10- learning_rate = 0.001In previous exercices, this learning rate was set at 0.003 for Skip_Grams and 0.001 for Character_level.I tried with learning rate of 0.001 that seems quite good to start. The learning is slower, but we can observe the behaviour of optimization and if needed, I can stop the learning and increase the learning rate.Concerning number of epoch, I tried with 20 but training is very too slow and we reach less than 3.5 loss around epoch 3. I also tested with epoch 10 to get an overview of NN behaviour.Finally, concerning hidden_dim, I tested the values that have been seen during the training and they seems quite good. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output C:\Users\Damien\.conda\envs\pytorch_udacity\lib\site-packages\ipykernel_launcher.py:41: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_counts = Counter(text) # sorting the words from most to least frequent in text occurrence sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) # create int_to_vocab dictionaries int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function tokens = dict() tokens['.'] = '<PERIOD>' tokens[','] = '<COMMA>' tokens['"'] = '<QUOTATION_MARK>' tokens[';'] = '<SEMICOLON>' tokens['!'] = '<EXCLAMATION_MARK>' tokens['?'] = '<QUESTION_MARK>' tokens['('] = '<LEFT_PAREN>' tokens[')'] = '<RIGHT_PAREN>' tokens['?'] = '<QUESTION_MARK>' tokens['-'] = '<DASH>' tokens['\n'] = '<NEW_LINE>' return tokens """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function n_batches = len(words)//batch_size # only full batches words = words[:n_batches*batch_size] y_len = len(words) - sequence_length x, y = [], [] for idx in range(0, y_len): idx_end = sequence_length + idx x_batch = words[idx:idx_end] x.append(x_batch) # print("feature: ",x_batch) batch_y = words[idx_end] # print("target: ", batch_y) y.append(batch_y) # create Tensor datasets data = TensorDataset(torch.from_numpy(np.asarray(x)), torch.from_numpy(np.asarray(y))) # make sure the SHUFFLE your training data data_loader = DataLoader(data, shuffle=False, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function super(RNN, self).__init__() # define embedding layer self.embedding = nn.Embedding(vocab_size, embedding_dim) ## Define the LSTM self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # Define the final, fully-connected output layer self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # embeddings and lstm_out embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer out = self.fc(lstm_out) # reshape into (batch_size, seq_length, output_size) out = out.view(batch_size, -1, self.output_size) # get last batch out = out[:, -1] return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function if(train_on_gpu): rnn.cuda() # # Creating new variables for the hidden state, otherwise # # we'd backprop through the entire training history h = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() if(train_on_gpu): inputs, target = inp.cuda(), target.cuda() # print(h[0].data) # get predicted outputs output, h = rnn(inputs, h) # calculate loss loss = criterion(output, target) # optimizer.zero_grad() loss.backward() # 'clip_grad_norm' helps prevent the exploding gradient problem in RNNs / LSTMs nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() return loss.item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 250 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 2000 print(len(vocab_to_int)) ###Output 21388 ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 4.969469286084175 Epoch: 1/10 Loss: 4.530352792859078 Epoch: 1/10 Loss: 4.382466664671898 Epoch: 2/10 Loss: 4.134338384850649 Epoch: 2/10 Loss: 3.972323559641838 Epoch: 2/10 Loss: 3.9209044603109358 Epoch: 3/10 Loss: 3.817668427113253 Epoch: 3/10 Loss: 3.7509066389799117 Epoch: 3/10 Loss: 3.723487420916557 Epoch: 4/10 Loss: 3.651983377184829 Epoch: 4/10 Loss: 3.6104639555215834 Epoch: 4/10 Loss: 3.583416987538338 Epoch: 5/10 Loss: 3.531450895366643 Epoch: 5/10 Loss: 3.5065197635889054 Epoch: 5/10 Loss: 3.4801937156915663 Epoch: 6/10 Loss: 3.451787300427969 Epoch: 6/10 Loss: 3.427888125538826 Epoch: 6/10 Loss: 3.402125217318535 Epoch: 7/10 Loss: 3.3790099206317787 Epoch: 7/10 Loss: 3.3646440657377243 Epoch: 7/10 Loss: 3.3423242206573485 Epoch: 8/10 Loss: 3.3285066263694967 Epoch: 8/10 Loss: 3.3073820313215254 Epoch: 8/10 Loss: 3.292244491219521 Epoch: 9/10 Loss: 3.2856493308698393 Epoch: 9/10 Loss: 3.2640193623304365 Epoch: 9/10 Loss: 3.2502937450408935 Epoch: 10/10 Loss: 3.249068915361985 Epoch: 10/10 Loss: 3.223403890252113 Epoch: 10/10 Loss: 3.2125546483993532 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)Going over the course material regarding embedding, I noticed that typical embedding dimensions are around 200 - 300 in size.I tried:* sequence_length = 10, batch_size = 128, learning_rate = 0.001, embedding_dim = 200, hidden_dim = 250, n_layers = 2 Started with: Training for 10 epoch(s)... Epoch: 1/10 Loss: 4.944083527803421 ... Epoch: 4/10 Loss: 3.5780555000305174 ... Epoch: 7/10 Loss: 3.3266124720573425 ...* sequence_length = 10, batch_size = 124, learning_rate = 0.1, embedding_dim = 200, hidden_dim = 200, n_layers = 2 Started with Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.481069218158722 Epoch: 2/10 Loss: 5.025624033570289 Epoch: 3/10 Loss: 4.981013494968415I stopped here, because, even if it was decreasing it seemd to converge way slower than the previous experiment with a lower learning rate and a slightly bigger hidden_dim.* The first experiment above reached: Epoch: 10/10 Loss: 3.2125546483993532. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:45: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests import collections def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # Count and sort the corpus word_counts = collections.Counter(text) sorted_counts = word_counts.most_common() # create the look up dictionaries int_to_vocab = {n: word_tuple[0] for n, word_tuple in enumerate(sorted_counts)} vocab_to_int = {word: n for n, word in int_to_vocab.items()} return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ return { '.': '||period||', ',': '||come||', '"': '||doublequote||', ';': '||semicolon||', '!': '||exclamation||', '?': '||questionmark||', '(': '||lparenth||', ')': '||rparenth||', '-': '||dash||', '\n': '||newline||' } """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import numpy as np import torch.nn as nn import helper import problem_unittests as tests from tqdm import tqdm int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # get number of targets we can make (must create full sequences) n_targets = len(words) - sequence_length # create the targets and features features, targets = [], [] for i in range(n_targets): features.append(words[i : i+sequence_length]) targets.append(words[i+sequence_length]) # convert Python list to PyTroch Tensors features, targets = np.asarray(features), np.asarray(targets) features, targets = torch.from_numpy(features), torch.from_numpy(targets) # instanciate PyTorch's dataset class and DataLoader dataset = TensorDataset(features, targets) dataloader = DataLoader(dataset, shuffle=True, batch_size=batch_size) return dataloader ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[41, 42, 43, 44, 45], [43, 44, 45, 46, 47], [ 8, 9, 10, 11, 12], [27, 28, 29, 30, 31], [38, 39, 40, 41, 42], [ 5, 6, 7, 8, 9], [ 3, 4, 5, 6, 7], [37, 38, 39, 40, 41], [29, 30, 31, 32, 33], [20, 21, 22, 23, 24]], dtype=torch.int32) torch.Size([10]) tensor([46, 48, 13, 32, 43, 10, 8, 42, 34, 25], dtype=torch.int32) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn import torch.nn.functional as functional class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # init hidden weights params self.n_layers = n_layers self.hidden_dim = hidden_dim self.vocab_size = vocab_size # define the embedding layer self.embedding = nn.Embedding(vocab_size, embedding_dim) # define the LSTM layer self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # define fully-connected layer self.dense = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # ensure embedding layer gets a LongTensor input nn_input = nn_input.long() # get the batch size for reshaping batch_size = nn_input.size(0) ## define forward pass embed = self.embedding(nn_input) output, state = self.lstm(embed, hidden) # stack LSTM output = output.contiguous().view(-1, self.hidden_dim) # pass through last fully connected layer output = self.dense(output) output = output.view(batch_size, -1, self.vocab_size) output = output[:, -1] # save only the last output # return one batch of output word scores and the hidden state return output, state def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Create two new tensors with sizes n_layers x batch_size x n_hidden, # initialized to zero, for hidden state and cell state of LSTM weight = next(self.parameters()).data if (torch.cuda.is_available()): # hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # move data to GPU, if available rnn.to(device) inp, target = inp.to(device), target.to(device) # dismember the hidden states to prevent backprop through entire training history hidden = tuple([hid.data for hid in hidden]) # zero accumulated gradients rnn.zero_grad() # get the output and hidden state from the model output, hidden = rnn(inp, hidden) # calcualte the loss loss = criterion(output.squeeze(), target.long()) # perform backpropagation loss.backward() # clip to prevent gradients from becoming too large before optimizating # nn.utils.clip_grad_norm_(rnn.parameters(), 4) # CLIPS POST OPTIMIZING ACCORDING TO THE DOCS nn.utils.clip_grad_value_(rnn.parameters(), 4) optimizer.step() # ensure everything is sent back to cpu processing rnn.to('cpu') inp, target = inp.to('cpu'), target.to('cpu') # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in tqdm(range(1, n_epochs + 1)): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 6 #13 # of words in a sequence # Batch Size batch_size = 32 # 32 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 30 # # Learning Rate learning_rate = 0.0005 # 0.001 0.002 # Model parameters # Vocab size vocab_size = len(int_to_vocab) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 400 # 300 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') # continue training :( # save states state = {'epoch': num_epochs + 1, 'state_dict': trained_rnn.state_dict(), 'optimizer': optimizer.state_dict()} filename = 'trained30_rnn.pt' torch.save(state, filename) model = rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) opt = torch.optim.Adam(rnn.parameters(), lr=learning_rate) def load_checkpoint(model, optimizer, filename): ''' Note: Input model & optimizer should be pre-defined. This routine only updates their states. ''' start_epoch = 0 checkpoint = torch.load(filename) start_epoch = checkpoint['epoch'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) return model, optimizer, start_epoch model, opt, start_epoch = load_checkpoint(model, optimizer, filename=filename) device = 'cpu' # avoiding device erros model = model.to(device) # now individually transfer the optimizer parts... for state in opt.state.values(): for k, v in state.items(): if isinstance(v, torch.Tensor): state[k] = v.to(device) # training the model model = train_rnn(model, batch_size, opt, criterion, 2, show_every_n_batches) state = {'epoch': 33, 'state_dict': model.state_dict(), 'optimizer': opt.state_dict()} filename = 'trained_rnn32.pt' torch.save(state, filename) helper.save_model('./save/trained_rnn', model) ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** * __Sequence length__: In the end I chose 6 word sequences. At first, I tried 13 words per sequence. However, looking at the average words per line (5~), I thought I could have made it shorter. So on the next iteration, I went with 8. Then, I reduce it to 6 to be closer to the average words per line in the original script and hoped the model would train faster. * __Batch size__: I followed Jay's advice on that. I started with 32, as, historically speaking, it is the smallest size to yield good results. * __Learning Rate__: Typically, low and slow wins the race; hence, I chose 0.001. _note: the loss dropped drastically on the 10th epoch. However, it was still around 3.6_ Then, I doubled the learn rate (0.002), hoping for faster convergence. However, I still did not get the results I was hoping for. So, I tried to lower the the learn rate to 0.0005. * __Embedding dimensions__: Jay's lectures recommended 200 - 500 hidden dimensions work well in most cases. Although this seemed like a seemingly easy task, I decided to try 300. On the next iteration, I tried 400 and it did better.* __Hidden dimension__: There are approximately 21 thousand unique words in the dataset. Since this is my first time solving this problem, I decided to be generous with the hidden layer size (516 hidden units). Or, so I think. Also, I wanted the hidden layer to be larger than the embedding layer. * __Number of layers__: Empirically speaking, deeper networks function better. For this specific use case, where overfitting is not an issue, three seemed like a good option. However, I trained this model locally, and my GPU doesn't have enough memory. So, Three is too much, one did not seem enough. Thus, two seemed good to me![Goldberg, Yoav (2016) DOI](https://doi.org/10.1613/jair.4992)> While it is not theoretically clear what is the additional power gained by the deeper architecture, it was observed empirically that deep RNNs work better than shallower ones on some tasks. In particular, Sutskever et al. (2014) report that a 4-layers deep architecture was crucial in achieving good machine-translation performance in an encoder-decoder framework. Irsoy and Cardie (2014) also report improved results from moving from a one-layer biRNN to an architecture with several layers. Many other works report result using layered RNN architectures, but do not explicitly compare to 1-layer RNNs --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): # if train_on_gpu: # current_seq = torch.LongTensor(current_seq).cuda() # else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) hidden = [hid.to('cpu') for hid in hidden] # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'newman' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(model, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output newman: brody, i think we can get him out of here. jerry:(reading) gary fogel saw her dude cry. kramer: oh, you know what, let's go. jerry: oh, i can't believe i'm gonna get away from the subway! jerry: i don't think so. kramer: yeah, well. jerry: oh, no. no, i'm afraid i can't help him. jerry: well, you should see a doctor? kramer: yeah, i guess. elaine: i can't believe it, i can't believe this. jerry: you think she'd hit the friendship. jerry: well, what are you gonna do? george: i don't know. you can't stand around. elaine: oh. jerry:(confused) aww.(holds his nose up) kramer: well it's not a date, it was the only issue you've ever seen for yourself, huh? jerry: no, no, i'm afraid he's gonna call you. elaine:(sighs) well, i think it's fantastic. jerry: oh, come on, george. jerry: yeah, i know. george: well you didn't mention to me that i would possibly care enough for that kind of crap. george: well, you know what this means, but it's only used to be an actress. kramer: hey, i know what i do. i'm feelin' kidding. i'm aware of this, it's all white. jerry:(confused) what're you saying? kramer: well, i don't know what it means, but you gotta finish it, it's not yours. it's just a little burning. jerry: oh, i don't wanna go see him. elaine: oh, i think we should do something. jerry: yeah, well, you know, i don't know. george: well, i don't know. elaine:(handing the bottle back) oh, my god!( ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output _____no_output_____ ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # return tuple return (None, None) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # return a dataloader return None # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables # define model layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state return None, None def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return None, None # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = # of words in a sequence # Batch Size batch_size = # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = # Learning Rate learning_rate = # Model parameters # Vocab size vocab_size = # Output size output_size = # Embedding Dimension embedding_dim = # Hidden Dimension hidden_dim = # Number of RNN Layers n_layers = # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (10, 20) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 10 to 20: jerry: oh, you dont recall? george: (on an imaginary microphone) uh, no, not at this time. jerry: well, senator, id just like to know, what you knew and when you knew it. claire: mr. seinfeld. mr. costanza. george: are, are you sure this is decaf? wheres the orange indicator? ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_counts = Counter(text) sorted_words = sorted(word_counts, key=word_counts.get, reverse=True) int_to_vocab = {i : word for i, word in enumerate(sorted_words)} vocab_to_int = {word : i for i, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return { '.' : '||PERIOD||', ',' : '||COMMA||', '"' : '||QUOTATION_MARK||', ';' : '||SEMICOLON||', '?' : '||QUESTION_MARK||', '!' : '||EXCLAMATION_MARK||', '(' : '||LEFT_PARENTHESES||', ')' : '||RIGHT_PARENTHESES||', '-' : '||DASH||', '\n' : '||RETURN||', } """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code import numpy as np """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ features = [] targets = [] for i in range(0, len(words) - sequence_length): features.append(words[i:i + sequence_length]) targets.append(words[i + sequence_length]) features = torch.tensor(np.array(features)) targets = torch.tensor(np.array(targets)) data = TensorDataset(features, targets) return DataLoader(data, shuffle=True, batch_size=batch_size) ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 4, 5, 6, 7, 8], [ 6, 7, 8, 9, 10], [30, 31, 32, 33, 34], [25, 26, 27, 28, 29], [23, 24, 25, 26, 27], [15, 16, 17, 18, 19], [29, 30, 31, 32, 33], [44, 45, 46, 47, 48], [16, 17, 18, 19, 20], [14, 15, 16, 17, 18]], dtype=torch.int32) torch.Size([10]) tensor([ 9, 11, 35, 30, 28, 20, 34, 49, 21, 19], dtype=torch.int32) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.dropout = nn.Dropout(dropout) self.fc = nn.Linear(hidden_dim, self.output_size) # self.sig = nn.LogSigmoid() def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) nn_input = nn_input.long() embeds = self.embedding(nn_input) output, hidden = self.lstm(embeds, hidden) output = output.contiguous().view(-1, self.hidden_dim) output = self.dropout(output) output = self.fc(output) #output = self.sig(output) output = output.view(batch_size, -1, self.output_size) output = output[:, -1] # get last batch of labels # return one batch of output word scores and the hidden state return output, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function clip=5 # gradient clipping # move data to GPU, if available if (train_on_gpu): inp, target = inp.cuda(), target.cuda() hidden = tuple([each.data for each in hidden]) rnn.zero_grad() output, hidden = rnn(inp, hidden) # perform backpropagation and optimization loss = criterion(output.squeeze(1), target.long()) loss.backward() # Clip gradians to avoid exploging gradient #nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 #5 # of words in a sequence # Batch Size batch_size = 512 # 256 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 20 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(int_to_vocab) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 64 # Hidden Dimension hidden_dim = 1024 # Number of RNN Layers n_layers = 2 # 3 recommanded 4 for machine learning # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 20 epoch(s)... Epoch: 1/20 Loss: 5.075988801002502 Epoch: 1/20 Loss: 4.497443925857544 Epoch: 1/20 Loss: 4.32460941696167 Epoch: 2/20 Loss: 4.147069308957 Epoch: 2/20 Loss: 4.052237694740295 Epoch: 2/20 Loss: 4.024495181560517 Epoch: 3/20 Loss: 3.9154780662927346 Epoch: 3/20 Loss: 3.8625277924537658 Epoch: 3/20 Loss: 3.855442501068115 Epoch: 4/20 Loss: 3.753882806577451 Epoch: 4/20 Loss: 3.7122063593864443 Epoch: 4/20 Loss: 3.734294280052185 Epoch: 5/20 Loss: 3.615049396563733 Epoch: 5/20 Loss: 3.599308240890503 Epoch: 5/20 Loss: 3.6082874011993407 Epoch: 6/20 Loss: 3.5080363567306025 Epoch: 6/20 Loss: 3.478867627620697 Epoch: 6/20 Loss: 3.5055536317825315 Epoch: 7/20 Loss: 3.397111703443399 Epoch: 7/20 Loss: 3.382487844467163 Epoch: 7/20 Loss: 3.408043267726898 Epoch: 8/20 Loss: 3.305638824511731 Epoch: 8/20 Loss: 3.2897962164878845 Epoch: 8/20 Loss: 3.326266335487366 Epoch: 9/20 Loss: 3.2177110055707536 Epoch: 9/20 Loss: 3.2096406874656678 Epoch: 9/20 Loss: 3.2464095067977907 Epoch: 10/20 Loss: 3.144965614912645 Epoch: 10/20 Loss: 3.142004195690155 Epoch: 10/20 Loss: 3.174967270374298 Epoch: 11/20 Loss: 3.073767374467978 Epoch: 11/20 Loss: 3.0758746700286865 Epoch: 11/20 Loss: 3.109230837345123 Epoch: 12/20 Loss: 3.016540420987214 Epoch: 12/20 Loss: 3.0177016353607176 Epoch: 12/20 Loss: 3.0626930956840517 Epoch: 13/20 Loss: 2.95733917305733 Epoch: 13/20 Loss: 2.9586856560707093 Epoch: 13/20 Loss: 3.0113649258613586 Epoch: 14/20 Loss: 2.913266467919568 Epoch: 14/20 Loss: 2.9096540298461915 Epoch: 14/20 Loss: 2.966789579868317 Epoch: 15/20 Loss: 2.8669572882253846 Epoch: 15/20 Loss: 2.870712673187256 Epoch: 15/20 Loss: 2.9312428784370423 Epoch: 16/20 Loss: 2.834968273851749 Epoch: 16/20 Loss: 2.837061097621918 Epoch: 16/20 Loss: 2.8833885049819945 Epoch: 17/20 Loss: 2.7932560180396724 Epoch: 17/20 Loss: 2.8028618521690367 Epoch: 17/20 Loss: 2.852114058017731 Epoch: 18/20 Loss: 2.7596370524794587 Epoch: 18/20 Loss: 2.771130582332611 Epoch: 18/20 Loss: 2.819936710834503 Epoch: 19/20 Loss: 2.7356518323852046 Epoch: 19/20 Loss: 2.7389076228141787 Epoch: 19/20 Loss: 2.7890029497146607 Epoch: 20/20 Loss: 2.7045901573571878 Epoch: 20/20 Loss: 2.720527849674225 Epoch: 20/20 Loss: 2.7680976309776306 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** I expected smaller sequence_length to converge faster because intuitively it seems shorter sequences should be simpler to learn than longer. However this was not the case with all other hyperparameters held constant changing the sequence length from 5 to 10 changed the loss from 2.98 to 2.77 over 20 epochs. Perhaps this is the "long term memory" that affect the convergence rate?I was training with a very small batch size of 5 and change it to 512 which caused error loss to decrease significantly.I was able to achived a loss of 2.34 after 10 epochs with 2 Layers. I read the machine translation hyperparameters document (https://arxiv.org/abs/1409.3215) which used 4 layers. However when I tried to use 4 layers my loss increased significantly.The same paper also used embedding size of 1000 I had much better results with 64. Maybe this makes my model train to look for less patterns (more words are grouped together) and if I was able to train with larger embedding size the output text would be more coherant. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: i think that would be a great idea for this kind of exposure thing i got to go in there. jerry: what? kramer:(shouts) oh, the mohel. elaine:(quietly) what is that noise? kramer:(pulling out the timepiece) it's a good game. it's the one that left the top on you? elaine:(laughs) no, i can't. i gotta get going. jerry:(to jerry) hey, how about a mute?(takes a bite of the sandwich.) elaine: so, you want to come upstairs? you gotta go to the bathroom. jerry: i thought we were talking about this. jerry:(to kramer) i told you. george: what? kramer: you got it? jerry: i don't know. elaine:(to the phone) yeah, yeah, yeah, right. elaine: you know, i don't think this is funny. jerry:(jokingly) yeah, yeah, right. jerry: what? kramer: yeah, i washed. kramer: hey.(to jerry) so, how are you gonna be the executor of this? george: what are you doing? jerry: well, i'm not going to be able to find a hotel room, okay?(jerry nods.) well, i don't think so. george: what do you mean? jerry: you know, i don't know...(looks around) jerry: i don't want you to get me a job.(to jerry) so what do you do in this shirt? jerry: i don't know. kramer: well, it's not a purse. it's a little lo... kramer:(pointing to the kitchen) hey, hey! elaine: hey.(to elaine) what is this? jerry:(to kramer) hey! george:(on tape) ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # return tuple return (None, None) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # return a dataloader return None # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables # define model layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state return None, None def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return None, None # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = # of words in a sequence # Batch Size batch_size = # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = # Learning Rate learning_rate = # Model parameters # Vocab size vocab_size = # Output size output_size = # Embedding Dimension embedding_dim = # Hidden Dimension hidden_dim = # Number of RNN Layers n_layers = # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_counts = Counter(text) sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) # create int_to_vocab dictionaries int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ punc_tokens = {'.':'<PERIOD>', ',':'<COMMA>', '"':'<QUOTATION_MARK>', ';':'<SEMICOLON>', '!':'<EXCLAMATION_MARK>', '?':'<QUESTION_MARK>', '(':'<LEFT_PAREN>', ')':'<RIGHT_PAREN>', '-':'<HYPHEN>', '\n':'<HYPHENS>'} return punc_tokens """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader import numpy as np import torch def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function #num_batches = int(len(words)/sequence_length) num_batches = len(words)-sequence_length feature_tensors = np.zeros(shape=(num_batches,sequence_length)).astype(int) target_tensors = np.zeros(shape=(num_batches)).astype(int) # This clips off any end values that don't fit into a batch print(batch_size) for batch_idx in range(num_batches): for word_idx in range (sequence_length): #print("batchidx:", batch_idx, " wordidx:",word_idx,"seqL:",sequence_length) feature_tensors[batch_idx][word_idx] = words[(batch_idx)+word_idx] #print(feature_tensors) target_tensors[batch_idx] = words[batch_idx + sequence_length] #print(target_tensors) #print("feature size: ", feature_tensors.shape) feature_tensors = torch.Tensor(feature_tensors).int() target_tensors = torch.Tensor(target_tensors).int() #print(feature_tensors) #print(target_tensors) data = TensorDataset(feature_tensors, target_tensors) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own batch_data([1,2,3,4,5,6,7,8,9,10], 4, 1) ###Output 1 ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) print(str(test_text)) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output range(0, 50) 10 torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]], dtype=torch.int32) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], dtype=torch.int32) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn import torch import torch.nn.functional as F import torch.optim as optim from torchsummary import summary class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() self.vocab_size = vocab_size self.output_size = output_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers self.dropout = dropout #print(n_layers) # define model layers self.embed = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True, num_layers = n_layers, dropout = dropout) self.fc_out = nn.Linear(hidden_dim, output_size) #self.dropout = nn.Dropout(dropout) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ embeddings = self.embed(nn_input.long()) #embeddings = self.dropout(embeddings) lstm_out, (hidden_state, cell_state) = self.lstm(embeddings, hidden) #lstm_out = self.dropout(lstm_out) tag_space = self.fc_out(lstm_out.contiguous().view(-1, self.hidden_dim)) # This is probably wrong #tag_space = self.dropout(tag_space) out = F.log_softmax(tag_space, dim=1) output = out.view(self.batch_size, -1, self.output_size) # get last batch output = output[:, -1] # return one batch of output word scores and the hidden state return output, (hidden_state, cell_state) def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data self.batch_size = batch_size if (torch.cuda.is_available()): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) ## To reviwer, why did the below code not work? ## # hidden_state = weight.new(self.n_layers, batch_size, self.hidden_dim).zero_() # cell_state = weight.new(self.n_layers, batch_size, self.hidden_dim).zero_() # if (torch.cuda.is_available()): # hidden_state = hidden_state.cuda() # hidden_state = cell_state.cuda() return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ #summary(RNN, (50,3)) tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if torch.cuda.is_available(): rnn = rnn.cuda() target = target.cuda() inp = inp.cuda() for element in hidden: element.cuda() hidden = hidden[0].data, hidden[1].data # perform backpropagation and optimization optimizer.zero_grad() probabilities, new_hidden = rnn(inp, hidden) loss = criterion(probabilities.squeeze(), target.long()) loss.backward() optimizer.step() loss = loss.item() #print("loss is: ", loss) # return the loss over a batch and the hidden state produced by our model return loss, new_hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 100 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 15 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 300 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 15 epoch(s)... Epoch: 1/15 Loss: 5.363724740028381 Epoch: 1/15 Loss: 4.888778426647186 Epoch: 1/15 Loss: 4.602891879081726 Epoch: 1/15 Loss: 4.440466387271881 Epoch: 1/15 Loss: 4.315282370567322 Epoch: 1/15 Loss: 4.439320840358734 Epoch: 1/15 Loss: 4.374251626968384 Epoch: 1/15 Loss: 4.425193030357361 Epoch: 1/15 Loss: 4.306451050758362 Epoch: 1/15 Loss: 4.270074176311493 Epoch: 1/15 Loss: 4.1075156888961795 Epoch: 1/15 Loss: 4.242189838409423 Epoch: 1/15 Loss: 4.165516932964325 Epoch: 1/15 Loss: 4.256982106685639 Epoch: 1/15 Loss: 4.319668600082397 Epoch: 1/15 Loss: 4.281853661537171 Epoch: 1/15 Loss: 4.277990152359009 Epoch: 2/15 Loss: 4.095853758427789 Epoch: 2/15 Loss: 3.9387496814727783 Epoch: 2/15 Loss: 3.855009229660034 Epoch: 2/15 Loss: 3.779229765892029 Epoch: 2/15 Loss: 3.708533215999603 Epoch: 2/15 Loss: 3.829554548740387 Epoch: 2/15 Loss: 3.8201945214271547 Epoch: 2/15 Loss: 3.8864864454269408 Epoch: 2/15 Loss: 3.8170689125061035 Epoch: 2/15 Loss: 3.7649069638252257 Epoch: 2/15 Loss: 3.6645705289840698 Epoch: 2/15 Loss: 3.768539720535278 Epoch: 2/15 Loss: 3.737532067298889 Epoch: 2/15 Loss: 3.8175901894569395 Epoch: 2/15 Loss: 3.853895040512085 Epoch: 2/15 Loss: 3.834243857860565 Epoch: 2/15 Loss: 3.856651794910431 Epoch: 3/15 Loss: 3.7600109248415006 Epoch: 3/15 Loss: 3.6702586903572083 Epoch: 3/15 Loss: 3.6068032207489016 Epoch: 3/15 Loss: 3.5446518363952637 Epoch: 3/15 Loss: 3.5035154733657836 Epoch: 3/15 Loss: 3.5842297101020812 Epoch: 3/15 Loss: 3.5798610644340516 Epoch: 3/15 Loss: 3.6674898381233216 Epoch: 3/15 Loss: 3.5808813018798826 Epoch: 3/15 Loss: 3.5284850821495057 Epoch: 3/15 Loss: 3.453301142692566 Epoch: 3/15 Loss: 3.540464120388031 Epoch: 3/15 Loss: 3.528485816001892 Epoch: 3/15 Loss: 3.591624412059784 Epoch: 3/15 Loss: 3.6339498777389525 Epoch: 3/15 Loss: 3.6089256463050843 Epoch: 3/15 Loss: 3.614502366065979 Epoch: 4/15 Loss: 3.5568797748847323 Epoch: 4/15 Loss: 3.4951449093818665 Epoch: 4/15 Loss: 3.432937166213989 Epoch: 4/15 Loss: 3.3882588233947755 Epoch: 4/15 Loss: 3.35321679019928 Epoch: 4/15 Loss: 3.3928859539031984 Epoch: 4/15 Loss: 3.4175438389778137 Epoch: 4/15 Loss: 3.509397229671478 Epoch: 4/15 Loss: 3.4073427720069884 Epoch: 4/15 Loss: 3.367028179168701 Epoch: 4/15 Loss: 3.3141687455177307 Epoch: 4/15 Loss: 3.3738673095703127 Epoch: 4/15 Loss: 3.3895227723121644 Epoch: 4/15 Loss: 3.4287908387184145 Epoch: 4/15 Loss: 3.464225102901459 Epoch: 4/15 Loss: 3.4413810710906985 Epoch: 4/15 Loss: 3.460006271839142 Epoch: 5/15 Loss: 3.4184037168691264 Epoch: 5/15 Loss: 3.3845978441238405 Epoch: 5/15 Loss: 3.3043018698692324 Epoch: 5/15 Loss: 3.2577729382514953 Epoch: 5/15 Loss: 3.247817492723465 Epoch: 5/15 Loss: 3.2630201330184936 Epoch: 5/15 Loss: 3.288782137393951 Epoch: 5/15 Loss: 3.377908104419708 Epoch: 5/15 Loss: 3.2936730494499207 Epoch: 5/15 Loss: 3.2489995722770693 Epoch: 5/15 Loss: 3.21657404756546 Epoch: 5/15 Loss: 3.265457293510437 Epoch: 5/15 Loss: 3.274803861618042 Epoch: 5/15 Loss: 3.29999480009079 Epoch: 5/15 Loss: 3.338403857707977 Epoch: 5/15 Loss: 3.3065478682518004 Epoch: 5/15 Loss: 3.3153113703727723 Epoch: 6/15 Loss: 3.2984728061156217 Epoch: 6/15 Loss: 3.280026596069336 Epoch: 6/15 Loss: 3.206384714126587 Epoch: 6/15 Loss: 3.1578216185569765 Epoch: 6/15 Loss: 3.1524285202026365 Epoch: 6/15 Loss: 3.1646585154533384 Epoch: 6/15 Loss: 3.209417939186096 Epoch: 6/15 Loss: 3.2608956065177916 Epoch: 6/15 Loss: 3.1965203328132628 Epoch: 6/15 Loss: 3.161787514209747 Epoch: 6/15 Loss: 3.1257205181121828 Epoch: 6/15 Loss: 3.1545133209228515 Epoch: 6/15 Loss: 3.179970184803009 Epoch: 6/15 Loss: 3.199390508174896 Epoch: 6/15 Loss: 3.2460207538604737 Epoch: 6/15 Loss: 3.223746827125549 Epoch: 6/15 Loss: 3.2162142028808596 Epoch: 7/15 Loss: 3.210596465650262 Epoch: 7/15 Loss: 3.191326835155487 Epoch: 7/15 Loss: 3.1359806246757507 Epoch: 7/15 Loss: 3.0845880403518677 Epoch: 7/15 Loss: 3.082687391757965 Epoch: 7/15 Loss: 3.073760934829712 Epoch: 7/15 Loss: 3.124136496067047 Epoch: 7/15 Loss: 3.176078475475311 Epoch: 7/15 Loss: 3.1255447597503663 Epoch: 7/15 Loss: 3.0919962391853333 Epoch: 7/15 Loss: 3.0544187150001525 Epoch: 7/15 Loss: 3.072029559135437 Epoch: 7/15 Loss: 3.100132073402405 Epoch: 7/15 Loss: 3.127228157043457 Epoch: 7/15 Loss: 3.170003378868103 Epoch: 7/15 Loss: 3.1392071042060854 Epoch: 7/15 Loss: 3.137432764530182 Epoch: 8/15 Loss: 3.1422166401089595 Epoch: 8/15 Loss: 3.125530011177063 Epoch: 8/15 Loss: 3.064560781955719 Epoch: 8/15 Loss: 3.028349506378174 Epoch: 8/15 Loss: 3.02254749751091 Epoch: 8/15 Loss: 3.00223459815979 Epoch: 8/15 Loss: 3.0599766712188723 Epoch: 8/15 Loss: 3.1133778076171876 Epoch: 8/15 Loss: 3.063219702243805 Epoch: 8/15 Loss: 3.030902289867401 Epoch: 8/15 Loss: 3.0022066388130186 Epoch: 8/15 Loss: 3.0039333429336548 Epoch: 8/15 Loss: 3.0490253419876097 Epoch: 8/15 Loss: 3.0613285880088807 Epoch: 8/15 Loss: 3.1253976950645446 Epoch: 8/15 Loss: 3.082568682193756 Epoch: 8/15 Loss: 3.0767971205711366 Epoch: 9/15 Loss: 3.0788947708831937 Epoch: 9/15 Loss: 3.0670766415596007 Epoch: 9/15 Loss: 3.0165445742607115 Epoch: 9/15 Loss: 2.97663409948349 Epoch: 9/15 Loss: 2.9736308569908143 Epoch: 9/15 Loss: 2.9499198145866394 Epoch: 9/15 Loss: 3.0003385348320006 Epoch: 9/15 Loss: 3.051873701095581 Epoch: 9/15 Loss: 3.0140964221954345 Epoch: 9/15 Loss: 2.9725867652893068 Epoch: 9/15 Loss: 2.953563188076019 Epoch: 9/15 Loss: 2.9546047863960267 Epoch: 9/15 Loss: 2.9902475590705873 Epoch: 9/15 Loss: 3.003370816707611 Epoch: 9/15 Loss: 3.0561471509933473 Epoch: 9/15 Loss: 3.0176299023628235 Epoch: 9/15 Loss: 3.021928065776825 Epoch: 10/15 Loss: 3.0281915571479923 Epoch: 10/15 Loss: 3.012572217941284 Epoch: 10/15 Loss: 2.9753078241348265 Epoch: 10/15 Loss: 2.931376220703125 Epoch: 10/15 Loss: 2.9271128175258636 Epoch: 10/15 Loss: 2.894703689098358 Epoch: 10/15 Loss: 2.9489109396934508 Epoch: 10/15 Loss: 3.002216926574707 Epoch: 10/15 Loss: 2.9645584416389466 Epoch: 10/15 Loss: 2.9409907698631286 Epoch: 10/15 Loss: 2.9279688477516173 Epoch: 10/15 Loss: 2.921959735393524 Epoch: 10/15 Loss: 2.9449917345046996 Epoch: 10/15 Loss: 2.954298352956772 Epoch: 10/15 Loss: 3.0018203473091125 Epoch: 10/15 Loss: 2.964821640253067 Epoch: 10/15 Loss: 2.969308503627777 Epoch: 11/15 Loss: 2.9766264803117055 Epoch: 11/15 Loss: 2.976940345287323 Epoch: 11/15 Loss: 2.923772484779358 Epoch: 11/15 Loss: 2.8901746935844423 Epoch: 11/15 Loss: 2.8889050569534303 Epoch: 11/15 Loss: 2.853283078670502 Epoch: 11/15 Loss: 2.904878322601318 Epoch: 11/15 Loss: 2.968543590545654 Epoch: 11/15 Loss: 2.9214342670440674 Epoch: 11/15 Loss: 2.8863476095199583 Epoch: 11/15 Loss: 2.869296367645264 Epoch: 11/15 Loss: 2.8579204139709473 Epoch: 11/15 Loss: 2.90662128162384 Epoch: 11/15 Loss: 2.9107823357582094 Epoch: 11/15 Loss: 2.9528587265014647 Epoch: 11/15 Loss: 2.9245549449920656 Epoch: 11/15 Loss: 2.93568341588974 Epoch: 12/15 Loss: 2.9402612914997643 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** I chose my sequence lenght based on the length of sentances in the data (which was 5-10) and paired it with a little of my own bias (longer was a little more interesting to me). My batch size was simply chosen as large I could make it with the cuda memory I had available. I used a learning rate consitent with what I've used in the past, and in the end had little reason to change it. My vocab and output size were chosen to be the length of the words in data, simply because I didn't want to omit words from the model's dictionary. My embedding_dim, hidden_dim, and n_layers were all chosen by a process of guess-n-check to be honest. I tried a few thousand for embedding and hidden, and a tried a few hundred. I found that having the _dim_ parameters too high hurt performance and trainability. As for n_layers, I initially tried 4 but found better results with 1 and tweaked up up to 2 layers after tuning my other parameters. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn ##### Added next 2 lines to fix numpy bug #### rnn.cpu() current_seq = current_seq.cpu() hidden = hidden[0].cpu(), hidden[1].cpu() #print(" curs:", current_seq.device, "hidden[0]", hidden[0].device, "hidden[1]", hidden[1].device) output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: finally finally passed into the town, then they wouldn't agree. estelle: so you called yourself a jerk. jerry: i can't believe we had enough to do it. george: i think we've seen the act before we finish buttons. kramer: oh no no no no! i'm gonna borrow gum. elaine: literally yourself beep. i don't want the gum anymore, so, the bubble boy was gone. george: woo... stu: heh. secretary: ladies and gentlemen, gimme that rye. jerry: so how's that boyfriend? jerry: the contest was a sentence. jerry: i thought we'd be taller. newman: aww, heh heh heh heh. secretary: hi everybody fold up here, mr. kramer? jerry:(shrugging through the closed bag) oh, hi, mark. stu: bye mrs. vandelay, elaine. jerry: nbc certainly parked to your homes. stu: oh. newman:(shocked) wha- wha- what is that noise? george: because it didn't end me out to rent. jerry: ma, dad! george: you think she's lookin'? frank: yes, yes. i think that's a definite issue, but you cannot prove it. morty: congratulations! newman: woo! elaine: hey! hold it, honey! sales woman: oh no. i can't believe it is happening. frank: mr. steinbrenner? jerry: no one's bringing a letter trip to town. jerry: oh, no problem. estelle: so you broke up with that? jerry: well, i'm sure it's burning policy. morty: congratulations. waitress: hi mom. morty: hello stu. secretary: hi everybody cop. secretary: ladies and gentlemen, i can't afford to be successful, but i'm not going to get out together sometime. george: ma. both: ladies and ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_counts = Counter(text) sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) int2vocab = { i : w for i, w in enumerate(sorted_vocab)} vocab2int = { w : i for i, w in int2vocab.items()} # return tuple return (vocab2int, int2vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token_dict = { '.': '<PERIOD>', ',': '<COMMA>', '"': '<QUOTATION_MARK>', ';': '<SEMI_COLON>', '!': '<EXCLAMATION_MARK>', '?': '<QUESTION_MARK>', '(': '<LEFT_PARENTHESIS>', ')': '<RIGHT_PARENTHESIS>', '-': '<DASH>', '\n': '<NEW_LINE>'} return token_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() print('len(int_text):', len(int_text)) print('type(int_text):', type(int_text)) print('len(vocab_to_int):', len(vocab_to_int)) print('len(int_to_vocab):', len(int_to_vocab)) print('len(token_dict):', len(token_dict)) txt = [] for i in int_text[:10]: txt.append(int_to_vocab[i]) txt ###Output len(int_text): 892110 type(int_text): <class 'list'> len(vocab_to_int): 21388 len(int_to_vocab): 21388 len(token_dict): 10 ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') train_on_gpu ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function batch_size_total = batch_size * sequence_length n_batches = len(words)//batch_size_total # keep only enough words to make full batches words = np.array(words[:n_batches * batch_size_total]) features, target = [], [] for i in range(0, len(words)-sequence_length): features.append(words[i:i+sequence_length]) target.append(words[i+sequence_length]) train_data = TensorDataset(torch.from_numpy(np.asarray(features)), torch.from_numpy(np.asarray(target))) train_loader = DataLoader(train_data, shuffle=True, batch_size=batch_size) # return a dataloader return train_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 30, 31, 32, 33, 34], [ 36, 37, 38, 39, 40], [ 13, 14, 15, 16, 17], [ 37, 38, 39, 40, 41], [ 44, 45, 46, 47, 48], [ 6, 7, 8, 9, 10], [ 25, 26, 27, 28, 29], [ 0, 1, 2, 3, 4], [ 7, 8, 9, 10, 11], [ 28, 29, 30, 31, 32]]) torch.Size([10]) tensor([ 35, 41, 18, 42, 49, 11, 30, 5, 12, 33]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) embedding_output = self.embedding(nn_input) lstm_output, hidden = self.lstm(embedding_output, hidden) lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim) output = self.fc(lstm_output) # reshape into (batch_size, seq_length, output_size) output = output.view(batch_size, -1, self.output_size) # get last batch out = output[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # print(self.parameters()) weight = next(self.parameters()).data # initialize hidden state with zero weights, and move to GPU if available if train_on_gpu: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: rnn.cuda() # perform backpropagation and optimization # reinitialize hidden variable to prevent backpropagation h = tuple([each.data for each in hidden]) #zero accumulated gradients rnn.zero_grad() if train_on_gpu: inp, target = inp.cuda(), target.cuda() out, h = rnn(inp, h) # calculate loss and perform backprop loss = criterion(out, target) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs/LSTMs nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 400 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 2000 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code import os os.environ['CUDA_LAUNCH_BLOCKING'] = '1' """ DON'T MODIFY ANYTHING IN THIS CELL """ from workspace_utils import active_session with active_session(): # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) #print(rnn) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 4.843531439900398 Epoch: 1/10 Loss: 4.3292163555622105 Epoch: 1/10 Loss: 4.185644910812378 Epoch: 2/10 Loss: 4.001688238896805 Epoch: 2/10 Loss: 3.9097478613853456 Epoch: 3/10 Loss: 3.7823917873004835 Epoch: 3/10 Loss: 3.7440224170684813 Epoch: 3/10 Loss: 3.747664158701897 Epoch: 4/10 Loss: 3.656581620744613 Epoch: 4/10 Loss: 3.632077686071396 Epoch: 5/10 Loss: 3.5665080450643916 Epoch: 5/10 Loss: 3.54936509001255 Epoch: 5/10 Loss: 3.569948466539383 Epoch: 6/10 Loss: 3.4989693093114544 Epoch: 6/10 Loss: 3.482204401016235 Epoch: 6/10 Loss: 3.510458270072937 Epoch: 7/10 Loss: 3.4366343465355773 Epoch: 7/10 Loss: 3.434198954820633 Epoch: 7/10 Loss: 3.4671989839076995 Epoch: 8/10 Loss: 3.3946180754555524 Epoch: 8/10 Loss: 3.3873555065393446 Epoch: 8/10 Loss: 3.4223250226974486 Epoch: 9/10 Loss: 3.362420918692524 Epoch: 9/10 Loss: 3.3477510668039323 Epoch: 9/10 Loss: 3.3936511422395705 Epoch: 10/10 Loss: 3.3275063229638526 Epoch: 10/10 Loss: 3.3241239243745806 Epoch: 10/10 Loss: 3.3594459886550903 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:**To determine the values to use for the hyperparameters, I browsed thru several references linked in the RNN modules & the various RNN, LSTM exercises. In particular, the material covered in the Hyperparameters module (Lesson 4) & the following references were most helpful,[Deep Learning book - chapter 11.4](http://www.deeplearningbook.org/contents/guidelines.html): Selecting Hyperparameters by Ian Goodfellow, Yoshua Bengio, Aaron Courville[An Empirical Exploration of Recurrent Network Architectures](http://proceedings.mlr.press/v37/jozefowicz15.pdf) by Rafal Jozefowicz, Wojciech Zaremba, Ilya Sutskever which I found very fascinating. While selecting the hyperparameters to focus on, I kept in mind the following points from lesson 4,* the two most important parameters that control the model are n_hidden and n_layers. * Andrej Karpathy's recommendation to use n_layers of either 2/3 & adjust n_hidden based on how much data you have. We have about 800K words in all with a vocabulary of 21K.I trained the model using several combinations of model hyperparameters before settling for the values above. The values I used & my observation are as follows,* no of layers: 1, 2 Although not recommended, I noticed that the model converged the quickest to a loss of 3.22 using a single LSTM layer. I also tested this model & there was no significant difference in the script generated with this model & the one with 2 layers. In fact the model size was also smaller 41 MB vs 61 MB for the model with 2 layers used to generate the script below.* embedding dimensions: 200, 300, 400 Increasing this parameter increased the training time. No significant change in loss.* hidden dimensions: 256, 512 Increasing hidden dimensions increased the training time. No significant change in loss.* sequence lengths: 7, 10, 100 Since most of the lines in the script consist of a small no of words, I used a value of 10 for the submission. A value of 100 significantly increased the time to train - even after a training for a couple of hours, the loss did not reduce below 3.7.* learning rate: 0.01, 0.003, 0.001 --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 500 # modify the length to your preference prime_word = 'kramer' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:40: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code !wget https://raw.githubusercontent.com/udacity/deep-learning-v2-pytorch/master/project-tv-script-generation/helper.py !mkdir data !wget -P data https://raw.githubusercontent.com/udacity/deep-learning-v2-pytorch/master/project-tv-script-generation/data/Seinfeld_Scripts.txt !wget https://raw.githubusercontent.com/udacity/deep-learning-v2-pytorch/master/project-tv-script-generation/problem_unittests.py """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = 'data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ #Maps words to integers counts = Counter(text) vocab = sorted(counts, key=counts.get, reverse=True) vocab_to_int = {} int_to_vocab = {} for c, value in enumerate(vocab, 1): vocab_to_int[value] = c int_to_vocab[c] = value # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token_dic = { ".": "||Period||", ",": "||Comma||", '"': "||Quotation_Mark||", ";": "||Semicolon||", "!": "||Exclamation_Mark||", "?": "||Question_Mark||", "(": "||Left_Parentheses||", ")": "||Right_Parentheses||", "-": "||Dash||", "\n": "||Return||", } return token_dic """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ n_targets = len(words) - sequence_length feature, target = [], [] for i in range(n_targets): x = words[i : i+sequence_length] # get some words from the given list y = words[i+sequence_length] # get the next word to be the target feature.append(x) target.append(y) feature_tensor, target_tensor = torch.from_numpy(np.array(feature)), torch.from_numpy(np.array(target)) data = TensorDataset(feature_tensor, target_tensor) dataloader = DataLoader(data, shuffle=True, batch_size=batch_size) # return a dataloader return dataloader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[32, 33, 34, 35, 36], [11, 12, 13, 14, 15], [14, 15, 16, 17, 18], [ 8, 9, 10, 11, 12], [12, 13, 14, 15, 16], [ 4, 5, 6, 7, 8], [23, 24, 25, 26, 27], [17, 18, 19, 20, 21], [35, 36, 37, 38, 39], [27, 28, 29, 30, 31]]) torch.Size([10]) tensor([37, 16, 19, 13, 17, 9, 28, 22, 40, 32]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) #self.dropout = nn.Dropout(0.3) self.fc = nn.Linear(hidden_dim, output_size) self.sig = nn.Sigmoid() def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ batch_size = nn_input.size(0) #embeddings and lstm_out x = nn_input.long() embeds = self.embedding(x) lstm_out, hidden = self.lstm(embeds, hidden) #stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer #out = self.dropout(lstm_out) sig_out = self.fc(lstm_out) # sigmoid function #sig_out = self.sig(out) # reshape into (batch_size, seq_length, output_size) sig_out = sig_out.view(batch_size, -1, self.output_size) # get last batch sig_out = sig_out[:, -1] # return last sigmoid output and hidden state return sig_out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # move data to GPU, if available if(train_on_gpu): rnn.cuda() inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization h = tuple([each.data for each in hidden]) rnn.zero_grad() output, h = rnn(inp, h) loss = criterion(output, target) loss.backward() optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 8 # of words in a sequence # Batch Size batch_size = 250 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = len(vocab_to_int) # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 350 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.326384628295899 Epoch: 1/10 Loss: 4.710179415225983 Epoch: 1/10 Loss: 4.48501496553421 Epoch: 1/10 Loss: 4.375867362499237 Epoch: 1/10 Loss: 4.282036849498748 Epoch: 1/10 Loss: 4.2112381291389465 Epoch: 1/10 Loss: 4.1846558079719545 Epoch: 2/10 Loss: 4.036768052359702 Epoch: 2/10 Loss: 3.993407000541687 Epoch: 2/10 Loss: 3.9557144689559935 Epoch: 2/10 Loss: 3.948258867740631 Epoch: 2/10 Loss: 3.9429902210235594 Epoch: 2/10 Loss: 3.915199726104736 Epoch: 2/10 Loss: 3.9019778184890748 Epoch: 3/10 Loss: 3.7550781675627536 Epoch: 3/10 Loss: 3.743118405342102 Epoch: 3/10 Loss: 3.772823224544525 Epoch: 3/10 Loss: 3.748188156604767 Epoch: 3/10 Loss: 3.7356738142967223 Epoch: 3/10 Loss: 3.731651346206665 Epoch: 3/10 Loss: 3.7295025300979616 Epoch: 4/10 Loss: 3.6025442728694057 Epoch: 4/10 Loss: 3.601614813327789 Epoch: 4/10 Loss: 3.593716688632965 Epoch: 4/10 Loss: 3.5937984857559204 Epoch: 4/10 Loss: 3.5985618085861204 Epoch: 4/10 Loss: 3.611578746318817 Epoch: 4/10 Loss: 3.59236829662323 Epoch: 5/10 Loss: 3.4775612299710934 Epoch: 5/10 Loss: 3.4557712960243223 Epoch: 5/10 Loss: 3.4928574204444884 Epoch: 5/10 Loss: 3.481609657287598 Epoch: 5/10 Loss: 3.4705481195449828 Epoch: 5/10 Loss: 3.4972275295257567 Epoch: 5/10 Loss: 3.5121942739486696 Epoch: 6/10 Loss: 3.3825889275947087 Epoch: 6/10 Loss: 3.3621983828544617 Epoch: 6/10 Loss: 3.376428952693939 Epoch: 6/10 Loss: 3.3920288395881655 Epoch: 6/10 Loss: 3.397782608509064 Epoch: 6/10 Loss: 3.40949845457077 Epoch: 6/10 Loss: 3.4246185708045958 Epoch: 7/10 Loss: 3.2958977587626013 Epoch: 7/10 Loss: 3.288792898654938 Epoch: 7/10 Loss: 3.313106318473816 Epoch: 7/10 Loss: 3.3204531650543214 Epoch: 7/10 Loss: 3.3245518345832825 Epoch: 7/10 Loss: 3.340586449146271 Epoch: 7/10 Loss: 3.343881350040436 Epoch: 8/10 Loss: 3.2102109496022613 Epoch: 8/10 Loss: 3.2323768420219423 Epoch: 8/10 Loss: 3.2285256972312926 Epoch: 8/10 Loss: 3.2577172226905824 Epoch: 8/10 Loss: 3.2605974197387697 Epoch: 8/10 Loss: 3.286794167518616 Epoch: 8/10 Loss: 3.2879000945091246 Epoch: 9/10 Loss: 3.165316897378841 Epoch: 9/10 Loss: 3.165338409900665 Epoch: 9/10 Loss: 3.2026779408454895 Epoch: 9/10 Loss: 3.199467888355255 Epoch: 9/10 Loss: 3.206555487155914 Epoch: 9/10 Loss: 3.218054090499878 Epoch: 9/10 Loss: 3.2293826608657836 Epoch: 10/10 Loss: 3.1125497591327616 Epoch: 10/10 Loss: 3.124452010154724 Epoch: 10/10 Loss: 3.1387273473739623 Epoch: 10/10 Loss: 3.1481817121505737 Epoch: 10/10 Loss: 3.172391725540161 Epoch: 10/10 Loss: 3.178947241306305 Epoch: 10/10 Loss: 3.183301763534546 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) After several tests I found the combination of hyperparameters that give me good results.For example: n_layers equals 2 and the hidden_dim equals 350. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: freeze in the air. elaine: what about you? george: what do you mean. elaine: i can't believe this.(jerry opens his head 'no') kramer:(to jerry) oh, hi, hi. jerry: hello. jerry: hi, i know that this is a little rocky. you know, it's not fair, but i was wondering... jerry:(to kramer) what do you say? george:(still laughing) you know what you do? you don't want me to get it fixed. george: what do you mean......... entenmann's.(to george) george: hey, hey, hey, what are you doing here? elaine: i think it's a great solution. george:(to jerry) oh, my god... jerry: hey, i got it. kramer:(to the man) what is this? jerry: oh, i think you can. jerry:(to george) you know, you know, they have no idea how to do this? jerry: no. george:(to the phone) hello, jerry. jerry: hey. kramer: hey! jerry! jerry:(to kramer) you see, this is a great idea... jerry: i don't know. elaine:(pointing at the door) hey, what's the problem? you know, i think it's not that bad. kramer: oh! i forgot to be a little nervous now, you don't know what i did. you know you got any shredded coconut? jerry: no no, it's too tight. george: what do you mean? jerry: well, i just got a little steam on the street. jerry: you don't know what you want. jerry: oh, yeah. jerry: yeah, i don't know. george: oh ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown The TV Script is Not PerfectIt's ok if the TV script doesn't make perfect sense. It should look like alternating lines of dialogue, here is one such example of a few generated lines. Example generated script>jerry: what about me?>>jerry: i don't have to wait.>>kramer:(to the sales table)>>elaine:(to jerry) hey, look at this, i'm a good doctor.>>newman:(to elaine) you think i have no idea of this...>>elaine: oh, you better take the phone, and he was a little nervous.>>kramer:(to the phone) hey, hey, jerry, i don't want to be a little bit.(to kramer and jerry) you can't.>>jerry: oh, yeah. i don't even know, i know.>>jerry:(to the phone) oh, i know.>>kramer:(laughing) you know...(to jerry) you don't know.You can see that there are multiple characters that say (somewhat) complete sentences, but it doesn't have to be perfect! It takes quite a while to get good results, and often, you'll have to use a smaller vocabulary (and discard uncommon words), or get more data. The Seinfeld dataset is about 3.4 MB, which is big enough for our purposes; for script generation you'll want more than 1 MB of text, generally. Submitting This ProjectWhen submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_tv_script_generation.ipynb" and save another copy as an HTML file by clicking "File" -> "Download as.."->"html". Include the "helper.py" and "problem_unittests.py" files in your submission. Once you download these files, compress them into one zip file for submission. ###Code ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_counts = Counter(text) # sorting the words from most to least frequent in text occurrence sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) # create int_to_vocab dictionaries int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code token_dict = { '.':' ||PERIOD|| ', ',':' ||COMMA|| ', '"':' ||QUOTATION_MARK|| ', ';':' ||SEMICOLON|| ', '!':' ||EXCLAMATION_MARK|| ', '?':' ||QUESTION_MARK|| ', '(':' ||LEFT_PAREN|| ', ')':' ||RIGHT_PAREN|| ', '-': ' ||DASH|| ', '?': ' ||QUESTION_MARK|| ', '\n': ' ||RETURN||' , ':': ' ||COLON|| ' } print(token_dict) def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token_dict = { '.':'||PERIOD||', ',':'||COMMA||', '"':'||QUOTATION_MARK||', ';':'||SEMICOLON||', '!':'||EXCLAMATION_MARK||', '?':'||QUESTION_MARK||', '(':'||LEFT_PAREN||', ')':'||RIGHT_PAREN||', '-': '||DASH||', '?': '||QUESTION_MARK||', '\n': '||RETURN||' , } return token_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function n_batches = int(len(words) / (batch_size)) ## TODO: Keep only enough characters to make full batches words = words[:n_batches * batch_size] feature_tensors = [] target_tensors = [] for n in range(len(words) - sequence_length): target_tensors.append(words[n+sequence_length]) feature_tensors.append(words[n:n+sequence_length]) feature_tensors = torch.from_numpy(np.array(feature_tensors)) target_tensors = torch.from_numpy(np.array(target_tensors)) data = TensorDataset(feature_tensors, target_tensors) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size) # return a dataloader return data_loader ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.vocab_size = vocab_size self.output_size = output_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers self.dropout = dropout # define model layers self.embedding = nn.Embedding(self.vocab_size, self.embedding_dim) self.lstm = nn.LSTM(self.embedding_dim, self.hidden_dim, self.n_layers, dropout=self.dropout, batch_first=True) #self.dropout = nn.Dropout(self.dropout) self.fc = nn.Linear(self.hidden_dim, self.output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state batch_size = nn_input.size(0) # embeddings and lstm_out emb = self.embedding(nn_input) r_output, hidden = self.lstm(emb, hidden) #lstm_output = self.dropout(r_output) lstm_output = r_output.contiguous().view(-1, self.hidden_dim) output = self.fc(lstm_output) # reshape into (batch_size, seq_length, output_size) output = output.view(batch_size, -1, self.output_size) # get last batch out = output[:, -1] return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if torch.cuda.is_available(): rnn.cuda() inp, target = inp.cuda(), target.cuda() #forward h = tuple([each.data for each in hidden]) rnn.zero_grad() out, h = rnn(inp, h) # perform backpropagation and optimization loss = criterion(out, target) loss.backward() nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Batch {:.2f} Epoch: {:>4}/{:<4} Loss: {}\n'.format( batch_i/n_batches, epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 15 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 8 # Learning Rate learning_rate = 0.0005 # Model parameters # Vocab size vocab_size = len(int_to_vocab) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = int(0.008*vocab_size) # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 8 epoch(s)... Batch 0.07 Epoch: 1/8 Loss: 5.682700274944305 Batch 0.14 Epoch: 1/8 Loss: 5.058973133087158 Batch 0.22 Epoch: 1/8 Loss: 4.850149758815766 Batch 0.29 Epoch: 1/8 Loss: 4.733901435852051 Batch 0.36 Epoch: 1/8 Loss: 4.702723975658417 Batch 0.43 Epoch: 1/8 Loss: 4.7129764575958255 Batch 0.50 Epoch: 1/8 Loss: 4.604222703456879 Batch 0.57 Epoch: 1/8 Loss: 4.471813734531403 Batch 0.65 Epoch: 1/8 Loss: 4.434745234489441 Batch 0.72 Epoch: 1/8 Loss: 4.370398196220398 Batch 0.79 Epoch: 1/8 Loss: 4.468252071857452 Batch 0.86 Epoch: 1/8 Loss: 4.490648648262024 Batch 0.93 Epoch: 1/8 Loss: 4.4951714701652525 Batch 0.07 Epoch: 2/8 Loss: 4.295172506127476 Batch 0.14 Epoch: 2/8 Loss: 4.135700309276581 Batch 0.22 Epoch: 2/8 Loss: 4.057426620483398 Batch 0.29 Epoch: 2/8 Loss: 4.015098742961883 Batch 0.36 Epoch: 2/8 Loss: 4.042482703208924 Batch 0.43 Epoch: 2/8 Loss: 4.1209108972549435 Batch 0.50 Epoch: 2/8 Loss: 4.06078724861145 Batch 0.57 Epoch: 2/8 Loss: 3.9613243341445923 Batch 0.65 Epoch: 2/8 Loss: 3.9673962030410768 Batch 0.72 Epoch: 2/8 Loss: 3.899313010215759 Batch 0.79 Epoch: 2/8 Loss: 4.013478213787079 Batch 0.86 Epoch: 2/8 Loss: 4.05616946220398 Batch 0.93 Epoch: 2/8 Loss: 4.057707423686981 Batch 0.07 Epoch: 3/8 Loss: 3.9509440835349814 Batch 0.14 Epoch: 3/8 Loss: 3.871569080352783 Batch 0.22 Epoch: 3/8 Loss: 3.8039170055389406 Batch 0.29 Epoch: 3/8 Loss: 3.7665256028175356 Batch 0.36 Epoch: 3/8 Loss: 3.790395233154297 Batch 0.43 Epoch: 3/8 Loss: 3.8901807675361635 Batch 0.50 Epoch: 3/8 Loss: 3.82191620016098 Batch 0.57 Epoch: 3/8 Loss: 3.7418594846725464 Batch 0.65 Epoch: 3/8 Loss: 3.751534254550934 Batch 0.72 Epoch: 3/8 Loss: 3.7004877047538756 Batch 0.79 Epoch: 3/8 Loss: 3.815841853618622 Batch 0.86 Epoch: 3/8 Loss: 3.8431962118148806 Batch 0.93 Epoch: 3/8 Loss: 3.844757134437561 Batch 0.07 Epoch: 4/8 Loss: 3.7580897079026405 Batch 0.14 Epoch: 4/8 Loss: 3.695622871875763 Batch 0.22 Epoch: 4/8 Loss: 3.636689314365387 Batch 0.29 Epoch: 4/8 Loss: 3.608045282840729 Batch 0.36 Epoch: 4/8 Loss: 3.623652003288269 Batch 0.43 Epoch: 4/8 Loss: 3.7279516134262085 Batch 0.50 Epoch: 4/8 Loss: 3.6765551443099977 Batch 0.57 Epoch: 4/8 Loss: 3.599049596786499 Batch 0.65 Epoch: 4/8 Loss: 3.6003038249015806 Batch 0.72 Epoch: 4/8 Loss: 3.5561565527915953 Batch 0.79 Epoch: 4/8 Loss: 3.674867242336273 Batch 0.86 Epoch: 4/8 Loss: 3.7052609601020814 Batch 0.93 Epoch: 4/8 Loss: 3.696700491428375 Batch 0.07 Epoch: 5/8 Loss: 3.6283368502766633 Batch 0.14 Epoch: 5/8 Loss: 3.5787184166908266 Batch 0.22 Epoch: 5/8 Loss: 3.5270210223197935 Batch 0.29 Epoch: 5/8 Loss: 3.5010189909935 Batch 0.36 Epoch: 5/8 Loss: 3.5141894998550414 Batch 0.43 Epoch: 5/8 Loss: 3.6115041971206665 Batch 0.50 Epoch: 5/8 Loss: 3.5715427603721617 Batch 0.57 Epoch: 5/8 Loss: 3.499521305561066 Batch 0.65 Epoch: 5/8 Loss: 3.494609861373901 Batch 0.72 Epoch: 5/8 Loss: 3.4636199111938475 Batch 0.79 Epoch: 5/8 Loss: 3.5835597167015076 Batch 0.86 Epoch: 5/8 Loss: 3.5997207770347597 Batch 0.93 Epoch: 5/8 Loss: 3.5836065158843993 Batch 0.07 Epoch: 6/8 Loss: 3.527492625407936 Batch 0.14 Epoch: 6/8 Loss: 3.4843383736610414 Batch 0.22 Epoch: 6/8 Loss: 3.4333666763305666 Batch 0.29 Epoch: 6/8 Loss: 3.4085198526382445 Batch 0.36 Epoch: 6/8 Loss: 3.4364068808555603 Batch 0.43 Epoch: 6/8 Loss: 3.5331649260520934 Batch 0.50 Epoch: 6/8 Loss: 3.5043571348190308 Batch 0.57 Epoch: 6/8 Loss: 3.4188109192848204 Batch 0.65 Epoch: 6/8 Loss: 3.4152122125625612 Batch 0.72 Epoch: 6/8 Loss: 3.3890241742134095 Batch 0.79 Epoch: 6/8 Loss: 3.5019761128425597 Batch 0.86 Epoch: 6/8 Loss: 3.51499818611145 Batch 0.93 Epoch: 6/8 Loss: 3.4990782370567324 Batch 0.07 Epoch: 7/8 Loss: 3.456701330409562 Batch 0.14 Epoch: 7/8 Loss: 3.415873683452606 Batch 0.22 Epoch: 7/8 Loss: 3.3695875201225283 Batch 0.29 Epoch: 7/8 Loss: 3.3444726376533507 Batch 0.36 Epoch: 7/8 Loss: 3.362831311225891 Batch 0.43 Epoch: 7/8 Loss: 3.4602575716972352 Batch 0.50 Epoch: 7/8 Loss: 3.4221904721260072 Batch 0.57 Epoch: 7/8 Loss: 3.3533827748298646 Batch 0.65 Epoch: 7/8 Loss: 3.3491762113571166 Batch 0.72 Epoch: 7/8 Loss: 3.3218634281158446 Batch 0.79 Epoch: 7/8 Loss: 3.436838529109955 Batch 0.86 Epoch: 7/8 Loss: 3.443614191532135 Batch 0.93 Epoch: 7/8 Loss: 3.426708779335022 Batch 0.07 Epoch: 8/8 Loss: 3.4014489128569925 Batch 0.14 Epoch: 8/8 Loss: 3.3592702884674073 Batch 0.22 Epoch: 8/8 Loss: 3.3197010645866394 Batch 0.29 Epoch: 8/8 Loss: 3.283359657764435 Batch 0.36 Epoch: 8/8 Loss: 3.302696551322937 Batch 0.43 Epoch: 8/8 Loss: 3.3986005721092223 Batch 0.50 Epoch: 8/8 Loss: 3.357003251075745 Batch 0.57 Epoch: 8/8 Loss: 3.3030333037376405 Batch 0.65 Epoch: 8/8 Loss: 3.295781925678253 Batch 0.72 Epoch: 8/8 Loss: 3.273532060146332 Batch 0.79 Epoch: 8/8 Loss: 3.373016785144806 Batch 0.86 Epoch: 8/8 Loss: 3.388262035369873 Batch 0.93 Epoch: 8/8 Loss: 3.372592930316925 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** I've used the recommended values from the classes as a starting point. After that, I've tested different values to find the optimal model --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:49: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output _____no_output_____ ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # return tuple return (None, None) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # return a dataloader return None # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables # define model layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state return None, None def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return None, None # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = # of words in a sequence # Batch Size batch_size = # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = # Learning Rate learning_rate = # Model parameters # Vocab size vocab_size = # Output size output_size = # Embedding Dimension embedding_dim = # Hidden Dimension hidden_dim = # Number of RNN Layers n_layers = # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # 1. int_to_vocab, which maps integers to characters # 2. vocab_to_int, which maps characters to unique integers int_to_vocab = {} vocab_to_int = {} unique_chars = tuple(set(text)) for index, vocab in enumerate(unique_chars): int_to_vocab[index] = vocab vocab_to_int[vocab] = index # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function tokens = { '.' : '||period||', ',' : '||comma||', '"' : '||quotation_mark||', ';' : '||semicolon||', '!' : '||exclamation_mark||', '?' : '||question_mark||', '(' : '||left_parentheses||', ')' : '||right_parentheses||', '-' : '||dash||', '\n': '||return||' } return tokens """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader import numpy as np def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function words_len = len(words) rows = words_len - sequence_length feature_tensors = np.zeros((rows, sequence_length), dtype=np.int64) target_tensors = np.zeros(rows, dtype=np.int64) for i in range(0, rows): feature_tensors[i] = words[i:i+sequence_length] target_tensors[i] = words[i+sequence_length] data = TensorDataset(torch.from_numpy(feature_tensors), torch.from_numpy(target_tensors)) data_loader = DataLoader(data, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own words = [0, 1, 2, 3, 4, 5, 6] sequence_length = 4 batch_size = 2 data_loader = batch_data(words, sequence_length, batch_size) iterator = iter(data_loader) for i, batch in enumerate(iterator): print(f"batch{i} -> {batch}") ###Output batch0 -> [tensor([[ 0, 1, 2, 3], [ 1, 2, 3, 4]]), tensor([ 4, 5])] batch1 -> [tensor([[ 2, 3, 4, 5]]), tensor([ 6])] ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.hidden_dim = hidden_dim self.n_layers = n_layers # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function nn_input = nn_input.to(torch.long) embeds = self.embedding(nn_input) # Get the outputs and the new hidden state from the lstm lstm_output, hidden = self.lstm(embeds, hidden) output = lstm_output.contiguous().view(-1, self.hidden_dim) # put output through the fully-connected layer output = self.fc(output) batch_size = nn_input.size(0) output = output.view(batch_size, -1, self.output_size) out = output[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: inp, target = inp.cuda(), target.cuda() # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history hidden = tuple([each.data for each in hidden]) # perform backpropagation and optimization # zero accumulated gradients rnn.zero_grad() output, hidden = rnn(inp, hidden) loss = criterion(output, target) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(int_to_vocab) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 150 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train(): # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') from workspace_utils import active_session with active_session(): train() ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.571711266994476 Epoch: 1/10 Loss: 4.878271849155426 Epoch: 1/10 Loss: 4.618291933059693 Epoch: 1/10 Loss: 4.4807379689216615 Epoch: 1/10 Loss: 4.477676140785217 Epoch: 1/10 Loss: 4.513315704345703 Epoch: 1/10 Loss: 4.412488713741302 Epoch: 1/10 Loss: 4.284065252304077 Epoch: 1/10 Loss: 4.259161598205567 Epoch: 1/10 Loss: 4.195514317035675 Epoch: 1/10 Loss: 4.312280205249786 Epoch: 1/10 Loss: 4.346163143157959 Epoch: 1/10 Loss: 4.338524021625519 Epoch: 2/10 Loss: 4.1319010958952065 Epoch: 2/10 Loss: 3.9517530937194825 Epoch: 2/10 Loss: 3.842372539997101 Epoch: 2/10 Loss: 3.800363686084747 Epoch: 2/10 Loss: 3.846530839443207 Epoch: 2/10 Loss: 3.9169021553993226 Epoch: 2/10 Loss: 3.8610221276283263 Epoch: 2/10 Loss: 3.7441554384231566 Epoch: 2/10 Loss: 3.747466440677643 Epoch: 2/10 Loss: 3.713126070022583 Epoch: 2/10 Loss: 3.823201638221741 Epoch: 2/10 Loss: 3.8515528354644775 Epoch: 2/10 Loss: 3.847811044692993 Epoch: 3/10 Loss: 3.7869828355078603 Epoch: 3/10 Loss: 3.669773824214935 Epoch: 3/10 Loss: 3.561634219169617 Epoch: 3/10 Loss: 3.539660086631775 Epoch: 3/10 Loss: 3.5690653014183042 Epoch: 3/10 Loss: 3.6554685406684877 Epoch: 3/10 Loss: 3.598834022521973 Epoch: 3/10 Loss: 3.4788627371788023 Epoch: 3/10 Loss: 3.502801795959473 Epoch: 3/10 Loss: 3.4784091477394106 Epoch: 3/10 Loss: 3.586312406539917 Epoch: 3/10 Loss: 3.6300196738243105 Epoch: 3/10 Loss: 3.587691864967346 Epoch: 4/10 Loss: 3.540191072428559 Epoch: 4/10 Loss: 3.478100221157074 Epoch: 4/10 Loss: 3.3818204498291013 Epoch: 4/10 Loss: 3.3707795600891113 Epoch: 4/10 Loss: 3.384642153263092 Epoch: 4/10 Loss: 3.4753421969413756 Epoch: 4/10 Loss: 3.411461368083954 Epoch: 4/10 Loss: 3.3204568371772765 Epoch: 4/10 Loss: 3.3195564813613894 Epoch: 4/10 Loss: 3.3186293630599977 Epoch: 4/10 Loss: 3.4161300625801085 Epoch: 4/10 Loss: 3.4449900736808776 Epoch: 4/10 Loss: 3.410990931034088 Epoch: 5/10 Loss: 3.39235136703318 Epoch: 5/10 Loss: 3.340482678413391 Epoch: 5/10 Loss: 3.2444980235099794 Epoch: 5/10 Loss: 3.235839537143707 Epoch: 5/10 Loss: 3.244984624862671 Epoch: 5/10 Loss: 3.338359615802765 Epoch: 5/10 Loss: 3.2708742098808288 Epoch: 5/10 Loss: 3.1849301075935363 Epoch: 5/10 Loss: 3.1918037452697754 Epoch: 5/10 Loss: 3.19908083820343 Epoch: 5/10 Loss: 3.2911182861328125 Epoch: 5/10 Loss: 3.2999085855484007 Epoch: 5/10 Loss: 3.280162501335144 Epoch: 6/10 Loss: 3.2784045960511956 Epoch: 6/10 Loss: 3.228626915931702 Epoch: 6/10 Loss: 3.147059064388275 Epoch: 6/10 Loss: 3.1285659017562866 Epoch: 6/10 Loss: 3.1318225393295287 Epoch: 6/10 Loss: 3.22485000705719 Epoch: 6/10 Loss: 3.166000783443451 Epoch: 6/10 Loss: 3.0893503522872923 Epoch: 6/10 Loss: 3.0872444791793825 Epoch: 6/10 Loss: 3.0989111495018005 Epoch: 6/10 Loss: 3.1848491988182066 Epoch: 6/10 Loss: 3.1829391117095946 Epoch: 6/10 Loss: 3.1796915674209596 Epoch: 7/10 Loss: 3.1839484361426136 Epoch: 7/10 Loss: 3.1291361565589906 Epoch: 7/10 Loss: 3.0651475591659545 Epoch: 7/10 Loss: 3.060409274101257 Epoch: 7/10 Loss: 3.053329212665558 Epoch: 7/10 Loss: 3.138073000431061 Epoch: 7/10 Loss: 3.072507423400879 Epoch: 7/10 Loss: 3.0166346545219422 Epoch: 7/10 Loss: 3.00713566160202 Epoch: 7/10 Loss: 3.0260712361335753 Epoch: 7/10 Loss: 3.10122522687912 Epoch: 7/10 Loss: 3.0935050263404844 Epoch: 7/10 Loss: 3.0933089632987976 Epoch: 8/10 Loss: 3.1020189333011245 Epoch: 8/10 Loss: 3.053974709033966 Epoch: 8/10 Loss: 2.989046476840973 Epoch: 8/10 Loss: 2.985050395488739 Epoch: 8/10 Loss: 2.972005692958832 Epoch: 8/10 Loss: 3.0572777276039123 Epoch: 8/10 Loss: 3.0011060910224914 Epoch: 8/10 Loss: 2.947799513339996 Epoch: 8/10 Loss: 2.944150359630585 Epoch: 8/10 Loss: 2.958486298561096 Epoch: 8/10 Loss: 3.026620376586914 Epoch: 8/10 Loss: 3.0191986889839173 Epoch: 8/10 Loss: 3.024890842437744 Epoch: 9/10 Loss: 3.0351819143206713 Epoch: 9/10 Loss: 2.9905002155303957 Epoch: 9/10 Loss: 2.924140061855316 Epoch: 9/10 Loss: 2.9252638804912565 Epoch: 9/10 Loss: 2.915180624961853 Epoch: 9/10 Loss: 2.9896155796051027 Epoch: 9/10 Loss: 2.9380401096343993 Epoch: 9/10 Loss: 2.879092709541321 Epoch: 9/10 Loss: 2.881746258497238 Epoch: 9/10 Loss: 2.8951931734085083 Epoch: 9/10 Loss: 2.958187071800232 Epoch: 9/10 Loss: 2.9620415778160094 Epoch: 10/10 Loss: 2.9731231341051982 Epoch: 10/10 Loss: 2.9325652704238894 Epoch: 10/10 Loss: 2.870407527923584 Epoch: 10/10 Loss: 2.86723651266098 Epoch: 10/10 Loss: 2.850922607421875 Epoch: 10/10 Loss: 2.936414031505585 Epoch: 10/10 Loss: 2.8825682010650633 Epoch: 10/10 Loss: 2.8285043711662294 Epoch: 10/10 Loss: 2.8324423470497133 Epoch: 10/10 Loss: 2.8376891388893126 Epoch: 10/10 Loss: 2.910601372718811 Epoch: 10/10 Loss: 2.8955058484077454 Epoch: 10/10 Loss: 2.911742573261261 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)- sequence_length = 10, I first tried with sequence length of 20 but I think due to big size it didn't work for me.- batch_size = 128, I used a batch size of 64 first but as I was training on GPU and thus due to enough resources in memory, I increased it to 128 for efficient training.- num_epochs = 10, Initially I tried with epoch of 20 but it was taking too long to train and I was not seeing any decreasing in loss even after 5 epochs. So, I used 5 epochs, but again I didn't see any improvements after finishing training possibly due to not properly tunning other params.- learning_rate = 0.001, I started with 0.01, but it was taking to long to converge. So, used 0.001 and I saw the drastic improvements.- embedding_dim = 150, After reading few posts in udacity student forums, I increased this value from 128 to 150. And it seemed to work.- hidden_dim = 512, I started with 256, but increased it to 512 along with tunning other params to decrease the loss, and this works well.- n_layers = 2, As this should be between 1-3, I chose 2 and this is sufficient enough to train efficiently. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: rise kessler. george: what? jerry: it's a crime. hoyt: and the milk was correct. chiles: soup nazi? elaine: oh, no, not the ones! hoyt: so you think she's killed? jerry: i don't know. but it is a conveyance. elaine: what do you mean? elaine: well, i was just going into the parking lot of health. hoyt: and then who was this woman? elaine: i know. jerry: i can't believe we're going. jerry: well, it's the only one who lives in the wheelchair. elaine: you know, you know, the only ones who has been discussing mortal danger. hoyt: so what did you do about that 400 lady? hoyt: i don't know what this means. hoyt: so, essentially who invaded spain up to? jerry: what is this about the defendants of darkness. beep? george: no- one's not. elaine: well maybe we could get together. you gotta go to paris and die, massachusetts, and then i can prove you were making robbed medium. jerry: so, you think we could refill a relationship. hoyt: you know what? i mean, it's a good evening. jerry: you know, you can call the court. they don't have to create a bystander. jerry: you want the video? jerry: i don't think so. george: oh, yeah. george: oh! come on, come on, sit down, sit down. [new witness: moors guard: soup's a waste hilly. jane, essentially, and, and you know, i would have to get out of here. jerry: what is your name? kramer: jackie complaining? jerry: no no no no. donald. i think it's a good samaritan sandwich. elaine: you know, the whole wheelchair is, they would have ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code %reload_ext autoreload %autoreload 2 %matplotlib inline ###Output _____no_output_____ ###Markdown To allow for long-running processes (i.e. network training) import [workspace_utils](https://github.com/udacity/workspaces-student-support/tree/master/jupyter). Using magic command %load to import into next cell. ###Code import os project_dir = "/home/workspace/" os.path.isfile(project_dir + "workspace_utils.py") # %load workspace_utils.py import signal from contextlib import contextmanager import requests DELAY = INTERVAL = 4 * 60 # interval time in seconds MIN_DELAY = MIN_INTERVAL = 2 * 60 KEEPALIVE_URL = "https://nebula.udacity.com/api/v1/remote/keep-alive" TOKEN_URL = "http://metadata.google.internal/computeMetadata/v1/instance/attributes/keep_alive_token" TOKEN_HEADERS = {"Metadata-Flavor":"Google"} def _request_handler(headers): def _handler(signum, frame): requests.request("POST", KEEPALIVE_URL, headers=headers) return _handler @contextmanager def active_session(delay=DELAY, interval=INTERVAL): """ Example: from workspace_utils import active_session with active_session(): # do long-running work here """ token = requests.request("GET", TOKEN_URL, headers=TOKEN_HEADERS).text headers = {'Authorization': "STAR " + token} delay = max(delay, MIN_DELAY) interval = max(interval, MIN_INTERVAL) original_handler = signal.getsignal(signal.SIGALRM) try: signal.signal(signal.SIGALRM, _request_handler(headers)) signal.setitimer(signal.ITIMER_REAL, delay, interval) yield finally: signal.signal(signal.SIGALRM, original_handler) signal.setitimer(signal.ITIMER_REAL, 0) def keep_awake(iterable, delay=DELAY, interval=INTERVAL): """ Example: from workspace_utils import keep_awake for i in keep_awake(range(5)): # do iteration with lots of work here """ with active_session(delay, interval): yield from iterable """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown [Explore](dataExplore) data in more depth, and [export refined version](dataRefine) - **See Appendix, where after data exploration, very short and unintelligible entries are removed**- **Then, data is saved in alternative Seinfeld_Scripts_cleaned.txt** Set up a word2vec lookup so we can use pre-trained weights later- https://medium.com/@martinpella/how-to-use-pre-trained-word-embeddings-in-pytorch-71ca59249f76- using the Glove 6B 300 embeddings set- allow for previously running the code and saving the weights matrix as weights_matrix.pkl, in which case we can bypass this ###Code weights_matrix = [] glove_path = '../../data/glove6B' weights_file = 'weights_matrix.pkl' use_word2vec = False import os import numpy as np import pickle if os.path.isfile(f'{weights_file}'): weights_matrix = pickle.load(open(f'weights_matrix.pkl', 'rb')) use_word2vec = True use_word2vec ###Output _____no_output_____ ###Markdown **Next step should not be required as we load the pre-built weights above from a pickle file** ###Code if not use_word2vec: glove_file = os.path.join(f'{glove_path}/glove.6B.300d.txt') use_word2vec = (os.path.isfile(glove_file)) use_word2vec use_word2vec and len(weights_matrix) > 0 use_word2vec and os.path.isfile(f'{glove_path}/6B.300_words.pkl') ###Output _____no_output_____ ###Markdown **If running creation of word2vec vectors below bcolz will be required, however we bypass this by loading pre-built weights above**- **Therefore, do not run the next 3 cells...** ###Code !conda install -c conda-forge bcolz if use_word2vec and len(weights_matrix) == 0 and not os.path.isfile(f'{glove_path}/6B.300_words.pkl'): import bcolz import numpy as np import pickle w2v_words = [] idx = 0 w2v_word2idx = {} w2v_vectors = bcolz.carray(np.zeros(1), rootdir=f'{glove_path}/6B.300.dat', mode='w') with open(f'{glove_path}/glove.6B.300d.txt', 'rb') as f: for l in f: line = l.decode().split() word = line[0] w2v_words.append(word) w2v_word2idx[word] = idx idx += 1 vect = np.array(line[1:]).astype(np.float) w2v_vectors.append(vect) w2v_vectors = bcolz.carray(w2v_vectors[1:].reshape((400000, 300)), rootdir=f'{glove_path}/6B.300.dat', mode='w') w2v_vectors.flush() pickle.dump(w2v_words, open(f'{glove_path}/6B.300_words.pkl', 'wb')) pickle.dump(w2v_word2idx, open(f'{glove_path}/6B.300_idx.pkl', 'wb')) if use_word2vec and len(weights_matrix) == 0 : import bcolz import pickle w2v_vectors = bcolz.open(f'{glove_path}/6B.300.dat')[:] w2v_words = pickle.load(open(f'{glove_path}/6B.300_words.pkl', 'rb')) w2v_word2idx = pickle.load(open(f'{glove_path}/6B.300_idx.pkl', 'rb')) glove = {w: w2v_vectors[w2v_word2idx[w]] for w in w2v_words} ###Output _____no_output_____ ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code from collections import Counter import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function if type(text) == str: text = text.split() word_counts = Counter(text) # sorting the words from most to least frequent in text occurrence sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) # create int_to_vocab dictionaries int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token_dict = { '.' : '||period||', ',' : '||comma||', '"' : '||quotation_mark||', ';' : '||semi_colon||', '!' : '||exclamation_mark||', '?' : '||question_mark||', '(' : '||left_parentheses||', ')' : '||right_parentheses||', '-' : '||dash||', '\n' : '||return||' } return token_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code # Run this cell only if you are using Google colab !rm -r data/ !git clone https://github.com/ahmedmbakr/deep-learning-v2-pytorch/ !mv deep-learning-v2-pytorch/project-tv-script-generation/* . !rm -rf deep-learning-v2-pytorch/ !rm dlnd_tv_script_generation.ipynb """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function counts = Counter(text) # counts is a dictionary, where the key is a word and its value is its number of occurrences vocab = sorted(counts, key=counts.get, reverse=True) vocab_to_int = {word: idx for idx, word in enumerate(vocab)} int_to_vocab = {idx: word for idx, word in enumerate(vocab)} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function dict = {'.': '||period||', ',': '||comma||', '"': '||quotation_mark||', ';': '||semicolon||', '!': '||exclamation_mark||', '?': '||question_mark||', '(': '||left_parentheses||', ')': '||right_parentheses||', '-': '||dash||', '\n': '||return||'} return dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader import torch def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function number_of_batches = len(words)//batch_size words = words[:number_of_batches*batch_size] features_vec = [] labels = [] for i in range(len(words) - sequence_length): features_vec.append(words[i: i+ sequence_length]) labels.append(words[i + sequence_length]) features_vec = np.array(features_vec) labels = np.array(labels) train_data = TensorDataset(torch.from_numpy(features_vec), torch.from_numpy(labels)) train_loader = DataLoader(train_data, shuffle=True, batch_size=batch_size) # return a dataloader return train_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own train_loader = batch_data([1,2,3,4,5,6,7], 4, 2) for train_features, train_labels in train_loader: print("Features:") print("\tSize: ", train_features.shape) print("\tData: ", train_features) print("Labels:") print("\tSize: ", train_labels.shape) print("\tData: ", train_labels) ###Output Features: Size: torch.Size([2, 4]) Data: tensor([[1, 2, 3, 4], [2, 3, 4, 5]]) Labels: Size: torch.Size([2]) Data: tensor([5, 6]) ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[12, 13, 14, 15, 16], [34, 35, 36, 37, 38], [29, 30, 31, 32, 33], [ 8, 9, 10, 11, 12], [ 2, 3, 4, 5, 6], [42, 43, 44, 45, 46], [ 4, 5, 6, 7, 8], [27, 28, 29, 30, 31], [23, 24, 25, 26, 27], [20, 21, 22, 23, 24]]) torch.Size([10]) tensor([17, 39, 34, 13, 7, 47, 9, 32, 28, 25]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim self.output_size = output_size # define all layers self.embedding = nn.Embedding(num_embeddings=vocab_size, embedding_dim=embedding_dim) self.lstm = nn.LSTM(input_size=embedding_dim, hidden_size=hidden_dim, batch_first=True, num_layers=n_layers, dropout=dropout) self.fc = nn.Linear(in_features=hidden_dim, out_features=output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) embeddings = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeddings, hidden) # lstm_output size is (batch_size, seq_length, hidden_dim) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # size is (batch_size * seq_length, hidden_dim) output = self.fc(lstm_out) # size is (batch_size*seq_length, output_size) output = output.view(batch_size, -1, self.output_size) # return one batch of output word scores and the hidden state return output[:,-1,:], hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden, clip=5): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: inp = inp.cuda() target = target.cuda() rnn.cuda() hidden = tuple([each.data for each in hidden]) # perform backpropagation and optimization # zero accumulated gradients rnn.zero_grad() # get the output from the model output, h = rnn(inp, hidden) # calculate the loss and perform backprop loss = criterion(output.squeeze(), target) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 500 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 20 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(int_to_vocab) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 400 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 20 epoch(s)... Epoch: 1/20 Loss: 5.328217841148376 Epoch: 1/20 Loss: 4.579354710578919 Epoch: 1/20 Loss: 4.368084780216217 Epoch: 2/20 Loss: 4.181097328738995 Epoch: 2/20 Loss: 4.075264681339264 Epoch: 2/20 Loss: 4.030428939819336 Epoch: 3/20 Loss: 3.9267739162591226 Epoch: 3/20 Loss: 3.8696484966278075 Epoch: 3/20 Loss: 3.852487372875214 Epoch: 4/20 Loss: 3.7827496747860963 Epoch: 4/20 Loss: 3.7328899631500243 Epoch: 4/20 Loss: 3.7185927472114564 Epoch: 5/20 Loss: 3.6586176642665156 Epoch: 5/20 Loss: 3.6243782715797423 Epoch: 5/20 Loss: 3.6367754826545715 Epoch: 6/20 Loss: 3.5592333095131554 Epoch: 6/20 Loss: 3.536521517276764 Epoch: 6/20 Loss: 3.546740944862366 Epoch: 7/20 Loss: 3.4769521469052878 Epoch: 7/20 Loss: 3.467031841278076 Epoch: 7/20 Loss: 3.479037853717804 Epoch: 8/20 Loss: 3.4126599039002246 Epoch: 8/20 Loss: 3.395670522212982 Epoch: 8/20 Loss: 3.4113064551353456 Epoch: 9/20 Loss: 3.35177768966704 Epoch: 9/20 Loss: 3.3366590361595154 Epoch: 9/20 Loss: 3.3500011506080627 Epoch: 10/20 Loss: 3.288271298962687 Epoch: 10/20 Loss: 3.2833918738365173 Epoch: 10/20 Loss: 3.3056934962272644 Epoch: 11/20 Loss: 3.2440229823306144 Epoch: 11/20 Loss: 3.2437193269729616 Epoch: 11/20 Loss: 3.2575005469322202 Epoch: 12/20 Loss: 3.1957891112238666 Epoch: 12/20 Loss: 3.196294835090637 Epoch: 12/20 Loss: 3.221501992225647 Epoch: 13/20 Loss: 3.167061459515743 Epoch: 13/20 Loss: 3.153742591381073 Epoch: 13/20 Loss: 3.1755625610351563 Epoch: 14/20 Loss: 3.126175165785379 Epoch: 14/20 Loss: 3.1193177909851073 Epoch: 14/20 Loss: 3.1494939904212953 Epoch: 15/20 Loss: 3.0894218505113975 Epoch: 15/20 Loss: 3.093368791103363 Epoch: 15/20 Loss: 3.1114408712387087 Epoch: 16/20 Loss: 3.0625199565181025 Epoch: 16/20 Loss: 3.0643949279785154 Epoch: 16/20 Loss: 3.0867559518814085 Epoch: 17/20 Loss: 3.0399409098643453 Epoch: 17/20 Loss: 3.027000280857086 Epoch: 17/20 Loss: 3.060256417751312 Epoch: 18/20 Loss: 3.008726236007223 Epoch: 18/20 Loss: 3.013799873828888 Epoch: 18/20 Loss: 3.0325880279541018 Epoch: 19/20 Loss: 2.988782970080126 Epoch: 19/20 Loss: 2.98451042509079 Epoch: 19/20 Loss: 3.008022735595703 Epoch: 20/20 Loss: 2.958576929828064 Epoch: 20/20 Loss: 2.959776393890381 Epoch: 20/20 Loss: 2.988870225906372 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)- Sequence length: I tries sequence lengths between 10 and 20, with 10 being the best option, as the average sentence length is 5.6 words- Learning Rate: Tried learning rate 0.01, but it converges at 3.6 for more than 7 epochs and the learning rate 0.001 acheives better results as shown in the notebook results.- Num Epochs: After training for a while, I found that 20 epochs is a resonable number that achieves 2.9 in loss, which is good for passing the project. Furthermore, the network started to converge for more than 4 epochs --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: is all about the other line? jerry: no. george:(confused) i don't know... you have to be in a slump? jerry: yeah, yeah. i got it in the building. i don't know what they do. kramer: oh, i know. i mean, it's just a little concerned. jerry:(to george, rewoman) oh, you know what? elaine: what? jerry: i know it's like a sunny. george: i don't think i should go for the rest of your life. jerry: oh. you know, it's not really much.(jerry walks into his tracks) kramer: well you gotta go. jerry: i don't know.... george:(to jerry) hey, you got a problem with the swirl? kramer: no! jerry: you can't go to the bathroom. george: i don't want to talk. jerry:(to kramer) hey, i just wanted to talk, i don't know what i am. jerry: i mean, we were in my building, you have to be there, and now, i'll tell you what, chubs.(to elaine) i got some cardboard on the outs. i got a new recliner of water.(to elaine) you know, i can't believe that... you got a little lysol on it. george: i think i could. jerry: what do you want to say when you were making a lot of women in danbury. jerry: i mean what about the show? george: what do you mean? jerry: i think i can get it out. jerry:(smiling) well, you don't want it! george:(to kramer) i don't know, i can't take my money back. kramer:(to kramer) hey, what am i supposed to do with this thing? george: what? ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_unique = list(set(text)) vocab_to_int = {word: ii for ii, word in enumerate(word_unique)} int_to_vocab = {ii: word for word, ii in vocab_to_int.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token = { '.': '||Period||', ',': '||Comma||', '"': '||Quotation_Mark||', ';': '||Semicolon||', '!': '||Exclamation_Mark||', '?': '||Question_Mark||', '(': '||Left_Parentheses||', ')': '||Rigth_Paranthesis||', '-': '||Dash||', '\n': '||Return||', } return token """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function number = len(words) - sequence_length train_x = np.zeros((number, sequence_length)) train_y = np.zeros(number) for idx in range(0, len(words) - sequence_length, 1): train_x[idx] = words[idx:idx+sequence_length] train_y[idx] = words[idx+sequence_length] # return a dataloader train_x, train_y = train_x.astype(np.int), train_y.astype(np.int) data = TensorDataset(torch.from_numpy(train_x), torch.from_numpy(train_y)) data_loader = DataLoader(data, batch_size=batch_size, shuffle=True) return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own loader = batch_data(int_text, 10, 5) loader_iter = iter(loader) x, y = loader_iter.next() print(x) print(y) ###Output tensor([[10915, 6191, 12842, 10727, 11216, 12070, 14734, 4585, 17886, 9921], [ 5777, 7971, 4534, 2699, 5901, 7288, 9921, 20661, 20661, 21264], [21264, 3382, 17526, 13787, 17526, 13787, 14752, 9921, 13787, 14752], [20661, 20661, 2629, 14089, 13221, 5543, 2729, 15491, 17950, 13959], [ 4534, 20948, 13632, 2949, 17526, 2949, 2224, 9921, 9921, 9921]], dtype=torch.int32) tensor([20661, 8211, 9921, 643, 9921], dtype=torch.int32) ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[24, 25, 26, 27, 28], [21, 22, 23, 24, 25], [35, 36, 37, 38, 39], [30, 31, 32, 33, 34], [13, 14, 15, 16, 17], [32, 33, 34, 35, 36], [10, 11, 12, 13, 14], [ 0, 1, 2, 3, 4], [ 6, 7, 8, 9, 10], [40, 41, 42, 43, 44]], dtype=torch.int32) torch.Size([10]) tensor([29, 26, 40, 35, 18, 37, 15, 5, 11, 45], dtype=torch.int32) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.vocab_size = vocab_size self.output_size = output_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers # define model layers self.embed = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.dropout = nn.Dropout(dropout) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) embed_out = self.embed(nn_input.long()) lstm_out, hidden = self.lstm(embed_out, hidden) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) output = self.dropout(lstm_out) output = self.fc(output) output = output.view(batch_size, -1, self.output_size) out = output[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): inp, target = inp.cuda(), target.cuda() # 这条命令把之前的hidden required_grads设置为否,等于是只在乎当前的batch hidden = tuple([each.data for each in hidden]) # perform backpropagation and optimization rnn.zero_grad() output, hidden = rnn(inp, hidden) loss = criterion(output, target.long()) loss.backward() nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 8 # of words in a sequence # Batch Size batch_size = 256 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 30 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 400 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 3 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 30 epoch(s)... Epoch: 1/30 Loss: 5.653651537895203 Epoch: 1/30 Loss: 4.90751216506958 Epoch: 1/30 Loss: 4.691600054740905 Epoch: 1/30 Loss: 4.5743850994110105 Epoch: 1/30 Loss: 4.495138036251068 Epoch: 1/30 Loss: 4.409648418903351 Epoch: 2/30 Loss: 4.334919147375153 Epoch: 2/30 Loss: 4.239747682571411 Epoch: 2/30 Loss: 4.22359389591217 Epoch: 2/30 Loss: 4.208342519760132 Epoch: 2/30 Loss: 4.18584727525711 Epoch: 2/30 Loss: 4.1757828798294065 Epoch: 3/30 Loss: 4.122651407389137 Epoch: 3/30 Loss: 4.06463751745224 Epoch: 3/30 Loss: 4.052458032608032 Epoch: 3/30 Loss: 4.053941530227661 Epoch: 3/30 Loss: 4.044666540622711 Epoch: 3/30 Loss: 4.031877816200256 Epoch: 4/30 Loss: 3.993378814158401 Epoch: 4/30 Loss: 3.9424355187416076 Epoch: 4/30 Loss: 3.9386117115020753 Epoch: 4/30 Loss: 3.943090013027191 Epoch: 4/30 Loss: 3.961048149108887 Epoch: 4/30 Loss: 3.950304046630859 Epoch: 5/30 Loss: 3.8977849951119925 Epoch: 5/30 Loss: 3.8512346148490906 Epoch: 5/30 Loss: 3.8793023271560667 Epoch: 5/30 Loss: 3.876558602809906 Epoch: 5/30 Loss: 3.8852452478408814 Epoch: 5/30 Loss: 3.871468797206879 Epoch: 6/30 Loss: 3.833934332054805 Epoch: 6/30 Loss: 3.7882692008018495 Epoch: 6/30 Loss: 3.814844542503357 Epoch: 6/30 Loss: 3.80259716463089 Epoch: 6/30 Loss: 3.837701565742493 Epoch: 6/30 Loss: 3.814786448478699 Epoch: 7/30 Loss: 3.793363190763365 Epoch: 7/30 Loss: 3.7537921266555787 Epoch: 7/30 Loss: 3.7632973465919495 Epoch: 7/30 Loss: 3.760328760147095 Epoch: 7/30 Loss: 3.769103415966034 Epoch: 7/30 Loss: 3.767963858604431 Epoch: 8/30 Loss: 3.7466340959072113 Epoch: 8/30 Loss: 3.7119698834419252 Epoch: 8/30 Loss: 3.7229914646148683 Epoch: 8/30 Loss: 3.7427628273963927 Epoch: 8/30 Loss: 3.731445463180542 Epoch: 8/30 Loss: 3.730895607471466 Epoch: 9/30 Loss: 3.701259089194662 Epoch: 9/30 Loss: 3.6684669823646545 Epoch: 9/30 Loss: 3.683648962497711 Epoch: 9/30 Loss: 3.6998754215240477 Epoch: 9/30 Loss: 3.711835563659668 Epoch: 9/30 Loss: 3.7058543939590454 Epoch: 10/30 Loss: 3.6758872163974172 Epoch: 10/30 Loss: 3.6378495421409607 Epoch: 10/30 Loss: 3.6526355443000793 Epoch: 10/30 Loss: 3.6671325368881225 Epoch: 10/30 Loss: 3.66367187833786 Epoch: 10/30 Loss: 3.7037854652404785 Epoch: 11/30 Loss: 3.6374831652738213 Epoch: 11/30 Loss: 3.613449089050293 Epoch: 11/30 Loss: 3.627688611984253 Epoch: 11/30 Loss: 3.6395210666656492 Epoch: 11/30 Loss: 3.6616045937538146 Epoch: 11/30 Loss: 3.6401246671676635 Epoch: 12/30 Loss: 3.627249090167565 Epoch: 12/30 Loss: 3.58425994682312 Epoch: 12/30 Loss: 3.6095239901542664 Epoch: 12/30 Loss: 3.604109926700592 Epoch: 12/30 Loss: 3.623690320968628 Epoch: 12/30 Loss: 3.6466622977256775 Epoch: 13/30 Loss: 3.5900592549545007 Epoch: 13/30 Loss: 3.5625737166404723 Epoch: 13/30 Loss: 3.580409061431885 Epoch: 13/30 Loss: 3.5951049642562865 Epoch: 13/30 Loss: 3.606347478866577 Epoch: 13/30 Loss: 3.6214797172546387 Epoch: 14/30 Loss: 3.568286045780027 Epoch: 14/30 Loss: 3.5563666639328004 Epoch: 14/30 Loss: 3.5614310340881348 Epoch: 14/30 Loss: 3.576685881137848 Epoch: 14/30 Loss: 3.5805896663665773 Epoch: 14/30 Loss: 3.576421980857849 Epoch: 15/30 Loss: 3.5507966890567686 Epoch: 15/30 Loss: 3.5327212505340575 Epoch: 15/30 Loss: 3.5482060432434084 Epoch: 15/30 Loss: 3.5551900625228883 Epoch: 15/30 Loss: 3.550418635845184 Epoch: 15/30 Loss: 3.56854900932312 Epoch: 16/30 Loss: 3.532493113986845 Epoch: 16/30 Loss: 3.5089347772598267 Epoch: 16/30 Loss: 3.519918125629425 Epoch: 16/30 Loss: 3.524654601097107 Epoch: 16/30 Loss: 3.5563516554832457 Epoch: 16/30 Loss: 3.5414532289505005 Epoch: 17/30 Loss: 3.5278723479771035 Epoch: 17/30 Loss: 3.4890005717277526 Epoch: 17/30 Loss: 3.5037870893478393 Epoch: 17/30 Loss: 3.5105055804252623 Epoch: 17/30 Loss: 3.5204403195381166 Epoch: 17/30 Loss: 3.5319206948280333 Epoch: 18/30 Loss: 3.4999972567325686 Epoch: 18/30 Loss: 3.48245787525177 Epoch: 18/30 Loss: 3.4949358801841734 Epoch: 18/30 Loss: 3.4959473910331726 Epoch: 18/30 Loss: 3.5166872444152832 Epoch: 18/30 Loss: 3.5102215929031373 Epoch: 19/30 Loss: 3.4804890218789017 Epoch: 19/30 Loss: 3.4623445014953615 Epoch: 19/30 Loss: 3.4759190764427186 Epoch: 19/30 Loss: 3.502761978626251 Epoch: 19/30 Loss: 3.4779168181419373 Epoch: 19/30 Loss: 3.508084747314453 Epoch: 20/30 Loss: 3.46266587042227 Epoch: 20/30 Loss: 3.4527813234329225 Epoch: 20/30 Loss: 3.4639769911766054 Epoch: 20/30 Loss: 3.4709736428260802 Epoch: 20/30 Loss: 3.485342619895935 Epoch: 20/30 Loss: 3.4832906169891356 Epoch: 21/30 Loss: 3.4530542858732427 Epoch: 21/30 Loss: 3.4330017304420473 Epoch: 21/30 Loss: 3.4354477338790894 Epoch: 21/30 Loss: 3.4521112327575683 Epoch: 21/30 Loss: 3.4764281101226806 Epoch: 21/30 Loss: 3.4916711301803587 Epoch: 22/30 Loss: 3.4417117162933195 Epoch: 22/30 Loss: 3.4275919208526613 Epoch: 22/30 Loss: 3.42921399307251 Epoch: 22/30 Loss: 3.449096960544586 Epoch: 22/30 Loss: 3.457567615509033 Epoch: 22/30 Loss: 3.467813799381256 Epoch: 23/30 Loss: 3.438223399282471 Epoch: 23/30 Loss: 3.406054844379425 Epoch: 23/30 Loss: 3.4144740524291994 Epoch: 23/30 Loss: 3.40874263381958 Epoch: 23/30 Loss: 3.4570819439888 Epoch: 23/30 Loss: 3.4628853545188902 Epoch: 24/30 Loss: 3.4173108714867415 Epoch: 24/30 Loss: 3.4038249850273132 Epoch: 24/30 Loss: 3.3983858695030214 Epoch: 24/30 Loss: 3.4265176091194154 Epoch: 24/30 Loss: 3.43389954662323 Epoch: 24/30 Loss: 3.4413152842521666 Epoch: 25/30 Loss: 3.4147290468700535 Epoch: 25/30 Loss: 3.390251907348633 Epoch: 25/30 Loss: 3.392515392780304 Epoch: 25/30 Loss: 3.4004006690979005 Epoch: 25/30 Loss: 3.4263303847312927 Epoch: 25/30 Loss: 3.424504452705383 Epoch: 26/30 Loss: 3.387876789502012 Epoch: 26/30 Loss: 3.386119505882263 Epoch: 26/30 Loss: 3.3824402055740355 Epoch: 26/30 Loss: 3.4038275060653684 Epoch: 26/30 Loss: 3.403069474220276 Epoch: 26/30 Loss: 3.422062706947327 Epoch: 27/30 Loss: 3.3852112978939117 Epoch: 27/30 Loss: 3.364732520580292 Epoch: 27/30 Loss: 3.372291766166687 Epoch: 27/30 Loss: 3.3911485948562623 Epoch: 27/30 Loss: 3.4038173732757566 Epoch: 27/30 Loss: 3.4150177001953126 Epoch: 28/30 Loss: 3.3832248524437105 Epoch: 28/30 Loss: 3.3440801153182984 Epoch: 28/30 Loss: 3.3625323009490966 Epoch: 28/30 Loss: 3.392375905036926 Epoch: 28/30 Loss: 3.392505485534668 Epoch: 28/30 Loss: 3.4021625127792356 Epoch: 29/30 Loss: 3.356802045087504 Epoch: 29/30 Loss: 3.3434771904945375 Epoch: 29/30 Loss: 3.3626143341064454 Epoch: 29/30 Loss: 3.3663632860183714 Epoch: 29/30 Loss: 3.3820041136741636 Epoch: 29/30 Loss: 3.391364590167999 Epoch: 30/30 Loss: 3.3617617255303918 Epoch: 30/30 Loss: 3.334050114631653 Epoch: 30/30 Loss: 3.3524353551864623 Epoch: 30/30 Loss: 3.35804864025116 Epoch: 30/30 Loss: 3.369401752948761 Epoch: 30/30 Loss: 3.3722629885673525 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** All hyperparameters are chosen by previous lectures value, and sequence_lengths is chosen by intuition. Because I think to predict a word, considerable context like 10 words nearby should be known. Learning rate is changed from 0.01 to 0.001, for by former one the loss stuck around 4.0 and stop decreasing. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: i think you're not gonna get any of this. jerry: i don't know, you know. jerry: oh, hi. elaine: hello! jerry: hi, it's elaine. jerry: hello. jerry: hey, hey, you know, i don't even know what to tell you. jerry: well you know, it's not the same, but you know, i was wondering that the guy who was in a coma. i mean, if you want a little more, like a.....(jerry nods) jerry: hey, jerry! i got a great time. jerry: well, i guess i was just trying to get out of the building. i think he was going to do something like that?(jerry looks at george) hey! elaine: hey. george: hey. elaine: hey. jerry: hey... jerry:(cont'd) what are you doing here? kramer: no, i'm going to be late. jerry: oh, yeah. george:(to kramer) hey, you know what? you know, it's a little strange thing! elaine: oh, no, i don't know what to tell you, i'm going to get some popcorn, and i don't want to know how much i am. jerry: i think it's a mistake. george: oh, i think you can get the ball. george: what is that? jerry:(to elaine) i can't believe you were going to be a little bit. george: what is it? george: well, it might be very good to know what you said, but you know, i think you can do it. morty:(to kramer) i can't believe it was that! i can't believe that you were going to get out of here.(george nods) elaine: hi. jerry: hello. kramer: hello jerry. ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data from collections import Counter import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ word_counts = Counter(text) # sorting the words from most to least frequent in text occurrence sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) # create int_to_vocab dictionaries int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ tokens = dict() tokens['.'] = '<PERIOD>' tokens[','] = '<COMMA>' tokens['"'] = '<QUOTATION_MARK>' tokens[';'] = '<SEMICOLON>' tokens['!'] = '<EXCLAMATION_MARK>' tokens['?'] = '<QUESTION_MARK>' tokens['('] = '<LEFT_PAREN>' tokens[')'] = '<RIGHT_PAREN>' tokens['?'] = '<QUESTION_MARK>' tokens['-'] = '<DASH>' tokens['\n'] = '<NEW_LINE>' return tokens """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ n_batches = len(words)//batch_size # only full batches words = words[:n_batches*batch_size] y_len = len(words) - sequence_length x, y = [], [] for idx in range(0, y_len): idx_end = sequence_length + idx x_batch = words[idx:idx_end] x.append(x_batch) # print("feature: ",x_batch) batch_y = words[idx_end] # print("target: ", batch_y) y.append(batch_y) # create Tensor datasets data = TensorDataset(torch.from_numpy(np.asarray(x)), torch.from_numpy(np.asarray(y))) # make sure the SHUFFLE your training data data_loader = DataLoader(data, shuffle=False, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5,lr=0.001): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # define embedding layer self.embedding = nn.Embedding(vocab_size, embedding_dim) ## Define the LSTM self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # Define the final, fully-connected output layer self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ batch_size = nn_input.size(0) # embeddings and lstm_out embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer out = self.fc(lstm_out) # reshape into (batch_size, seq_length, output_size) out = out.view(batch_size, -1, self.output_size) # get last batch out = out[:, -1] return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Create two new tensors with sizes n_layers x batch_size x hidden_dim, # initialized to zero, for hidden state and cell state of LSTM weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # move model to GPU, if available if(train_on_gpu): rnn.cuda() # # Creating new variables for the hidden state, otherwise # # we'd backprop through the entire training history h = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() if(train_on_gpu): inputs, target = inp.cuda(), target.cuda() # print(h[0].data) # get predicted outputs output, h = rnn(inputs, h) # calculate loss loss = criterion(output, target) # optimizer.zero_grad() loss.backward() # 'clip_grad_norm' helps prevent the exploding gradient problem in RNNs / LSTMs nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() return loss.item(), h """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 250 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 2000 print(len(vocab_to_int)) ###Output 21388 ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 4.940719823598862 Epoch: 1/10 Loss: 4.498707127332687 Epoch: 1/10 Loss: 4.355592090010643 Epoch: 2/10 Loss: 4.11676691709503 Epoch: 2/10 Loss: 3.943764536857605 Epoch: 2/10 Loss: 3.898621161222458 Epoch: 3/10 Loss: 3.8112251646917144 Epoch: 3/10 Loss: 3.7209423907995225 Epoch: 3/10 Loss: 3.694894492983818 Epoch: 4/10 Loss: 3.656496029899448 Epoch: 4/10 Loss: 3.5812808928489686 Epoch: 4/10 Loss: 3.5513569011688233 Epoch: 5/10 Loss: 3.5290392236407553 Epoch: 5/10 Loss: 3.471140544652939 Epoch: 5/10 Loss: 3.4477819299697874 Epoch: 6/10 Loss: 3.436254263325843 Epoch: 6/10 Loss: 3.3901546934843063 Epoch: 6/10 Loss: 3.368346190929413 Epoch: 7/10 Loss: 3.3658659773052864 Epoch: 7/10 Loss: 3.3298056559562683 Epoch: 7/10 Loss: 3.304908910870552 Epoch: 8/10 Loss: 3.309646376140034 Epoch: 8/10 Loss: 3.279695846915245 Epoch: 8/10 Loss: 3.2542127801179888 Epoch: 9/10 Loss: 3.2628642196121884 Epoch: 9/10 Loss: 3.2398793606758116 Epoch: 9/10 Loss: 3.210788159966469 Epoch: 10/10 Loss: 3.2232657392230637 Epoch: 10/10 Loss: 3.2002066918611525 Epoch: 10/10 Loss: 3.1699355088472365 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** Going over the course material regarding embedding, I noticed that typical embedding dimensions are around 200 - 300 in size.Upon reading from different sources: https://arxiv.org/pdf/1707.06799.pdf https://github.com/wojzaremba/lstm/blob/76870253cfca069477f06b7056af87f98490b6eb/main.luaL44 https://machinelearningmastery.com/tune-lstm-hyperparameters-keras-time-series-forecasting/ as well as going over the course examples (Skip-gram Word2Vec, Simple RNN, Sentiment Analysis with an RNN) and onlder courses intuition, I chose the parameters.I tried: sequence_length = 10, batch_size = 64, learning_rate = 0.01, embedding_dim = 200, hidden_dim = 200, n_layers = 2. Started with loss 9.25 and after 4 epochs the loss was still around 9.26. sequence_length = 10, batch_size = 64, learning_rate = 0.003, embedding_dim = 300, hidden_dim = 250, n_layers = 2 Started with Loss: 9.202159190654754 and at epoch 4 it was Loss: 9.206429640371343 sequence_length = 20, batch_size = 20, learning_rate = 0.3, embedding_dim = 300, hidden_dim = 250, n_layers = 2 Started with Loss: 9.70091618013382, and at epoch 4 it was still around 9.6 sequence_length = 20, batch_size = 124, learning_rate = 1, embedding_dim = 200, hidden_dim = 200, n_layers = 2 Started with Epoch: 1/10 Loss: 9.50547212076187 ..At this point i realized I have some bugs in my code related to zero_grad, extra dropout layer and sigmoid layer. Fixed issues and retried: sequence_length = 10, batch_size = 128, learning_rate = 0.001, embedding_dim = 200, hidden_dim = 250, n_layers = 2 Started with: Training for 10 epoch(s)... Epoch: 1/10 Loss: 4.944083527803421 ... Epoch: 4/10 Loss: 3.5780555000305174 ... Epoch: 7/10 Loss: 3.3266124720573425 ... sequence_length = 10, batch_size = 124, learning_rate = 0.1, embedding_dim = 200, hidden_dim = 200, n_layers = 2 Started with Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.481069218158722 Epoch: 2/10 Loss: 5.025624033570289 Epoch: 3/10 Loss: 4.981013494968415I stopped here, because, even if it was decreasing it seemd to converge way slower than the previous experiment with a lower learning rate and a slightly bigger hidden_dim. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:43: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_2.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables # define model layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state return None, None def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return None, None # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = # of words in a sequence # Batch Size batch_size = # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = # Learning Rate learning_rate = # Model parameters # Vocab size vocab_size = # Output size output_size = # Embedding Dimension embedding_dim = # Hidden Dimension hidden_dim = # Number of RNN Layers n_layers = # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_counts = Counter(text) # sorting the words from most to least frequent in text occurrence sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) # create int_to_vocab dictionaries int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # return tuple return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function '.', ',', '"', ';', '!', '?', '(', ')', '-', '\n' dict_token = {'.':'||period||', ',':'||comma||', '"':'||quotation_mark||', ';':'||semicolon||', '!':'||exclamation_mark||', '?':'||question_mark||', '(':'||left_parentheses||', ')':'||right_parentheses||', '-':'||dash||', '\n':'||return'} return dict_token """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function features = [] targets = [] for i in range(0, len(words) - sequence_length): features.append(words[i:i+sequence_length]) targets.append(words[i+sequence_length]) features = np.array(features) targets = np.array(targets) data = TensorDataset(torch.from_numpy(features), torch.from_numpy(targets)) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own # test dataloader ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[12, 13, 14, 15, 16], [ 6, 7, 8, 9, 10], [21, 22, 23, 24, 25], [39, 40, 41, 42, 43], [24, 25, 26, 27, 28], [36, 37, 38, 39, 40], [29, 30, 31, 32, 33], [18, 19, 20, 21, 22], [30, 31, 32, 33, 34], [ 8, 9, 10, 11, 12]]) torch.Size([10]) tensor([17, 11, 26, 44, 29, 41, 34, 23, 35, 13]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.vocab_size = vocab_size self.output_size = output_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers # define model layers self.embedding = nn.Embedding(self.vocab_size, self.embedding_dim) self.lstm = nn.LSTM(self.embedding_dim, self.hidden_dim, self.n_layers, dropout=dropout, batch_first=True) # linear layers self.fc = nn.Linear(self.hidden_dim, self.output_size) # linear and sigmoid layers self.fc = nn.Linear(hidden_dim, output_size) self.log = nn.LogSoftmax(dim=1) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state batch_size = nn_input.size(0) # embeddings and lstm_out nn_input = nn_input.long() embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer # out = self.dropout(lstm_out) out = self.fc(lstm_out) # log softmax function out = self.log(out) # reshape to be batch_size first out = out.view(batch_size, -1, self.output_size) out = out[:, -1] # get last batch of labels # return last sigmoid output and hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ clip=5 # gradient clipping # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history hidden = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() # get the output from the model output, hidden = rnn(inp, hidden) # calculate the loss and perform backprop loss = criterion(output.squeeze(), target.long()) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 64 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 20 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.736658761024475 Epoch: 1/10 Loss: 5.125327094554901 Epoch: 1/10 Loss: 4.991543843746185 Epoch: 1/10 Loss: 4.907192386627197 Epoch: 1/10 Loss: 4.817068107604981 Epoch: 1/10 Loss: 4.705086775302887 Epoch: 1/10 Loss: 4.692974278450012 Epoch: 1/10 Loss: 4.611390564441681 Epoch: 1/10 Loss: 4.589373518943787 Epoch: 1/10 Loss: 4.53254309463501 Epoch: 1/10 Loss: 4.532573010444641 Epoch: 1/10 Loss: 4.475981976509094 Epoch: 1/10 Loss: 4.458737111091613 Epoch: 1/10 Loss: 4.410513641834259 Epoch: 1/10 Loss: 4.462261398315429 Epoch: 1/10 Loss: 4.384904719829559 Epoch: 1/10 Loss: 4.412528932571411 Epoch: 1/10 Loss: 4.341090875625611 Epoch: 1/10 Loss: 4.365277145385742 Epoch: 1/10 Loss: 4.313001236438751 Epoch: 1/10 Loss: 4.348100092411041 Epoch: 1/10 Loss: 4.274254346847534 Epoch: 1/10 Loss: 4.309982522010803 Epoch: 1/10 Loss: 4.28107989025116 Epoch: 1/10 Loss: 4.252639470100402 Epoch: 1/10 Loss: 4.2668794503211975 Epoch: 1/10 Loss: 4.295347595214844 Epoch: 2/10 Loss: 4.178901625644412 Epoch: 2/10 Loss: 4.093178703784942 Epoch: 2/10 Loss: 4.061955538272858 Epoch: 2/10 Loss: 4.044850610256195 Epoch: 2/10 Loss: 4.07085853767395 Epoch: 2/10 Loss: 4.084657386779785 Epoch: 2/10 Loss: 4.02017689704895 Epoch: 2/10 Loss: 4.092840795516968 Epoch: 2/10 Loss: 4.055262157440185 Epoch: 2/10 Loss: 4.075079744338989 Epoch: 2/10 Loss: 4.043724298477173 Epoch: 2/10 Loss: 4.027819560527801 Epoch: 2/10 Loss: 4.025751362800598 Epoch: 2/10 Loss: 4.05658544254303 Epoch: 2/10 Loss: 4.0108096189498905 Epoch: 2/10 Loss: 4.0870779485702515 Epoch: 2/10 Loss: 4.060791593551635 Epoch: 2/10 Loss: 4.072946607112884 Epoch: 2/10 Loss: 4.034135373115539 Epoch: 2/10 Loss: 4.06848963546753 Epoch: 2/10 Loss: 4.0566342115402225 Epoch: 2/10 Loss: 4.021756707191467 Epoch: 2/10 Loss: 4.03763682603836 Epoch: 2/10 Loss: 4.055242288589477 Epoch: 2/10 Loss: 4.046143504142761 Epoch: 2/10 Loss: 3.9976012234687803 Epoch: 2/10 Loss: 4.015362548828125 Epoch: 3/10 Loss: 3.9316128298116566 Epoch: 3/10 Loss: 3.841157184123993 Epoch: 3/10 Loss: 3.823253267288208 Epoch: 3/10 Loss: 3.8141412796974183 Epoch: 3/10 Loss: 3.842183629989624 Epoch: 3/10 Loss: 3.827045913696289 Epoch: 3/10 Loss: 3.81816468000412 Epoch: 3/10 Loss: 3.871703085899353 Epoch: 3/10 Loss: 3.8313865823745727 Epoch: 3/10 Loss: 3.824892319202423 Epoch: 3/10 Loss: 3.835803173542023 Epoch: 3/10 Loss: 3.8363525438308717 Epoch: 3/10 Loss: 3.865915764808655 Epoch: 3/10 Loss: 3.8483505210876463 Epoch: 3/10 Loss: 3.873537076473236 Epoch: 3/10 Loss: 3.884829065799713 Epoch: 3/10 Loss: 3.880577545642853 Epoch: 3/10 Loss: 3.8969109983444215 Epoch: 3/10 Loss: 3.852950508594513 Epoch: 3/10 Loss: 3.8667793421745302 Epoch: 3/10 Loss: 3.88125945186615 Epoch: 3/10 Loss: 3.878620346069336 Epoch: 3/10 Loss: 3.8892639956474304 Epoch: 3/10 Loss: 3.8855131974220276 Epoch: 3/10 Loss: 3.9142270221710205 Epoch: 3/10 Loss: 3.8740358600616456 Epoch: 3/10 Loss: 3.8966314964294435 Epoch: 4/10 Loss: 3.764946259883519 Epoch: 4/10 Loss: 3.621879717826843 Epoch: 4/10 Loss: 3.6472070951461792 Epoch: 4/10 Loss: 3.644763184547424 Epoch: 4/10 Loss: 3.6753933601379396 Epoch: 4/10 Loss: 3.68244918012619 Epoch: 4/10 Loss: 3.664783829689026 Epoch: 4/10 Loss: 3.7078113021850587 Epoch: 4/10 Loss: 3.720352824211121 Epoch: 4/10 Loss: 3.6864221034049987 Epoch: 4/10 Loss: 3.698038475036621 Epoch: 4/10 Loss: 3.7350022139549255 Epoch: 4/10 Loss: 3.7252344789505005 Epoch: 4/10 Loss: 3.7419666609764097 Epoch: 4/10 Loss: 3.7479772901535036 Epoch: 4/10 Loss: 3.75286576461792 Epoch: 4/10 Loss: 3.743564266204834 Epoch: 4/10 Loss: 3.720660849571228 Epoch: 4/10 Loss: 3.773791268825531 Epoch: 4/10 Loss: 3.742883951187134 Epoch: 4/10 Loss: 3.771033992290497 Epoch: 4/10 Loss: 3.769046573162079 Epoch: 4/10 Loss: 3.768140766620636 Epoch: 4/10 Loss: 3.7594512996673584 Epoch: 4/10 Loss: 3.8039037947654726 Epoch: 4/10 Loss: 3.772921691894531 Epoch: 4/10 Loss: 3.8233641571998596 Epoch: 5/10 Loss: 3.6463201233881097 Epoch: 5/10 Loss: 3.539736171245575 Epoch: 5/10 Loss: 3.538268340587616 Epoch: 5/10 Loss: 3.559518147468567 Epoch: 5/10 Loss: 3.543226071357727 Epoch: 5/10 Loss: 3.5728639197349548 Epoch: 5/10 Loss: 3.5837946224212645 Epoch: 5/10 Loss: 3.6096061220169067 Epoch: 5/10 Loss: 3.5774189486503603 Epoch: 5/10 Loss: 3.5845006217956543 Epoch: 5/10 Loss: 3.588516098022461 Epoch: 5/10 Loss: 3.6028920378684997 Epoch: 5/10 Loss: 3.6090316624641416 Epoch: 5/10 Loss: 3.6190820560455323 Epoch: 5/10 Loss: 3.6119179525375364 Epoch: 5/10 Loss: 3.6212544388771057 Epoch: 5/10 Loss: 3.6378393816947936 Epoch: 5/10 Loss: 3.655143165588379 Epoch: 5/10 Loss: 3.5992249417304993 Epoch: 5/10 Loss: 3.6523594312667846 Epoch: 5/10 Loss: 3.651148400783539 Epoch: 5/10 Loss: 3.6515752282142637 Epoch: 5/10 Loss: 3.6820572514534 Epoch: 5/10 Loss: 3.660417200565338 Epoch: 5/10 Loss: 3.6775714192390443 Epoch: 5/10 Loss: 3.6552570204734804 Epoch: 5/10 Loss: 3.690795940876007 Epoch: 6/10 Loss: 3.4234047689437865 Epoch: 6/10 Loss: 3.4138656578063964 Epoch: 6/10 Loss: 3.4833018317222595 Epoch: 6/10 Loss: 3.463183061122894 Epoch: 6/10 Loss: 3.4603938026428223 Epoch: 6/10 Loss: 3.474855549812317 Epoch: 6/10 Loss: 3.4998416175842286 Epoch: 6/10 Loss: 3.4772879576683042 Epoch: 6/10 Loss: 3.492059448719025 Epoch: 6/10 Loss: 3.524359532356262 Epoch: 6/10 Loss: 3.523784945964813 Epoch: 6/10 Loss: 3.5232100682258607 Epoch: 6/10 Loss: 3.520945044517517 Epoch: 6/10 Loss: 3.533334993362427 Epoch: 6/10 Loss: 3.5381511759757998 Epoch: 6/10 Loss: 3.5819815135002138 Epoch: 6/10 Loss: 3.550620337963104 Epoch: 6/10 Loss: 3.540581825733185 Epoch: 6/10 Loss: 3.5664678201675417 Epoch: 6/10 Loss: 3.5843753423690794 Epoch: 6/10 Loss: 3.5934629945755003 Epoch: 6/10 Loss: 3.567530584812164 Epoch: 6/10 Loss: 3.597407069683075 Epoch: 6/10 Loss: 3.596396448135376 Epoch: 6/10 Loss: 3.574269030570984 Epoch: 7/10 Loss: 3.452623408950302 Epoch: 7/10 Loss: 3.351450464248657 Epoch: 7/10 Loss: 3.365470413684845 Epoch: 7/10 Loss: 3.3561359429359436 Epoch: 7/10 Loss: 3.3450084023475646 Epoch: 7/10 Loss: 3.3796080207824706 Epoch: 7/10 Loss: 3.3846295371055604 Epoch: 7/10 Loss: 3.4034991483688355 Epoch: 7/10 Loss: 3.367743728160858 Epoch: 7/10 Loss: 3.433341740608215 Epoch: 7/10 Loss: 3.4135329275131228 Epoch: 7/10 Loss: 3.42270102930069 Epoch: 7/10 Loss: 3.4442732038497925 Epoch: 7/10 Loss: 3.4657301139831542 Epoch: 7/10 Loss: 3.4642896213531493 Epoch: 7/10 Loss: 3.4376904215812685 Epoch: 7/10 Loss: 3.4494236745834352 Epoch: 7/10 Loss: 3.459057442188263 Epoch: 7/10 Loss: 3.457058773994446 Epoch: 7/10 Loss: 3.4917862105369566 Epoch: 7/10 Loss: 3.463878562450409 Epoch: 7/10 Loss: 3.481965585231781 Epoch: 7/10 Loss: 3.4929272351264955 Epoch: 7/10 Loss: 3.5187024540901186 Epoch: 7/10 Loss: 3.510863247871399 Epoch: 7/10 Loss: 3.4997693314552305 Epoch: 7/10 Loss: 3.5230594906806947 Epoch: 8/10 Loss: 3.3617347051033453 Epoch: 8/10 Loss: 3.2716021885871887 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)First, I set hidden_dim = 128, but loss stop decreasing around 3.8.Next, hidden_dim = 256, it doesn't work.Learning rate 0.01 is bad and embedding_dim = 50, loss stopped around 3.5 at 10 epoch.Finally, set hidden_dim=512, it's OK --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry:. jerry: i mean, if they had a little slow, you were gonna be here in a while. elaine: yeah, yeah, yeah. yeah.... george: i think you should go. jerry: you know i just remembered, i would never be with a... george: i mean, i just wanted to know what it was. i mean i was just a lesbian actor and it was a good idea. i mean, i was just wondering, you don't want to go. newman: well, i didn't get any plantains from this. jerry: well, i was just curious. george: well, i don't know. i was a hipster dufus. i mean, what did he do? george: you don't understand? kramer: yeah. jerry: yeah, i got a message to get you a brand meal. jerry: what? george: i don't think i want. george: oh, no no. i was thinking. jerry: no. kramer: well, i was just trying to get a new new friends. george: i can't believe it! kramer:(laughing) hey, hey, i gotta get this. kramer: well, you know, i don't know, you know, the phillips millers, gritty, the horror. jerry:(sarcastically) oh, my god! elaine: i mean, i think i can do it! elaine: what do you want? george: i don't know. jerry: you mean you want to be a communist? kramer: oh no no, i was just trying to get a little flash. kramer: oh, you got a problem with a girl in your farina. jerry: what is this? george: well, i don't know, i can't... i mean... jerry: i don't know what to do. i'm gonna go to ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter from itertools import islice def create_lookup_tables(words): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ words_counter = Counter(words) vocab_to_int = {pair[0]: idx for idx, pair in enumerate(words_counter.most_common())} int_to_vocab = {val: key for key, val in vocab_to_int.items()} return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ return { '.': '||Period||', ',': '||Comma||', '"': '||Quotation_Mark||', ';': '||Semicolon||', '!': '||Exclamation_Mark||', '?': '||Question_Mark||', '(': '||Left_Parentheses||', ')': '||Right_Parentheses||', '-': '||Dash||', '\n': '||Return||'} """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests import numpy as np int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ features = [list(words[i:i+sequence_length]) for i in range(len(words) - sequence_length + 1)] targets = [words[i + sequence_length] for i in range(len(words) - sequence_length)] + [words[0]] ''' # Below are some prints I found useful when working this print('total word count: {}'.format(len(words))) print('total feature count: {}'.format(len(features))) print('total target count: {}'.format(len(targets))) print('first feature: {}'.format(features[:1])) print('first target: {}'.format(targets[:1])) print('last 2 features: {}'.format(features[-2:])) print('last 2 targets: {}'.format(targets[-2:])) print(features[0][0]) print(targets[0]) ''' batch_length = len(features)//batch_size dataset = TensorDataset(torch.LongTensor(features[:batch_length * batch_size]), torch.LongTensor(targets[:batch_length * batch_size])) loader = DataLoader(dataset, batch_size=batch_size, shuffle = True) return loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own # batch_data(range(50), 5, 10) ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader # Checking multiple ranges so that we check when the targets wrap and when they do not and then more just 'cause for range_length in range(50, 60): sequence_length = 5 batch_size = 10 test_text = range(range_length) t_loader = batch_data(test_text, sequence_length=sequence_length, batch_size=batch_size) data_iter = iter(t_loader) # Shuffle will let us see the entire corpus of features before shuffling again # Given that the first sequence starts at idx 0 and ends at idx of sequence -1 inclusive # and that the last sequence will end at idx of len(test_text) - 1 inclusive [49] # we will have len(test_text) - (sequence - 1) items [46] # An intuitive way of saying this it to see that the sequences should start with numbers 0,1,2,...,43,44,45 # So we should need to iterate the number of sequences divided by the batch size to find all the items expected_length = (range_length - (sequence_length - 1))//batch_size assert len(t_loader) == expected_length for i in range(expected_length): x, y = data_iter.next() assert x.shape[0] == batch_size assert x.shape[1] == sequence_length for i in range(sequence_length - 1): # x should be sequential assert torch.eq(x[:,i] + 1, x[:,i+1]).all() # If we reshape x to look at just the last numbers in the sequence and add one then that should be y expected_y = x[:,-1] + 1 expected_y[expected_y==range_length] = 0 assert torch.eq(expected_y, y).all() ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers self.embed = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.dropout = nn.Dropout(dropout) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, x, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ batch_size = x.size(0) embeds = self.embed(x) lstm_out, hidden = self.lstm(embeds, hidden) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) out = self.dropout(lstm_out) out = self.fc(out) out = out.view(batch_size, -1, self.output_size) # return one batch of output word scores and the hidden state return out[:, -1], hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' weight = next(self.parameters()).data hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) if (train_on_gpu): hidden = (hidden[0].cuda(), hidden[1].cuda()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code clip = 5 def forward_back_prop(rnn, optimizer, criterion, inputs, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inputs: A batch of input to the neural network :param target: The target output for the batch of input :param hidden: The last hidden state Tensor :return: The loss and the latest hidden state Tensor """ # move data to GPU, if available rnn.train() if(train_on_gpu): inputs, target = inputs.cuda(), target.cuda() # limiting the depth of our backprop hidden = tuple([each.data for each in hidden]) rnn.zero_grad() output, hidden = rnn(inputs, hidden) # perform backpropagation and optimization loss = criterion(output, target) loss.backward() nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100, min_loss=np.inf): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: loss = np.average(batch_losses) print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, loss)) batch_losses = [] if loss < min_loss: helper.save_model('./save/trained_rnn', rnn) print('Model Trained and Saved') min_loss = loss # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 12 # of words in a sequence # Batch Size batch_size = 256 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 4 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = len(vocab_to_int) # Embedding Dimension embedding_dim = 400 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code # create model and move to gpu if available #rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) rnn = helper.load_model('./save/trained_rnn') min_loss = 3.497277446269989 learning_rate = 0.0001 if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() """ DON'T MODIFY ANYTHING IN THIS CELL """ from workspace_utils import active_session # training the model with active_session(): trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches, min_loss) # saving the trained model #helper.save_model('./save/trained_rnn', trained_rnn) #print('Model Trained and Saved') # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** I started with hyperparameters from our character rnn model. I then chose an embedding_dim from the sentiment rnn. This was taking a very long time to converge so I hit the slack channel and took a look at what others were doing and made some adjustments. I dropped the segment length which makes sense, since 100 characters are probably far fewer words. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 1024 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:37: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # DONE: Implement Function words_counter = Counter(text) sorted_words = sorted(words_counter, key=words_counter.get, reverse=True) int_to_vocab = {ii: word for ii, word in enumerate(sorted_words)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # DONE: Implement Function dict_punct = {'.': '<<Period>>', ',': '<<Comma>>', '"': '<<Quotation_Mark>>', ';': '<<Semicolon>>', '!': '<<Exclamation_Mark>>', '?': '<<Question_Mark>>', '(': '<<Left_Parentheses', ')': '<<Right_Parentheses', '-': '<<Dash>>', '\n': '<<Return>>'} return dict_punct """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # DONE: Implement function # get maximum number of FULL batches num_batches = len(words)//batch_size # only full batches - cut end of the words list which will not create full batch words = words[:num_batches*batch_size] features = [] targets = [] last_batch_start_idx = len(words)-sequence_length # iterate through words for idx in range(0, last_batch_start_idx): # extract features features.append(words[idx:idx+sequence_length]) # extract target try: targets.append(words[idx+sequence_length]) except IndexError: # if there are not enought words in list for last batch, add 0 as target targets.append(0) train_data = TensorDataset(torch.from_numpy(np.asarray(features)), torch.from_numpy(np.asarray(targets))) train_loader = DataLoader(train_data, shuffle=True, batch_size=batch_size) # return a dataloader return train_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(111) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 94, 95, 96, 97, 98], [ 58, 59, 60, 61, 62], [ 85, 86, 87, 88, 89], [ 20, 21, 22, 23, 24], [103, 104, 105, 106, 107], [ 98, 99, 100, 101, 102], [ 36, 37, 38, 39, 40], [ 37, 38, 39, 40, 41], [ 32, 33, 34, 35, 36], [ 4, 5, 6, 7, 8]]) torch.Size([10]) tensor([ 99, 63, 90, 25, 108, 103, 41, 42, 37, 9]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # DONE: Implement function # set class variables self.vocab_size = vocab_size self.output_size = output_size self.embed_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers self.dropout_p = dropout # define model layers self.embed = nn.Embedding(self.vocab_size, self.embed_dim) self.lstm = nn.LSTM(input_size =self.embed_dim, hidden_size =self.hidden_dim, num_layers =self.n_layers, dropout =self.dropout_p, batch_first =True) self.drop = nn.Dropout(0.25) self.fc = nn.Linear(self.hidden_dim, self.output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # DONE: Implement function batch_size = nn_input.size(0) # embeddings layer encoded = self.embed(nn_input) # lstm layer lstm_out, hidden = self.lstm(encoded, hidden) # stacking outputs of the lstm lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # fully connected layer output = self.fc(lstm_out) # reshape into (batch_size, seq_length, output_size) output = output.view(batch_size, -1, self.output_size) # get last batch out = output[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # DONE: Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # DONE: Implement Function # move model to GPU, if available if train_on_gpu: rnn.cuda() # move data to GPU, if available if train_on_gpu: inp, target = inp.cuda(), target.cuda() # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history hidden_t = tuple([each.data for each in hidden]) # clear gradients rnn.zero_grad() # feed-dorward rnn_out, rnn_hid = rnn(inp, hidden_t) # perform backpropagation and optimization loss = criterion(rnn_out, target) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), 5) # update weights optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), rnn_hid # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 256 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 400 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 1000 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 4.9627698495388035 Epoch: 1/10 Loss: 4.386822091341019 Epoch: 1/10 Loss: 4.214413766145706 Epoch: 2/10 Loss: 4.038146335533641 Epoch: 2/10 Loss: 3.9504165222644807 Epoch: 2/10 Loss: 3.9148817129135134 Epoch: 3/10 Loss: 3.798500166338035 Epoch: 3/10 Loss: 3.7591107790470124 Epoch: 3/10 Loss: 3.74398533987999 Epoch: 4/10 Loss: 3.6425970394870193 Epoch: 4/10 Loss: 3.628464448213577 Epoch: 4/10 Loss: 3.6338286848068235 Epoch: 5/10 Loss: 3.5464783320938182 Epoch: 5/10 Loss: 3.5270272369384768 Epoch: 5/10 Loss: 3.540618770360947 Epoch: 6/10 Loss: 3.461918436669049 Epoch: 6/10 Loss: 3.4494025118350984 Epoch: 6/10 Loss: 3.468783838510513 Epoch: 7/10 Loss: 3.38561912010589 Epoch: 7/10 Loss: 3.383038095712662 Epoch: 7/10 Loss: 3.4104531280994417 Epoch: 8/10 Loss: 3.3363313533451135 Epoch: 8/10 Loss: 3.3289666635990143 Epoch: 8/10 Loss: 3.345423321723938 Epoch: 9/10 Loss: 3.284445214094701 Epoch: 9/10 Loss: 3.2772184579372405 Epoch: 9/10 Loss: 3.3074152629375457 Epoch: 10/10 Loss: 3.239664696071571 Epoch: 10/10 Loss: 3.2348797211647033 Epoch: 10/10 Loss: 3.2674734783172608 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** As a starting point, I tried combination of params from previous notebooks + few own ideas (sequence_length=16, batch_size=64, lr=0.01, embed_dim=400, hidden_dim=256, layers=3). Unsuccessful: loss oscilated between 6.0--6.2 over first 2 epochs, so I stoped training.In 1st modification I changed sequence_length=10. Seems that loss is able to go lower (oscilating around 5.9 over first 2 epochs), but still not converging.In 2nd modification I changed learning_rate to 0.005 and after that to 0.001, which seems to finally helped with convergence. I also boosted batch_size to 256 which fit into GPU memory without any issues and massivelly speeded the training up. These mods finily led into loss < 3.5 and generated funky script :)3rd modification was about n_layers, I changed them to 2. Seems that it helped getting loss even a little lower, and more reasonable generated scripts! --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 500 # modify the length to your preference prime_word = 'george' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output george: i have to be a little more flexible on the table, but i don't know. i just wanted to be in my apartment for a while, you know, the only thing is, i would have been a little more flexible. i mean, you know, i think they would be happy to hear you. kramer:(to jerry) you know, i think i could go in there. elaine: i thought you could have a lot of time with this guy, i was just curious. george:(to george) you know i think i was a little bit about the whole thing. elaine: oh yeah, yeah. jerry: so you have a problem? george: yeah. elaine: i know what the problem is. elaine: i don't know. jerry: i don't know. elaine: i don't know. elaine: well i don't know. elaine: what? george:(on the phone) oh. i know. jerry: i think i should. elaine:(to elaine) you know, the only thing i have, and the punches creek and i don't get it, i have to go to the airport. newman: what? jerry: what do you need? kramer: i don't know. jerry: i thought you could have said something? elaine: oh no no... kramer: oh, i know! kramer: well, i just don't know how to get it. jerry: oh my god! jerry: what is this? jerry: i don't know. jerry:(to jerry) hey. jerry: hey look, i don't have a square. you know, i don't know what the hell i said, i know you would be a little bit about it. george: i can't get a little more stable. jerry: i can't. jerry:(to himself) hey, what is that?! kramer:(smiling) oh, yeah. kramer: oh, yeah, right. yeah.(they both look at the table) [setting: the costanza's house] kramer: oh, yeah.(they both shake up to the table) kramer: yeah, well... jerry: i think you were going to get married soon. george: i don't think so. george: oh, no, no. i don't know how you feel. ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("data/generated/generated_script_3.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper import os os.environ['CUDA_LAUNCH_BLOCKING'] = "1" data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code from collections import Counter words = text.split(' ') print(words[:5]) print(len(words)) # remove 'empty' words words = [word for word in words if word != ''] counts = Counter(words) #if '' in words: # words.remove('') counts = Counter(words) vocab = sorted(counts, key=counts.get, reverse=True) vocab_to_int = {word: ii for ii, word in enumerate(vocab, 1)} import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ ## Build a dictionary that maps words to integers counts = Counter(text) vocab = sorted(counts, key=counts.get, reverse=True) int_to_vocab = dict(enumerate(vocab,1)) vocab_to_int = {word: ii for ii, word in enumerate(vocab, 1)} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function ptoken ={'.':'||period||', ',':'||Comma||', '"':'||Quotation_Mark||', ';':'||Semicolon||', '!':'||Exclamation_Mark||', '?':'||Question_Mark||', '(':'||Left_Parantheses||', ')':'||Right_Parantheses||', '-':'||Dash||', '\n':'||Return||' } return ptoken """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') torch.cuda.empty_cache() ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # get total number of items: batch_size_total = batch_size * sequence_length # total number of batches we can make n_batches = len(words)//batch_size_total # Keep only enough characters to make full batches words = words[:n_batches * batch_size_total] # check type on words... if(type(words)==list): words = np.array(words) elif(type(words)==np.ndarray): pass else: raise ValueError('input data is neither np-array or list, it is {}'.format(type(words))) # Reshape into batch_size rows words = words.reshape((-1, sequence_length)) # set the tagets as each next word, set last one to be first one... targets = np.roll(words[:,0],-1) # return a dataloader data = TensorDataset(torch.from_numpy(words), torch.from_numpy(targets)) return DataLoader(data, shuffle=True, batch_size=batch_size) # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader # in python 3 need to make list out of range... test_text = list(range(50)) t_loader = batch_data(test_text, sequence_length=4, batch_size=2) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([2, 4]) tensor([[ 32, 33, 34, 35], [ 4, 5, 6, 7]]) torch.Size([2]) tensor([ 36, 8]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers self.dropout = dropout # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # dropout layer self.dropout = nn.Dropout(dropout) # linear and sigmoid layers self.fc = nn.Linear(hidden_dim, output_size) self.sig = nn.Sigmoid() def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # embeddings and lstm_out embeds = self.embedding(nn_input) self.lstm.flatten_parameters() output, hidden = self.lstm(embeds, hidden) # stack up lstm outputs output = output.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer #output = self.dropout(output) output = self.fc(output) # sigmoid function #output = self.sig(output) # reshape into (batch_size, seq_length, output_size) output = output.view(batch_size, -1, self.output_size) # get last batch out = output[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization # print('Memory allocated: {} MB'.format(torch.cuda.memory_allocated() / 1024**2)) # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history h = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() # get the output from the model output, hidden = rnn(inp, h) # calculate the loss and perform backprop loss = criterion(output.squeeze(), target.long()) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 24 # of words in a sequence # Batch Size batch_size = 128 print("Batches per Epoch: {}".format(len(int_text)//(batch_size*sequence_length))) # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 16 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 300 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = (len(int_text)//(batch_size*sequence_length))//2 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 16 epoch(s)... Epoch: 1/16 Loss: 6.2943435833371915 Epoch: 1/16 Loss: 5.434529814226874 Epoch: 2/16 Loss: 4.898563677689125 Epoch: 2/16 Loss: 4.854149961471558 Epoch: 3/16 Loss: 4.632449472361597 Epoch: 3/16 Loss: 4.544691020044787 Epoch: 4/16 Loss: 4.344787165214275 Epoch: 4/16 Loss: 4.3828199287940715 Epoch: 5/16 Loss: 4.162998985422068 Epoch: 5/16 Loss: 4.1920594938870135 Epoch: 6/16 Loss: 3.998603886571424 Epoch: 6/16 Loss: 4.035136530317109 Epoch: 7/16 Loss: 3.848791500617718 Epoch: 7/16 Loss: 3.8965666754492396 Epoch: 8/16 Loss: 3.701201585243488 Epoch: 8/16 Loss: 3.7647711572975946 Epoch: 9/16 Loss: 3.5574668982933306 Epoch: 9/16 Loss: 3.632318449020386 Epoch: 10/16 Loss: 3.424426614827123 Epoch: 10/16 Loss: 3.5017578552509177 Epoch: 11/16 Loss: 3.3006941400725265 Epoch: 11/16 Loss: 3.3676699473940093 Epoch: 12/16 Loss: 3.1694899230167786 Epoch: 12/16 Loss: 3.229997391536318 Epoch: 13/16 Loss: 3.056047296524048 Epoch: 13/16 Loss: 3.094313822121456 Epoch: 14/16 Loss: 2.914596128463745 Epoch: 14/16 Loss: 2.9927004649721343 Epoch: 15/16 Loss: 2.80605091226512 Epoch: 15/16 Loss: 2.8572575881563385 Epoch: 16/16 Loss: 2.684618122824307 Epoch: 16/16 Loss: 2.756876294366245 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:**Started with sequence of 16 (since scripts are generally short passages of dialog), batch of 128 due to 8gb available on GPU, and 2 layers. No Dropout since the RNN is degenrating data.Initially 16 epochs with sequence length of 16 and learning rate of 0.001 converged below a loss of 3.5 very quickly (less than 16 epochs).Tested with 1 layer LSTM, sequence length of 16, and learning rate of 0.01, also converged quickly (about 5 epochs).Tested with 1 layer LSTM, sequence length of 8, and learning rate of 0.01, also converged slower than sequence length of 16. Seems like the shorter sequences don't capture different characters well.Tried 1 layer LSTM (to make a lighter model than compared to 2 or more layers), with sequence length of 24 words and learning rate of 0.001.Tried 2 layer LSTM, with sequence length of 24 words and learning rate of 0.001, it was slower to converge than 1 layer due to increased parameters, but the output produced is cleaner than a 1 layer LSTM.The hidden_dims were kept fixed based on the recommendations in the lectures (between 200-500). --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL EN : NOTE to correctly load the RNN (due to Pickle issues), need to run all the RNN definition cells above. """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # To solve GPU issues, moved whole rnn to CPU, EN: I highly recommend this action. # Further, the 'train_on_gpu' variable is very poorly used in the project, it should be a # switchable parameter for the project. rnn.cpu() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script train_on_gpu = False """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word]-1, gen_length) print(generated_script) train_on_gpu = True # this is necessary to avoid issues with cuda assertion errors ###Output jerry:, we were having to a pair of the 70's.(turns to himself) so i want it to be in the apartment. jerry: yeah? kramer: well, i got to be able in days! george: well, i was gonna be in the street. i got to go. elaine:(to elaine) well- what are you talking? george:(smiling) : what? george:(to elaine) well, i told me, you think i think it might have a woman, i'm just gonna like a other fan and then return a cashier of the middle of *fruit* and leaving and and then the only thing by the end out of forty--- huh!(jerry coyly by a little starts away) jerry:(trying to the phone) : divorce on. jerry: well, i was just out of this woman. i was having a bundle for a week for that.(inaudible at george) what's it on the parents like a little deal! jerry: no, no. elaine: well, he did it was good. jerry:(smiling) there's a good match. jerry: well, you know, you're not even going to do that. jerry: i know. kramer: yeah, yeah, yeah. kramer:(to jerry) oh, i don't know i don't know, i think i don't know how it? jerry: no, i was just like to my house, i know, i think you were saying! george: yeah. jerry:(trying to the podium of jerry's side of the middle) you didn't get the same bull. george: well, you think i was gonna go to a deal! jerry: yeah! jerry: what? kramer: hey! george: i didn't know what about that? george:(to jerry) well, i don't even know. george:(smiling) well, ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function counts = Counter(text) vocab = sorted(counts, key = counts.get, reverse= True) vocab_to_int = {word: ii for ii,word in enumerate(vocab)} int_to_vocab = {ii:word for word,ii in vocab_to_int.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code from string import punctuation def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function dictionary = { "." : "||Period||", "," : "||Comma||", '"' : "||QuotationMark||", ";" : "||Semicolon||", "!" : "||Exclamationmark||", "?" : "||Questionmark||", "(" : "||LeftParentheses||", ")" : "||RightParentheses||", "-" : "||Dash||", "\n": "||Return||" } return dictionary """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function feature_tensors =np.array([words[i:i+sequence_length] for i in range(len(words)-sequence_length)]) target_tensors =np.array([words[sequence_length + i] for i in range(len(words)-sequence_length)]) # for i in range(len(words)-sequence_length+1): # x = words[i:i+sequence_length] # y = words[sequence_length + i] # feature_tensor.append(x) # target_tensor.append(y) feature_tensors = torch.from_numpy(feature_tensors) target_tensors = torch.from_numpy(target_tensors) data = TensorDataset(feature_tensors, target_tensors) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.hidden_dim = hidden_dim self.n_layers = n_layers # define model layers self.embed = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers=n_layers, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) embed_out = self.embed(nn_input) lstm_out, hidden = self.lstm(embed_out, hidden) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) out = self.fc(lstm_out) # reshape into (batch_size, seq_length, output_size) out = out.view(batch_size, -1, self.output_size) # get last batch out = out[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function weight = next(self.parameters()).data # initialize hidden state with zero weights, and move to GPU if available if(train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): inp,target = inp.cuda(),target.cuda() hidden = tuple([each.data for each in hidden]) rnn.zero_grad() output, hidden = rnn(inp, hidden) # perform backpropagation and optimization loss = criterion(output.squeeze(), target) loss.backward() optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 2000 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 4.903444903254509 Epoch: 1/10 Loss: 4.502190977096558 Epoch: 1/10 Loss: 4.364594425082207 Epoch: 2/10 Loss: 4.12398235161082 Epoch: 2/10 Loss: 3.946532906651497 Epoch: 2/10 Loss: 3.9078828673362733 Epoch: 3/10 Loss: 3.8131973517788262 Epoch: 3/10 Loss: 3.7099602723121645 Epoch: 3/10 Loss: 3.7068991522789 Epoch: 4/10 Loss: 3.647635696551823 Epoch: 4/10 Loss: 3.562523124575615 Epoch: 4/10 Loss: 3.566692313551903 Epoch: 5/10 Loss: 3.529239155781233 Epoch: 5/10 Loss: 3.462532285451889 Epoch: 5/10 Loss: 3.462529283285141 Epoch: 6/10 Loss: 3.4430943972014867 Epoch: 6/10 Loss: 3.382022962450981 Epoch: 6/10 Loss: 3.3935736951828 Epoch: 7/10 Loss: 3.376769053490325 Epoch: 7/10 Loss: 3.3211654245853426 Epoch: 7/10 Loss: 3.324988476872444 Epoch: 8/10 Loss: 3.3234892871974897 Epoch: 8/10 Loss: 3.2673957041502 Epoch: 8/10 Loss: 3.2787898918390272 Epoch: 9/10 Loss: 3.277423346311647 Epoch: 9/10 Loss: 3.220760303378105 Epoch: 9/10 Loss: 3.2305056772232055 Epoch: 10/10 Loss: 3.248893229316565 Epoch: 10/10 Loss: 3.183899417877197 Epoch: 10/10 Loss: 3.1929726628065107 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** I tried with different sequence_lengths like 200,5,100,10 and noticed when sequence_length is 10 it is working greatly.For hidden_dim and n_layers also i did hit and trial with various values and later found that it works nicely with values 256 & 2.Hence, chosen these values. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:38: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # collections.counter() counts the occurance of words in a text and creates a dictionary with each word # as keys and number of occurances as values counts = Counter(text) # next, we sort the dictionary based on values with the highest occurance being first vocab = sorted(counts, key=counts.get, reverse=True) # by iterating over all words in vocab, we create a new dictionary with their index values starting from 1 vocab_to_int = {word:ii for ii, word in enumerate (vocab,1)} # next we need to swap values with keys in this vocab_to_int dictionary # for each tuple in this dictionary, we take the value of this tuple, make it key. # and we assign the key as value int_to_vocab = {value: key for key, value in vocab_to_int.items()} #finally, we return the tuple of dictionaries return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function punct_to_token = { '.':'||period||', ',':'||comma||', '"':'||quotation_mark||', ';':'||semicolon||', '!':'||exclamation_mark||', '?':'||question_mark||', '(':'||left_parantheses||', ')':'||right_parantheses||', '-':'||dash||', '\n':'||return||' } return punct_to_token """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # how many sequences are there inside all the words? total_sequences = len(words)//sequence_length input_text = [] target_text = [] # now we will iterate over all sequences and create the corresponding pairs for input and target features (texts) for i in range(0,total_sequences): # the end index of the ith sequence end = i + sequence_length # now appending ith sequence to the input_text input_text.append(words[i:end]) # target_text corresponding to the ith sequence is just the next word right after sequence target_text.append(words[end]) # now we are creating the tensors, which I'll call input_tensors and target_tensors from now on input_tensors = torch.LongTensor(input_text) target_tensors = torch.LongTensor(target_text) print(len(input_tensors), len(target_tensors)) data = TensorDataset(input_tensors, target_tensors) # shuffling the data set and batching (without shuffling, the training might be biased) data_loader = torch.utils.data.DataLoader(data, shuffle=True, batch_size=batch_size) return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own loader = batch_data(int_text,4,20) feature,target = next(iter(loader)) print(feature) print(target) ###Output 223027 223027 tensor([[ 1, 15, 5, 28], [ 9374, 2, 37, 622], [ 1744, 70, 74, 237], [ 79, 2, 1, 1], [ 85, 66, 1799, 16], [ 31, 2, 1, 1], [ 153, 39, 20, 223], [ 880, 7653, 51, 105], [ 1, 1, 17, 19], [ 179, 189, 16, 2], [ 1, 1, 8, 38], [ 1, 816, 19, 59], [ 6, 196, 36, 42], [ 9, 52, 16, 114], [ 51, 59, 16, 2], [ 44, 13, 38, 7222], [ 1, 15, 12, 46], [ 22, 7, 1376, 13], [ 37, 4262, 2, 1], [ 5, 112, 71, 6]]) tensor([ 3, 21, 4, 17, 22, 17, 21, 70, 59, 1, 66, 1986, 45, 47, 1, 5, 163, 752, 1, 459]) ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(500) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print(sample_y.shape) print(sample_y) ###Output 100 100 torch.Size([10, 5]) tensor([[ 40, 41, 42, 43, 44], [ 14, 15, 16, 17, 18], [ 12, 13, 14, 15, 16], [ 97, 98, 99, 100, 101], [ 35, 36, 37, 38, 39], [ 89, 90, 91, 92, 93], [ 95, 96, 97, 98, 99], [ 75, 76, 77, 78, 79], [ 98, 99, 100, 101, 102], [ 18, 19, 20, 21, 22]]) torch.Size([10]) tensor([ 45, 19, 17, 102, 40, 94, 100, 80, 103, 23]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers self.dropout = nn.Dropout(0.25) self.fc = nn.Linear(hidden_dim, output_size) # embedding and LSTM layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) #initialize the weights, might want to add a function later # self.init_weights() def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) embedding = self.embedding(nn_input) lstm, hidden = self.lstm(embedding,hidden) lstm_out = lstm.contiguous().view(-1,self.hidden_dim) out = self.dropout(lstm_out) out = self.fc(out) # sigmoid out functions sig_out = out.view(batch_size, -1, self.output_size) sig_out = sig_out[:, -1] # return one batch of output word scores and the hidden state return sig_out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weigth = next(self.parameters()).data if (train_on_gpu): hidden = (weigth.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weigth.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weigth.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weigth.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available train_on_gpu = torch.cuda.is_available() if (train_on_gpu): rnn.cuda() inp,target = inp.cuda(), target.cuda() # zero accummulated gradients rnn.zero_grad() # perform backpropagation and optimization # output, hidden = rnn(inp,hidden) # loss = criterion(output.squeeze(),target) # The code above was causing the loss.backward() result in an error # that i could not fix easily. When i turned retained_graph to True and # called the loss.backward(retain_graph=True), then another error was # introduced. Thus , i searched for a way to run loss.backward() without # the retain_graph parameter turned on. hidden = tuple([each.data for each in hidden]) output, hidden = rnn(inp, hidden) loss = criterion(output, target.long()) loss.backward() # 'clip_grad_norm' prevents the exploiding gradient problem nn.utils.clip_grad_norm_(rnn.parameters(), 4) optimizer.step() # return the average loss of a batch and the hidden state produced return loss.item(),hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 64 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 5 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) + 1 # Output size output_size = len(vocab_to_int) # Embedding Dimension embedding_dim = 300 # Hidden Dimension hidden_dim = 600 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 5 epoch(s)... Epoch: 1/5 Loss: 5.331203703403473 Epoch: 1/5 Loss: 4.7722836451530455 Epoch: 2/5 Loss: 4.427083381746811 Epoch: 2/5 Loss: 4.24037056684494 Epoch: 3/5 Loss: 4.093416558401315 Epoch: 3/5 Loss: 3.9671500473022463 Epoch: 4/5 Loss: 3.83874550511829 Epoch: 4/5 Loss: 3.7339776611328124 Epoch: 5/5 Loss: 3.5769182065833456 Epoch: 5/5 Loss: 3.515318180561066 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** Based on previous experience in dog breed model training, I wanted to start with the simplest possible hyperparameters for quickest training. Quickest training allows to try out various hyperparameter ranges given a time contrainst on the project. I wanted to start with a short sequence length, 10, during first training. I will also try out 5 and 15. For the model to guess the next word, i think a sequence length of 10 would give a pretty good idea about the other words around this word.I kept the batch_size low to avoid any memory errors. I started with 64, I would try 32 and 128 as well.I started with 5 epochs only to finalize training as soon as possible, because sometimes, the training does not reduce the loss at all so a manual interrupt becomes necessary. Once i feel that the other parameters are well tuned, then I'll try with higher number of epochs to get the loss further down.I set the learning rate at 0.001 for the first training attempts.n_layers i choose to be as simplistic as possible with 2 layers, based on previous experience with dog breed classifier. I'll start with the most simple model and then increase complexity as necessary to reduce the loss even further.I have chosen the embedding_dim at 300, and hidden_dim at 600. In the lecture videos for generating text out of the Anna Karenina novel, we used similar values between 200-600. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:43: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output _____no_output_____ ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # return tuple return (None, None) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # return a dataloader return None # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables # define model layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state return None, None def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return None, None # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = # of words in a sequence # Batch Size batch_size = # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = # Learning Rate learning_rate = # Model parameters # Vocab size vocab_size = # Output size output_size = # Embedding Dimension embedding_dim = # Hidden Dimension hidden_dim = # Number of RNN Layers n_layers = # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_count = Counter(text) sorted_words = sorted(word_count, key=word_count.get, reverse=True) vocab_to_int = {word: i for i, word in enumerate(sorted_words)} int_to_vocab = {i: word for word, i in vocab_to_int.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function pun_dict = dict() pun_dict['.'] = '||Period||' pun_dict[','] = '||Comma||' pun_dict['"'] = '||Quotation_mark||' pun_dict[';'] = '||Semicolon||' pun_dict["!"] = '||Exclamation_mark||' pun_dict["?"] = '||Question_mark||' pun_dict["("] = '||Left_parentheses||' pun_dict[")"] = '||Right_parenthese||' pun_dict["-"] = '||Dash||' pun_dict["\n"] = '||Return||' return pun_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function num_batches = len(words) // batch_size word_batches = words[: num_batches*batch_size] x, y = [], [] for i in range(len(word_batches)-sequence_length): x.append(word_batches[i:sequence_length+i]) if len(words) > sequence_length+i: y.append(words[sequence_length+i]) # If there is no more words to be predicted then add a period to be predicted if len(x) != len(y): y.append(vocab_to_int['||period||']) x, y = np.array(x), np.array(y) data = TensorDataset(torch.from_numpy(x), torch.from_numpy(y)) data_loader = torch.utils.data.DataLoader(data, shuffle=True, batch_size=batch_size) return data_loader ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 20, 21, 22, 23, 24], [ 25, 26, 27, 28, 29], [ 28, 29, 30, 31, 32], [ 34, 35, 36, 37, 38], [ 7, 8, 9, 10, 11], [ 27, 28, 29, 30, 31], [ 21, 22, 23, 24, 25], [ 40, 41, 42, 43, 44], [ 11, 12, 13, 14, 15], [ 41, 42, 43, 44, 45]]) torch.Size([10]) tensor([ 25, 30, 33, 39, 12, 32, 26, 45, 16, 46]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.hidden_dim = hidden_dim self.n_layers = n_layers # define model layers self.embed = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # Embedding layer batch_size = nn_input.size(0) embeds = self.embed(nn_input) # LSTM layer lstm_output, hidden = self.lstm(embeds,hidden) lstm_output.contiguous().view(-1, self.hidden_dim) # Linear layer output = self.fc(lstm_output) # reshape into (batch_size, seq_length, output_size) output = output.view(batch_size, -1, self.output_size) # get last batch out = output[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): rnn.cuda() inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization hidden = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() # get the output from the model output, hidden = rnn(inp, hidden) # calculate the loss and perform backprop loss = criterion(output, target) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = len(vocab_to_int) # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 250 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 1500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.004257010777791 Epoch: 1/10 Loss: 4.423942148844401 Epoch: 1/10 Loss: 4.273961540381114 Epoch: 1/10 Loss: 4.18605407222112 Epoch: 2/10 Loss: 4.026157460201115 Epoch: 2/10 Loss: 3.9250682214101156 Epoch: 2/10 Loss: 3.918394592920939 Epoch: 2/10 Loss: 3.8999721196492514 Epoch: 3/10 Loss: 3.793609598950397 Epoch: 3/10 Loss: 3.732712996323903 Epoch: 3/10 Loss: 3.7434992198944093 Epoch: 3/10 Loss: 3.7634035917917887 Epoch: 4/10 Loss: 3.6680665175570852 Epoch: 4/10 Loss: 3.6139183773994445 Epoch: 4/10 Loss: 3.638539548079173 Epoch: 4/10 Loss: 3.652538258075714 Epoch: 5/10 Loss: 3.5700433661910664 Epoch: 5/10 Loss: 3.535647804896037 Epoch: 5/10 Loss: 3.5342669665018716 Epoch: 5/10 Loss: 3.5724144185384112 Epoch: 6/10 Loss: 3.5065568181258935 Epoch: 6/10 Loss: 3.460029465675354 Epoch: 6/10 Loss: 3.490467675526937 Epoch: 6/10 Loss: 3.5011508835156757 Epoch: 7/10 Loss: 3.428452478911927 Epoch: 7/10 Loss: 3.4065818718274437 Epoch: 7/10 Loss: 3.435428986708323 Epoch: 7/10 Loss: 3.466533782482147 Epoch: 8/10 Loss: 3.385046666406542 Epoch: 8/10 Loss: 3.370145404020945 Epoch: 8/10 Loss: 3.3879157797495525 Epoch: 8/10 Loss: 3.419543927033742 Epoch: 9/10 Loss: 3.342440372251421 Epoch: 9/10 Loss: 3.311663731098175 Epoch: 9/10 Loss: 3.3471543645858763 Epoch: 9/10 Loss: 3.3860708090464273 Epoch: 10/10 Loss: 3.3088166061637856 Epoch: 10/10 Loss: 3.290230896313985 Epoch: 10/10 Loss: 3.323513492266337 Epoch: 10/10 Loss: 3.3555690369606017 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** Yes I tried different sequence_lengths and I found that when the sequence_length increases the loss decreases faster but it took too long time, I choosed sequence_length = 10 which is good enough for our task, also I tried different numbers of hidden_dim and n_layers and found that when we increase them the loss is decreased but the time to train is incresed. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:42: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function vocab_to_int = {char:i for (i,char) in enumerate(set(text))} int_to_vocab = {v:k for (k,v) in vocab_to_int.items()} # return tuple return (vocab_to_int,int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function tokens = { '.': '||period||', ',': '||comma||', '"': '||quotation_mark||', ';': '||semicolon||', '!': '||exclamation_mark||', '?': '||question_mark||', '(': '||left_parentheses||', ')': '||right_Parentheses||', '-': '||dash||', '\n': '||return||' } return tokens """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function features = [] target = [] # return a dataloader for i in range(len(words) - sequence_length): features.append(words[i:i+sequence_length]) target.append(words[i+sequence_length]) data = TensorDataset(torch.tensor(features),torch.tensor(target)) data_loader = torch.utils.data.DataLoader(data,shuffle=True,batch_size=batch_size,num_workers=8) return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) !curl -o workspace_utils.py https://s3.amazonaws.com/video.udacity-data.com/topher/2018/May/5b0dea96_workspace-utils/workspace-utils.py ###Output % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 1540 100 1540 0 0 8782 0 --:--:-- --:--:-- --:--:-- 10065 ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables # define model layers self.input_size = vocab_size self.hidden_dim = hidden_dim self.output_size = output_size self.n_layers = n_layers self.dropout = dropout self.embed = nn.Embedding(vocab_size,embedding_dim) self.lstm = nn.LSTM(embedding_dim,hidden_dim,n_layers,dropout=dropout,batch_first = True) self.fc = nn.Linear(hidden_dim,output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) embed_output = self.embed(nn_input) lstm_out,hidden = self.lstm(embed_output,hidden) lstm_out = lstm_out.contiguous().view(-1,self.hidden_dim) out = self.fc(lstm_out) out = out.view(batch_size,-1,self.output_size) out=out[:,-1] # return one batch of output word scores and the hidden state return out,hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' weight =next(self.parameters()).data # Implement function # initialize hidden state with zero weights, and move to GPU if available if torch.cuda.is_available(): hidden = (weight.new(self.n_layers,batch_size,self.hidden_dim).zero_().cuda(), weight.new(self.n_layers,batch_size,self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers,batch_size,self.hidden_dim).zero_(), weight.new(self.n_layers,batch_size,self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function if torch.cuda.is_available(): inp,target = inp.cuda(),target.cuda() # move data to GPU, if available hidden = tuple([i.data for i in hidden]) rnn.zero_grad() out,hidden = rnn(inp,hidden) loss = criterion(out,target) loss.backward() nn.utils.clip_grad_norm_(rnn.parameters(),5) # perform backpropagation and optimization optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from tqdm import tqdm from workspace_utils import active_session def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in tqdm(range(1, n_epochs + 1)): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 32 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 30 # Learning Rate learning_rate = 0.0005 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 256 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 3 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model with active_session(): trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') !ls ###Output data helper.py __pycache__ dlnd_tv_script_generation.ipynb preprocess.p trained_rnn.pt dlnd_tv_script_generation-zh.ipynb problem_unittests.py workspace_utils.py ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)I tried to have all parameters as multiples of 2. Primary hyper parameter that helped make the model converge faster was the learning rate - reduced it to 0.0005 instead of 0.001 and 0.005. Additionally tried with models with 512 embed and 512 hidden dims and it took almost 1.5 times more estimating around 12 hours and with my limited compute time wouldnt be able to complete. I kept batch size to 128 so that I will be able to try our more complex models. Understood from the lectures that going more than 3 layers wouldnt add much value. I got loss ~3.5 with 20 epochs with model with 512 embed layer, the convergence in 256 was slightly quicker. My computer turned off while running the model so had to reconnect. final loss after 31(30+1 below) is ~2.9. ###Code with active_session(): trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, 1, show_every_n_batches) ###Output 0%| | 0/1 [00:00<?, ?it/s] ###Markdown --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: over. george:(pause) well, i was a very nervous electronics. i don't know if you can do that. jerry: oh, no... elaine: no, i don't have to do anything. elaine: oh! jerry: you got a date? kramer: no, i don't want it. jerry: i don't know, but i don't have a massage. george: what are you talking about? jerry: i think it's dutch. i was thinking about it, so i can't stand out of the way to the end of the night. elaine: i don't know, maybe i was gonna get it out, i have no idea... george: no, you can't believe that, you know, i can't do that.(kramer is speechless) jerry:(to the phone) what are you doing here, huh? george: oh, no, no, no, no. i got it, and i was thinking of the game. i mean, it's not a big thing i am.(to george) i have to tell you, i don't know. jerry:(jokingly hits his hand) oh, i don't know.(kramer throws his head up and down for the window, and starts to move on). elaine:(to jerry) what do you think? frank: you know what i mean, i was in the shop with the last one in the morning where we are? i can't believe that i was a little nervous. susan: i know, but. jerry: well, you know what? i was thinking, i have a very exciting time. george: well. jerry: you mean, the one who said that is a guy in the pool, he was a fantasy, like the milk, the shelves. elaine: so, i guess she might have to be a good man, and i can't get out of the ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function vocab = Counter(text) vocab_sorted = sorted(vocab, key=vocab.get, reverse=True) vocab_to_int = {word: idx for (idx, word) in enumerate(vocab_sorted)} int_to_vocab = {idx: word for (idx, word) in enumerate(vocab_sorted)} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function table = { '.': '||period||', ',': '||comma||', '"': '||quotation_mark||', ';': '||semicolon||', '!': '||exclamation_mark||', '?': '||question_mark||', '(': '||left_parens||', ')': '||right_parens||', '-': '||dash||', '\n': '||return||' } return table """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # Create dataset feature_tensors = np.array([words[i:i+sequence_length] for i in range(len(words) - sequence_length)]) target_tensors = np.array([words[i+sequence_length] for i in range(len(words) - sequence_length)]) data = TensorDataset(torch.from_numpy(feature_tensors), torch.from_numpy(target_tensors)) # Create dataloader data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True) return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [33, 34, 35, 36, 37], [42, 43, 44, 45, 46], [24, 25, 26, 27, 28], [19, 20, 21, 22, 23], [41, 42, 43, 44, 45], [11, 12, 13, 14, 15], [22, 23, 24, 25, 26], [ 2, 3, 4, 5, 6], [18, 19, 20, 21, 22]]) torch.Size([10]) tensor([ 5, 38, 47, 29, 24, 46, 16, 27, 7, 23]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # Pass input through embedding embeds = self.embedding(nn_input) # Pass embedding through LSTM lstm_out, hidden = self.lstm(embeds, hidden) # Stack up the LSTM outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # Pass via FC layer output = self.fc(lstm_out) # reshape into (batch_size, seq_length, output_size) output = output.view(batch_size, -1, self.output_size) # get last batch output = output[:, -1] return output, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data c0 = weight.new(self.n_layers, batch_size, self.hidden_dim).zero_() h0 = weight.new(self.n_layers, batch_size, self.hidden_dim).zero_() if train_on_gpu: c0, h0 = c0.cuda(), h0.cuda() hidden = (c0, h0) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: inputs = inp.cuda() target = target.cuda() # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history hidden = tuple([each.data for each in hidden]) # perform backpropagation and optimization rnn.zero_grad() output, hidden = rnn(inputs, hidden) loss = criterion(output.squeeze(), target) loss.backward() optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 64 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 20 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 512 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 20 epoch(s)... Epoch: 1/20 Loss: 5.5208431291580204 Epoch: 1/20 Loss: 4.91288213300705 Epoch: 1/20 Loss: 4.700299118995667 Epoch: 1/20 Loss: 4.624004141330719 Epoch: 1/20 Loss: 4.540631830215454 Epoch: 1/20 Loss: 4.504076158046723 Epoch: 1/20 Loss: 4.396777099609375 Epoch: 1/20 Loss: 4.427033710956573 Epoch: 1/20 Loss: 4.35421296787262 Epoch: 1/20 Loss: 4.331726727962494 Epoch: 1/20 Loss: 4.32406603384018 Epoch: 1/20 Loss: 4.2876290249824525 Epoch: 1/20 Loss: 4.296672243118286 Epoch: 1/20 Loss: 4.25823878622055 Epoch: 1/20 Loss: 4.226593720912933 Epoch: 1/20 Loss: 4.22704678106308 Epoch: 1/20 Loss: 4.218754285335541 Epoch: 1/20 Loss: 4.194418120861053 Epoch: 1/20 Loss: 4.186532360076904 Epoch: 1/20 Loss: 4.164459554672241 Epoch: 1/20 Loss: 4.14344580745697 Epoch: 1/20 Loss: 4.109210339069366 Epoch: 1/20 Loss: 4.108456349372863 Epoch: 1/20 Loss: 4.137543073177338 Epoch: 1/20 Loss: 4.10374250125885 Epoch: 1/20 Loss: 4.134370882987976 Epoch: 1/20 Loss: 4.172676734447479 Epoch: 2/20 Loss: 4.039641259704281 Epoch: 2/20 Loss: 3.9448425426483156 Epoch: 2/20 Loss: 3.9628278641700745 Epoch: 2/20 Loss: 3.944454472541809 Epoch: 2/20 Loss: 3.9454182543754577 Epoch: 2/20 Loss: 3.975700412273407 Epoch: 2/20 Loss: 3.953226851463318 Epoch: 2/20 Loss: 3.9516706080436705 Epoch: 2/20 Loss: 3.933338113307953 Epoch: 2/20 Loss: 3.9367256212234496 Epoch: 2/20 Loss: 3.9608750429153443 Epoch: 2/20 Loss: 3.9500488328933714 Epoch: 2/20 Loss: 3.9420691504478453 Epoch: 2/20 Loss: 3.977406876564026 Epoch: 2/20 Loss: 3.9587139692306517 Epoch: 2/20 Loss: 3.9571049942970276 Epoch: 2/20 Loss: 3.990330852985382 Epoch: 2/20 Loss: 3.9233874478340147 Epoch: 2/20 Loss: 3.9528178162574767 Epoch: 2/20 Loss: 3.9277992687225343 Epoch: 2/20 Loss: 3.953704288005829 Epoch: 2/20 Loss: 3.939410804271698 Epoch: 2/20 Loss: 3.9229781188964843 Epoch: 2/20 Loss: 3.9774698014259338 Epoch: 2/20 Loss: 3.9426963043212893 Epoch: 2/20 Loss: 3.932018835067749 Epoch: 2/20 Loss: 3.9862265763282774 Epoch: 3/20 Loss: 3.8646559786364927 Epoch: 3/20 Loss: 3.8229868898391723 Epoch: 3/20 Loss: 3.794576765060425 Epoch: 3/20 Loss: 3.7507790188789367 Epoch: 3/20 Loss: 3.80746222114563 Epoch: 3/20 Loss: 3.784794083595276 Epoch: 3/20 Loss: 3.832058834552765 Epoch: 3/20 Loss: 3.8021265749931334 Epoch: 3/20 Loss: 3.821722647666931 Epoch: 3/20 Loss: 3.807749447822571 Epoch: 3/20 Loss: 3.791622525215149 Epoch: 3/20 Loss: 3.8489490089416503 Epoch: 3/20 Loss: 3.8285027027130125 Epoch: 3/20 Loss: 3.845472381591797 Epoch: 3/20 Loss: 3.8354111852645874 Epoch: 3/20 Loss: 3.8234596433639525 Epoch: 3/20 Loss: 3.828839545726776 Epoch: 3/20 Loss: 3.881803472518921 Epoch: 3/20 Loss: 3.8805883417129516 Epoch: 3/20 Loss: 3.871351625919342 Epoch: 3/20 Loss: 3.84910764169693 Epoch: 3/20 Loss: 3.8857558341026306 Epoch: 3/20 Loss: 3.8753841009140015 Epoch: 3/20 Loss: 3.8907879128456115 Epoch: 3/20 Loss: 3.896808834075928 Epoch: 3/20 Loss: 3.8795574893951414 Epoch: 3/20 Loss: 3.883176497936249 Epoch: 4/20 Loss: 3.8085179488879803 Epoch: 4/20 Loss: 3.678759519577026 Epoch: 4/20 Loss: 3.746946903705597 Epoch: 4/20 Loss: 3.7356966819763184 Epoch: 4/20 Loss: 3.6670956602096556 Epoch: 4/20 Loss: 3.740797432422638 Epoch: 4/20 Loss: 3.742275369167328 Epoch: 4/20 Loss: 3.7004221696853636 Epoch: 4/20 Loss: 3.745614948272705 Epoch: 4/20 Loss: 3.7330620369911194 Epoch: 4/20 Loss: 3.7421479721069337 Epoch: 4/20 Loss: 3.774201177597046 Epoch: 4/20 Loss: 3.769252538204193 Epoch: 4/20 Loss: 3.761264575958252 Epoch: 4/20 Loss: 3.7626648359298707 Epoch: 4/20 Loss: 3.7849260969161986 Epoch: 4/20 Loss: 3.785734745502472 Epoch: 4/20 Loss: 3.788772799015045 Epoch: 4/20 Loss: 3.780445031642914 Epoch: 4/20 Loss: 3.789897382259369 Epoch: 4/20 Loss: 3.848272988796234 Epoch: 4/20 Loss: 3.817666428565979 Epoch: 4/20 Loss: 3.8253357820510865 Epoch: 4/20 Loss: 3.8366506061553953 Epoch: 4/20 Loss: 3.8171124124526976 Epoch: 4/20 Loss: 3.8339194841384887 Epoch: 4/20 Loss: 3.8384078378677366 Epoch: 5/20 Loss: 3.7361603872463727 Epoch: 5/20 Loss: 3.660498927593231 Epoch: 5/20 Loss: 3.6444961400032043 Epoch: 5/20 Loss: 3.658623426437378 Epoch: 5/20 Loss: 3.6547256813049316 Epoch: 5/20 Loss: 3.6665225257873537 Epoch: 5/20 Loss: 3.6726128215789795 Epoch: 5/20 Loss: 3.685898305416107 Epoch: 5/20 Loss: 3.6918712496757506 Epoch: 5/20 Loss: 3.6636448354721067 Epoch: 5/20 Loss: 3.6928962898254394 Epoch: 5/20 Loss: 3.704521493434906 Epoch: 5/20 Loss: 3.6979769144058228 Epoch: 5/20 Loss: 3.6839334845542906 Epoch: 5/20 Loss: 3.7423541111946106 Epoch: 5/20 Loss: 3.7401878938674926 Epoch: 5/20 Loss: 3.773093376159668 Epoch: 5/20 Loss: 3.750902168750763 Epoch: 5/20 Loss: 3.746588635444641 Epoch: 5/20 Loss: 3.776627181529999 Epoch: 5/20 Loss: 3.77808452129364 Epoch: 5/20 Loss: 3.7232019176483155 Epoch: 5/20 Loss: 3.8135217542648316 Epoch: 5/20 Loss: 3.8073607091903687 Epoch: 5/20 Loss: 3.7771801495552064 Epoch: 5/20 Loss: 3.7659069757461547 Epoch: 5/20 Loss: 3.8139733572006227 Epoch: 6/20 Loss: 3.6846436890550316 Epoch: 6/20 Loss: 3.5973926548957826 Epoch: 6/20 Loss: 3.6004745759963988 Epoch: 6/20 Loss: 3.6476523299217223 Epoch: 6/20 Loss: 3.6226420345306396 Epoch: 6/20 Loss: 3.660858807563782 Epoch: 6/20 Loss: 3.653540452957153 Epoch: 6/20 Loss: 3.648666620731354 Epoch: 6/20 Loss: 3.6672579278945925 Epoch: 6/20 Loss: 3.6592908339500427 Epoch: 6/20 Loss: 3.6385306553840637 Epoch: 6/20 Loss: 3.6231074204444886 Epoch: 6/20 Loss: 3.6737765488624574 Epoch: 6/20 Loss: 3.6823623933792113 Epoch: 6/20 Loss: 3.706289093017578 Epoch: 6/20 Loss: 3.7184004950523377 Epoch: 6/20 Loss: 3.7118902163505556 Epoch: 6/20 Loss: 3.6875153017044067 Epoch: 6/20 Loss: 3.7069093446731567 Epoch: 6/20 Loss: 3.7170572218894957 Epoch: 6/20 Loss: 3.7417512273788454 Epoch: 6/20 Loss: 3.732189100265503 Epoch: 6/20 Loss: 3.7244850053787233 Epoch: 6/20 Loss: 3.712848754405975 Epoch: 6/20 Loss: 3.7379821271896363 Epoch: 6/20 Loss: 3.739783139228821 Epoch: 6/20 Loss: 3.7468568572998047 Epoch: 7/20 Loss: 3.6612618134552424 Epoch: 7/20 Loss: 3.5675605010986327 Epoch: 7/20 Loss: 3.5754138979911803 Epoch: 7/20 Loss: 3.5904976992607116 Epoch: 7/20 Loss: 3.599379881858826 Epoch: 7/20 Loss: 3.5901567082405093 Epoch: 7/20 Loss: 3.635919868469238 Epoch: 7/20 Loss: 3.6437377524375916 Epoch: 7/20 Loss: 3.5973007946014404 Epoch: 7/20 Loss: 3.6448113861083984 Epoch: 7/20 Loss: 3.6121344809532165 Epoch: 7/20 Loss: 3.6772372198104857 Epoch: 7/20 Loss: 3.6380057425498964 Epoch: 7/20 Loss: 3.63852068567276 Epoch: 7/20 Loss: 3.663372646331787 Epoch: 7/20 Loss: 3.681339054107666 Epoch: 7/20 Loss: 3.7027099046707153 Epoch: 7/20 Loss: 3.6768950743675233 Epoch: 7/20 Loss: 3.6628886275291443 Epoch: 7/20 Loss: 3.6745788402557373 Epoch: 7/20 Loss: 3.682631419658661 Epoch: 7/20 Loss: 3.7028126711845397 Epoch: 7/20 Loss: 3.6785551300048827 Epoch: 7/20 Loss: 3.7123553137779237 Epoch: 7/20 Loss: 3.7270219249725343 Epoch: 7/20 Loss: 3.714261393547058 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)* `sequence_length`. This value determines what portion of the scripts the network sees at each time. It's important that it's not too small, so that the network can learn the context surround each word. I first tried with a value of 100, but soon I realized that it was too big - the network was not powerful enough to learn a 100-word context! It simply got stuck at a training loss of about 4.5. Then I lowered it to 10, more or less the average length of a sentence from each person, the network managed to get the loss below 3.5. The results at test time were pretty reasonable as well so I kept this value. A higher value would allow the network to learn more complex sentences, but it would require more predictive power as well as longer training time.* `n_layers`. At first I used 1 for simplicity, but PyTorch complained about it due to using dropout for the LSTM component; increasing the number to 2 removed the warning and the training results were successful. Typically the value used here is 1-3, according to the lectures.* `hidden_dim`. Following the recommendations from the lectures, previous projects and the Knowledge Hub, I used 256. Using powers of 2 is usually recommended for layer sizes for faster training. This value worked at the first attempt so I didn't try changing it. Perhaps a smaller value like 128 could speed up training without too much loss in accuracy.* `embedding_dim`. Similar to other projects, I used a power of 2, in this case 512, which was in the recommended range. Given that the input vocabulary is about 20.000 words, it felt a dimensionality of 512 would have enough power to extract good features out of the 20.000 words. A smaller dimension perhaps would not capture all the required features for so many words.* `batch_size`. As large as it fitted in my GPU memory (64). A larger batch size lets the network see more inputs at once and better update the weights.* `epochs`. I first tried 3 and 10, but the loss didn't quite stabilize at 3.5. With 20 epochs it managed to reach that recommended threshold.* `learning_rate`. I used the default 0.001 from the Adam optimizer. I did try higher and lower rates, but didn't make the training converge as expected.* `output_size`. Equals to the vocabulary size, since we want to predict the most likely word out of the vocabulary, via the CrossEntropyLoss. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: el paso, the tub is the same, and a man, and he tells her the police. george: well i don't know if you were going to the movies. jerry: well, it's just a natural situation. you know how 'bout the coma is the devil. george: you know i was wondering, you know what this is? jerry: i don't know what i do is about, i just don't want to know how much it is. kramer: hey jerry, i'm sorry. i'm not gonna get this. jerry: i can't believe it. elaine:(to jerry) what about the letter? jerry:(to jerry) i know. jerry:(to george) you know how much i can make? kramer: i don't know. jerry:(pointing) hey, hey, hey!(to elaine) elaine: hey hey, hey. jerry: what are you doing here? george: well i think i'm gonna be able to get it back. george: what is this all you want? jerry: you got some money? george: yeah, yeah. kramer: oh, no, you can't. elaine: i don't want to be able to get to the movies. jerry: i can't believe it. kramer: oh, i can't believe you. george: oh, you know, i can't believe you ski. kramer: well what happened? jerry: you know, i was just curious. i can't believe i wanted to go to the funeral and i have to go to the bathroom. jerry:(thinking) oh, i don't want you to do it! jerry: well you don't even like the army. george: oh, yeah, yeah. i think that's right... kramer: yeah, yeah, yeah? yeah. yeah, yeah. jerry:(looking up) oh, yeah. jerry: ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code from collections import Counter vocab = set(text.split(' ')) vocab import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function vocab = set(text) vocab_to_int = {v: i for i, v in enumerate(vocab)} int_to_vocab = {i: v for v, i in vocab_to_int.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # return a dataloader return None # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables # define model layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state return None, None def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return None, None # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = # of words in a sequence # Batch Size batch_size = # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = # Learning Rate learning_rate = # Model parameters # Vocab size vocab_size = # Output size output_size = # Embedding Dimension embedding_dim = # Hidden Dimension hidden_dim = # Number of RNN Layers n_layers = # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests import collections from string import punctuation def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # don't need to remove punctuation- it's turned into its respective tokens before this text is passed to this function #text_no_punc = [] #for word in text: # new_word = ''.join([c for c in word if c not in punctuation]) # text_no_punc.append(new_word) word_freq = collections.Counter(text) sorted_vocab = sorted(word_freq, key=word_freq.get, reverse=True) int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return {".": "||period||", ",": "||comma||", '"': "||quotation_mark||", ";": "||semicolon||", "!": "||exclamation_mark||", "?": "||question_mark||", "(": "||left_parantheses||", ")": "||right_parantheses||", "-": "||dash||", "\n": "||return||"} """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() print(len(vocab_to_int.keys())) print(max(int_to_vocab.keys())) ###Output 21388 21387 ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # only full batches n_ele_in_one_batch = sequence_length * batch_size n_batches = len(words) // n_ele_in_one_batch words_full_batches = words[:(n_batches*n_ele_in_one_batch)] all_features = [] all_labels = [] for i in range(0, len(words_full_batches), sequence_length): all_features.append(words[i:i+sequence_length]) #if words is exactly a multiple of sequence_length, trying to grab the next element for labels will fail try: all_labels.append(words[i+sequence_length]) except: all_labels.append(words[0]) feature_tensor = torch.Tensor(all_features) target_tensor = torch.Tensor(all_labels) # return a dataloader data = TensorDataset(feature_tensor, target_tensor) return DataLoader(data, batch_size=batch_size, shuffle=True) # there is no test for this function, but you are encouraged to create # print statements and tests of your own # my test # currently the last batch from the generator could have less than batch_size (but full sequence_length rows) gen = iter(batch_data([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], 4, 3)) feat, label = gen.next() print(feat) print(label) ###Output tensor([[ 1., 2., 3., 4.], [ 5., 6., 7., 8.], [ 9., 10., 11., 12.]]) tensor([ 5., 9., 13.]) ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 5., 6., 7., 8., 9.], [ 0., 1., 2., 3., 4.], [ 40., 41., 42., 43., 44.], [ 35., 36., 37., 38., 39.], [ 15., 16., 17., 18., 19.], [ 30., 31., 32., 33., 34.], [ 25., 26., 27., 28., 29.], [ 20., 21., 22., 23., 24.], [ 45., 46., 47., 48., 49.], [ 10., 11., 12., 13., 14.]]) torch.Size([10]) tensor([ 10., 5., 45., 40., 20., 35., 30., 25., 0., 15.]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.vocab_size = vocab_size self.output_size = output_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers self.drop_prob = dropout # define model layers self.embed = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers=n_layers, dropout=dropout, batch_first=True) self.dropout_layer = nn.Dropout(0.3) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # make sure nn_input is a tensor of ints if train_on_gpu: # don't call cuda in the forward function # try # nn_input = torch.LongTensor(nn_input) nn_input = nn_input.type(torch.cuda.LongTensor) # hidden already .cuda if applicable in init_hidden else: nn_input = nn_input.type(torch.LongTensor) batch_size = nn_input.shape[0] out = self.embed(nn_input) out, hidden = self.lstm(out, hidden) # stack out of lstm out = out.contiguous().view(-1, self.hidden_dim) out = self.dropout_layer(out) out = self.fc(out) # out shape is currently batch_size * seq_len, output_size; need to take class score predictions from all the sequence length's last words out = out.view(batch_size, -1, self.output_size) # return one batch of output word scores and the hidden state return out[:,-1, :], hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available hidden_1 = torch.zeros((self.n_layers, batch_size, self.hidden_dim)) cell = torch.zeros((self.n_layers, batch_size, self.hidden_dim)) if train_on_gpu: hidden_1.cuda() cell.cuda() return (hidden_1, cell) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history hidden = tuple([each.data for each in hidden]) if train_on_gpu: # TODO make sure target is a tensor of ints # target = target.type(torch.cuda.LongTensor) # hidden already .cuda if applicable in init_hidden inp = inp.cuda() #target = target.cuda() #target = target.type(torch.cuda.LongTensor) target = torch.LongTensor(target).cuda() else: target = target.type(torch.LongTensor) # TODO: Implement Function # zero the gradients rnn.zero_grad() next_word_pred, new_hidden = rnn(inp, hidden) # move data to GPU, if available # if train_on_gpu: # next_word_pred.cuda() # new_hidden.cuda() # perform backpropagation and optimization loss = criterion(next_word_pred, target) loss.backward() optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), new_hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 20 # of words in a sequence # Batch Size batch_size = 2 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 7 # Learning Rate learning_rate = .01 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = embedding_dim + 100 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches # TODO used to be 500 show_every_n_batches = 1 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output _____no_output_____ ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # return tuple return (None, None) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # return a dataloader return None # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output _____no_output_____ ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # return tuple return (None, None) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word":```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # return a dataloader return None # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following:```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of words** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output one, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of words by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables # define model layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state return None, None def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return None, None # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = # of words in a sequence # Batch Size batch_size = # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = # Learning Rate learning_rate = # Model parameters # Vocab size vocab_size = # Output size output_size = # Embedding Dimension embedding_dim = # Hidden Dimension hidden_dim = # Number of RNN Layers n_layers = # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function vocab = sorted(set(text)) vocab_to_int = dict() int_to_vocab = dict() for index, word in enumerate(vocab): vocab_to_int[word] = index int_to_vocab[index] = word # return tuple return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return { ".": "<period>", ",": "<comma>", "\"": "<quotation_mark>", ";": "<semicolon>", "!": "<exclamation_mark>", "?": "<question_mark>", "(": "<left_parentheses>", ")": "<right_parentheses>", "-": "<dash>", "\n": "<newline>" } """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function sequence_num = len(words) - sequence_length features = list() targets = list() for i in range(sequence_num): begin = i end = begin + sequence_length feature = words[begin:end] features.append(feature) target = words[end] targets.append(target) features = np.array(features) features = torch.from_numpy(features) targets = np.array(targets) targets = torch.from_numpy(targets) if train_on_gpu: features = features.cuda() targets = targets.cuda() dataset = TensorDataset(features, targets) # return a dataloader return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True) # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[25, 26, 27, 28, 29], [44, 45, 46, 47, 48], [22, 23, 24, 25, 26], [30, 31, 32, 33, 34], [10, 11, 12, 13, 14], [19, 20, 21, 22, 23], [20, 21, 22, 23, 24], [26, 27, 28, 29, 30], [37, 38, 39, 40, 41], [15, 16, 17, 18, 19]], device='cuda:0') torch.Size([10]) tensor([30, 49, 27, 35, 15, 24, 25, 31, 42, 20], device='cuda:0') ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.hidden_dim = hidden_dim self.n_layers = n_layers # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM( input_size=embedding_dim, hidden_size=hidden_dim, num_layers=n_layers, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size()[0] output = self.embedding(nn_input) output, hidden = self.lstm(output, hidden) output = output[:,-1,:] output = self.fc(output) # return one batch of output word scores and the hidden state return output, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available hidden = ( torch.zeros(self.n_layers, batch_size, self.hidden_dim), torch.zeros(self.n_layers, batch_size, self.hidden_dim) ) if train_on_gpu: hidden = ( hidden[0].cuda(), hidden[1].cuda() ) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: inp = inp.cuda() target = target.cuda() # perform backpropagation and optimization rnn.zero_grad() output, hidden = rnn(inp, hidden) loss = criterion(output, target) loss.backward() optimizer.step() hidden = ( hidden[0].detach(), hidden[1].detach() ) # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 56 # of words in a sequence # Batch Size batch_size = 128 dataset_size = len(int_text) # data loader - do not change train_loader = batch_data(int_text[:dataset_size], sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 30 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 400 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = (dataset_size // batch_size) // 1 - 1 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 30 epoch(s)... Epoch: 1/30 Loss: 4.289141745572796 Epoch: 2/30 Loss: 3.7877754305370024 Epoch: 3/30 Loss: 3.5796319028879275 Epoch: 4/30 Loss: 3.4241222559695847 Epoch: 5/30 Loss: 3.297029173755632 Epoch: 6/30 Loss: 3.198483217804277 Epoch: 7/30 Loss: 3.1157518120129493 Epoch: 8/30 Loss: 3.048004728322187 Epoch: 9/30 Loss: 2.9860444950534 Epoch: 10/30 Loss: 2.9312726543698564 Epoch: 11/30 Loss: 2.8875475097102847 Epoch: 12/30 Loss: 2.8496716623926184 Epoch: 13/30 Loss: 2.815100453354601 Epoch: 14/30 Loss: 2.7826926462755326 Epoch: 15/30 Loss: 2.7564288917274107 Epoch: 16/30 Loss: 2.7320139785462256 Epoch: 17/30 Loss: 2.7068050035634603 Epoch: 18/30 Loss: 2.684290092034873 Epoch: 19/30 Loss: 2.665286581559714 Epoch: 20/30 Loss: 2.6454119196682546 Epoch: 21/30 Loss: 2.6299615289819753 Epoch: 22/30 Loss: 2.614596900031289 Epoch: 23/30 Loss: 2.5973563381923905 Epoch: 24/30 Loss: 2.5837340978762566 Epoch: 25/30 Loss: 2.570698447079685 Epoch: 26/30 Loss: 2.5586750670542657 Epoch: 27/30 Loss: 2.545758034239063 Epoch: 28/30 Loss: 2.5345035795160338 Epoch: 29/30 Loss: 2.5233328167960094 Epoch: 30/30 Loss: 2.514612071242834 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:**At the very first trainings, I used a stripped dataset by selecting the first 10000 words of the original dataset. It helped me to speed up the training iterations and see, whether the designed network can be trained at all. I have played with the number of layers and the hidden dimension. After, I switched to the full sized dataset, but limited the number of training epochs to 20~30. Then I realized, that the difference in training speed can be seen after 5 epochs. Since then, I performed several 5 epochs long training sessions, until found parameters for a "good" training speed. After I found all parameters, I set the epoch number to 30 as I noticed that usually by that time the training loss settles and doesn't change significantly.I saved the training loss values between sessions, so that I can see, how different parameters affect the training speed. Below you can find a graph with the training loss history for several training sessions and the values of parameters associated with each session. ###Code import json import matplotlib.pyplot as plt from pprint import pprint %matplotlib inline with open("history.json", "r") as history_file: sessions = json.load(history_file) for session_id, session in enumerate(sessions): if session["params"]["dataset_size"] != 10000: print(f"Session {session_id} parameters:") pprint(session["params"]) epoch_average_losses = list() hist = session["history"][:5] for epoch in hist: epoch_length = len(epoch) last_losses_begin = epoch_length * 9 // 10 last_losses = epoch[last_losses_begin:] average_loss = np.mean(last_losses) epoch_average_losses.append(average_loss) epoch_ids = range(len(hist)) plt.plot(epoch_ids, epoch_average_losses, label=session_id) plt.legend() ###Output Session 0 parameters: {'batch_size': 128, 'dataset_size': 892110, 'embedding_dim': 200, 'hidden_dim': 64, 'learning_rate': 0.001, 'n_layers': 3, 'num_epochs': 100, 'sequence_length': 56} Session 1 parameters: {'batch_size': 128, 'dataset_size': 892110, 'embedding_dim': 200, 'hidden_dim': 256, 'learning_rate': 0.001, 'n_layers': 3, 'num_epochs': 30, 'sequence_length': 56} Session 2 parameters: {'batch_size': 128, 'dataset_size': 892110, 'embedding_dim': 200, 'hidden_dim': 128, 'learning_rate': 0.001, 'n_layers': 4, 'num_epochs': 30, 'sequence_length': 56} Session 3 parameters: {'batch_size': 128, 'dataset_size': 892110, 'embedding_dim': 200, 'hidden_dim': 256, 'learning_rate': 0.001, 'n_layers': 4, 'num_epochs': 30, 'sequence_length': 56} Session 4 parameters: {'batch_size': 128, 'dataset_size': 892110, 'embedding_dim': 200, 'hidden_dim': 256, 'learning_rate': 0.001, 'n_layers': 2, 'num_epochs': 30, 'sequence_length': 56} Session 16 parameters: {'batch_size': 128, 'dataset_size': 892110, 'embedding_dim': 300, 'hidden_dim': 256, 'learning_rate': 0.001, 'n_layers': 2, 'num_epochs': 5, 'sequence_length': 56} Session 17 parameters: {'batch_size': 128, 'dataset_size': 892110, 'embedding_dim': 300, 'hidden_dim': 256, 'learning_rate': 0.001, 'n_layers': 2, 'num_epochs': 5, 'sequence_length': 16} Session 18 parameters: {'batch_size': 128, 'dataset_size': 892110, 'embedding_dim': 400, 'hidden_dim': 256, 'learning_rate': 0.001, 'n_layers': 2, 'num_epochs': 5, 'sequence_length': 16} Session 19 parameters: {'batch_size': 128, 'dataset_size': 892110, 'embedding_dim': 300, 'hidden_dim': 512, 'learning_rate': 0.001, 'n_layers': 2, 'num_epochs': 5, 'sequence_length': 56} ###Markdown I have decided to use 10 lines of script as a context. Taking in consideration the average script line length of ~5.6, I set `sequence_length` to 56. I have tried the value of 16, which corresponds approximately to 3 lines of script: the performance has degraded a little bit, so I decided to stay with 56.I have selected the batch size of 128 to ensure the 90% utilization of GPU (reported by nvidia-smi).I have tried the embedding size of 100, 200, 300 and 400. For hidden dimension of 256, the embedding dimension of 300 gave the best loss, but for hidden dimension of 512, the best loss was achieved with the embedding dimension of 400.I have tried different combinations of hidden dimension of 64, 128, 256 and 512 and the number of LSTM layers between 1 and 4. The best training speed was achieved with 2 LSTM layers and 512 hidden units. Increasing the number of LSTM layers worsen the training speed, I guess, because of the presence of an extra dropout layer. Probably, increasing the number of hidden neurons could've improved the loss, but could've also increase the training time, that's why I decided to stop at 512.I selected the learning rate of 0.001, which is a default value of the learning rate for the Adam optimizer. From my previous experience this value of learning rate is a good starting point for the Adam optimizer for almost any model I trained. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: challenged name...(the salt broken fingers, he makes a big phony) elaine: what is this?! i can't believe you liked that! elaine: oh my god. you don't have a flush button.(chuckles) jerry:(to the phone) oh, yeah.(to elaine) you know this show on the other night, and they overlook," get outta the way!" i mean, they don't allow the chaperone off. they don't even want to get the cable companies. elaine: oh! kramer: i got it! chew skin! jerry: oh, i think it's worth something. kramer: yeah, but they scored the duck will probably hit 'em. jerry: well, what is this about? kramer: oh, well, i gotta go to the bathroom. jerry: you want to get me something to eat? kramer: oh. jerry: hey kramer: yeah, well, i'm sure it's not a beauty. jerry:(sarcastic) what? kramer: what? jerry: i don't think so. i mean, you know, maybe i'll just go down to the electric wash. kramer: hey buddy. you ready? jerry:(looking at the cop) i think i may not have it. george:(leaving) woah. alright.(holds the phone back to him to be waiting at the table) jerry: hey! george: hey! george: hey. hey! jerry: hey.(sprays binaca to kramer with a napkin) thanks mate. elaine: hi. jerry: hi, elaine, i'm elaine.(kramer leaves. elaine waves at elaine.) jerry: hey. kramer: hey. jerry: hey. kramer:(from bathroom) hey. kramer: hey. jerry: hey, where's george? kramer: yeah. elaine: hey. ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_dict = {word: None for word in text} int_to_vocab = {idx: word for idx, word in enumerate(word_dict.keys())} vocab_to_int = {word: idx for idx, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function punctuation_token = { '.': '||dot||', ',': '||comma||', '-': '||dash||', ';': '||semi_colon||', '"': '||quotation||', '?': '||question||', '!': '||exclamation||', '(': '||left_paren||', ')': '||right_paren||', '\n': '||newline||', } return punctuation_token """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # return number of targets available num_targets = (len(words) - sequence_length) # initialise feature and targets vars as two empty lists features, target = [], [] for i in range(num_targets): x = words[i : i+sequence_length] # get some words from the given list y = words[i+sequence_length] # get the next word to be the target features.append(x) target.append(y) feature_tensor, target_tensor = torch.from_numpy(np.array(features)), torch.from_numpy(np.array(target)) # create data data = TensorDataset(feature_tensor, target_tensor) # create dataloader dataloader = DataLoader(data, batch_size=batch_size, shuffle=True) # return a dataloader return dataloader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[41, 42, 43, 44, 45], [12, 13, 14, 15, 16], [40, 41, 42, 43, 44], [17, 18, 19, 20, 21], [ 2, 3, 4, 5, 6], [ 7, 8, 9, 10, 11], [10, 11, 12, 13, 14], [ 5, 6, 7, 8, 9], [ 1, 2, 3, 4, 5], [27, 28, 29, 30, 31]], dtype=torch.int32) torch.Size([10]) tensor([46, 17, 45, 22, 7, 12, 15, 10, 6, 32], dtype=torch.int32) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # set class variables # embedding and LSTM layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # define model layers # linear layer self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # embeddings and lstm_out embeds = self.embedding(nn_input.long()) lstm_output, hidden = self.lstm(embeds, hidden) lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim) # fully-connected layer output = self.fc(lstm_output) # reshape into (batch_size, seq_length, output_size) output = output.view(batch_size, -1, self.output_size) # get last batch out = output[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function weight = next(self.parameters()).data # initialize hidden state with zero weights, and move to GPU if available if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: inp, target = inp.cuda(), target.cuda() hidden = tuple([e.data for e in hidden]) # reset gradients and return output rnn.zero_grad() output, hidden = rnn(inp, hidden) # perform backpropagation and optimization loss = criterion(output, target.long()) loss.backward() # clip gradients norm to prevent exploding gradients nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 11 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 15 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 220 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 3 # Show stats for every n number of batches show_every_n_batches = 1000 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 15 epoch(s)... Epoch: 1/15 Loss: 5.551783257961273 Epoch: 1/15 Loss: 4.771057545185089 Epoch: 1/15 Loss: 4.557967208623886 Epoch: 1/15 Loss: 4.451229191541672 Epoch: 1/15 Loss: 4.3751030037403105 Epoch: 1/15 Loss: 4.307648555755615 Epoch: 2/15 Loss: 4.179115289840195 Epoch: 2/15 Loss: 4.070408574819565 Epoch: 2/15 Loss: 4.075216448307037 Epoch: 2/15 Loss: 4.064519879817962 Epoch: 2/15 Loss: 4.052738160848618 Epoch: 2/15 Loss: 4.0327731063365935 Epoch: 3/15 Loss: 3.9470079830299483 Epoch: 3/15 Loss: 3.867176472187042 Epoch: 3/15 Loss: 3.8864018812179566 Epoch: 3/15 Loss: 3.8922921442985534 Epoch: 3/15 Loss: 3.868153561115265 Epoch: 3/15 Loss: 3.875649547100067 Epoch: 4/15 Loss: 3.8085734866003267 Epoch: 4/15 Loss: 3.761287745475769 Epoch: 4/15 Loss: 3.7519507703781128 Epoch: 4/15 Loss: 3.7585046875476835 Epoch: 4/15 Loss: 3.778041011095047 Epoch: 4/15 Loss: 3.7760436074733734 Epoch: 5/15 Loss: 3.709826213203147 Epoch: 5/15 Loss: 3.6605616896152497 Epoch: 5/15 Loss: 3.6642795016765595 Epoch: 5/15 Loss: 3.6813820621967315 Epoch: 5/15 Loss: 3.6950231969356535 Epoch: 5/15 Loss: 3.709610483407974 Epoch: 6/15 Loss: 3.6399432192483245 Epoch: 6/15 Loss: 3.5923170359134673 Epoch: 6/15 Loss: 3.6193778476715086 Epoch: 6/15 Loss: 3.6184697694778443 Epoch: 6/15 Loss: 3.613909814834595 Epoch: 6/15 Loss: 3.6400432991981506 Epoch: 7/15 Loss: 3.580007696950902 Epoch: 7/15 Loss: 3.533606464624405 Epoch: 7/15 Loss: 3.5447707233428956 Epoch: 7/15 Loss: 3.5375457437038422 Epoch: 7/15 Loss: 3.5696508259773254 Epoch: 7/15 Loss: 3.5918638756275176 Epoch: 8/15 Loss: 3.547452989600527 Epoch: 8/15 Loss: 3.491873105287552 Epoch: 8/15 Loss: 3.488748780488968 Epoch: 8/15 Loss: 3.516300818681717 Epoch: 8/15 Loss: 3.530898873567581 Epoch: 8/15 Loss: 3.553862015247345 Epoch: 9/15 Loss: 3.4885908456669656 Epoch: 9/15 Loss: 3.460539013147354 Epoch: 9/15 Loss: 3.4609071877002715 Epoch: 9/15 Loss: 3.480745003938675 Epoch: 9/15 Loss: 3.4771428878307344 Epoch: 9/15 Loss: 3.512293109416962 Epoch: 10/15 Loss: 3.4614001480439645 Epoch: 10/15 Loss: 3.4096969039440155 Epoch: 10/15 Loss: 3.4219684290885923 Epoch: 10/15 Loss: 3.4503337030410766 Epoch: 10/15 Loss: 3.46154877114296 Epoch: 10/15 Loss: 3.4860416829586027 Epoch: 11/15 Loss: 3.435480975087613 Epoch: 11/15 Loss: 3.3809241626262665 Epoch: 11/15 Loss: 3.409766830444336 Epoch: 11/15 Loss: 3.4205078206062316 Epoch: 11/15 Loss: 3.436436573266983 Epoch: 11/15 Loss: 3.458058296918869 Epoch: 12/15 Loss: 3.397295983083482 Epoch: 12/15 Loss: 3.365796604394913 Epoch: 12/15 Loss: 3.3796579282283785 Epoch: 12/15 Loss: 3.4012505297660827 Epoch: 12/15 Loss: 3.4084031472206116 Epoch: 12/15 Loss: 3.4305192005634306 Epoch: 13/15 Loss: 3.3747973559531177 Epoch: 13/15 Loss: 3.333830099105835 Epoch: 13/15 Loss: 3.353144202709198 Epoch: 13/15 Loss: 3.379785180568695 Epoch: 13/15 Loss: 3.385064254760742 Epoch: 13/15 Loss: 3.4118691589832304 Epoch: 14/15 Loss: 3.368195487618628 Epoch: 14/15 Loss: 3.3238744597434997 Epoch: 14/15 Loss: 3.3331131815910338 Epoch: 14/15 Loss: 3.3434905445575716 Epoch: 14/15 Loss: 3.376626351118088 Epoch: 14/15 Loss: 3.386060166597366 Epoch: 15/15 Loss: 3.3307401964421075 Epoch: 15/15 Loss: 3.293493180513382 Epoch: 15/15 Loss: 3.313623753786087 Epoch: 15/15 Loss: 3.338271718263626 Epoch: 15/15 Loss: 3.3491438009738923 Epoch: 15/15 Loss: 3.362390919685364 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)- Batch size: 64 and 256 had a loss of app. 3.9, whereas 128 had the best result of around 3.1.- learning_rate: the standard of 0.001 worked well off the shelf and in combination with higher epoch number I was comfortable it would converge eventually.- embedding_dim: tried the same value of 200 as suggested from the lessons and worked well.- n_layers: 3, 4, and 5 had higher loss than 3 layers.- hidden_dim: 128 and 512 had significantly higher loss than 256.- sequence_length: value > 11 did not improve the performance so I settled for 11 (10 had a near similar performance, though). Ideally, I would have liked to tweaked this param further but I am satisfied with the current performance.- num_epochs: set to 15 (training locally on an Nvidia 1080 Ti). From previous experience anything beyond 50 would not have a significant effect on the loss. I would have increased to 50 for best loss. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.cpu().numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 2000 # modify the length to your preference prime_word = 'elaine' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output elaine: hummm borrowing cinqo woah, but you can't get me a quarter? george:(pointing) you know what?! kramer:(to the phone) what do you do? kramer: oh! sotheby's! employees! burning a lot of olive waffles! george: well, i just don't know how you feel! jerry: well you know i don't know. i know, i'm not going to get the camera, and i'm gonna go to the airport, i'm gonna be a little sweetie... jerry: yeah. kramer: well, schedules and gentlemen, you know, i know what you do. elaine: well, you don't have to be a good person. you don't know what you do. i can't believe this was a little bit. jerry: you mean, the basic thing that you have.(jerry looks around) oh yeah, i can't get it for you. jerry: well, maybe i could get some more of this, i can't get that.(to jerry) jerry: i can't believe i'm going to be able to get a little more of the company's pizza. i can't do this.(jerry enters, she leaves) george: hey, hey, hey. bastards. theaters. oh, hi, hi. hi elaine. kramer:(from intercom) oh, hi. jerry: hi. carson, hi.(he hangs up.) elaine: hey, hey, how was that? george: i think i can go with it.(she looks at his watch).. jerry: i know. astroturf. koren... jerry: oh! blocked it! thirsty! jerry: hey, hey! hey! bastards! hamilton: the movie! kramer: well, schedules and gentlemen--- elaine: oh, yeah, sure. jerry: oh, yeah, i know. elaine: i can't believe this. i don't know how i was in a coma. kramer: well, i think we can get a cab, i know, it's not the one. elaine: i don't know. george:(looking at the phone) hello?(to jerry) hey, i gotta go see the pharmacist. george:(to george) so? jerry: you can't have a big salad? elaine: yeah, yeah? i don't know. i know what i'm doing. george: you mean you can't have it. jerry: oh, no no no, no, no. i just can't.. kramer:(on the street) hello. george: hey, what are you doing here? kramer: oh, no... burning the slob. george: you know, you don't know how much you do. kramer: i know. elaine:(to george) what?! kramer: hey, hey. holders. burning. burning the vault. jerry: oh, hi. jerry: oh, grandpa. jerry: i don't think so. helen: you know i can't get the veggie burger.(jerry is trying to keep the door.) jerry:(to jerry) i don't want to see you. jerry: i think i could do this. george:(to jerry) you see, you should have any time. jerry: what is the point of that? elaine: no, no. no. triangles. no. elaine: oh! blocked it! george: no no no, it's no! kramer: oh, i don't think so! kramer:(to elaine) hey! jerry:(to kramer) hey, i got a great meal for you. kramer: yeah, i don't think so. you know, i don't want you to do it. jerry: well, what is it? jerry: i thought you hated the show. kramer: yeah. jerry: oh, feigning. kramer: yeah, yeah. elaine: i know.. i.. [drumming the whole thing. elaine:(to the cashier) you know i got that. elaine: i know how much i can.(she leaves) jerry:(to elaine) i can't believe you're going. jerry: oh, i can't get it. i'm gonna get the hell out of my mind. george: you know, i can't believe i'm doing that. i think you can get it back with me. kramer: well, i think you can get a ride. elaine:(to jerry) what is the matter here? jerry: what? kramer: i got it. george: oh, come on, let's go to the bathroom. kramer: hey, you got a date. elaine: i can't believe you were in the mood. george: well, i know what this is. george:(to elaine) what are you doing? kramer: oh, i don't think so. jerry: i think i should. kramer:(to the door) you know, you know. kramer: yeah, yeah. george: you know what i think about this guy? i mean," what do you think?!! jerry: i don't know. knocked it in the way. kramer:(to george) what is it? george: well, you know, i don't think i can have to do that. jerry: i thought you had any idea. elaine: well, i guess i should be there, i can't... kramer:(to jerry) what? what do you say? newman: i think i'm gonna have to say something to you. i don't even know how i can. elaine: well, you know, i'm not really interested in the car. kramer: oh, yeah. yeah. yeah...(he hangs up the door. jerry and george are talking]) oh, i think you're so cool! jerry:(to george) i mean, i have a very radical thing for the show. kramer: well, i don't know. jerry:(looking at jerry) you think you can see the doctor? kramer:(pointing) oh, no, i didn't think i have to tell you... kramer: hey! jerry: hey jerry! burning this!!!!.. gain." jimmy:" well you know, i was wondering if you can see each other, but i don't have to go. jerry: i can't believe you're going to be a little..(jerry is shocked, then stops to be a gesture, but puts it up, and then i can't be able to be able to make a cab to get it out, and we'll be able to be a very courageous friend of my own life. jerry:(still trying to take a look of the novocaine, and i don't want to go with you.(kramer is shown) [setting: the coffee shop] jerry: you know. george: oh. holders. burning the candles for a second. jerry: i can't believe you're talking about this. george: i can't. i'm sorry. jerry: well, i think i'm gonna be a little sweetie tweetie weetie weetie. newman: yeah? well, i'm not going to be a little bit of the own york. elaine: you know, it's like a man are a pretty sensitive, huh? elaine: oh yeah. jerry:(to the door) i know. jerry:(to jerry) so what? jerry: i don't know. knocked the keys off. kramer: hey. kramer: hey, blocked it up, george.(to george) hey, i got a little good. elaine: oh, no no no i didn't. i think i can go out of my apartment. kramer: hey. george: what are you doing here for? jerry: i can't believe this! jerry: you know, i think it's great. jerry: oh, you know that, you know, you were just going for a little, you know, it's all over, but i know how i could have been a little bit on it. george: i know, i think i was going to get out of this, but i don't have to be a little eccentric, i'm sorry. i know what i'm doing. george: oh, i can't do this! jerry:(to kramer) hey, i think it's the most important thing. jerry: you know what? i can't believe it. elaine: well, what are you doin'? kramer: i don't know. i don't know what you do, i mean, i have no idea...(kramer enters) jerry:(to jerry) i can't believe it. kramer: yeah! elaine: i don't know, i think it's... jerry: i know. i'm going to a prostitute!(kramer is shown, and starts dancing and walks down to the door) hey, what do you think? jerry:(pointing) oh, yeah. george: i think he thinks that. george: well, maybe i was going to be a little harsh to the rest of the building. jerry: oh, no, i got the car. george: what do i say? elaine:(confused) yeah, i just don't. george: i know, i don't know. you don't have a job, you know, i know, i don't know, i can't believe i'm gonna be able to know. jerry: well i don't know, i just thought you could go ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # words = text.split() word_counts = Counter(text) # sort the word from the most to the least frequent in text occurance sorted_vocab = sorted(word_counts ,key=word_counts.get, reverse=True) #create int_to_vocab dictionaries int_to_vocab = { idx : word for idx,word in enumerate(sorted_vocab)} vocab_to_int = {word : idx for idx , word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function puntuation = ['.', ',', '"', ';', '!', '?', '(', ')', '-', '\n'] token = [ 'PERIOD', 'COMMA', 'QUOTATION_MARK', 'SEMICOLON', 'EXCLAMATION_MARK', 'QUESTION_MARK', 'LEFT_PAREN', 'RIGHT_PAREN', 'HYPHENS', 'QUESTION_MARK' ] token_dict = dict(zip(puntuation, token)) return token_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function x , y = [], [] for i in range(len(words)): if (i + sequence_length) < len(words): x.append(words[i:i + sequence_length]) y.append(words[i + sequence_length]) # Creating tensor data feature_tensors = torch.from_numpy(np.asarray(x)) target_tensors = torch.from_numpy(np.asarray(y)) data = TensorDataset(feature_tensors,target_tensors) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.hidden_dim = hidden_dim self.n_layers = n_layers # embedding and LSTM layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout= dropout, batch_first=True) # dropout layer self.dropout = nn.Dropout(0.3) # define model layers self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) #embedding and lstm_out nn_input = nn_input.long() embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) #stacking lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) #dropout and fully-connected layer output = self.dropout(lstm_out) output = self.fc(output) # reshape to the batch size first output = output.view(batch_size, -1, self.output_size) # get last batch out = output[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # create two new tensors with sizes n_layers x batch_size x hidden_dim # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if (train_on_gpu): rnn.cuda() inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization # we will backpropagate the entire training history hidden = tuple([each.data for each in hidden]) # zero accumulated gradient rnn.zero_grad() # get output from model output, hidden = rnn(inp, hidden) # calculating loss and perform backprop loss = criterion(output, target) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 256 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 20 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int)# +1 for the 0 padding + our word tokens # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 300 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 3 # Show stats for every n number of batches show_every_n_batches = 3000 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from workspace_utils import active_session # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model with active_session(): trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 20 epoch(s)... Epoch: 1/20 Loss: 5.8686649867693585 Epoch: 2/20 Loss: 5.344936761461908 Epoch: 3/20 Loss: 4.352071378110607 Epoch: 4/20 Loss: 4.054746726555611 Epoch: 5/20 Loss: 3.8661262297876666 Epoch: 6/20 Loss: 3.7362306767435216 Epoch: 7/20 Loss: 3.6377746602424113 Epoch: 8/20 Loss: 3.5598370685369356 Epoch: 9/20 Loss: 3.491453578770503 Epoch: 10/20 Loss: 3.4322823315482465 Epoch: 11/20 Loss: 3.378375462768546 Epoch: 12/20 Loss: 3.330190904789212 Epoch: 13/20 Loss: 3.289626871677272 Epoch: 14/20 Loss: 3.2507561165347574 Epoch: 15/20 Loss: 3.216466604294651 Epoch: 16/20 Loss: 3.183058332767333 Epoch: 17/20 Loss: 3.1527546565513522 Epoch: 18/20 Loss: 3.120537461834852 Epoch: 19/20 Loss: 3.0933244806617055 Epoch: 20/20 Loss: 3.0724417322949344 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** Below are the hyperparameters which I used in the beginingsequence_length :- 10hidden_dim:- 256(So as to extract more feature for model to learn better)n_layer:- 3(As mentioned a number of layer is 2 or 3. A large number of layers would not decrease the error however it will take more time to train the model)embedding_dim = 200 **Result**Epoch: 20/20 Loss: 3.5827105351289115Hypertune to below parametersembedding_dim = 300Epoch: 20/20 Loss: 3.0724417322949344**Result**Epoch: 20/20 Loss: 3.0724417322949344 I did hypertuned the sequence length from 15 to 10.However I didnt find any significant difference in the performance. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:46: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function text = set(text) vocab_to_int = {word: i for i, word in enumerate(text, 0)} int_to_vocab = {vocab_to_int[word]: word for word in text} # return tuple return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function symbols_dict = { '.':"||Period||", ',':"||Comma||", '"':"||Quotation_Mark||", ';':"||Semicolon||", '!':"||Exclamation_mark||", '?':"||Question_mark||", '(':"||Left_Parentheses||", ')':"||Right_Parentheses||", '-':"||Dash||", '\n':"||Return||" } return symbols_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function words = words[:(len(words)//batch_size)*batch_size] num_of_sequence = len(words) - sequence_length print("len(words) ", len(words)) print("num_of_sequence ", num_of_sequence) feature_tensors = [] target_tensors = [] for ith_sequence in range(num_of_sequence): feature_tensors.append(words[ith_sequence:ith_sequence + sequence_length]) target_tensors.append(words[ith_sequence + sequence_length]) data = TensorDataset(torch.from_numpy(np.asarray(feature_tensors)), torch.from_numpy(np.asarray(target_tensors))) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader import numpy as np test_text = range(20) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output len(words) 20 num_of_sequence 15 torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers #embedding and LSTM layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # linear layers self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # embeddings and lstm_out nn_input = nn_input.long() embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer out = self.fc(lstm_out) # reshape into (batch_size, seq_length, output_size) out = out.view(batch_size, -1, self.output_size) out = out[:, -1] # get last batch of labels # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function weight = next(self.parameters()).data # initialize hidden state with zero weights, and move to GPU if available if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): rnn.cuda() inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history hidden = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() # get the output from the model output, hidden = rnn(inp, hidden) # calculate the loss and perform backprop loss = criterion(output, target) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 250 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.5062090702056885 Epoch: 1/10 Loss: 4.926387922286987 Epoch: 1/10 Loss: 4.686842391490936 Epoch: 1/10 Loss: 4.559702690601349 Epoch: 1/10 Loss: 4.553887212276459 Epoch: 1/10 Loss: 4.584089871406555 Epoch: 1/10 Loss: 4.483172094345092 Epoch: 1/10 Loss: 4.359795897483826 Epoch: 1/10 Loss: 4.333286078453064 Epoch: 1/10 Loss: 4.2777494196891785 Epoch: 1/10 Loss: 4.384523750782013 Epoch: 1/10 Loss: 4.415594127655029 Epoch: 1/10 Loss: 4.410172013759613 Epoch: 2/10 Loss: 4.209325594104026 Epoch: 2/10 Loss: 4.037347249984741 Epoch: 2/10 Loss: 3.9370961766242982 Epoch: 2/10 Loss: 3.896875053882599 Epoch: 2/10 Loss: 3.9483588485717775 Epoch: 2/10 Loss: 4.031085283756256 Epoch: 2/10 Loss: 3.969794249534607 Epoch: 2/10 Loss: 3.85464750289917 Epoch: 2/10 Loss: 3.869726559638977 Epoch: 2/10 Loss: 3.8377918701171874 Epoch: 2/10 Loss: 3.962148720741272 Epoch: 2/10 Loss: 3.9716279058456423 Epoch: 2/10 Loss: 3.9729313821792602 Epoch: 3/10 Loss: 3.886751433049352 Epoch: 3/10 Loss: 3.7983715415000914 Epoch: 3/10 Loss: 3.7215052394866945 Epoch: 3/10 Loss: 3.6959203553199766 Epoch: 3/10 Loss: 3.7014833650588987 Epoch: 3/10 Loss: 3.794395987510681 Epoch: 3/10 Loss: 3.742502285003662 Epoch: 3/10 Loss: 3.6467981848716735 Epoch: 3/10 Loss: 3.662913607120514 Epoch: 3/10 Loss: 3.6172107772827147 Epoch: 3/10 Loss: 3.735170942783356 Epoch: 3/10 Loss: 3.76316597032547 Epoch: 3/10 Loss: 3.7524899091720583 Epoch: 4/10 Loss: 3.707112671915165 Epoch: 4/10 Loss: 3.640891709804535 Epoch: 4/10 Loss: 3.5662037839889527 Epoch: 4/10 Loss: 3.551697920322418 Epoch: 4/10 Loss: 3.5387388339042665 Epoch: 4/10 Loss: 3.642184967517853 Epoch: 4/10 Loss: 3.5977067370414733 Epoch: 4/10 Loss: 3.4978094353675844 Epoch: 4/10 Loss: 3.5224487719535826 Epoch: 4/10 Loss: 3.4816968317031862 Epoch: 4/10 Loss: 3.620203785419464 Epoch: 4/10 Loss: 3.6233915395736696 Epoch: 4/10 Loss: 3.6023660225868226 Epoch: 5/10 Loss: 3.57944662117761 Epoch: 5/10 Loss: 3.5296650643348695 Epoch: 5/10 Loss: 3.462427608013153 Epoch: 5/10 Loss: 3.4440136847496032 Epoch: 5/10 Loss: 3.438046865463257 Epoch: 5/10 Loss: 3.530569804191589 Epoch: 5/10 Loss: 3.4985185546875 Epoch: 5/10 Loss: 3.3948234634399412 Epoch: 5/10 Loss: 3.408670659542084 Epoch: 5/10 Loss: 3.380607274532318 Epoch: 5/10 Loss: 3.521312997817993 Epoch: 5/10 Loss: 3.518187889099121 Epoch: 5/10 Loss: 3.501225535392761 Epoch: 6/10 Loss: 3.49327678793718 Epoch: 6/10 Loss: 3.44753271150589 Epoch: 6/10 Loss: 3.3876585803031922 Epoch: 6/10 Loss: 3.35939821767807 Epoch: 6/10 Loss: 3.3505120205879213 Epoch: 6/10 Loss: 3.4511019620895387 Epoch: 6/10 Loss: 3.419953513622284 Epoch: 6/10 Loss: 3.3165820841789246 Epoch: 6/10 Loss: 3.3282022681236265 Epoch: 6/10 Loss: 3.308493359565735 Epoch: 6/10 Loss: 3.436646268367767 Epoch: 6/10 Loss: 3.4430289816856385 Epoch: 6/10 Loss: 3.427484694004059 Epoch: 7/10 Loss: 3.420297096583469 Epoch: 7/10 Loss: 3.379414544582367 Epoch: 7/10 Loss: 3.3211863827705383 Epoch: 7/10 Loss: 3.3046035833358767 Epoch: 7/10 Loss: 3.2964598355293275 Epoch: 7/10 Loss: 3.3955893025398254 Epoch: 7/10 Loss: 3.3634757323265077 Epoch: 7/10 Loss: 3.260946491241455 Epoch: 7/10 Loss: 3.2705009050369265 Epoch: 7/10 Loss: 3.2532875366210936 Epoch: 7/10 Loss: 3.371650794506073 Epoch: 7/10 Loss: 3.384002482891083 Epoch: 7/10 Loss: 3.3693463759422304 Epoch: 8/10 Loss: 3.367954517198988 Epoch: 8/10 Loss: 3.342444756984711 Epoch: 8/10 Loss: 3.2698617420196534 Epoch: 8/10 Loss: 3.259161334514618 Epoch: 8/10 Loss: 3.258579605102539 Epoch: 8/10 Loss: 3.3561257271766665 Epoch: 8/10 Loss: 3.326989011287689 Epoch: 8/10 Loss: 3.2244384112358095 Epoch: 8/10 Loss: 3.2178842692375182 Epoch: 8/10 Loss: 3.213238892555237 Epoch: 8/10 Loss: 3.323213146686554 Epoch: 8/10 Loss: 3.336139287471771 Epoch: 8/10 Loss: 3.328948728084564 Epoch: 9/10 Loss: 3.326259451464188 Epoch: 9/10 Loss: 3.2946871476173403 Epoch: 9/10 Loss: 3.236014334201813 Epoch: 9/10 Loss: 3.2235552659034727 Epoch: 9/10 Loss: 3.2148429217338563 Epoch: 9/10 Loss: 3.312799217224121 Epoch: 9/10 Loss: 3.285686270236969 Epoch: 9/10 Loss: 3.1816952877044677 Epoch: 9/10 Loss: 3.18164088344574 Epoch: 9/10 Loss: 3.174444121837616 Epoch: 9/10 Loss: 3.2793217034339905 Epoch: 9/10 Loss: 3.2971090664863585 Epoch: 9/10 Loss: 3.284891571521759 Epoch: 10/10 Loss: 3.2858398820250487 Epoch: 10/10 Loss: 3.25834157705307 Epoch: 10/10 Loss: 3.19934152507782 Epoch: 10/10 Loss: 3.185322557926178 Epoch: 10/10 Loss: 3.1726383724212646 Epoch: 10/10 Loss: 3.267930762767792 Epoch: 10/10 Loss: 3.2477094926834105 Epoch: 10/10 Loss: 3.1451764459609985 Epoch: 10/10 Loss: 3.141101454257965 Epoch: 10/10 Loss: 3.134340192317963 Epoch: 10/10 Loss: 3.236891791820526 Epoch: 10/10 Loss: 3.271589668750763 Epoch: 10/10 Loss: 3.2643052315711976 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** The output size would be the size of the vocabulary which tells which vocabulary appears to be the best prediction. By comparing to the course example from the Lesson6 -- Sentiment Prediction RNN. My library has 46367 words. I decided to choose some smaller embedding dimension in my case, because my library size is relevent smaller. The embedding dimension was 200 here to represent each of the vacuabulary in my library. The instructor choosed a hidden layer of 256. That turned out to be a good number for distinguish between positive and negative reviews. Similarly, for my hidden dimension, I thought 250 hidden features should be enough to give a decent reasoning to make a good pridiction for the next word. I used the same number of the layers for LSTM as 2 layer should be enough for this model size. I started with 5 epochs to check my learning rate and get a feeling of how well the loss will decrease. I found that 0.001 learning rate led to a healthy loss decline. The loss would not jump up and down too much. Finally, with 5 epochs, the loss reduced to 3.5/3.6 ish. Then, I decided to have 10 epochs and that should be more than enough to train below 3.5; The loss was lower than 3.3 at the 10th epochs. reference: Udacity Deep Learning Nanodegree Program: RNN Lesson6 - Sentiment Prediction RNN - 12.Training the Model https://youtu.be/yCC09vCHzF8 Stanford-CS231N -- Lecture 10: Recurrent Neural Networks, Image Captioning, LSTM https://youtu.be/8rXD5-xhemo Stanford-CS224N -- Lecture 1 – Introduction and Word Vectors https://youtu.be/kEMJRjEdNzM Stanford-CS224N -- Lecture 2 – Word Vectors and Word Senses --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:42: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import os import helper data_dir = './data/Seinfeld_Scripts.txt' os.environ['CUDA_LAUNCH_BLOCKING'] = "1" text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # create set of unique words vocab_set = set(text) # create empty dictionaries vocab_to_int = {} int_to_vocab = {} # loop over set of words and them to the dicts for idx, word in enumerate(vocab_set): vocab_to_int[word] = idx int_to_vocab[idx] = word # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function tokenized_dict = { '.' : '<PERIOD>', ',' : '<COMMA>', '"' : '<QUOTATION_MARK>', ';' : '<SEMICOLON>', '!' : '<EXCLAMATION_MARK>', '?' : '<QUESTION_MARK>', '(' : '<LEFT_PAREN>', ')' : '<RIGHT_PAREN>', '-' : '<DASH>', '\n': '<RETURN>' } return tokenized_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # create empty features and target lists features_list = [] target_list = [] # loop over words list to create features lists of length sequence_length and corresponding targets for i in range(0,len(words)-sequence_length,1): features_list.append(words[i:i+sequence_length]) target_list.append(words[i+sequence_length]) # convert to numpy features_np = np.array(features_list,dtype=int) target_np = np.array(target_list, dtype=int) # create dataset and dataloader data = TensorDataset(torch.from_numpy(features_np), torch.from_numpy(target_np)) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers # embedding and LSTM layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # dropout layer #self.dropout = nn.Dropout(0.3) # linear and softmax layers self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # embeddings and lstm_out embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer #out = self.dropout(lstm_out) out = self.fc(lstm_out) # softmax function # reshape into (batch_size, seq_length, output_size) output = out.view(batch_size, -1, self.output_size) # get last batch out = output[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function clip = 5 # move data to GPU, if available if(train_on_gpu): inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history hidden = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() # get the output from the model output, hidden = rnn(inp, hidden) # calculate the loss and perform backprop loss = criterion(output.squeeze(), target.long()) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 64 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 16 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 300 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 16 epoch(s)... Epoch: 1/16 Loss: 5.556302359104157 Epoch: 1/16 Loss: 4.979314372062683 Epoch: 1/16 Loss: 4.84900372171402 Epoch: 1/16 Loss: 4.659985776901245 Epoch: 1/16 Loss: 4.602403111934662 Epoch: 1/16 Loss: 4.451942446231842 Epoch: 1/16 Loss: 4.387503125667572 Epoch: 1/16 Loss: 4.446487414360046 Epoch: 1/16 Loss: 4.518097880840301 Epoch: 1/16 Loss: 4.370514465332032 Epoch: 1/16 Loss: 4.46170058298111 Epoch: 1/16 Loss: 4.505538481712342 Epoch: 1/16 Loss: 4.428290634632111 Epoch: 1/16 Loss: 4.359592231750488 Epoch: 1/16 Loss: 4.379877077579498 Epoch: 1/16 Loss: 4.196736328125 Epoch: 1/16 Loss: 4.233899799823761 Epoch: 1/16 Loss: 4.286175658226013 Epoch: 1/16 Loss: 4.244526471614837 Epoch: 1/16 Loss: 4.173489804267883 Epoch: 1/16 Loss: 4.307819705486297 Epoch: 1/16 Loss: 4.378726980686188 Epoch: 1/16 Loss: 4.405597256660461 Epoch: 1/16 Loss: 4.364223153591156 Epoch: 1/16 Loss: 4.358129034042358 Epoch: 1/16 Loss: 4.401098453521729 Epoch: 1/16 Loss: 4.308312260627747 Epoch: 2/16 Loss: 4.20590086155933 Epoch: 2/16 Loss: 4.032041732788086 Epoch: 2/16 Loss: 4.033846144676208 Epoch: 2/16 Loss: 3.9798114042282107 Epoch: 2/16 Loss: 3.969199767112732 Epoch: 2/16 Loss: 3.8885928826332092 Epoch: 2/16 Loss: 3.8568816151618956 Epoch: 2/16 Loss: 3.9143447952270507 Epoch: 2/16 Loss: 4.041599536418915 Epoch: 2/16 Loss: 3.9226250176429747 Epoch: 2/16 Loss: 4.036768639564515 Epoch: 2/16 Loss: 4.1137974934577946 Epoch: 2/16 Loss: 4.032521290779114 Epoch: 2/16 Loss: 3.9744135971069334 Epoch: 2/16 Loss: 3.9944256772994997 Epoch: 2/16 Loss: 3.855602966308594 Epoch: 2/16 Loss: 3.897054878950119 Epoch: 2/16 Loss: 3.943911460876465 Epoch: 2/16 Loss: 3.9209304070472717 Epoch: 2/16 Loss: 3.8439134006500244 Epoch: 2/16 Loss: 3.97528605222702 Epoch: 2/16 Loss: 4.055018325805664 Epoch: 2/16 Loss: 4.095055522918702 Epoch: 2/16 Loss: 4.085620954036712 Epoch: 2/16 Loss: 4.074289466381073 Epoch: 2/16 Loss: 4.094517741203308 Epoch: 2/16 Loss: 4.029502012729645 Epoch: 3/16 Loss: 3.9551477815650395 Epoch: 3/16 Loss: 3.8580670561790464 Epoch: 3/16 Loss: 3.8533291969299315 Epoch: 3/16 Loss: 3.7982065424919127 Epoch: 3/16 Loss: 3.7892553243637086 Epoch: 3/16 Loss: 3.7233733973503114 Epoch: 3/16 Loss: 3.680432620048523 Epoch: 3/16 Loss: 3.751641619682312 Epoch: 3/16 Loss: 3.8620801944732666 Epoch: 3/16 Loss: 3.7296109499931336 Epoch: 3/16 Loss: 3.8655763487815857 Epoch: 3/16 Loss: 3.9521175570487976 Epoch: 3/16 Loss: 3.8666548681259156 Epoch: 3/16 Loss: 3.822467324256897 Epoch: 3/16 Loss: 3.8306173009872437 Epoch: 3/16 Loss: 3.7318817849159243 Epoch: 3/16 Loss: 3.784616421699524 Epoch: 3/16 Loss: 3.8026616296768188 Epoch: 3/16 Loss: 3.7715783567428587 Epoch: 3/16 Loss: 3.7014256386756896 Epoch: 3/16 Loss: 3.8371938734054565 Epoch: 3/16 Loss: 3.9226734013557434 Epoch: 3/16 Loss: 3.9431958231925965 Epoch: 3/16 Loss: 3.932363947868347 Epoch: 3/16 Loss: 3.9254627542495726 Epoch: 3/16 Loss: 3.9728415536880495 Epoch: 3/16 Loss: 3.9136094856262207 Epoch: 4/16 Loss: 3.8323622534450252 Epoch: 4/16 Loss: 3.7639626865386964 Epoch: 4/16 Loss: 3.7801339983940125 Epoch: 4/16 Loss: 3.7508353934288023 Epoch: 4/16 Loss: 3.7057657923698426 Epoch: 4/16 Loss: 3.628568684577942 Epoch: 4/16 Loss: 3.614459502220154 Epoch: 4/16 Loss: 3.6540659584999085 Epoch: 4/16 Loss: 3.7575233483314516 Epoch: 4/16 Loss: 3.6267790617942812 Epoch: 4/16 Loss: 3.7644733295440673 Epoch: 4/16 Loss: 3.8383875560760496 Epoch: 4/16 Loss: 3.753015235900879 Epoch: 4/16 Loss: 3.7012168798446656 Epoch: 4/16 Loss: 3.7299409189224244 Epoch: 4/16 Loss: 3.6423277888298036 Epoch: 4/16 Loss: 3.6509691717624664 Epoch: 4/16 Loss: 3.688693720817566 Epoch: 4/16 Loss: 3.6663457927703855 Epoch: 4/16 Loss: 3.604248815536499 Epoch: 4/16 Loss: 3.7487168498039245 Epoch: 4/16 Loss: 3.805315224170685 Epoch: 4/16 Loss: 3.8399218702316285 Epoch: 4/16 Loss: 3.830983470916748 Epoch: 4/16 Loss: 3.805719886779785 Epoch: 4/16 Loss: 3.8433204574584963 Epoch: 4/16 Loss: 3.803190098285675 Epoch: 5/16 Loss: 3.7365238333916384 Epoch: 5/16 Loss: 3.6820581741333007 Epoch: 5/16 Loss: 3.6787782549858092 Epoch: 5/16 Loss: 3.6611591284275056 Epoch: 5/16 Loss: 3.637703104496002 Epoch: 5/16 Loss: 3.5480308547019956 Epoch: 5/16 Loss: 3.5189965586662293 Epoch: 5/16 Loss: 3.5707608137130737 Epoch: 5/16 Loss: 3.662746154785156 Epoch: 5/16 Loss: 3.560943691730499 Epoch: 5/16 Loss: 3.6744477415084837 Epoch: 5/16 Loss: 3.7533259778022767 Epoch: 5/16 Loss: 3.6875819849967955 Epoch: 5/16 Loss: 3.6351495785713195 Epoch: 5/16 Loss: 3.664176484584808 Epoch: 5/16 Loss: 3.571788050174713 Epoch: 5/16 Loss: 3.5730915801525116 Epoch: 5/16 Loss: 3.5892826557159423 Epoch: 5/16 Loss: 3.602575134754181 Epoch: 5/16 Loss: 3.5334886107444765 Epoch: 5/16 Loss: 3.6751333742141723 Epoch: 5/16 Loss: 3.734247670173645 Epoch: 5/16 Loss: 3.762551634311676 Epoch: 5/16 Loss: 3.7644194331169127 Epoch: 5/16 Loss: 3.7260990495681763 Epoch: 5/16 Loss: 3.769739712238312 Epoch: 5/16 Loss: 3.7221431250572206 Epoch: 6/16 Loss: 3.6653555544039693 Epoch: 6/16 Loss: 3.625122379541397 Epoch: 6/16 Loss: 3.6249263529777527 Epoch: 6/16 Loss: 3.6012139415740965 Epoch: 6/16 Loss: 3.5939000458717345 Epoch: 6/16 Loss: 3.4900908751487734 Epoch: 6/16 Loss: 3.4559272351264956 Epoch: 6/16 Loss: 3.527843885421753 Epoch: 6/16 Loss: 3.607867751121521 Epoch: 6/16 Loss: 3.5076293301582337 Epoch: 6/16 Loss: 3.6174275646209715 Epoch: 6/16 Loss: 3.7046808667182924 Epoch: 6/16 Loss: 3.630301184177399 Epoch: 6/16 Loss: 3.5854281044006346 Epoch: 6/16 Loss: 3.5940018877983095 Epoch: 6/16 Loss: 3.524826368331909 Epoch: 6/16 Loss: 3.5248674461841585 Epoch: 6/16 Loss: 3.545446871757507 Epoch: 6/16 Loss: 3.5489454789161683 Epoch: 6/16 Loss: 3.482248704433441 Epoch: 6/16 Loss: 3.632452450275421 Epoch: 6/16 Loss: 3.671952172279358 Epoch: 6/16 Loss: 3.703545093536377 Epoch: 6/16 Loss: 3.7010049157142637 Epoch: 6/16 Loss: 3.6731730046272277 Epoch: 6/16 Loss: 3.6949665684700013 Epoch: 6/16 Loss: 3.665810742378235 Epoch: 7/16 Loss: 3.611085271429076 Epoch: 7/16 Loss: 3.589846199989319 Epoch: 7/16 Loss: 3.569016757965088 Epoch: 7/16 Loss: 3.5480982704162596 Epoch: 7/16 Loss: 3.5357533931732177 Epoch: 7/16 Loss: 3.4459022121429443 Epoch: 7/16 Loss: 3.4172794380187987 Epoch: 7/16 Loss: 3.477015841960907 Epoch: 7/16 Loss: 3.552580554008484 Epoch: 7/16 Loss: 3.459586145401001 Epoch: 7/16 Loss: 3.562423429250717 Epoch: 7/16 Loss: 3.6540803694725037 Epoch: 7/16 Loss: 3.567286328792572 Epoch: 7/16 Loss: 3.5195066528320313 Epoch: 7/16 Loss: 3.5390851211547854 Epoch: 7/16 Loss: 3.484873257160187 Epoch: 7/16 Loss: 3.4795094430446625 Epoch: 7/16 Loss: 3.4869506392478944 Epoch: 7/16 Loss: 3.5113028059005735 Epoch: 7/16 Loss: 3.4337530336380007 Epoch: 7/16 Loss: 3.576595564365387 Epoch: 7/16 Loss: 3.617871961593628 Epoch: 7/16 Loss: 3.665402742385864 Epoch: 7/16 Loss: 3.6384147148132326 Epoch: 7/16 Loss: 3.625136462688446 Epoch: 7/16 Loss: 3.666977719783783 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:**The first thing I tried to do is set the sequence length to a large number, 150, but that didn't seem to do a great job at converging the loss. I then set the sequence length to 10 and it did a great job. As for the hidden_dim, I set it to 256 and it seemed to do a good job so I stuck with it. As for the number of layers, 2 layers seem to give lower loss values than 1 layer. It would be worth it to try 3 layers and see how the loss converges. For the number of epochs, I first tried 3 to check if the loss is converging or not, and after that I tried to target a loss lower than 3.5 by setting the number of epochs to 16. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /home/shaarany/anaconda3/envs/pytorchenv/lib/python3.6/site-packages/ipykernel_launcher.py:46: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.54424029368 () The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests import numpy as np from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function counts = Counter(text) sorted_vocab = sorted(counts, key=counts.get, reverse=True) # create int_to_vocab dictionaries int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token_dict = dict() token_dict["."] = "||period||" token_dict[","] = "||comma||" token_dict["\""] = "||quotationmark||" token_dict[";"] = "||semicolon||" token_dict["!"] = "||exclamationmark||" token_dict["?"] = "||questionmark||" token_dict["("] = "||lparentheses||" token_dict[")"] = "||rparentheses||" token_dict["-"] = "||dash||" token_dict["\n"] = "||return||" return token_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output No GPU found. Please use a GPU to train your neural network. ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader import numpy as np def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ n_batches = len(words)//batch_size # only full batches words = words[:n_batches*batch_size] # TODO: Implement function features, targets = [], [] for idx in range(0, (len(words) - sequence_length) ): features.append(words[idx : idx + sequence_length]) targets.append(words[idx + sequence_length]) #print(features) #print(targets) data = TensorDataset(torch.from_numpy(np.asarray(features)), torch.from_numpy(np.asarray(targets))) data_loader = torch.utils.data.DataLoader(data, shuffle=False , batch_size = batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) () torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers # embedding and LSTM layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # linear layer self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # embeddings and lstm_out embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer output = self.fc(lstm_out) # reshape to be batch_size first output = output.view(batch_size, -1, self.output_size) out = output[:, -1] # get last batch of labels # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): rnn.cuda() # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history h = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() if(train_on_gpu): inp, target = inp.cuda(), target.cuda() # get the output from the model output, h = rnn(inp, h) # perform backpropagation and optimization # calculate the loss and perform backprop loss = criterion(output, target) loss.backward() # 'clip_grad_norm' helps prevent the exploding gradient problem in RNNs / LSTMs nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.57906087255 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) Based on the course material regarding embedding, I have selected my model hyperparameters:- sequence_length: I have tried 10, 20 and finaaly sequence length = 10 and batch size = 128 converge faster.- batch_size: I have tried 64, 128 and 256.- num_epochs: I have set it to 10 that is enough.- learning_rate: I have started from 0.001.- embedding_dim: that typical embedding dimensions are around 200 - 500 in size. I have tried 200, 300 and 400 and finnaly I set it to 200 since out inputs are 20K.- hidden_dim: I have set it ro 256that it is more that embedding_dim.- n_layers: It could be 2 or 3. I set it 2 layers. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output _____no_output_____ ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # return tuple return (None, None) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word":```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # return a dataloader return None # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of words** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output one, next word. ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables # define model layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state return None, None def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return None, None # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = # of words in a sequence # Batch Size batch_size = # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = # Learning Rate learning_rate = # Model parameters # Vocab size vocab_size = # Output size output_size = # Embedding Dimension embedding_dim = # Hidden Dimension hidden_dim = # Number of RNN Layers n_layers = # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat it's predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the index of the most likely next word top_i = torch.multinomial(output.exp().data, 1).item() # retrieve that word from the dictionary word = int_to_vocab[top_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = top_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 20) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 20: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. jerry: oh, you dont recall? george: (on an imaginary microphone) uh, no, not at this time. jerry: well, senator, id just like to know, what you knew and when you knew it. claire: mr. seinfeld. mr. costanza. george: are, are you sure this is decaf? wheres the orange indicator? ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function vocab_counter = Counter(text) vocab_sorted = sorted(vocab_counter, key = vocab_counter.get, reverse = True) int_to_vocab = {w: word for w, word in enumerate(vocab_sorted)} vocab_to_int = {word: w for w, word in int_to_vocab.items()} return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code from string import punctuation def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ token_dict = { '.': '||period||', ',': '||comma||', '"': '||quotation_mark||', ';': '||semicolon||', '!': '||exclamation_mark||', '?': '||question_mark||', '(': '||left_parentheses||', ')': '||right_parantheses||', '-': '||dash||', '\n': '||return||' } return token_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() int_text[:10] ' '.join([int_to_vocab[i] for i in int_text[:10]]) dict(list(int_to_vocab.items())[:10]) dict(list(vocab_to_int.items())[:10]) ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output _____no_output_____ ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # return tuple return (None, None) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word":```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # return a dataloader return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_batch_data(batch_data) ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of words** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output one, next word. ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables # define model layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state return None, None def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return None, None # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = # of words in a sequence # Batch Size batch_size = # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = # Learning Rate learning_rate = # Model parameters # Vocab size vocab_size = # Output size output_size = # Embedding Dimension embedding_dim = # Hidden Dimension hidden_dim = # Number of RNN Layers n_layers = # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat it's predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the index of the most likely next word top_i = torch.multinomial(output.exp().data, 1).item() # retrieve that word from the dictionary word = int_to_vocab[top_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = top_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code import inspect import re def describe(arg): frame = inspect.currentframe() callerframeinfo = inspect.getframeinfo(frame.f_back) try: context = inspect.getframeinfo(frame.f_back).code_context caller_lines = ''.join([line.strip() for line in context]) m = re.search(r'describe\s*\((.+?)\)$', caller_lines) if m: caller_lines = m.group(1) position = str(callerframeinfo.filename) + "@" + str(callerframeinfo.lineno) # Add additional info such as array shape or string length additional = '' if hasattr(arg, "shape"): additional += "[shape={}]".format(arg.shape) elif hasattr(arg, "__len__"): # shape includes length information additional += "[len={}]".format(len(arg)) # Use str() representation if it is printable str_arg = str(arg) str_arg = str_arg if str_arg.isprintable() else repr(arg) print(position, "describe(" + caller_lines + ") = ", end='') print(arg.__class__.__name__ + "(" + str_arg + ")", additional) else: print("Describe: couldn't find caller context") finally: del frame del callerframeinfo """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ text = set(text) # remove duplicates vocab_to_int, int_to_vocab = {}, {} for index, word in enumerate(text): vocab_to_int[word] = index int_to_vocab[index] = word return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return {'.': '||Period||', ',': '||Comma||', '"': '||Quotation_Mark||', ';': '||Semicolon||', '!': '||Exclamation_Mark||', '?': '||Question_Mark||', '(': '||Left_Parentheses||', ')': '||Right_Parentheses||', '-': '||Dash||', '\n':'||Return||'} """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') device = 'cuda' if train_on_gpu else 'cpu' ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader torch.manual_seed(0) # Have dataloader shuffle be reproducable def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ assert batch_size > 0, "Batch size not positive" assert sequence_length > 0, "Sequence length not positive" assert sequence_length < len(words), "Sequence length too long" n_sequences = len(words) - sequence_length sequences, targets = [], [] for start_idx in range(n_sequences): target_idx = start_idx + sequence_length sequences.append(words[start_idx:target_idx]) targets.append(words[target_idx]) dataset = TensorDataset(torch.tensor(sequences), torch.tensor(targets)) dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True) return dataloader # there is no test for this function, but you are encouraged to create # print statements and tests of your own words = range(0,8) dataloader = batch_data(words, sequence_length=3, batch_size=2) for seqs, targets in dataloader: for i in range(len(targets)): print("%s -> %s" % (seqs[i].tolist(), targets[i].tolist())) print("End of batch") ###Output [4, 5, 6] -> 7 [0, 1, 2] -> 3 End of batch [1, 2, 3] -> 4 [3, 4, 5] -> 6 End of batch [2, 3, 4] -> 5 End of batch ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 43, 44, 45, 46, 47], [ 4, 5, 6, 7, 8], [ 37, 38, 39, 40, 41], [ 34, 35, 36, 37, 38], [ 16, 17, 18, 19, 20], [ 8, 9, 10, 11, 12], [ 44, 45, 46, 47, 48], [ 27, 28, 29, 30, 31], [ 31, 32, 33, 34, 35], [ 12, 13, 14, 15, 16]]) torch.Size([10]) tensor([ 48, 9, 42, 39, 21, 13, 49, 32, 36, 17]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super().__init__() # Save initializer parameters for param in ("vocab_size output_size embedding_dim hidden_dim n_layers dropout".split()): exec(f"self.{param} = {param}") # https://pytorch.org/docs/stable/nn.html#embedding self.embedding = nn.Embedding(vocab_size, embedding_dim) # https://pytorch.org/docs/stable/nn.html#torch.nn.GRU # batch_first=True gives input and output of shape (batch, seq, feature) self.lstm = nn.LSTM(input_size=embedding_dim, hidden_size=hidden_dim, num_layers=n_layers, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ embed = self.embedding(nn_input) lstm_out, hidden = self.lstm(embed, hidden) # Select only the final embeddings from dimension 1 (sequences) seq_len = nn_input.shape[1] seq_finals = lstm_out.select(1, seq_len-1).contiguous() fc_out = self.fc(seq_finals) return fc_out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' initial = [torch.zeros(self.n_layers, batch_size, self.hidden_dim).to(device) for count in range(2)] return initial """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # Duplicate initial hidden state to prevent back prop through whole training history hidden = tuple([each.data for each in hidden]) optimizer.zero_grad() output, hidden = rnn(inp.to(device), hidden) loss = criterion(output, target.to(device)) loss.backward() # Prevent exploding gradients nn.utils.clip_grad_norm_(rnn.parameters(), 10) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL I only updated the code to store the displayed losses """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] # global losses # Preserve values on keyboard interrupt rnn.losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # if batch_i == 300: # break # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4}, step: {:>4}/{:<4} Loss: {}'.format( epoch_i, n_epochs, batch_i, len(train_loader), np.average(batch_losses))) rnn.losses.append(np.average(batch_losses)) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 15 # of words in a sequence # Batch Size batch_size = 96 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 15 # Learning Rate learning_rate = 0.0001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 50 # Hidden Dimension hidden_dim = 400 # Number of RNN Layers n_layers = 1 # Show stats for every n number of batches show_every_n_batches = 1000 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code torch.manual_seed(0) # Make things reproducable """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model from workspace_utils import active_session with active_session(): trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') import matplotlib.pyplot as plt steps_printed_at = [each * show_every_n_batches for each in range(len(rnn.losses))] plt.plot(steps_printed_at, rnn.losses) plt.ylabel("Loss") plt.ylim(ymax=5) plt.xlabel("Steps") plt.show() ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** Initial parametersI chose embeddings of 50 dimensions since [The Word2Vec Wikipedia article](https://en.wikipedia.org/wiki/Word2vecParameters_and_model_quality) says that 50 is a good size for an embdding.Initially slected hyper parameters were: batch_size = 32 seq_length = 10 num_epochs = 1 learning_rate = 0.001 embedding_dim = 50 n_layers = 1I ran the model for 2000 steps and recorded the loss with the following hidden layer sizes:| Hidden units | Loss | | ------| -----|50 | 4.992100 | 4.8651200 | 4.781500| 4.712I fixed on 150 hidden neurons, then proceeded to look at the effect of LSTM layers when training for 3400 steps:| Hidden units | Layer(s) | Loss after 3400 steps| | ------| -----|----|150 | 1 | 4.620393567085266150 | 2 | 4.818604485988617I chose 1 hidden layer given the quicker loss reduction.I chose the following learning rates (listed in the order chosen) and achieved the associated losses:| Learning rate || Loss after 3000 steps| | ------| -----|0.0001 | 5.3223231410980220.001 | 4.6924338114261630.01 | 4.7049010920524590.005 | 4.553797644376755[This article](https://en.wikipedia.org/wiki/Word2vecParameters_and_model_quality) suggested a sequence length of 15, so I chose that value.I increased the batch size to 96 to have gradient descent wander around less.I figured that this was sufficient tuning at this stage, and so proceeded to train the model with these parameters.----After training, I realised that the loss wasn't reducing after 6 epochs, getting stuck at about 3.4.*At this stage, the requirements were satisifed, but I decided to keep tuning.*I guessed that the likely reason that the loss was higher with 2 layers was a more complex model, and it seemed that my model was too simple to learn more. Therefore, I increased the number of layers to 2.With 2 layers, this **increased** the loss to 3.8 which stayed stable after about 9 epochs. This disproved my prevoius hypothesis.I then returned the number of layers to 1, and instead increased the hidden layer to 400.I also decreased the learning rate to 0.0001 hoping that a decreased learning rate will bounce around less with smaller steps and find a better minima.This reduced the loss to about 3.2. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') # Avoid warning: # /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:40: # UserWarning: RNN module weights are not part of single contiguous chunk of memory. # This means they need to be compacted at every call, possibly greatly increasing memory usage. # To compact weights again call flatten_parameters(). trained_rnn.lstm.flatten_parameters() ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference # prime_word = 'jerry' # name for starting the script # It seems I'd need to do an initial sequence of "master of your domain" rather than a single word... prime_word = 'master' """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] # generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) generated_script = generate(trained_rnn, vocab_to_int[prime_word], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output master. george: yeah, i know... jerry: what? kramer: well, you know, i mean, the only thing that i was just a little, you know, i think you can have to be a little bit about this. kramer: oh.(to jerry) you know, i just remembered my name. george: oh!(she leaves) jerry:(pause) yeah! elaine:(sighs) what? jerry: the--- i- it's not a pig- a- reeno. kramer: hey! jerry: hey! how did you know? kramer: i don't know, i don't know what to do. you know, i don't have to get it. george: oh, come on.(to jerry) i told you to get that thing. frank:(to george) so what? elaine: i was in the shower.. elaine:(to jerry) hey, hey, hey, hey, hey. hey, hey! hey! you gotta get some sleep here!(grabs his coat) i don't want you to have it. george: oh, no. jerry: what? george: you know what, you think you should have to do this...? kramer:(to jerry) yeah, i'm gonna have to...(to kramer) hey, hey, hey, how was this?(points to a look at a man and he goes to his face and he was just trying to make a big salad. george: i can't. elaine:(laughs) well, i don't have to be a little nervous. jerry: what is it? kramer: it's a hundred dollars. jerry: well, what about the difference? elaine: oh, no, no...(jerry looks at george and looks at the other room) george: what about the wedding ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(vocab): """ Create lookup tables for vocabulary :param vocab: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ word_frequency = Counter(vocab) vocab_sorted = sorted(word_frequency, key=word_frequency.get, reverse=True) int_to_vocab = {idx: word for idx, word in enumerate(vocab_sorted)} vocab_to_int = {word: idx for idx, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ tokens = dict() tokens['.'] = '||PERIOD||' tokens[','] = '||COMMA||' tokens['"'] = '||QUOTATION_MARK||' tokens[';'] = '||SEMICOLON||' tokens['!'] = '||EXCLAMATION_MARK||' tokens['?'] = '||QUESTION_MARK||' tokens['('] = '||LEFT_PAREN||' tokens[')'] = '||RIGHT_PAREN||' tokens['?'] = '||QUESTION_MARK||' tokens['-'] = '||DASH||' tokens['\n'] = '||NEW_LINE||' return tokens return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ n_batches = len(words)//batch_size words = words[:n_batches*batch_size] y_len = len(words) - sequence_length x, y = [], [] for idx in range(0, y_len): end_idx = idx + sequence_length x_batch = words[idx:end_idx] y_batch = words[end_idx] x.append(x_batch) y.append(y_batch) # create Tensor datasets data = TensorDataset(torch.from_numpy(np.asarray(x)), torch.from_numpy(np.asarray(y))) # return a dataloader return DataLoader(data, shuffle=True, batch_size=batch_size) # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 12, 13, 14, 15, 16], [ 16, 17, 18, 19, 20], [ 22, 23, 24, 25, 26], [ 27, 28, 29, 30, 31], [ 0, 1, 2, 3, 4], [ 19, 20, 21, 22, 23], [ 32, 33, 34, 35, 36], [ 42, 43, 44, 45, 46], [ 13, 14, 15, 16, 17], [ 15, 16, 17, 18, 19]]) torch.Size([10]) tensor([ 17, 21, 27, 32, 5, 24, 37, 47, 18, 20]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers ## Embedding layer self.embedding = nn.Embedding(vocab_size, embedding_dim) ## LSTM self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) ## Fully Connected Output Layer self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ batch_size = nn_input.size(0) embedded_input = self.embedding(nn_input) lstm_output, hidden = self.lstm(embedded_input, hidden) # stack up lstm outputs lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim) output = self.fc(lstm_output) # reshape into (batch_size, seq_length, output_size) output = output.view(batch_size, -1, self.output_size) # get last batch output = output[:, -1] # return one batch of output word scores and the hidden state return output, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): rnn.cuda() inp, target = inp.cuda(), target.cuda() # Creating new variables for the hidden state, otherwise ## we'd backprop through the entire training history h = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() # get predicted outputs output, h = rnn(inp, h) # calculate loss loss = criterion(output, target) # perform backpropagation and optimization loss.backward() # 'clip_grad_norm' helps prevent the exploding gradient problem in RNNs / LSTMs nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 12 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 100 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.689335102081299 Epoch: 1/10 Loss: 4.990469039916992 Epoch: 1/10 Loss: 4.762852001190185 Epoch: 1/10 Loss: 4.638548399925232 Epoch: 1/10 Loss: 4.520133486747742 Epoch: 1/10 Loss: 4.442440998077393 Epoch: 1/10 Loss: 4.406807768344879 Epoch: 1/10 Loss: 4.353310613155365 Epoch: 1/10 Loss: 4.306007277488709 Epoch: 1/10 Loss: 4.28541527891159 Epoch: 1/10 Loss: 4.252699371814728 Epoch: 1/10 Loss: 4.242565767288208 Epoch: 1/10 Loss: 4.211694393634796 Epoch: 2/10 Loss: 4.09004413367303 Epoch: 2/10 Loss: 4.012842516899109 Epoch: 2/10 Loss: 4.003110827445984 Epoch: 2/10 Loss: 3.995257466316223 Epoch: 2/10 Loss: 3.9906706051826477 Epoch: 2/10 Loss: 3.991211027622223 Epoch: 2/10 Loss: 3.9961580533981325 Epoch: 2/10 Loss: 3.9808934264183042 Epoch: 2/10 Loss: 3.9436436290740966 Epoch: 2/10 Loss: 3.9623371529579163 Epoch: 2/10 Loss: 3.945345802783966 Epoch: 2/10 Loss: 3.9629678020477295 Epoch: 2/10 Loss: 3.9369547820091246 Epoch: 3/10 Loss: 3.855660996900117 Epoch: 3/10 Loss: 3.7924579558372495 Epoch: 3/10 Loss: 3.7916239104270937 Epoch: 3/10 Loss: 3.78401593208313 Epoch: 3/10 Loss: 3.781112868309021 Epoch: 3/10 Loss: 3.7864360413551332 Epoch: 3/10 Loss: 3.7707386717796325 Epoch: 3/10 Loss: 3.7857625164985658 Epoch: 3/10 Loss: 3.77382771396637 Epoch: 3/10 Loss: 3.7824574990272524 Epoch: 3/10 Loss: 3.7858978509902954 Epoch: 3/10 Loss: 3.779183482170105 Epoch: 3/10 Loss: 3.8029033913612365 Epoch: 4/10 Loss: 3.7201276404305923 Epoch: 4/10 Loss: 3.640900936126709 Epoch: 4/10 Loss: 3.6390393896102906 Epoch: 4/10 Loss: 3.651479829788208 Epoch: 4/10 Loss: 3.6736504735946656 Epoch: 4/10 Loss: 3.6317503776550293 Epoch: 4/10 Loss: 3.6692456407546996 Epoch: 4/10 Loss: 3.6592721338272094 Epoch: 4/10 Loss: 3.6719485473632814 Epoch: 4/10 Loss: 3.6794757652282715 Epoch: 4/10 Loss: 3.658661730289459 Epoch: 4/10 Loss: 3.685721179962158 Epoch: 4/10 Loss: 3.7057959332466126 Epoch: 5/10 Loss: 3.6109846699828942 Epoch: 5/10 Loss: 3.543990177631378 Epoch: 5/10 Loss: 3.5439520463943484 Epoch: 5/10 Loss: 3.5543925104141234 Epoch: 5/10 Loss: 3.5421084151268007 Epoch: 5/10 Loss: 3.5595854954719544 Epoch: 5/10 Loss: 3.5671810064315794 Epoch: 5/10 Loss: 3.5933289227485656 Epoch: 5/10 Loss: 3.583650695323944 Epoch: 5/10 Loss: 3.5925776000022887 Epoch: 5/10 Loss: 3.5935501232147216 Epoch: 5/10 Loss: 3.5848735785484314 Epoch: 5/10 Loss: 3.600077327251434 Epoch: 6/10 Loss: 3.5245057672015894 Epoch: 6/10 Loss: 3.4567282438278197 Epoch: 6/10 Loss: 3.4492290363311766 Epoch: 6/10 Loss: 3.4556948804855345 Epoch: 6/10 Loss: 3.4758810696601867 Epoch: 6/10 Loss: 3.485396713733673 Epoch: 6/10 Loss: 3.5147147693634033 Epoch: 6/10 Loss: 3.5213922600746157 Epoch: 6/10 Loss: 3.5079230608940124 Epoch: 6/10 Loss: 3.5110500435829164 Epoch: 6/10 Loss: 3.540863757133484 Epoch: 6/10 Loss: 3.5183197450637818 Epoch: 6/10 Loss: 3.530316883087158 Epoch: 7/10 Loss: 3.47198021707456 Epoch: 7/10 Loss: 3.3885739154815675 Epoch: 7/10 Loss: 3.3907443442344665 Epoch: 7/10 Loss: 3.404612669944763 Epoch: 7/10 Loss: 3.4167795372009278 Epoch: 7/10 Loss: 3.429683964252472 Epoch: 7/10 Loss: 3.4322836065292357 Epoch: 7/10 Loss: 3.4292672295570372 Epoch: 7/10 Loss: 3.4561973814964295 Epoch: 7/10 Loss: 3.466958176612854 Epoch: 7/10 Loss: 3.457442395210266 Epoch: 7/10 Loss: 3.469754644870758 Epoch: 7/10 Loss: 3.4851392683982847 Epoch: 8/10 Loss: 3.414517692051643 Epoch: 8/10 Loss: 3.3394555287361145 Epoch: 8/10 Loss: 3.3458389449119568 Epoch: 8/10 Loss: 3.3648141913414 Epoch: 8/10 Loss: 3.3736281752586366 Epoch: 8/10 Loss: 3.3770995969772337 Epoch: 8/10 Loss: 3.3871143264770507 Epoch: 8/10 Loss: 3.4066839089393617 Epoch: 8/10 Loss: 3.386567701816559 Epoch: 8/10 Loss: 3.415872033119202 Epoch: 8/10 Loss: 3.402440727710724 Epoch: 8/10 Loss: 3.4310655674934387 Epoch: 8/10 Loss: 3.431197931289673 Epoch: 9/10 Loss: 3.3661745737406834 Epoch: 9/10 Loss: 3.291727011680603 Epoch: 9/10 Loss: 3.2933093738555907 Epoch: 9/10 Loss: 3.3234049105644226 Epoch: 9/10 Loss: 3.3226202754974365 Epoch: 9/10 Loss: 3.33066694355011 Epoch: 9/10 Loss: 3.3359247121810913 Epoch: 9/10 Loss: 3.3585346493721007 Epoch: 9/10 Loss: 3.3688218941688537 Epoch: 9/10 Loss: 3.365759085178375 Epoch: 9/10 Loss: 3.390573311328888 Epoch: 9/10 Loss: 3.3818308234214784 Epoch: 9/10 Loss: 3.4139123697280884 Epoch: 10/10 Loss: 3.316983445370493 Epoch: 10/10 Loss: 3.2662136254310608 Epoch: 10/10 Loss: 3.2569780564308166 Epoch: 10/10 Loss: 3.2723226146698 Epoch: 10/10 Loss: 3.2950291895866393 Epoch: 10/10 Loss: 3.287660878658295 Epoch: 10/10 Loss: 3.328598433971405 Epoch: 10/10 Loss: 3.3206465549468995 Epoch: 10/10 Loss: 3.343081605434418 Epoch: 10/10 Loss: 3.3318973751068115 Epoch: 10/10 Loss: 3.3310949902534484 Epoch: 10/10 Loss: 3.35181494474411 Epoch: 10/10 Loss: 3.3633791499137877 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** I tried with sequence_lenghts = 100,50,25,10,15,12. The earlier 3 options did not converge efficiently and found 12 to be the best among other three. From the experience gained from previous exercises in the course, I found that setting n_layers=2 works efficiently in terms of model convergence and time to train. Likewise, I experimented with hidden_dim=128, 256, 512. I did not find the parameter value 512 any more better than 256; while setting hidden_dim=128 gave me higher loss than 256. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:43: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # Set an id for each word (word to id) vocab_to_int={word: idx for idx, word in enumerate(set(text))} # For each id obtain the associates word (id to word) int_to_vocab={value : key for (key, value) in vocab_to_int.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function dict_punctuation={'.':'|Period|', ',':'|Comma|', '"':'|Quotation|',';':'|Semicolon|', '!':'|Exclamation|','?':'|Question|', '(':'|Left_Parentheses|',')':'|Right_Parentheses|', '-':'|Dash|','\n':'|Return|'} return dict_punctuation """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check Point 1This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output No GPU found. Please use a GPU to train your neural network. ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # Create a list with the target variable target=words[sequence_length:] # Create a list of list with the features (each sublist is a feature) features=[words[idx:(idx+sequence_length)] for idx in range(0, len(words)-sequence_length)] # Create a tensor dataset data = TensorDataset(torch.tensor(features), torch.tensor(target)) # Create a data loader object data_loader = torch.utils.data.DataLoader(data, shuffle=True, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own # The function seems to work smoothly test=batch_data(int_text[:8], 5, 1) print('The input array is {}\n =============='.format(np.transpose(int_text[:8]))) for text, target in test: print('The generated data is\n {},\n and the target is\n {}\n........................'.format(np.array(text),int(target))) ###Output The input array is [13592 4847 7508 2726 2726 2726 1852 7508] ============== The generated data is [[7508 2726 2726 2726 1852]], and the target is 7508 ........................ The generated data is [[4847 7508 2726 2726 2726]], and the target is 1852 ........................ The generated data is [[13592 4847 7508 2726 2726]], and the target is 2726 ........................ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 40, 41, 42, 43, 44], [ 10, 11, 12, 13, 14], [ 0, 1, 2, 3, 4], [ 32, 33, 34, 35, 36], [ 9, 10, 11, 12, 13], [ 41, 42, 43, 44, 45], [ 22, 23, 24, 25, 26], [ 13, 14, 15, 16, 17], [ 39, 40, 41, 42, 43], [ 5, 6, 7, 8, 9]]) torch.Size([10]) tensor([ 45, 15, 5, 37, 14, 46, 27, 18, 44, 10]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.1): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # Set the parmeters self.n_layers=n_layers self.hidden_dim=hidden_dim self.output_size=output_size self.vocab_size=vocab_size # self.embedding = nn.Embedding(vocab_size, embedding_dim) # set class variable # define model layers self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers,dropout=dropout,batch_first=True) self.dropout = nn.Dropout(dropout) self.hidden2tag = nn.Linear(hidden_dim, output_size) #self.sigmoid = nn.Sigmoid() def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size=nn_input.size(0) # embeddings and lstm_out embeds = self.embedding(nn_input) output, hiden = self.lstm(embeds,hidden) # Dropout ------------ output = self.dropout(output) # Shape output output = output.contiguous().view(-1, self.hidden_dim) # Final output output = self.hidden2tag(output) # sigmoid function #sig_out = self.sigmoid(output) # reshape into (batch_size, seq_length, output_size) output = output.view(batch_size, -1, self.output_size) # get last batch out = output[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # zero gradients rnn.zero_grad() #print('Input forward_back_prop: {}'.format(inp)) # move data to GPU, if available ## # Check for a GPU train_on_gpu = torch.cuda.is_available() if(train_on_gpu): inp, target = inp.cuda(), target.cuda() # inputs and target to CUDA h = tuple([each.data for each in hidden]) # Forward propagation (return prediction and hidden) prediction, hidden = rnn(inp, h) # Calculate the loss and perform backpropagation and optimization loss = criterion(prediction,target) loss.backward() # Optimizer step nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 6 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 15 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int.keys()) # Output size output_size = len(vocab_to_int.keys()) # Embedding Dimension embedding_dim = 100#int(vocab_size**0.25 ) # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # I commented these lines of codes to avoid get into the training process again. """ from workspace_utils import active_session with active_session(): # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.1) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model torch.save(trained_rnn.state_dict(), 'rnn_model.pt') #helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') """ ###Output Training for 15 epoch(s)... Epoch: 1/15 Loss: 5.663258090019226 Epoch: 1/15 Loss: 4.974978388309479 Epoch: 1/15 Loss: 4.731637468338013 Epoch: 1/15 Loss: 4.612092967987061 Epoch: 1/15 Loss: 4.504213795185089 Epoch: 1/15 Loss: 4.417986435890198 Epoch: 1/15 Loss: 4.370470092773438 Epoch: 1/15 Loss: 4.317675413131714 Epoch: 1/15 Loss: 4.294067976951599 Epoch: 1/15 Loss: 4.241216436386108 Epoch: 1/15 Loss: 4.214857961654663 Epoch: 1/15 Loss: 4.190512034416199 Epoch: 1/15 Loss: 4.148846408367157 Epoch: 2/15 Loss: 4.053176667299064 Epoch: 2/15 Loss: 3.9895072927474975 Epoch: 2/15 Loss: 3.9703796162605287 Epoch: 2/15 Loss: 3.9970931606292726 Epoch: 2/15 Loss: 3.9731620512008665 Epoch: 2/15 Loss: 3.9681954469680787 Epoch: 2/15 Loss: 3.9488897376060486 Epoch: 2/15 Loss: 3.9478984870910643 Epoch: 2/15 Loss: 3.9462607555389404 Epoch: 2/15 Loss: 3.925812830924988 Epoch: 2/15 Loss: 3.951374550819397 Epoch: 2/15 Loss: 3.9212351932525635 Epoch: 2/15 Loss: 3.9174063687324523 Epoch: 3/15 Loss: 3.8200453028959385 Epoch: 3/15 Loss: 3.7386282682418823 Epoch: 3/15 Loss: 3.7579594388008117 Epoch: 3/15 Loss: 3.7462767906188965 Epoch: 3/15 Loss: 3.7273158679008485 Epoch: 3/15 Loss: 3.7300032291412353 Epoch: 3/15 Loss: 3.7327031984329224 Epoch: 3/15 Loss: 3.768801794528961 Epoch: 3/15 Loss: 3.757462275028229 Epoch: 3/15 Loss: 3.7550300965309145 Epoch: 3/15 Loss: 3.7617292289733886 Epoch: 3/15 Loss: 3.7689134130477906 Epoch: 3/15 Loss: 3.7620597701072693 Epoch: 4/15 Loss: 3.651756169011103 Epoch: 4/15 Loss: 3.580344995498657 Epoch: 4/15 Loss: 3.5716244969367983 Epoch: 4/15 Loss: 3.5850346388816834 Epoch: 4/15 Loss: 3.5969847054481505 Epoch: 4/15 Loss: 3.61905899477005 Epoch: 4/15 Loss: 3.598149802684784 Epoch: 4/15 Loss: 3.625283618450165 Epoch: 4/15 Loss: 3.6171423163414 Epoch: 4/15 Loss: 3.637788908481598 Epoch: 4/15 Loss: 3.6303118286132814 Epoch: 4/15 Loss: 3.6185184020996095 Epoch: 4/15 Loss: 3.6318580222129824 Epoch: 5/15 Loss: 3.533268683712057 Epoch: 5/15 Loss: 3.443302219390869 Epoch: 5/15 Loss: 3.448633542537689 Epoch: 5/15 Loss: 3.4698262400627136 Epoch: 5/15 Loss: 3.4839738097190858 Epoch: 5/15 Loss: 3.483365166187286 Epoch: 5/15 Loss: 3.493470165729523 Epoch: 5/15 Loss: 3.499399845600128 Epoch: 5/15 Loss: 3.505293409347534 Epoch: 5/15 Loss: 3.5149912037849425 Epoch: 5/15 Loss: 3.522236449241638 Epoch: 5/15 Loss: 3.529040623664856 Epoch: 5/15 Loss: 3.544809880256653 Epoch: 6/15 Loss: 3.426417585742978 Epoch: 6/15 Loss: 3.3352773170471193 Epoch: 6/15 Loss: 3.3538643884658814 Epoch: 6/15 Loss: 3.3326404581069946 Epoch: 6/15 Loss: 3.3662939414978026 Epoch: 6/15 Loss: 3.388433437347412 Epoch: 6/15 Loss: 3.397740466594696 Epoch: 6/15 Loss: 3.3960886330604554 Epoch: 6/15 Loss: 3.4134975595474244 Epoch: 6/15 Loss: 3.4226679968833924 Epoch: 6/15 Loss: 3.431689368247986 Epoch: 6/15 Loss: 3.4431109986305235 Epoch: 6/15 Loss: 3.457769995689392 Epoch: 7/15 Loss: 3.3366429921397236 Epoch: 7/15 Loss: 3.2163876152038573 Epoch: 7/15 Loss: 3.263990321159363 Epoch: 7/15 Loss: 3.2836737785339354 Epoch: 7/15 Loss: 3.2897709798812866 Epoch: 7/15 Loss: 3.2887202916145326 Epoch: 7/15 Loss: 3.3207587175369264 Epoch: 7/15 Loss: 3.3121140356063843 Epoch: 7/15 Loss: 3.3443190593719483 Epoch: 7/15 Loss: 3.354572840690613 Epoch: 7/15 Loss: 3.3512333822250366 Epoch: 7/15 Loss: 3.3585531215667723 Epoch: 7/15 Loss: 3.3638349785804746 Epoch: 8/15 Loss: 3.2458772403413914 Epoch: 8/15 Loss: 3.1732354836463927 Epoch: 8/15 Loss: 3.194883086681366 Epoch: 8/15 Loss: 3.1934889554977417 Epoch: 8/15 Loss: 3.2077871503829956 Epoch: 8/15 Loss: 3.213690211772919 Epoch: 8/15 Loss: 3.227969316482544 Epoch: 8/15 Loss: 3.2649383850097657 Epoch: 8/15 Loss: 3.2624859008789064 Epoch: 8/15 Loss: 3.2705423016548156 Epoch: 8/15 Loss: 3.290566128730774 Epoch: 8/15 Loss: 3.3023590745925904 Epoch: 8/15 Loss: 3.3002757964134215 Epoch: 9/15 Loss: 3.180394997660713 Epoch: 9/15 Loss: 3.0846273612976076 Epoch: 9/15 Loss: 3.1130513925552368 Epoch: 9/15 Loss: 3.132577859401703 Epoch: 9/15 Loss: 3.13539009141922 Epoch: 9/15 Loss: 3.17213000869751 Epoch: 9/15 Loss: 3.161185974597931 Epoch: 9/15 Loss: 3.1835865440368654 Epoch: 9/15 Loss: 3.183850060939789 Epoch: 9/15 Loss: 3.2200051379203796 Epoch: 9/15 Loss: 3.2231619257926942 Epoch: 9/15 Loss: 3.245440628528595 Epoch: 9/15 Loss: 3.251837821960449 Epoch: 10/15 Loss: 3.1343552456059567 Epoch: 10/15 Loss: 3.021392032146454 Epoch: 10/15 Loss: 3.0498223094940187 Epoch: 10/15 Loss: 3.0733331441879272 Epoch: 10/15 Loss: 3.0837340478897093 Epoch: 10/15 Loss: 3.120856162071228 Epoch: 10/15 Loss: 3.1049691095352174 Epoch: 10/15 Loss: 3.128293273448944 Epoch: 10/15 Loss: 3.1414620447158814 Epoch: 10/15 Loss: 3.1498056592941284 Epoch: 10/15 Loss: 3.1692037019729615 Epoch: 10/15 Loss: 3.1892218647003174 Epoch: 10/15 Loss: 3.19181530046463 Epoch: 11/15 Loss: 3.0655889378243555 Epoch: 11/15 Loss: 2.9849990825653077 Epoch: 11/15 Loss: 2.989135643482208 Epoch: 11/15 Loss: 3.0097830567359924 Epoch: 11/15 Loss: 3.032475079059601 Epoch: 11/15 Loss: 3.049156584739685 Epoch: 11/15 Loss: 3.0724888558387757 Epoch: 11/15 Loss: 3.0932924423217774 Epoch: 11/15 Loss: 3.09987087392807 Epoch: 11/15 Loss: 3.0845982084274293 Epoch: 11/15 Loss: 3.138016402721405 Epoch: 11/15 Loss: 3.1391333870887754 Epoch: 11/15 Loss: 3.1453376269340514 Epoch: 12/15 Loss: 3.0292437544056012 Epoch: 12/15 Loss: 2.9214587507247924 Epoch: 12/15 Loss: 2.9582755999565125 Epoch: 12/15 Loss: 2.96631263589859 Epoch: 12/15 Loss: 2.9855646600723267 Epoch: 12/15 Loss: 3.0016551280021666 Epoch: 12/15 Loss: 3.0090343608856203 Epoch: 12/15 Loss: 3.0549455437660216 Epoch: 12/15 Loss: 3.064172354698181 Epoch: 12/15 Loss: 3.0738224091529847 Epoch: 12/15 Loss: 3.0731438827514648 Epoch: 12/15 Loss: 3.0813179783821107 Epoch: 12/15 Loss: 3.1010269145965577 Epoch: 13/15 Loss: 2.99152966795568 Epoch: 13/15 Loss: 2.8719326167106627 Epoch: 13/15 Loss: 2.925647789478302 Epoch: 13/15 Loss: 2.9353894028663636 Epoch: 13/15 Loss: 2.9563202605247496 Epoch: 13/15 Loss: 2.9768732051849365 Epoch: 13/15 Loss: 2.9817828540802003 Epoch: 13/15 Loss: 2.9893096594810484 Epoch: 13/15 Loss: 3.0023242139816286 Epoch: 13/15 Loss: 3.0445122718811035 Epoch: 13/15 Loss: 3.0298868894577025 Epoch: 13/15 Loss: 3.0447888989448546 Epoch: 13/15 Loss: 3.0516328353881836 Epoch: 14/15 Loss: 2.9437864523061905 Epoch: 14/15 Loss: 2.8412419533729554 Epoch: 14/15 Loss: 2.8936699471473695 Epoch: 14/15 Loss: 2.9030875000953675 Epoch: 14/15 Loss: 2.917694800853729 Epoch: 14/15 Loss: 2.92470934677124 Epoch: 14/15 Loss: 2.9426044716835023 Epoch: 14/15 Loss: 2.9456413397789003 Epoch: 14/15 Loss: 2.9782276697158814 Epoch: 14/15 Loss: 2.986908352851868 Epoch: 14/15 Loss: 3.004481569290161 Epoch: 14/15 Loss: 3.0025596771240233 Epoch: 14/15 Loss: 3.0122240405082703 Epoch: 15/15 Loss: 2.915432571011554 Epoch: 15/15 Loss: 2.8088239612579344 Epoch: 15/15 Loss: 2.849580877780914 Epoch: 15/15 Loss: 2.8489021005630493 Epoch: 15/15 Loss: 2.8945327224731447 Epoch: 15/15 Loss: 2.8934730386734007 Epoch: 15/15 Loss: 2.913402572154999 Epoch: 15/15 Loss: 2.9084716186523436 Epoch: 15/15 Loss: 2.938759408950806 Epoch: 15/15 Loss: 2.9509732837677003 Epoch: 15/15 Loss: 2.9662244000434876 Epoch: 15/15 Loss: 2.9851387214660643 Epoch: 15/15 Loss: 3.0253033781051637 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** Well, tuning the parameters model took a lot of time in my case. * I tried different `sequences_lengths`, starting very high (like around 120 words) and finally set the parameter in 6 words of length. This final length makes more sense more and makes the training process faster. Nevertheless, after seeing the results, and if I had more computational capabilities and time, I probably test with length a litter higher, for example, 10-15.* I set the number of layers equal to 2. Even when I tested other numbers of layers like 4-5, the results don't improve significative in these situations. For this reason, I keep this parameter in 2.* About the hidden dimension, I initially set it at 256 (taking into account the other models developed in this lesson), and after some try and failure tests, I realized that the model doesn't improve with smaller or higher values.* Other parameters like the `learning rate`, the `number of epochs` and the `embedding dimension` were adjusted in accordance with the previous results that I was obtaining. * In the case of the `embedding dimension`, I started with: $$ \mbox{embedding dimension}=\sqrt[4]{\mbox{vocab_size}} $$ thanks to [this blog](https://developers.googleblog.com/2017/11/introducing-tensorflow-feature-columns.html) of a Google developer. Taking into account the above formula, the `embedding dimension` was around 12 in our case, which seemed a little small for me, and for that reason, I increased to 100, in which case I got better results. > In general, I am sure that this is the first step and that this model can be improved significative. Even when I wish to spend a lot more time in this project, I can't spend the limited GPU resources or my limited time in only one project. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name!> For some reason, the original code that save the whole model (see below) don't work in my case (some kind of error reated with CUDA).```pythonhelper.save_model('./save/trained_rnn', trained_rnn)```I changed the syntax to one that I know works perfectly (see below), with the only important remark that it's necessary to initialize the model first because with this option we only save the final parameters of the RNN and not the whole net.```pythontorch.save(trained_rnn.state_dict(), 'rnn_model.pt')``` ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests if torch.cuda.is_available(): map_location=lambda storage, loc: storage.cuda() else: map_location='cpu' _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() #trained_rnn = helper.load_model('./save/trained_rnn') # load the model that got the best validation accuracy (uncomment the line below) trained_rnn=RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.1) trained_rnn.load_state_dict(torch.load('rnn_model.pt',map_location=map_location)) #trained_rnn =torch.load('./save/trained_rnn', map_location=map_location) ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'kramer' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output kramer: whale' drab jill skiing certainly certainly certainly caper circ conference aaaahh moles sal margarine certainly gathered gathered matata skin midler's lopper locked conference feinerman's submerged hoooot dragnet fiddles risked bowel gathered gathered handicapped skin midler's furrows locked ruin punks cont conference skier midler's crooks limos conference mind's slug midler's 301 midler's drab receipts certainly gathered gathered matata gehrig cont honeymoon ruin skier fiddles groveling celebrities headache certainly skin lopper jimmy: shim fiddles bumps titanic disloyalty virus haircuts certainly gathered gathered fudge ruin ramon: drab bats protector boxing plum 242s certainly ruin punks cont drab corp terminal celebrities plantain popenjays midler's foul *great* midler's fiddles margarine whale' haircuts certainly gathered gathered handicapped vincent: bowel gathered gathered matata gehrig cont conference feinerman's conference [watching fiddles bumps certainly certainly certainly gathered gathered fudge skin jehova's locked ohhh cont ruin punks cont conference skier midler's crooks ruin certainly gathered gathered wesson conference punks certainly conference feinerman's conference selfish 301 hampshire ability procession certainly gathered gathered fudge skin lincoln locked conference comics ned's punks vincent: submerged gasp marine certainly gathered gathered wesson ruin comics punks vincent: swordfish dear whale' ruin mind bowel gathered gathered fudge teacher certainly gathered gathered fudge ruin comics fixing midler's 301 bowel gathered gathered handicapped conference comics punks certainly conference punks cont tabachnick: improve rinsteinbrenner highlight certainly gathered gathered wesson skin midler's furrows locked mentions trilogy gathered gathered matata skin nooope locked ohhh cont ruin fixing midler's corked relaxers cont your ******** bowel gathered gathered fudge conference floppin certainly conference floppin 301 midler's sal margarine certainly skin furrows dear 53 drab dice 'us' cont caper ruin punks cont conference feinerman's conference tortoise stinks swordfish certainly gathered gathered fudge ruin punks cont conference feinerman's spanking honk caper ruin mind cont ray's caper conference mind sane midler's drab *commit* cont redwood fianc&mac226 sane midler's dragnet dawn midler's heighten midler's drab *commit* certainly gathered gathered handicapped skin 'thick locked ruin floppin 301 hampshire ability fiddles farmer's cont caper drab 'medication improve bloomingdale caper conference improve barren *gay* voices jimmy: burgeoning ability limos cont devious conference selfish dragnet dawn midler's heighten fiddles safire certainly conference floppin stinks swordfish certainly gathered gathered fudge mentions cont cream cont ruin punks cont conference feinerman's spanking fiddles bumps tightness 'action certainly gathered gathered fudge ruin punks vincent: bowel ruin plenty moles fiddles oddly kathy certainly gathered gathered matata ohhh trilogy gathered gathered handicapped ohhh cont adoring ruin sushi bowel ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function words = set(text) vocab_to_int = {word: idx for idx, word in enumerate(words)} int_to_vocab = {idx: word for word, idx in vocab_to_int.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token_lookup = {".": "||period||", ",": "||comma||", "\"": "||quotationmark||", ";": "||semicolon||", "!": "||exclamationmark||", "?": "||questionmark||", "(": "||leftparentheses||", ")": "||rightparentheses||", "-": "||dash||", "\n": "||return||"} return token_lookup """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function len_words = len(words) x = [] y = [] for idx in range(0, len_words): if idx + sequence_length < len_words: x.append(words[idx:idx+sequence_length]) y.append(words[idx+sequence_length]) x = np.array(x) y = np.array(y) data = TensorDataset(torch.from_numpy(x), torch.from_numpy(y)) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, num_workers=0, shuffle=True) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own words = list(range(20)) data_loader = batch_data(words, 3, 5) for idx, batch in enumerate(data_loader): print(batch) ###Output [tensor([[ 1, 2, 3], [ 4, 5, 6], [ 6, 7, 8], [10, 11, 12], [ 8, 9, 10]], dtype=torch.int32), tensor([ 4, 7, 9, 13, 11], dtype=torch.int32)] [tensor([[15, 16, 17], [16, 17, 18], [ 2, 3, 4], [ 9, 10, 11], [14, 15, 16]], dtype=torch.int32), tensor([18, 19, 5, 12, 17], dtype=torch.int32)] [tensor([[11, 12, 13], [ 5, 6, 7], [ 7, 8, 9], [ 3, 4, 5], [13, 14, 15]], dtype=torch.int32), tensor([14, 8, 10, 6, 16], dtype=torch.int32)] [tensor([[ 0, 1, 2], [12, 13, 14]], dtype=torch.int32), tensor([ 3, 15], dtype=torch.int32)] ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 6, 7, 8, 9, 10], [18, 19, 20, 21, 22], [32, 33, 34, 35, 36], [ 8, 9, 10, 11, 12], [ 0, 1, 2, 3, 4], [ 3, 4, 5, 6, 7], [39, 40, 41, 42, 43], [36, 37, 38, 39, 40], [38, 39, 40, 41, 42], [10, 11, 12, 13, 14]], dtype=torch.int32) torch.Size([10]) tensor([11, 23, 37, 13, 5, 8, 44, 41, 43, 15], dtype=torch.int32) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.vocab_size = vocab_size self.output_size = output_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers self.dropout = dropout # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim, vocab_size) # self.dropout = nn.Dropout(dropout) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) nn_input = nn_input.long() embeddings = self.embedding(nn_input) x, hidden = self.lstm(embeddings, hidden) # x = self.dropout(x) x = x.contiguous().view(-1, self.hidden_dim) x = self.fc(x) x = x.view(batch_size, -1, self.output_size) x = x[:,-1] # x = x[-batch_size:] # return one batch of output word scores and the hidden state return x, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code clip = 5 def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization hidden = tuple([each.data for each in hidden]) optimizer.zero_grad() output, hidden = rnn(inp, hidden) loss = criterion(output, target.long()) loss.backward() nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.data.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 5 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 256 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.526069526672363 Epoch: 1/10 Loss: 4.870787148475647 Epoch: 1/10 Loss: 4.663077795505524 Epoch: 1/10 Loss: 4.539566141605377 Epoch: 1/10 Loss: 4.442363487720489 Epoch: 1/10 Loss: 4.401235641479492 Epoch: 1/10 Loss: 4.363713886260986 Epoch: 1/10 Loss: 4.297265470981598 Epoch: 1/10 Loss: 4.293090803146362 Epoch: 1/10 Loss: 4.22792042350769 Epoch: 1/10 Loss: 4.240608395576477 Epoch: 1/10 Loss: 4.2034467282295225 Epoch: 1/10 Loss: 4.1930925283432 Epoch: 2/10 Loss: 4.088544507021751 Epoch: 2/10 Loss: 4.011241126537323 Epoch: 2/10 Loss: 3.9799775519371035 Epoch: 2/10 Loss: 3.9981851835250852 Epoch: 2/10 Loss: 3.9762418441772462 Epoch: 2/10 Loss: 3.9649249267578126 Epoch: 2/10 Loss: 3.956095726490021 Epoch: 2/10 Loss: 3.959707641124725 Epoch: 2/10 Loss: 3.9507065873146057 Epoch: 2/10 Loss: 3.933871732711792 Epoch: 2/10 Loss: 3.9364768233299254 Epoch: 2/10 Loss: 3.96703307390213 Epoch: 2/10 Loss: 3.962228919029236 Epoch: 3/10 Loss: 3.8464172612279808 Epoch: 3/10 Loss: 3.8057811441421507 Epoch: 3/10 Loss: 3.76039284658432 Epoch: 3/10 Loss: 3.811958327293396 Epoch: 3/10 Loss: 3.771002641201019 Epoch: 3/10 Loss: 3.8318602933883668 Epoch: 3/10 Loss: 3.79159245967865 Epoch: 3/10 Loss: 3.788624719619751 Epoch: 3/10 Loss: 3.8020915007591247 Epoch: 3/10 Loss: 3.785884033203125 Epoch: 3/10 Loss: 3.81063366651535 Epoch: 3/10 Loss: 3.81618408870697 Epoch: 3/10 Loss: 3.8047997217178344 Epoch: 4/10 Loss: 3.7339677210316693 Epoch: 4/10 Loss: 3.658859066963196 Epoch: 4/10 Loss: 3.66399866437912 Epoch: 4/10 Loss: 3.6472977447509765 Epoch: 4/10 Loss: 3.6854676232337953 Epoch: 4/10 Loss: 3.6719572806358336 Epoch: 4/10 Loss: 3.6907340931892394 Epoch: 4/10 Loss: 3.693911548137665 Epoch: 4/10 Loss: 3.709907410144806 Epoch: 4/10 Loss: 3.702448383808136 Epoch: 4/10 Loss: 3.6935377502441407 Epoch: 4/10 Loss: 3.714180136680603 Epoch: 4/10 Loss: 3.697839234352112 Epoch: 5/10 Loss: 3.6237794978945863 Epoch: 5/10 Loss: 3.5714504952430723 Epoch: 5/10 Loss: 3.5675440969467163 Epoch: 5/10 Loss: 3.5786201162338256 Epoch: 5/10 Loss: 3.5806940422058107 Epoch: 5/10 Loss: 3.5965871195793153 Epoch: 5/10 Loss: 3.594712172031403 Epoch: 5/10 Loss: 3.6289190282821657 Epoch: 5/10 Loss: 3.6097397589683533 Epoch: 5/10 Loss: 3.639933773994446 Epoch: 5/10 Loss: 3.621704699039459 Epoch: 5/10 Loss: 3.6182908020019533 Epoch: 5/10 Loss: 3.656798906803131 Epoch: 6/10 Loss: 3.5579359482193387 Epoch: 6/10 Loss: 3.499333296298981 Epoch: 6/10 Loss: 3.5079272565841673 Epoch: 6/10 Loss: 3.510929590702057 Epoch: 6/10 Loss: 3.53110399389267 Epoch: 6/10 Loss: 3.532146679878235 Epoch: 6/10 Loss: 3.5323957901000975 Epoch: 6/10 Loss: 3.5531150345802307 Epoch: 6/10 Loss: 3.560317481517792 Epoch: 6/10 Loss: 3.5697117590904237 Epoch: 6/10 Loss: 3.553211599826813 Epoch: 6/10 Loss: 3.5718819780349733 Epoch: 6/10 Loss: 3.5827929368019102 Epoch: 7/10 Loss: 3.517017216628304 Epoch: 7/10 Loss: 3.4506275358200074 Epoch: 7/10 Loss: 3.4464491829872133 Epoch: 7/10 Loss: 3.446525366783142 Epoch: 7/10 Loss: 3.477466076374054 Epoch: 7/10 Loss: 3.469796881198883 Epoch: 7/10 Loss: 3.4630816464424132 Epoch: 7/10 Loss: 3.4917164874076843 Epoch: 7/10 Loss: 3.4870456981658937 Epoch: 7/10 Loss: 3.5029824299812318 Epoch: 7/10 Loss: 3.530848997592926 Epoch: 7/10 Loss: 3.5248370847702026 Epoch: 7/10 Loss: 3.545889711380005 Epoch: 8/10 Loss: 3.4709635061376236 Epoch: 8/10 Loss: 3.3895390477180483 Epoch: 8/10 Loss: 3.3997337040901185 Epoch: 8/10 Loss: 3.4019933161735536 Epoch: 8/10 Loss: 3.415599135875702 Epoch: 8/10 Loss: 3.418054500102997 Epoch: 8/10 Loss: 3.4414546360969545 Epoch: 8/10 Loss: 3.4558645195961 Epoch: 8/10 Loss: 3.4494388461112977 Epoch: 8/10 Loss: 3.4709333066940307 Epoch: 8/10 Loss: 3.4754896659851076 Epoch: 8/10 Loss: 3.4798547253608705 Epoch: 8/10 Loss: 3.5005654253959655 Epoch: 9/10 Loss: 3.414729262038035 Epoch: 9/10 Loss: 3.363495777130127 Epoch: 9/10 Loss: 3.357198349952698 Epoch: 9/10 Loss: 3.3757694115638732 Epoch: 9/10 Loss: 3.392073076248169 Epoch: 9/10 Loss: 3.3958112869262695 Epoch: 9/10 Loss: 3.4049220190048217 Epoch: 9/10 Loss: 3.415756942272186 Epoch: 9/10 Loss: 3.4258674659729005 Epoch: 9/10 Loss: 3.424122892856598 Epoch: 9/10 Loss: 3.4313274941444396 Epoch: 9/10 Loss: 3.444932798862457 Epoch: 9/10 Loss: 3.457956283569336 Epoch: 10/10 Loss: 3.390017016138209 Epoch: 10/10 Loss: 3.318030920982361 Epoch: 10/10 Loss: 3.3126797518730164 Epoch: 10/10 Loss: 3.3411253027915953 Epoch: 10/10 Loss: 3.3589114565849303 Epoch: 10/10 Loss: 3.3840724930763244 Epoch: 10/10 Loss: 3.3634719338417054 Epoch: 10/10 Loss: 3.372021330833435 Epoch: 10/10 Loss: 3.3974899363517763 Epoch: 10/10 Loss: 3.408272335529327 Epoch: 10/10 Loss: 3.3945613594055177 Epoch: 10/10 Loss: 3.4293823318481444 Epoch: 10/10 Loss: 3.426954882144928 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** I did tests with many combinations of parameters, but my network wasn't learning. The loss dropped a little in the first couple of batches and then levelled. I finally found an error in my forward function - I wasn't properly taking the output for the last batch. After I made a fix, I started the learning process again, saw that the network learns, and then I stopped the training process and changed all params to the initial ones which I chose based on intuition gathered in this nanodegree. And after one full training with those params I had a network with a loss smaller than 3.5, so I left it like that. It seems that quite often choosing reasonable params for a network is not very hard - you just follow some rules of thumg like embedding dim between 200 and 300, hidden dim chosen from 18, 256, 512, convolutional layer sizes changing by a factor of two, and so on. Then sometimes you just need to tweak those params a little bit and you're done. Out of curiosity I will experiment with different params in the free time, but for now I'll leave the network as it is right now. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: sammy. jerry: i mean, i don't know. but, i was wondering if you don't like the drake? george: i don't even know where i was in the middle of the building) jerry: i don't know. i think we should go upstairs. george: oh, yeah, yeah. newman:(still trying to keep the kibosh out. kramer: oh! elaine: what? george:(to jerry) what are you doing here? jerry: i was just joking. jerry: well, you don't like to take it off. newman: well you don't like the drake. jerry: you know, if i could see you. i can't believe you, you should be the first one that i was doing. elaine: i don't know what this is.... newman: i know... jerry: so, uh, i think i'll get it... jerry: oh my god. elaine:(to george) you know what you think. jerry:(looking at the door) kramer:(to the woman) : i can't believe that i am going to get out of your way to get a little bit of the aryan union. george: i know what i'm gonna do. george: oh, yeah, well, i'm sorry about this. elaine: i don't want to talk to her? elaine: no, no, no, no. jerry: you don't know what the hell is that? george: i was in my apartment. elaine: what do you mean? elaine: yeah. jerry: so, what are you doing? kramer:(to george) what? kramer: well, it's a little bit. jerry: well i guess. elaine: i know. jerry:(to elaine) oh, i can't get you to go. jerry: you don't think it ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown Replace data_dir with previously exported Seinfeld_Scripts_cleaned.txt - Using `Seinfeld_Scripts_cleaned.txt` ensures that preprocess_and_save_data will replace the standard preprocess.p with one that has very short and unintelligible entries removed- See [Export Refined Data](dataRefine) ###Code if os.path.isfile('./data/Seinfeld_Scripts_cleaned.txt'): data_dir = './data/Seinfeld_Scripts_cleaned.txt' text = helper.load_data(data_dir) data_dir ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') device = torch.device("cuda" if train_on_gpu else "cpu") device ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` Adapted from Udacity knowledge base [code](https://knowledge.udacity.com/questions/29798) ~ Survesh C ###Code import torch from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size, padbatch=False): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # keep only enough words to make full sequences, so adjust to 5 from end dwords = words[:-sequence_length] arr_len = len(dwords) # if the adjusted length is greater than zero then process further, otherwise deal with it later if arr_len > 0: feature_tensors = [] target_tensors = [] # iterate through the array, one sequence at a time for n in range(0, len(dwords)): feature_tensors.append(words[n:n+sequence_length]) target_tensors.append(words[n+sequence_length]) # convert the arrays to numpy arrays before further processing feature_tensors = np.array(feature_tensors) target_tensors = np.array(target_tensors) # get the number of whole batches num_batches = len(dwords)//batch_size # check total array size, for comparison with whole batch size arr_len = len(feature_tensors) # arrange for arrays to be padded with zeros to return whole batches... if (arr_len <= 0) or (arr_len < batch_size and padbatch==False): # nothing at all to process, just return all zeros - ignore padbatch setting feature_tensors = np.zeros((batch_size, sequence_length)) target_tensors = np.zeros(batch_size) elif arr_len < batch_size and padbatch==True: # the incoming data exists, but is not enough for one batch, pad the batch with zero feature_tensors = np.pad(feature_tensors, [(0, batch_size - arr_len), (0, 0)], mode='constant') target_tensors = np.pad(target_tensors, [(0, batch_size - arr_len)], mode='constant') elif num_batches*batch_size < arr_len and padbatch==True: # when possible whole batches are removed we have a few record remaining, pad the last batch with zero feature_tensors = np.pad(feature_tensors, [(0, arr_len - num_batches*batch_size), (0, 0)], mode='constant') target_tensors = np.pad(target_tensors, [(0, arr_len - num_batches*batch_size)], mode='constant') else: # everything is balanced, not strictly required as we have all complete batches already feature_tensors = feature_tensors[:num_batches*batch_size] target_tensors = target_tensors[:num_batches*batch_size] # convert to torch tensors torch_features = torch.from_numpy(feature_tensors).long() torch_targets = torch.from_numpy(target_tensors).long() # create a TensorDataset and then a DataLoader data = TensorDataset(torch_features, torch_targets) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True) return data_loader ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. Test with no padbatch parameter, default is False ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[14, 15, 16, 17, 18], [16, 17, 18, 19, 20], [ 7, 8, 9, 10, 11], [ 4, 5, 6, 7, 8], [17, 18, 19, 20, 21], [ 2, 3, 4, 5, 6], [ 1, 2, 3, 4, 5], [23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [26, 27, 28, 29, 30]]) torch.Size([10]) tensor([19, 21, 12, 9, 22, 7, 6, 28, 11, 31]) ###Markdown With padbatch False, the maximum combination is `[39, 40, 41, 42, 43],[44]` ###Code sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[32, 33, 34, 35, 36], [15, 16, 17, 18, 19], [ 0, 1, 2, 3, 4], [ 6, 7, 8, 9, 10], [34, 35, 36, 37, 38], [20, 21, 22, 23, 24], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13], [39, 40, 41, 42, 43], [33, 34, 35, 36, 37]]) torch.Size([10]) tensor([37, 20, 5, 11, 39, 25, 13, 14, 44, 38]) ###Markdown Test dataloader with padbatch=True- Maximum combination is `[44, 45, 46, 47, 48],[49]` which is the entire range ###Code test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10, padbatch=True) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[42, 43, 44, 45, 46], [22, 23, 24, 25, 26], [29, 30, 31, 32, 33], [20, 21, 22, 23, 24], [16, 17, 18, 19, 20], [ 8, 9, 10, 11, 12], [28, 29, 30, 31, 32], [14, 15, 16, 17, 18], [31, 32, 33, 34, 35], [44, 45, 46, 47, 48]]) torch.Size([10]) tensor([47, 27, 34, 25, 21, 13, 33, 19, 36, 49]) ###Markdown Dataloader with padbatch=True will also load minimal examples... ###Code test_text = [15,16,17,18,19,20] t_loader = batch_data(test_text, sequence_length=5, batch_size=10, padbatch=True) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 0, 0, 0, 0], [15, 16, 17, 18, 19], [ 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0]]) torch.Size([10]) tensor([ 0, 20, 0, 0, 0, 0, 0, 0, 0, 0]) ###Markdown --- Load word2vec vectors into a weights array if applicable- **That is, if using word2vec but weights array has not been pre-loaded above...** ###Code import pickle import numpy as np if use_word2vec and len(weights_matrix) == 0: weights_matrix = [] words_found = 0 emb_dim = 300 matrix_len = len(vocab_to_int) weights_matrix = np.zeros((matrix_len, emb_dim)) for i, word in enumerate(vocab_to_int): try: weights_matrix[i] = glove[word] words_found += 1 except KeyError: weights_matrix[i] = np.random.normal(scale=0.6, size=(emb_dim, )) pickle.dump(weights_matrix, open(f'weights_matrix.pkl', 'wb')) if len(weights_matrix) > 0: weights_matrix = torch.FloatTensor(weights_matrix) ###Output _____no_output_____ ###Markdown If `weights_array` has same length as vocab and is a dimension of 300 it can be used... ###Code use_word2vec, len(vocab_to_int), len(weights_matrix), len(weights_matrix[0]) ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code %%time import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5, droplayer_dropout=0.3, use_word2vec=True, rnnType='LSTM' # , weightDrop=0, tieWeights=False ## placeholder - might experiment with weight dropout, weight tieing ): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.vocab_size = vocab_size self.output_size = output_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers self.dropout = dropout self.use_word2vec = use_word2vec self.rnnType = rnnType # Set dropout layer to a separate value to passed dropout used by the LSTM self.droplayer_dropout = droplayer_dropout # self.dropout # 0.3 # define model layers # Embedding layer - use pre-trained word2vec if use_word2vec is True # and we've been asked for a 300 dimension embedding # and the weights matrix fits our vocabulary size if use_word2vec and self.embedding_dim==300 and len(weights_matrix) == len(vocab_to_int): self.word_embeddings = nn.Embedding.from_pretrained(weights_matrix) else: self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim) # use an LSTM or GRU if self.rnnType=='LSTM': self.rnn = nn.LSTM(self.embedding_dim, self.hidden_dim, self.n_layers, dropout=self.dropout, batch_first=True) else: self.rnn = nn.GRU(self.embedding_dim, self.hidden_dim, self.n_layers, dropout=self.dropout, batch_first=True) # Dropout # self.dropout_layer = nn.Dropout(self.droplayer_dropout) # Output Linear layer self.fc = nn.Linear(self.hidden_dim, self.output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # get embeddings from input embeddings = self.word_embeddings(nn_input.long()) # Get the outputs and the new hidden state from the lstm/gru output, hidden = self.rnn(embeddings, hidden) # Stack up outputs using view output = output.contiguous().view(-1, self.hidden_dim) # pass through dropout # removing this step as it is preventing model from converging... # output = self.dropout_layer(output) # push through the fully-connected layer output = self.fc(output) # reshape to batch size (first dimension of nn_input), sequence length, output size output = output.view(batch_size, -1, self.output_size) # get last batch out = output[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if self.rnnType=='LSTM': if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) else: if (train_on_gpu): hidden = weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda() else: hidden = weight.new(self.n_layers, batch_size, self.hidden_dim).zero_() return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed Wall time: 3.57 s ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code # https://github.com/pytorch/examples/blob/master/word_language_model/main.py # https://discuss.pytorch.org/t/solved-why-we-need-to-detach-variable-which-contains-hidden-representation/1426 # "If we did not truncate the history of hidden states (c, h), the back-propagated gradients would flow from the loss # towards the beginning, which may result in gradient vanishing or exploding." # https://github.com/pytorch/pytorch/issues/2198 def repackage_hidden(h): """Wraps hidden states in new Tensors, to detach them from their history.""" if isinstance(h, torch.Tensor): return h.detach() else: return tuple(repackage_hidden(v) for v in h) def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization # Truncated BPTT # [h.detach_() for h in hidden] hidden = repackage_hidden(hidden) # zeroize gradients rnn.zero_grad() # retrieve output of forward pass output, hidden = rnn(inp, hidden) # calaculate the loss loss = criterion(output.squeeze(), target) # back propogation loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), 10) # optimizer step optimizer.step() # return the loss value and hidden state return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. Use custom version of this (below) to keep losses and to save intermediate states ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn train_losses = [] best_loss = 5 """ Modified version of train_rnn that allows collection of train losses and saving of intermediate results """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] # C.Palmer - Added next 2 lines global best_loss curr_epoch = 1 rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # C.Palmer - Added code block # Save per epoch if epoch_i > curr_epoch: save_model_name = 'rnn_epoch_' + str(curr_epoch) helper.save_model(f'./save/{save_model_name}', rnn) curr_epoch = epoch_i # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats, saving best average loss if batch_i % show_every_n_batches == 0: avg_loss = np.average(batch_losses) # C.Palmer - Save average batch losses for graphing train_losses.append(avg_loss) print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, avg_loss)) batch_losses = [] # C. Palmer - Save model if average loss has improved if avg_loss < best_loss: save_model_name = 'rnn_best_loss_' + str(epoch_i) print('Validation loss decreased ({:.6f} --> {:.6f} Saving model as {}...)'.format( best_loss, avg_loss, save_model_name)) helper.save_model(f'./save/{save_model_name}', rnn) best_loss = avg_loss # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 8 # of words in a sequence # Batch Size batch_size = 100 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.0005 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # already has SPECIAL_WORDS # Output size output_size = len(vocab_to_int) # Embedding Dimension embedding_dim = 300 # Hidden Dimension hidden_dim = 300 # Number of RNN Layers n_layers = 3 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training # C.Palmer - modified parameters loading to optimizer to prevent error # "optimizing optimizing a parameter that doesn't require gradients" parameters = filter(lambda p: p.requires_grad, rnn.parameters()) optimizer = torch.optim.Adam(parameters, lr=learning_rate) criterion = nn.CrossEntropyLoss() # C.Palmer modified cell as needed to run active_session... # training the model with active_session(): trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = [12.5, 8] plt.plot(train_losses, label="Training loss") plt.legend(frameon=False) plt.show() ###Output _____no_output_____ ###Markdown We achieved a loss of 3.440298 during the 10th epoch- **Saved as rnn_best_loss_10** Adjust learning rate and train for a further 5 epochs ###Code trained_rnn = helper.load_model('./save/trained_rnn') num_epochs = 5 learning_rate = 0.00005 parameters = filter(lambda p: p.requires_grad, trained_rnn.parameters()) optimizer = torch.optim.Adam(parameters, lr=learning_rate) criterion = nn.CrossEntropyLoss() with active_session(): trained_rnn_1 = train_rnn(trained_rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') plt.rcParams['figure.figsize'] = [12.5, 8] plt.plot(train_losses[5:], label="Training loss") plt.legend(frameon=False) plt.show() ###Output _____no_output_____ ###Markdown The best loss, at 3.357648, is saved as rnn_best_loss_5, which is actually from epoch 15... ###Code os.rename('rnn_best_loss_5.pt', 'rnn_best_loss_15.pt') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? Answer:Various parameters were extensively tested, using my PC which has a GTX 1080 card. 1. **Sequence length:** I tested up to 20, at which point the model didn't train at all well, and at 15, 10, 8, and 5. The longer sequence lengths sometimes delivered interestingly longer text passages in the script output, but lower settings produced reasonably consistent, somewhat sensible phrases that looked like a conversation. Smaller sequence lengths were favourable to model convergence but needed to be balanced with the usefulness of the output. A sequence length of 8 was optimal, which was evaluated after testing with 10 for some time and gave me just as good output but converged more reliably.2. **Batch size:** This was a limiting factor, if I tried a larger batch size of around 200 then my PC often just reset without warning. After some testing it was found that a size of 100 gave me good enough results without harware crashes.3. **Number of epochs:** I needed around 10 epochs to get down to a 3.5 loss. However, due to the sawtooth pattern on the loss values, where the best loss occurred earlier in an epoch, I needed to train a further 5 epochs with a lower learning rate to get a consistent loss under 3.5.4. **Learning rate:** A setting of 0.005 was best in the first phase of training, but by 10 epochs a lower rate of 0.00005 managed to push the model to below a 3.5 loss more efficiently, if I left the rate at 0.0005 then it would not get to the better loss.5. **Vocabulary size:** This was set to the length of the vocabulary by measuring the vocab_to_int array. Note that this already includes the additional SPECIAL_WORDS.6. **Output size:** I set this to the same as the vocabulary size, but this was after seeking advice and I am not sure that this is optimal. Do we really need to have the same output length as our input or would we benefit from trimming it?7. **Embedding Dimension:** After experimenting with 400 and 300, I switched to using pre-trained GloVe.6B.300d embeddings to initialise my model, so settled on 300 to align with that. I found that using the pre-trained embeddings made a considerable improvement to the output.8. **Hidden Dimension:** I experimented a lot with this, but found that at 300 I had a manageable training, going higher seemed to result in a fragility in my environment like increasing batch size did, as well as being slower and more difficult to converge.9. **Number of layers:** I chose 3 as that was the recommended number in any literature I consulted around this kind of task.10. **Show stats every n batches:** I picked 500 as that was a good interval for testing, reporting and saving average losses. Further points:- The [GloVe](https://nlp.stanford.edu/pubs/glove.pdf) glove.6B.300d word-embeddings were useful, the model began to converge more quickly and the output seemed more coherent.- I needed to alter some of the "DON'T MODIFY" cells to work with this, for instance to use active_session, to save intermediate results and an array of training losses, and to test the use of some of my model parameters. - My model can be configured as a GRU, which is suggested as an option by the notebook, but tests.test_rnn would not pass a model configured as a GRU - it complained about the hidden state size being incorrect - it expects init_hidden to return two components (hidden and cell state) but there can only be one component for a GRU as it cannot utilize cell state. e.g. "`AssertionError: Wrong hidden state size. Expected type (2, 50, 10). Got type torch.Size([50, 10])`". However, I did evaluate the GRU but found it didn't converge any more efficiently than the LSTM or yield a better output. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Or, load checkpoint with best loss.... ###Code import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/rnn_best_loss_15') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code import warnings warnings.simplefilter('ignore') # "error", "ignore", "always", "default", "module", or "once" # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) # save script to a text file f = open("generated_script_jerry.txt","w") f.write(generated_script) f.close() # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'elaine' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) # save script to a text file f = open("generated_script_elaine.txt","w") f.write(generated_script) f.close() # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'kramer' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) # save script to a text file f = open("generated_script_kramer.txt","w") f.write(generated_script) f.close() # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'george' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) # save script to a text file f = open("generated_script_george.txt","w") f.write(generated_script) f.close() # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'ronnie' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:76: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown My favourite line: "(george enters and takes a bite of the sink)" Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown The TV Script is Not PerfectIt's ok if the TV script doesn't make perfect sense. It should look like alternating lines of dialogue, here is one such example of a few generated lines. Example generated script>jerry: what about me?>>jerry: i don't have to wait.>>kramer:(to the sales table)>>elaine:(to jerry) hey, look at this, i'm a good doctor.>>newman:(to elaine) you think i have no idea of this...>>elaine: oh, you better take the phone, and he was a little nervous.>>kramer:(to the phone) hey, hey, jerry, i don't want to be a little bit.(to kramer and jerry) you can't.>>jerry: oh, yeah. i don't even know, i know.>>jerry:(to the phone) oh, i know.>>kramer:(laughing) you know...(to jerry) you don't know.You can see that there are multiple characters that say (somewhat) complete sentences, but it doesn't have to be perfect! It takes quite a while to get good results, and often, you'll have to use a smaller vocabulary (and discard uncommon words), or get more data. The Seinfeld dataset is about 3.4 MB, which is big enough for our purposes; for script generation you'll want more than 1 MB of text, generally. Submitting This ProjectWhen submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_tv_script_generation.ipynb" and save another copy as an HTML file by clicking "File" -> "Download as.."->"html". Include the "helper.py" and "problem_unittests.py" files in your submission. Once you download these files, compress them into one zip file for submission. --- Extra Procedures Explore data in more depth - Check data ranges, and eliminate unuseful words - requires dict/wordsEn.txt and dict/words.txt- looking for lines where the text is very brief or not recognizably English ###Code english_words = {} with open("dict/wordsEn.txt") as word_file: english_words = set(word.strip().lower() for word in word_file if len(word) > 0) with open("dict/words.txt") as word_file: english_words = set(word.strip().lower() for word in word_file if len(word) > 0) english_words.add("o.k.") def is_english_word(word): return 1 if word.lower() in english_words else 0 import pandas as pd import re as re import operator from collections import Counter def uniqueratio(wcount, uwcount): if uwcount == 0: retval = 1. else: retval = wcount / uwcount return retval def textDF (text): # Data and target as a data frame, with word count attributes DF = pd.DataFrame(text, columns = ["Text"]) DF['Character'] = DF.Text.apply(lambda x: x[: x.find(':')]) DF['Stripped'] = DF.Text.apply(lambda x: re.sub (r'([^a-zA-Z\s]+?)', '', x)) DF['DataLength'] = DF.Stripped.apply(len) DF['WordCount'] = DF.Stripped.apply(lambda x: re.split("[ \[\]\\n\@\-\"!?:,.()<>]+", x)).apply(len) DF['EnglishPerc'] = DF.Stripped.apply(lambda x: [is_english_word(w) for w in x]).apply(sum) / DF.WordCount DF['WordsCounts'] = DF.Stripped.apply(lambda x: Counter(filter(None, re.split("[ \[\]\\n\@\-\"!?:,.()<>]+", x)))) DF['UniqueWords'] = DF['WordsCounts'].apply(len) DF['UniqueRatio'] = DF.apply(lambda x: uniqueratio(x['WordCount'], x['UniqueWords']), axis =1) ## DF['NoPunctuation'] = DF.Text.apply(lambda x: ''.join(e for e in x if e.isalnum())) DF['DataIndex'] = DF.index DF = DF[['Text', 'Character', 'DataLength', 'WordCount', 'UniqueWords', 'Stripped', 'UniqueRatio', 'EnglishPerc', 'DataIndex', 'WordsCounts' ]] return DF textSplit = text.split("\n\n") Text_df = textDF(textSplit) pd.set_option('display.max_colwidth', 80) Text_df.head(5) ###Output _____no_output_____ ###Markdown Get unique names of Seinfield characters and feed into english words dict, then re-run dataframe...- Wanting to identify rows with not much recognized English, but need to ensure the majority of the characters in the show are counted as English words. ###Code charactersSet = set(list(Text_df.Character)) characters_df = pd.DataFrame(list(charactersSet), columns = ["Character"]) characters_df[characters_df.Character.str.len() < 30][:10] ###Output _____no_output_____ ###Markdown Just use a name if its longer than zero and <= than 20 ###Code for character in characters_df.values: charac = character[0] bracketpos = charac.find('(') if bracketpos < 0: bracketpos = charac.find('[') if bracketpos >= 0: charac = charac[:bracketpos] if (len(charac) > 0) & (len(charac) <= 20): print(charac) english_words.add(charac) english_words.add(charac+":") ###Output _____no_output_____ ###Markdown **Sample output:**```greg kramer & georgeboyfriendworkers jimsashakramer man in showerjerry & tiaronnie jerry kramer helen & mortyfred spikepatold man 3winona tough guy mailmanelaine jerry's penismr tanakaopening monologbuilding ckramer juliocherylwendytall girlelaine ``` ###Code is_english_word("subway announcement") ###Output _____no_output_____ ###Markdown Re-create dataframe after adding character names to the english words dictionary... ###Code Text_df = textDF(textSplit) pd.set_option('display.max_colwidth', -1) Text_df.loc[:20, :"Stripped"] ###Output _____no_output_____ ###Markdown Sentences with a low percentage of plain English words or low word count may be discarded... ###Code Text_df[(Text_df.EnglishPerc < 1.66) | (Text_df.WordCount < 3) | (Text_df.UniqueWords < 2)].loc[:, :"EnglishPerc"] ###Output _____no_output_____ ###Markdown Preserve the row indexes as a series so they can be identified and removed later... ###Code badRows = pd.Series(Text_df[(Text_df.EnglishPerc < 1.66) | (Text_df.WordCount < 3) | (Text_df.UniqueWords < 2)].index) badRows[:5] Text_df[Text_df.index.isin(badRows)].loc[485:491, :"EnglishPerc"] Text_df[~Text_df.index.isin(badRows)].loc[485:491, :"EnglishPerc"] ###Output _____no_output_____ ###Markdown Passages with a high word count are more than OK, and can be appreciated! ###Code pd.set_option('display.max_colwidth', -1) Text_df[Text_df.WordCount > 250].loc[:, :"UniqueWords"] pd.set_option('display.max_colwidth', 80) DataLengths = Text_df.DataLength DataLengths.mean(), DataLengths.std(), DataLengths.min(), DataLengths.max() DataLengths.hist() import matplotlib.pyplot as plt import matplotlib.patches as mpatches fig = plt.figure(figsize=(15,5)) ax1 = fig.add_subplot(1, 2, 1) ax2 = fig.add_subplot(1, 2, 2) ax1.hist(DataLengths[DataLengths <= 500]); ax1.set_xlabel('Document length under 500') ax1.set_ylabel('No of Documents') ax2.hist(DataLengths[DataLengths > 500]); ax2.set_xlabel('Document length over 500') ax2.set_ylabel('No of Documents'); WordCounts = Text_df.WordCount WordCounts.mean(), WordCounts.std(), WordCounts.min(), WordCounts.max() fig = plt.figure(figsize=(15,5)) ax1 = fig.add_subplot(1, 2, 1) ax2 = fig.add_subplot(1, 2, 2) ax1.hist(WordCounts[WordCounts <= 50]); ax1.set_xlabel('Word counts under 50') ax1.set_ylabel('No of Documents') ax2.hist(WordCounts[WordCounts > 50]); ax2.set_xlabel('Word counts over 50') ax2.set_ylabel('No of Documents'); pd.set_option('display.max_colwidth', 80) WordCountsClean = Text_df[~Text_df.index.isin(badRows)].WordCount WordCountsClean.mean(), WordCountsClean.std(), WordCountsClean.min(), WordCountsClean.max() ###Output _____no_output_____ ###Markdown Export as an alternative refined text file without the very short entries ###Code import os output_file = os.path.join('./data/Seinfeld_Scripts_cleaned.txt') with open(output_file, 'w') as f: for txt in Text_df[~Text_df.index.isin(badRows)]["Text"].tolist(): f.write(txt + '\n\n') ###Output _____no_output_____ ###Markdown [Continue to word2vec section...](word2vec) [Continue to pre-process and save section...](preprocess_save) Renumber notebook cells ###Code %%javascript // Sourced from http://nbviewer.jupyter.org/gist/minrk/5d0946d39d511d9e0b5a $("#renumber-button").parent().remove(); function renumber() { // renumber cells in order var i=1; IPython.notebook.get_cells().map(function (cell) { if (cell.cell_type == 'code') { // set the input prompt cell.set_input_prompt(i); // set the output prompt (in two places) cell.output_area.outputs.map(function (output) { if (output.output_type == 'execute_result') { output.execution_count = i; cell.element.find(".output_prompt").text('Out[' + i + ']:'); } }); i += 1; } }); } IPython.toolbar.add_buttons_group([{ 'label' : 'Renumber', 'icon' : 'fa-list-ol', 'callback': renumber, 'id' : 'renumber-button' }]); ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function #define count var countVar = Counter(text) #define vocab var Vocab = sorted(countVar, key=countVar.get, reverse=True) #define integer to vocab int_to_vocab = {ii: word for ii, word in enumerate(Vocab)} #define vocab to integer vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function tokens = dict() tokens['.'] = '||period||' tokens[','] = '||comma||' tokens['"'] = '||quotation_mark||' tokens[';'] = '||semicolon||' tokens['!'] = '||exclam_mark||' tokens['?'] = '||question_mark||' tokens['('] = '||left_par||' tokens[')'] = '||right_par||' tokens['-'] = '||dash||' tokens['\n'] = '||return||' return tokens """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function Num_batches = len(words)//batch_size words = words[:Num_batches*batch_size] x, y = [], [] for idx in range(0, len(words) - sequence_length): x.append(words[idx:idx+sequence_length]) y.append(words[idx+sequence_length]) feature_tensors, target_tensors = torch.from_numpy(np.asarray(x)), torch.from_numpy(np.asarray(y)) dataset = TensorDataset(feature_tensors, target_tensors) dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size) # return a dataloader return dataloader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) out = self.fc(lstm_out) # reshape out = out.view(batch_size, -1, self.output_size) # find the last batch output = out[:, -1] # return one batch of output word scores and the hidden state return output, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if (train_on_gpu): inp = inp.cuda() target = target.cuda() # perform backpropagation and optimization hidden = tuple([each.data for each in hidden]) rnn.zero_grad() output, hidden = rnn(inp, hidden) loss = criterion(output, target) loss.backward() nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 12 # of words in a sequence # Batch Size batch_size = 120 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = len(vocab_to_int) # Embedding Dimension embedding_dim = 300 # Hidden Dimension hidden_dim = int(300*1.25) # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.531735227108002 Epoch: 1/10 Loss: 4.930219256401062 Epoch: 1/10 Loss: 4.637746600151062 Epoch: 1/10 Loss: 4.442910384654999 Epoch: 1/10 Loss: 4.507025374412537 Epoch: 1/10 Loss: 4.437873532295227 Epoch: 1/10 Loss: 4.499480187416077 Epoch: 1/10 Loss: 4.360066707611084 Epoch: 1/10 Loss: 4.224316485881806 Epoch: 1/10 Loss: 4.262131739616394 Epoch: 1/10 Loss: 4.250785901069641 Epoch: 1/10 Loss: 4.350858811378479 Epoch: 1/10 Loss: 4.325847270488739 Epoch: 1/10 Loss: 4.353909639358521 Epoch: 2/10 Loss: 4.122715645664375 Epoch: 2/10 Loss: 3.9956280279159544 Epoch: 2/10 Loss: 3.8856767058372497 Epoch: 2/10 Loss: 3.764372691631317 Epoch: 2/10 Loss: 3.86486045217514 Epoch: 2/10 Loss: 3.8547475366592407 Epoch: 2/10 Loss: 3.9458832178115846 Epoch: 2/10 Loss: 3.8158533701896666 Epoch: 2/10 Loss: 3.730561679840088 Epoch: 2/10 Loss: 3.7631667466163634 Epoch: 2/10 Loss: 3.792806112766266 Epoch: 2/10 Loss: 3.901373929977417 Epoch: 2/10 Loss: 3.8545562386512757 Epoch: 2/10 Loss: 3.8934123978614807 Epoch: 3/10 Loss: 3.757648332837055 Epoch: 3/10 Loss: 3.715178225517273 Epoch: 3/10 Loss: 3.630136202812195 Epoch: 3/10 Loss: 3.5242831320762633 Epoch: 3/10 Loss: 3.625628924369812 Epoch: 3/10 Loss: 3.6309379606246948 Epoch: 3/10 Loss: 3.7150929403305053 Epoch: 3/10 Loss: 3.5617436628341674 Epoch: 3/10 Loss: 3.5180994987487795 Epoch: 3/10 Loss: 3.524529664516449 Epoch: 3/10 Loss: 3.5592564339637756 Epoch: 3/10 Loss: 3.682766806125641 Epoch: 3/10 Loss: 3.63344953250885 Epoch: 3/10 Loss: 3.6614061670303344 Epoch: 4/10 Loss: 3.569586784254444 Epoch: 4/10 Loss: 3.5327431926727293 Epoch: 4/10 Loss: 3.4778979787826536 Epoch: 4/10 Loss: 3.3810313334465025 Epoch: 4/10 Loss: 3.4490697503089907 Epoch: 4/10 Loss: 3.4713255314826967 Epoch: 4/10 Loss: 3.540807016849518 Epoch: 4/10 Loss: 3.395219274520874 Epoch: 4/10 Loss: 3.3618284215927123 Epoch: 4/10 Loss: 3.380989155292511 Epoch: 4/10 Loss: 3.3962616963386534 Epoch: 4/10 Loss: 3.5119336886405943 Epoch: 4/10 Loss: 3.5053564672470094 Epoch: 4/10 Loss: 3.52675777053833 Epoch: 5/10 Loss: 3.444213536519074 Epoch: 5/10 Loss: 3.4076444568634034 Epoch: 5/10 Loss: 3.3569597172737122 Epoch: 5/10 Loss: 3.264707137107849 Epoch: 5/10 Loss: 3.325695327758789 Epoch: 5/10 Loss: 3.3434394330978394 Epoch: 5/10 Loss: 3.4178655323982237 Epoch: 5/10 Loss: 3.292145290374756 Epoch: 5/10 Loss: 3.25900110912323 Epoch: 5/10 Loss: 3.282059187412262 Epoch: 5/10 Loss: 3.286310025691986 Epoch: 5/10 Loss: 3.371444211959839 Epoch: 5/10 Loss: 3.3803050670623778 Epoch: 5/10 Loss: 3.4059303545951845 Epoch: 6/10 Loss: 3.3510205145178626 Epoch: 6/10 Loss: 3.3233260822296145 Epoch: 6/10 Loss: 3.262583809375763 Epoch: 6/10 Loss: 3.1777939085960387 Epoch: 6/10 Loss: 3.2358165702819823 Epoch: 6/10 Loss: 3.2441793150901796 Epoch: 6/10 Loss: 3.323215190887451 Epoch: 6/10 Loss: 3.2096805644035338 Epoch: 6/10 Loss: 3.1801719818115233 Epoch: 6/10 Loss: 3.198467743396759 Epoch: 6/10 Loss: 3.1996535511016844 Epoch: 6/10 Loss: 3.2810081453323363 Epoch: 6/10 Loss: 3.292669029712677 Epoch: 6/10 Loss: 3.3275886268615724 Epoch: 7/10 Loss: 3.2740323561436364 Epoch: 7/10 Loss: 3.2473365926742552 Epoch: 7/10 Loss: 3.189321361064911 Epoch: 7/10 Loss: 3.1124250736236574 Epoch: 7/10 Loss: 3.1598252415657044 Epoch: 7/10 Loss: 3.174737638950348 Epoch: 7/10 Loss: 3.2507713837623595 Epoch: 7/10 Loss: 3.133176600456238 Epoch: 7/10 Loss: 3.1098085503578186 Epoch: 7/10 Loss: 3.1263022136688234 Epoch: 7/10 Loss: 3.1329917140007018 Epoch: 7/10 Loss: 3.2054256014823914 Epoch: 7/10 Loss: 3.2255016083717347 Epoch: 7/10 Loss: 3.249888722896576 Epoch: 8/10 Loss: 3.2023202670221034 Epoch: 8/10 Loss: 3.1807839002609253 Epoch: 8/10 Loss: 3.132005618095398 Epoch: 8/10 Loss: 3.0564675722122194 Epoch: 8/10 Loss: 3.101025879383087 Epoch: 8/10 Loss: 3.1125088901519775 Epoch: 8/10 Loss: 3.191727280139923 Epoch: 8/10 Loss: 3.073734776496887 Epoch: 8/10 Loss: 3.0565507707595825 Epoch: 8/10 Loss: 3.068301407337189 Epoch: 8/10 Loss: 3.0812396683692933 Epoch: 8/10 Loss: 3.148022204875946 Epoch: 8/10 Loss: 3.1773056478500368 Epoch: 8/10 Loss: 3.1913066611289977 Epoch: 9/10 Loss: 3.1471167175460604 Epoch: 9/10 Loss: 3.133128029823303 Epoch: 9/10 Loss: 3.085259078979492 Epoch: 9/10 Loss: 3.009995768547058 Epoch: 9/10 Loss: 3.0498082242012026 Epoch: 9/10 Loss: 3.0640956010818483 Epoch: 9/10 Loss: 3.144371497631073 Epoch: 9/10 Loss: 3.022254427909851 Epoch: 9/10 Loss: 3.0071170454025267 Epoch: 9/10 Loss: 3.0216007103919984 Epoch: 9/10 Loss: 3.0384934406280517 Epoch: 9/10 Loss: 3.1074284529685974 Epoch: 9/10 Loss: 3.1239990234375 Epoch: 9/10 Loss: 3.136796194553375 Epoch: 10/10 Loss: 3.0981430233099836 Epoch: 10/10 Loss: 3.0887152523994446 Epoch: 10/10 Loss: 3.0389931325912474 Epoch: 10/10 Loss: 2.9724698853492737 Epoch: 10/10 Loss: 3.003671471595764 Epoch: 10/10 Loss: 3.021963978290558 Epoch: 10/10 Loss: 3.099330397605896 Epoch: 10/10 Loss: 2.9838244442939756 Epoch: 10/10 Loss: 2.9682252025604248 Epoch: 10/10 Loss: 2.9791079874038697 Epoch: 10/10 Loss: 2.999862591743469 Epoch: 10/10 Loss: 3.0582768750190734 Epoch: 10/10 Loss: 3.0778299646377563 Epoch: 10/10 Loss: 3.0915690803527833 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** I trained the model with the following parameters:10 epochslearning rate = 0.001embedding dim = 300hidden dim = 375number of layers = 2show_every_n_batches = 2500and it gave a good loss: 2.96 --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:40: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_frequency = Counter(text) sorted_vocab = sorted(word_frequency, key = word_frequency.get, reverse = True) int_to_vocab = {i : word for i, word in enumerate(sorted_vocab)} vocab_to_int = {word : i for i, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function pun_dic = { '.': '||period||', ',': '||comma||', '"': '||quotation_mark||', ';': '||semicolon||', '!': '||exclamation_mark||', '?': '||question_mark||', '(': '||left_parentheses||', ')': '||right_Parentheses||', '-': '||dash||', '\n': '||return||' } return pun_dic """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function batch_num = len(words)//batch_size batch_words = words[: (batch_num * batch_size)] feature, target = [],[] target_len = len(batch_words[:-sequence_length]) for i in range(0, target_len): feature.append(batch_words[i: i + sequence_length]) target.append(batch_words[i + sequence_length]) target_tensors = torch.from_numpy(np.array(target)) feature_tensors = torch.from_numpy(np.array(feature)) data = TensorDataset(feature_tensors, target_tensors) data_loader = torch.utils.data.DataLoader(data, batch_size = batch_size, shuffle = True) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 28, 29, 30, 31, 32], [ 12, 13, 14, 15, 16], [ 5, 6, 7, 8, 9], [ 10, 11, 12, 13, 14], [ 13, 14, 15, 16, 17], [ 7, 8, 9, 10, 11], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 22, 23, 24, 25, 26], [ 14, 15, 16, 17, 18]]) torch.Size([10]) tensor([ 33, 17, 10, 15, 18, 12, 6, 7, 27, 19]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.hidden_dim = hidden_dim self.n_layers = n_layers self.output_size = output_size self.vocab_size = vocab_size self.embedding_dim = embedding_dim self.dropout = nn.Dropout(dropout) # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout = dropout, batch_first = True) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) nn_input = nn_input.long() embed_out = self.embedding(nn_input) lstm_out, hidden = self.lstm(embed_out, hidden) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) lstm_out = self.dropout(lstm_out) lstm_out = self.fc(lstm_out) lstm_out = lstm_out.view(batch_size, -1, self.output_size) lstm_output = lstm_out[:, -1] # return one batch of output word scores and the hidden state return lstm_output, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if train_on_gpu: hidden = (weight.new(self.n_layers, batch_size , self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size , self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size , self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size , self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization if (train_on_gpu): inp, target = inp.cuda(), target.cuda() hidden = tuple([i.data for i in hidden]) rnn.zero_grad() out, hidden = rnn(inp, hidden) loss = criterion(out, target) loss.backward() clip = 5 nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 8 # of words in a sequence # Batch Size batch_size = 512 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 30 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = len(vocab_to_int) # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 250 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 30 epoch(s)... Epoch: 1/30 Loss: 5.437440775871277 Epoch: 1/30 Loss: 4.793800668716431 Epoch: 1/30 Loss: 4.5818943510055545 Epoch: 2/30 Loss: 4.41057398734305 Epoch: 2/30 Loss: 4.323312338352204 Epoch: 2/30 Loss: 4.2895473055839535 Epoch: 3/30 Loss: 4.195126593032508 Epoch: 3/30 Loss: 4.1544194674491886 Epoch: 3/30 Loss: 4.133786525249481 Epoch: 4/30 Loss: 4.08080295544726 Epoch: 4/30 Loss: 4.044547868251801 Epoch: 4/30 Loss: 4.041615394592285 Epoch: 5/30 Loss: 3.993426749580785 Epoch: 5/30 Loss: 3.973333731174469 Epoch: 5/30 Loss: 3.968936930179596 Epoch: 6/30 Loss: 3.9191343990253857 Epoch: 6/30 Loss: 3.914088735580444 Epoch: 6/30 Loss: 3.9148674035072326 Epoch: 7/30 Loss: 3.8595362539716094 Epoch: 7/30 Loss: 3.861041332244873 Epoch: 7/30 Loss: 3.8518181381225585 Epoch: 8/30 Loss: 3.8197524389918196 Epoch: 8/30 Loss: 3.8067559876441956 Epoch: 8/30 Loss: 3.8154332323074343 Epoch: 9/30 Loss: 3.7852803235433683 Epoch: 9/30 Loss: 3.775405547618866 Epoch: 9/30 Loss: 3.774232336997986 Epoch: 10/30 Loss: 3.747182048766719 Epoch: 10/30 Loss: 3.737147322654724 Epoch: 10/30 Loss: 3.757960272312164 Epoch: 11/30 Loss: 3.7103773662757615 Epoch: 11/30 Loss: 3.712995080947876 Epoch: 11/30 Loss: 3.718786338806152 Epoch: 12/30 Loss: 3.6907887938212447 Epoch: 12/30 Loss: 3.6858580284118654 Epoch: 12/30 Loss: 3.701261080741882 Epoch: 13/30 Loss: 3.660750239162471 Epoch: 13/30 Loss: 3.6622575674057005 Epoch: 13/30 Loss: 3.6846286358833313 Epoch: 14/30 Loss: 3.643589364050532 Epoch: 14/30 Loss: 3.6504557995796203 Epoch: 14/30 Loss: 3.6525452489852905 Epoch: 15/30 Loss: 3.616130003240588 Epoch: 15/30 Loss: 3.6248851132392885 Epoch: 15/30 Loss: 3.632484414577484 Epoch: 16/30 Loss: 3.6021579985033 Epoch: 16/30 Loss: 3.6072781252861024 Epoch: 16/30 Loss: 3.6240361161231993 Epoch: 17/30 Loss: 3.5787458966779 Epoch: 17/30 Loss: 3.590819798946381 Epoch: 17/30 Loss: 3.6005235805511475 Epoch: 18/30 Loss: 3.5700792046854533 Epoch: 18/30 Loss: 3.5753119678497316 Epoch: 18/30 Loss: 3.5854785614013673 Epoch: 19/30 Loss: 3.5604437407855243 Epoch: 19/30 Loss: 3.5600452198982238 Epoch: 19/30 Loss: 3.5653090324401857 Epoch: 20/30 Loss: 3.54416574028983 Epoch: 20/30 Loss: 3.5412900671958925 Epoch: 20/30 Loss: 3.5544599776268004 Epoch: 21/30 Loss: 3.531428624743875 Epoch: 21/30 Loss: 3.5389969487190247 Epoch: 21/30 Loss: 3.5493617205619814 Epoch: 22/30 Loss: 3.5167748783281456 Epoch: 22/30 Loss: 3.5114588212966917 Epoch: 22/30 Loss: 3.5327849850654602 Epoch: 23/30 Loss: 3.5080896492107354 Epoch: 23/30 Loss: 3.4989126200675966 Epoch: 23/30 Loss: 3.5212397809028624 Epoch: 24/30 Loss: 3.4915077535086154 Epoch: 24/30 Loss: 3.498850947856903 Epoch: 24/30 Loss: 3.508957397937775 Epoch: 25/30 Loss: 3.481622135108299 Epoch: 25/30 Loss: 3.4850300221443176 Epoch: 25/30 Loss: 3.502882728099823 Epoch: 26/30 Loss: 3.47805429438026 Epoch: 26/30 Loss: 3.4771142077445982 Epoch: 26/30 Loss: 3.4903489270210266 Epoch: 27/30 Loss: 3.463992622378062 Epoch: 27/30 Loss: 3.469563786029816 Epoch: 27/30 Loss: 3.475732074737549 Epoch: 28/30 Loss: 3.454071216094188 Epoch: 28/30 Loss: 3.45453217458725 Epoch: 28/30 Loss: 3.4747745909690857 Epoch: 29/30 Loss: 3.4471531953567114 Epoch: 29/30 Loss: 3.4408276104927062 Epoch: 29/30 Loss: 3.465437880039215 Epoch: 30/30 Loss: 3.435562095178766 Epoch: 30/30 Loss: 3.446127962112427 Epoch: 30/30 Loss: 3.445101849079132 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** 1. For sequence length i used 4,8,16,32. Among them i found 8 quite suitable one for me. 2. The ideal number for number of hidden layers 1-3 and 2 should be enough to detect complex features so i used 2. 3. I tried different batch sizes with 2^n values and among them 512 seemed okay to me. 4. The lower the value of hidden_dim_value the slower the training process is to converge but also put risk to lead to imprecise model. 5. After several experiment with learning rate 0.001 helped me to reach target. 6. For NLP models I saw 200-300 can be a good number of value for embeddings dimension with unique words around 10000-15000. So I started with the 200 and it worked. :D --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:42: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function counts = Counter(text) vocab = sorted(counts,key = counts.get,reverse = True) vocab_to_int = {word: ii for ii,word in enumerate(vocab,1)} int_to_vocab = {ii: word for ii,word in enumerate(vocab,1)} return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function diction = {} diction['.'] = '||period||' diction[','] = '||comma||' diction['\"'] = '||quotation_mark||' diction[';'] = '||semicolon||' diction['!'] = '||exclamation_mark||' diction['?'] = '||question_mark||' diction['('] = '||left_parentheses||' diction[')'] = '||right_parentheses||' diction['-'] = '||dash||' diction['\n'] = '||return||' return diction """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function target_tensors = [] feature_tensors = [] for i in range(len(words) - sequence_length): feature_tensors.append(words[i:i+sequence_length]) target_tensors.append(words[i+sequence_length]) # return a dataloader feature_tensors = torch.tensor(feature_tensors) target_tensors = torch.tensor(target_tensors) data = TensorDataset(feature_tensors, target_tensors) data_loader = DataLoader(data,batch_size=batch_size) return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers self.embed = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim, output_size) # linear and sigmoid layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) nn_input = nn_input.long() embeds = self.embed(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) out = self.fc(lstm_out) out = out.view(batch_size, -1, self.output_size) # return one batch of output word scores and the hidden state return out[:, -1], hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if (train_on_gpu): # rnn = rnn.cuda() inp,target = inp.cuda(),target.cuda() # perform backpropagation and optimization hidden = tuple([each.data for each in hidden]) out , hidden = rnn(inp,hidden) loss = criterion(out,target.long()) optimizer.zero_grad() loss.backward() optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 20 # of words in a sequence # Batch Size batch_size = 256 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 20 # Learning Rate learning_rate = 0.0009 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = len(vocab_to_int) # Embedding Dimension embedding_dim = 500 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 3 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn = rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 20 epoch(s)... Epoch: 1/20 Loss: 5.887243369102478 Epoch: 1/20 Loss: 5.2746011934280395 Epoch: 1/20 Loss: 4.863280238628388 Epoch: 1/20 Loss: 4.633268164157867 Epoch: 1/20 Loss: 4.4605137720108035 Epoch: 1/20 Loss: 4.509580154418945 Epoch: 2/20 Loss: 4.348491438278338 Epoch: 2/20 Loss: 4.101797121524811 Epoch: 2/20 Loss: 4.152081150054932 Epoch: 2/20 Loss: 4.059343485832215 Epoch: 2/20 Loss: 4.005234693527222 Epoch: 2/20 Loss: 4.105318975448609 Epoch: 3/20 Loss: 4.020878631894181 Epoch: 3/20 Loss: 3.85475603055954 Epoch: 3/20 Loss: 3.92665558719635 Epoch: 3/20 Loss: 3.8608516602516176 Epoch: 3/20 Loss: 3.80488276052475 Epoch: 3/20 Loss: 3.904042951107025 Epoch: 4/20 Loss: 3.8269558061913744 Epoch: 4/20 Loss: 3.681981324672699 Epoch: 4/20 Loss: 3.7687328085899354 Epoch: 4/20 Loss: 3.7199491024017335 Epoch: 4/20 Loss: 3.668596122264862 Epoch: 4/20 Loss: 3.7591842193603515 Epoch: 5/20 Loss: 3.6851532502872186 Epoch: 5/20 Loss: 3.558307955741882 Epoch: 5/20 Loss: 3.6447519097328187 Epoch: 5/20 Loss: 3.6118097095489503 Epoch: 5/20 Loss: 3.556797326564789 Epoch: 5/20 Loss: 3.6510276527404786 Epoch: 6/20 Loss: 3.578385325224419 Epoch: 6/20 Loss: 3.4700098037719727 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code import numpy as np """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from string import punctuation def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function print(text[:10]) #clean_text = text.lower().translate(str.maketrans('','', punctuation)) #unique_words = list(set(word for word in clean_text.split())) unique_words = list(set(word for word in text )) vocab_to_int = dict(zip(unique_words, range(len(unique_words)))) int_to_vocab = {v:k for k,v in vocab_to_int.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output ['moe_szyslak', "moe's", 'tavern', 'where', 'the', 'elite', 'meet', 'to', 'drink', 'bart_simpson'] Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code import unicodedata import re def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function delimiter = '||{}||' puncs = ['.', ',', '"', ';', '!', '?', '(', ')', '-'] punc_to_token = {k: delimiter.format( re.sub('\s|-', '_', unicodedata.name(k) )) for k in puncs } punc_to_token['\n'] = delimiter.format('Return') return punc_to_token """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) token_lookup() ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output ['this', 'is', 'out', '||full_stop||', '||full_stop||', '||full_stop||', 'and', 'out', 'is', 'one'] ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() assert len(int_to_vocab) == len(vocab_to_int) len(int_to_vocab) len(np.unique(int_text)) missings = set(int_to_vocab.keys()) - set(int_text) missings a, = missings int_to_vocab[a] ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ tot_batches = len(words) // (batch_size) words = words[:tot_batches * batch_size] # TODO: Implement function X = [words[i:i+sequence_length] for i in range(len(words) - sequence_length)] y = words[sequence_length: ] X = torch.Tensor(X).long() y = torch.Tensor(y).long() dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=batch_size, shuffle=True) # return a dataloader return loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) assert len(sample_x) == len(sample_y) ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ self.hidden_dim = hidden_dim self.embedding_dim = embedding_dim self.output_size = output_size self.n_layers = n_layers super(RNN, self).__init__() self.EMBED = nn.Embedding(vocab_size, embedding_dim) self.LSTM = nn.LSTM(embedding_dim, hidden_dim, n_layers, batch_first=True, dropout=dropout) self.FC = nn.Sequential( nn.Dropout(0.25), nn.Linear(hidden_dim, output_size) ) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = len(nn_input) try: out = self.EMBED(nn_input) out, hidden = self.LSTM(out, hidden) out = out.contiguous().view(-1, self.hidden_dim) out = self.FC(out) out = out.view(batch_size, -1, self.output_size) out = out[:, -1] # return one batch of output word scores and the hidden state except RuntimeError as e: print(nn_input) return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function a = torch.zeros(self.n_layers, batch_size, self.hidden_dim) b = torch.zeros(self.n_layers, batch_size, self.hidden_dim) if(train_on_gpu): a = a.cuda() b = b.cuda() # initialize hidden state with zero weights, and move to GPU if available return (a,b) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) import os os.environ['CUDA_LAUNCH_BLOCKING'] = '1' !export CUDA_LAUNCH_BLOCKING=1 ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available rnn.train() if(train_on_gpu): inp = inp.cuda() target = target.cuda() rnn.zero_grad() optimizer.zero_grad() hidden = tuple([t.clone().detach() for t in hidden]) out, hidden = rnn(inp, hidden) loss = criterion(out.squeeze(), target) loss_val = loss.item() loss.backward() nn.utils.clip_grad_norm_(rnn.parameters(), 4) #avoid gradient explosion optimizer.step() optimizer.zero_grad() # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return loss_val, hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code l = list(map(lambda x: len(x.split()), lines)) np.mean(l), np.max(l), np.min(l) import matplotlib.pyplot as plt plt.hist(l) plt.hist(l, bins=range(0,100, 10)) plt.hist(l, bins=range(0, 40, 2)) # Data params # Sequence Length sequence_length = 12 # of words in a sequence # Batch Size batch_size = 248 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 6 # Learning Rate learning_rate = 1e-3 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 2**8 # Hidden Dimension hidden_dim = 2**9 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 2000 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. Previously I reached loss around ~3.7. I went on a again to reach below 3.5 ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available #rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 6 epoch(s)... Epoch: 1/6 Loss: 3.602133973479271 Epoch: 2/6 Loss: 3.5725604769120096 Epoch: 3/6 Loss: 3.478540582107888 Epoch: 4/6 Loss: 3.408708731974325 Epoch: 5/6 Loss: 3.353948412867091 Epoch: 6/6 Loss: 3.3071689980313828 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** - Yes, I tried different sequence lengths. The average number of words per line was around 5.5, I tried sequence lengths starting from 5 and up to 40. I noticed improvement in both performance and loss score when the seq_len is around 10-15. - for `hidden_dim` and `n_layers` I used trial-and-error for different values, I had to between balance performance with training score. I noticed that increasing the `hidden_dim` beyond 300 decreases performance with no significant training improvment, so 256 was an ideal value. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: i think i can do it. george: i know.(he leaves) george:(to jerry) i can't get it back. george: what? what is it? newman: i don't understand why we have to be in business. morty:(to jerry) hey, hey, hey. jerry: hey, hey. george: hey! hey, hey, hey, what is that, hickory? kramer: i don't think so. newman: well, i think i may have done this. george: i know what i do, i don't know. i think i should. elaine: oh...(george exits) kramer: well, you know what? i mean... elaine: oh, yeah. jerry: yeah. kramer: yeah, yeah. jerry: i know what you're doing. george: i know. i'm not getting a cab. jerry: i know. george: what are you doing? george: i don't know. i mean, i think i would really like to have to do that. jerry: i can't believe i have to say it. kramer: well, i don't know, i know i have to do that voice. jerry: oh, yeah. elaine: oh yeah, sure... i don't know. george:(to jerry) you know i was thinking i was just wondering what i did, i don't want to go to the hospital to get some sleep and get out of here, right? jerry: yeah yeah, i got some very interested.(kramer nods and leaves) elaine:(to kramer) hey, i got it, i got a great entrance for a few weeks, but i think we should see a lot of money. george:(to the phone) hey, what do you think, you want me to do that. elaine: well, ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output _____no_output_____ ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # return tuple return (None, None) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # return a dataloader return None # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables # define model layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state return None, None def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return None, None # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = # of words in a sequence # Batch Size batch_size = # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = # Learning Rate learning_rate = # Model parameters # Vocab size vocab_size = # Output size output_size = # Embedding Dimension embedding_dim = # Hidden Dimension hidden_dim = # Number of RNN Layers n_layers = # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_counts = Counter(text) # sorting the words from most to least frequent in text occurrence sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) # create int_to_vocab dictionaries int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return {"\n":"||NEW_LINE||", ".":"||PERIOD||", ",":"||COMMA||", "\"":"||QUOTATION_MARK||", ";":"||SEMICOLON||", "!":"||EXCLAMATION_MARK||", "?":"||QUESTION_MARK||", "(":"||LEFT_PAREN||", ")":"||RIGHT_PAREN||", "-":"||HYPHEN||"} """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests import numpy as np int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function num_windows = len(words)-sequence_length feature_tensors = np.zeros((num_windows, sequence_length), int) target_tensors = np.zeros(num_windows, int) for i in range(num_windows): feature_tensors[i] = words[i:(i+sequence_length)] target_tensors[i] = words[(i+sequence_length)] data = TensorDataset(torch.from_numpy(feature_tensors), torch.from_numpy(target_tensors)) data_loader = DataLoader(data, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own #batch_data([1,2,3,4,5,6,7,8,9,10],5,10) ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers # embedding and LSTM layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # dropout layer #### self.dropout = nn.Dropout(0.3) # linear and sigmoid layers self.fc = nn.Linear(hidden_dim, output_size) #### self.sig = nn.Sigmoid() def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function #print("batch_size=50, sequence_length=3, vocab_size=20, output_size=20, embedding_dim=15, hidden_dim=10, n_layers=2") # embeddings and lstm_out #### nn_input = nn_input.long() #print("nn_input: " + str(nn_input.shape)) embeds = self.embedding(nn_input) #print("embeds: " + str(embeds.shape)) lstm_out, hidden = self.lstm(embeds, hidden) #print("lstm_out_initial: " + str(lstm_out.shape)) #print("hidden: " + str(hidden[0].shape)) #### lstm_out = lstm_out[:, -1, :] # getting the last time step output #print("lstm_out_only_last: " + str(lstm_out.shape)) # dropout and fully-connected layer #### lstm_out = self.dropout(lstm_out) # Stack up LSTM outputs using view out = lstm_out.contiguous().view(-1, self.hidden_dim) #print("lstm_out_resize: " + str(out.shape)) out = self.fc(out) #print("fc_output: " + str(out.shape)) # sigmoid function #### sig_out = self.sig(out) # reshape into (batch_size, seq_length, output_size) out = out.view(nn_input.shape[0], -1, self.output_size) # get last batch out = out[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # Create two new tensors with sizes n_layers x batch_size x hidden_dim, # initialized to zero, for hidden state and cell state of LSTM weight = next(self.parameters()).data # initialize hidden state with zero weights, and move to GPU if available if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inputs, targets, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inputs: A batch of input to the neural network :param targets: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function #print("batch_size=200, input_size=20, output_size=10, sequence_length=3, embedding_dim=15, hidden_dim=10, n_layers=2, learning_rate=0.01") # move data to GPU, if available if(train_on_gpu): inputs, targets = inputs.cuda(), targets.cuda() # perform backpropagation and optimization # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history hidden = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() # get the output from the model #print("inputs: " + str(inputs.shape)) #print("hidden: " + str(hidden[0].shape)) output, hidden = rnn(inputs, hidden) #print("output: " + str(output.shape)) #print("targets: " + str(targets.shape)) # calculate the loss and perform backprop loss = criterion(output.squeeze(), targets.long()) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 50 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 12 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = len(vocab_to_int) # Embedding Dimension embedding_dim = 400 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 3 # Show stats for every n number of batches show_every_n_batches = 1500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 12 epoch(s)... Epoch: 1/12 Loss: 5.382296454429627 Epoch: 1/12 Loss: 4.766961904843648 Epoch: 1/12 Loss: 4.51070561726888 Epoch: 1/12 Loss: 4.55942829322815 Epoch: 1/12 Loss: 4.536936652501424 Epoch: 1/12 Loss: 4.5027955611546835 Epoch: 1/12 Loss: 4.364610230763753 Epoch: 1/12 Loss: 4.378511615912119 Epoch: 1/12 Loss: 4.358441351890564 Epoch: 1/12 Loss: 4.508118573506673 Epoch: 1/12 Loss: 4.482987241586049 Epoch: 2/12 Loss: 4.308184862891861 Epoch: 2/12 Loss: 4.1413512289524075 Epoch: 2/12 Loss: 3.993586084206899 Epoch: 2/12 Loss: 4.103677097002665 Epoch: 2/12 Loss: 4.141811655521392 Epoch: 2/12 Loss: 4.163006536165873 Epoch: 2/12 Loss: 4.028586396932602 Epoch: 2/12 Loss: 4.063893524646759 Epoch: 2/12 Loss: 4.074651515960693 Epoch: 2/12 Loss: 4.225006390889486 Epoch: 2/12 Loss: 4.199901998837789 Epoch: 3/12 Loss: 4.096897686266043 Epoch: 3/12 Loss: 3.9598137588500975 Epoch: 3/12 Loss: 3.833541934967041 Epoch: 3/12 Loss: 3.9427824546496075 Epoch: 3/12 Loss: 3.976020507176717 Epoch: 3/12 Loss: 3.981061183929443 Epoch: 3/12 Loss: 3.8797401956717175 Epoch: 3/12 Loss: 3.9101320581436156 Epoch: 3/12 Loss: 3.923528670152028 Epoch: 3/12 Loss: 4.087516144116719 Epoch: 3/12 Loss: 4.051521681149801 Epoch: 4/12 Loss: 3.9634128051438355 Epoch: 4/12 Loss: 3.83914767964681 Epoch: 4/12 Loss: 3.716419871489207 Epoch: 4/12 Loss: 3.80715305407842 Epoch: 4/12 Loss: 3.8360372813542685 Epoch: 4/12 Loss: 3.8625567728678387 Epoch: 4/12 Loss: 3.772729421536128 Epoch: 4/12 Loss: 3.768461557865143 Epoch: 4/12 Loss: 3.802092656294505 Epoch: 4/12 Loss: 3.964041507403056 Epoch: 4/12 Loss: 3.9088448918660483 Epoch: 5/12 Loss: 3.842247732125228 Epoch: 5/12 Loss: 3.726089081128438 Epoch: 5/12 Loss: 3.6267248492240904 Epoch: 5/12 Loss: 3.694848281065623 Epoch: 5/12 Loss: 3.7287139987945555 Epoch: 5/12 Loss: 3.7605069545110066 Epoch: 5/12 Loss: 3.6608082218170166 Epoch: 5/12 Loss: 3.665735421339671 Epoch: 5/12 Loss: 3.7008822974363964 Epoch: 5/12 Loss: 3.8427698403994244 Epoch: 5/12 Loss: 3.8082571652730306 Epoch: 6/12 Loss: 3.746616207194278 Epoch: 6/12 Loss: 3.638549703280131 Epoch: 6/12 Loss: 3.545618828932444 Epoch: 6/12 Loss: 3.6178971621195477 Epoch: 6/12 Loss: 3.6432237571875254 Epoch: 6/12 Loss: 3.669344506899516 Epoch: 6/12 Loss: 3.585422807216644 Epoch: 6/12 Loss: 3.583431126674016 Epoch: 6/12 Loss: 3.606181358019511 Epoch: 6/12 Loss: 3.7494511752128603 Epoch: 6/12 Loss: 3.720742782354355 Epoch: 7/12 Loss: 3.6634636787274286 Epoch: 7/12 Loss: 3.5725717662970227 Epoch: 7/12 Loss: 3.483094269911448 Epoch: 7/12 Loss: 3.546909927209218 Epoch: 7/12 Loss: 3.5807827563285826 Epoch: 7/12 Loss: 3.602562974770864 Epoch: 7/12 Loss: 3.5161950318813324 Epoch: 7/12 Loss: 3.518695900917053 Epoch: 7/12 Loss: 3.54108612259229 Epoch: 7/12 Loss: 3.6807830793062846 Epoch: 7/12 Loss: 3.6526482915083567 Epoch: 8/12 Loss: 3.6007220522775185 Epoch: 8/12 Loss: 3.511210502068202 Epoch: 8/12 Loss: 3.432588779290517 Epoch: 8/12 Loss: 3.487544007619222 Epoch: 8/12 Loss: 3.5258040126959482 Epoch: 8/12 Loss: 3.5514919748306273 Epoch: 8/12 Loss: 3.4677621422608693 Epoch: 8/12 Loss: 3.4702265093326568 Epoch: 8/12 Loss: 3.4821366413434345 Epoch: 8/12 Loss: 3.63070587793986 Epoch: 8/12 Loss: 3.589202776114146 Epoch: 9/12 Loss: 3.548762606156703 Epoch: 9/12 Loss: 3.4814633708000184 Epoch: 9/12 Loss: 3.387579452912013 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** Basically it was lot of trial and error. Initially, I went with sequence length of 200. Later I realized that sequence length is the expected length of sentences, which from the statistics is around 5.5. So I reduced to 10.Batch size is 50. I tried to make it 100 and more, but got OOM. So I stopped changing that.No of epochs was initially 4-5. And the loss never reached below 4. Increasing it to 9 got the loss down to 3.5. I also tried to increase it to 12, just to see how much can it reduce below 3.5, but it timed out.Learning rate, I experimented with .001, .005 and .01For embedding dimension I chose 400 = 1/100 of vocabulary/input size (~46K)For hidden dimension and layer size, I chose a high number. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:51: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_counts = Counter(text) sorted_vocab = sorted (word_counts, key=word_counts.get, reverse = True) int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function punctuation_dict ={ '.':'Period', ',':'Comma', '"':'Quotation_Mark', ';':'Semicolon', '!':'Exclamation_Mark', '?':'Question_Mark', '(':'Left_paren', ')':'Right_paren', '-':'Hyphens', '\n':'Return' } return punctuation_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function n_batches = len(words)//batch_size words = words[:n_batches*batch_size] y_length = len(words) - sequence_length x, y = [], [] for idx in range(0, y_length): idx_end = sequence_length + idx x_batch = words[idx:idx_end] x.append(x_batch) y_batch = words[idx_end] y.append(y_batch) # create Tensor datasets data = TensorDataset(torch.from_numpy(np.asarray(x)), torch.from_numpy(np.asarray(y))) # make sure the SHUFFLE your training data dataloader = DataLoader(data, shuffle=True, batch_size=batch_size) # return a dataloader return dataloader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 3, 4, 5, 6, 7], [ 36, 37, 38, 39, 40], [ 28, 29, 30, 31, 32], [ 19, 20, 21, 22, 23], [ 33, 34, 35, 36, 37], [ 41, 42, 43, 44, 45], [ 39, 40, 41, 42, 43], [ 20, 21, 22, 23, 24], [ 17, 18, 19, 20, 21], [ 38, 39, 40, 41, 42]]) torch.Size([10]) tensor([ 8, 41, 33, 24, 38, 46, 44, 25, 22, 43]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # embedding and LSTM layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # linear layer self.fc = nn.Linear(hidden_dim, output_size) #dropout self.dropout = nn.Dropout(dropout) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # embeddings and lstm_out embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer #out = self.dropout(lstm_out) fc_out = self.fc(lstm_out) # reshape to be batch_size first fc_out = fc_out.view(batch_size, -1, self.output_size) fc_out = fc_out[:, -1] # get last batch of labels # return last sigmoid output and hidden state return fc_out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available # Create two new tensors with sizes n_layers x batch_size x hidden_dim, # initialized to zero, for hidden state and cell state of LSTM weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if (train_on_gpu): rnn.cuda() # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history h = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() if (train_on_gpu): inputs, target = inp.cuda(), target.cuda() # get the output from the model output, h = rnn(inputs, h) # calculate the loss and perform backprop loss = criterion(output, target) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(),h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 15 # Learning Rate learning_rate = 0.0005 # Model parameters # Vocab size vocab_size = len(vocab_to_int)+1 # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 300 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 2000 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 15 epoch(s)... Epoch: 1/15 Loss: 4.995299962639809 Epoch: 1/15 Loss: 4.421565550327301 Epoch: 1/15 Loss: 4.258525164246559 Epoch: 2/15 Loss: 4.076182387588481 Epoch: 2/15 Loss: 3.973931924700737 Epoch: 2/15 Loss: 3.9418499126434328 Epoch: 3/15 Loss: 3.8258294144248706 Epoch: 3/15 Loss: 3.768056872487068 Epoch: 3/15 Loss: 3.7785115662813187 Epoch: 4/15 Loss: 3.671331323221366 Epoch: 4/15 Loss: 3.643831925034523 Epoch: 4/15 Loss: 3.659439428925514 Epoch: 5/15 Loss: 3.561268246318452 Epoch: 5/15 Loss: 3.535648198723793 Epoch: 5/15 Loss: 3.561878904104233 Epoch: 6/15 Loss: 3.475887758953552 Epoch: 6/15 Loss: 3.4558649756908415 Epoch: 6/15 Loss: 3.486779133558273 Epoch: 7/15 Loss: 3.4104048094016846 Epoch: 7/15 Loss: 3.386608862876892 Epoch: 7/15 Loss: 3.416811353683472 Epoch: 8/15 Loss: 3.346717089816245 Epoch: 8/15 Loss: 3.3424735304117204 Epoch: 8/15 Loss: 3.3563212617635725 Epoch: 9/15 Loss: 3.302091039335631 Epoch: 9/15 Loss: 3.284151251077652 Epoch: 9/15 Loss: 3.3161020565032957 Epoch: 10/15 Loss: 3.2542494463952725 Epoch: 10/15 Loss: 3.2349173226356505 Epoch: 10/15 Loss: 3.281742657184601 Epoch: 11/15 Loss: 3.2124535504859093 Epoch: 11/15 Loss: 3.2041785420179365 Epoch: 11/15 Loss: 3.246911931872368 Epoch: 12/15 Loss: 3.173727209436283 Epoch: 12/15 Loss: 3.180486132860184 Epoch: 12/15 Loss: 3.213321935415268 Epoch: 13/15 Loss: 3.1409198117224033 Epoch: 13/15 Loss: 3.1389528231620787 Epoch: 13/15 Loss: 3.188457790851593 Epoch: 14/15 Loss: 3.11691429713023 Epoch: 14/15 Loss: 3.115593685388565 Epoch: 14/15 Loss: 3.1549170449972155 Epoch: 15/15 Loss: 3.09170830627336 Epoch: 15/15 Loss: 3.0923308324813843 Epoch: 15/15 Loss: 3.1297739617824556 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)Sequence length: I've tried to increase the sequence length up to 50, and found that 10 is the best to get the lowest training loss.Batch size: According to the hyperparameters lesson, acceptable batch size is from 32 to 128, where the higher the batch size the more complex the model will be. After changing between 64 and 128 batch size, I have found that 128 will give much lower training loss.Learning rate: Tried to experiment from 0.01 to 0.0001 learning rate. Found that 0.0005 is the best. Embedding dimension: I've experimented from 100 to 1000 embedding dimension and found that 200 is the best value for that.Hidden dimension: Experimented from 200 to 600 and chose 300. Got lower loss compared to others with fewer processing time.N_layers: According to the lesson, 3 is the best number of layers, but found that 2 is acceptable too as can get lower loss comparable to 3.Dropout layer after LSTM layer: Unfortunately adding the dropout layer making the loss progress slower than without dropout layer. After 10 epochs, the loss was still at 3.75, then I tried to exclude the dropout layer, and the loss progress rapidly and achieve 3.56 after the 5th epoch. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:47: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function vocab_to_int = {word: ii for ii, word in enumerate(set(text))} int_to_vocab = {ii: word for ii, word in enumerate(vocab_to_int.keys())} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function punc_dict = {} punc_dict['.'] = "||Period||" punc_dict[','] = "||Comma||" punc_dict['"'] = "||Quotation_Mark||" punc_dict[';'] = "||Semicolon||" punc_dict['!'] = "||Exclamation_Mark||" punc_dict['?'] = "||Question_Mark||" punc_dict['('] = "||Left_Parentheses||" punc_dict[')'] = "||Right_Parentheses||" punc_dict['-'] = "||Dash||" punc_dict['\n'] = "||Return||" return punc_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # declaring feature & target tensors feature= [] target = [] # iterating over the words to make batches for ii in range(len(words)): # batching till we reach the last word in text for target tensor # eg: words[n] will be the target tensor for words[n-sequence_length], ... ,words[n-1] where n is length of words if ii + sequence_length < len(words) : feature.append(words[ii:ii+sequence_length]) target.append(words[ii+sequence_length]) # creating tensor from numpy arrays feature_tensor = torch.from_numpy(np.array(feature)) target_tensor = torch.from_numpy(np.array(target)) # creating a dataloader data = TensorDataset(feature_tensor, target_tensor) dataloader = DataLoader(data, shuffle=True, batch_size=batch_size) # return a dataloader return dataloader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[15, 16, 17, 18, 19], [23, 24, 25, 26, 27], [28, 29, 30, 31, 32], [18, 19, 20, 21, 22], [22, 23, 24, 25, 26], [ 4, 5, 6, 7, 8], [30, 31, 32, 33, 34], [39, 40, 41, 42, 43], [37, 38, 39, 40, 41], [40, 41, 42, 43, 44]]) torch.Size([10]) tensor([20, 28, 33, 23, 27, 9, 35, 44, 42, 45]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.hidden_dim = hidden_dim self.output_size = output_size self.n_layers = n_layers # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, batch_first=True, dropout=dropout) self.fc = nn.Linear(hidden_dim, output_size) self.sigmoid = nn.Sigmoid() def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # storing the batch_size batch_size = nn_input.size(0) # looking up embedding values embeds = self.embedding(nn_input) # passing the input to LSTM cells lstm_out, hidden = self.lstm(embeds, hidden) # flattening the output of lstm to feed the fully connected layer lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # passing the LSTM output to fully-connected layer output = self.fc(lstm_out) # output = self.sigmoid(output) #print("hidden_dim: {}, output_size: {}, batch_size: {}".format(self.hidden_dim, self.output_size, batch_size)) #print(output.shape) # reshaping the output to batch_size output = output.view(batch_size, -1, self.output_size) #print(output.shape) # storing the last batch of words in output out = output[:, -1] #print(out.shape) # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if train_on_gpu : hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: rnn = rnn.cuda() inp = inp.cuda() target = target.cuda() # perform forward propagation # creating new variables for hidden state, so that we don't back propagate # through entire history of training hidden = tuple([each.data for each in hidden]) # clearing the gradients optimizer.zero_grad() # passing the data through the model preds, hidden = rnn(inp, hidden) # print("preds shape: {}".format(preds.shape)) # print("target shape: {}".format(target.shape)) # perform backpropagation and optimization # calculating the loss loss = criterion(preds, target) loss.backward() optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_rnn` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 20 # of words in a sequence # Batch Size batch_size = 200 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 8 # Learning Rate learning_rate = 0.0005 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 256 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 8 epoch(s)... Epoch: 1/8 Loss: 5.632480495452881 Epoch: 1/8 Loss: 4.942170736312867 Epoch: 1/8 Loss: 4.716282566070556 Epoch: 1/8 Loss: 4.56660439825058 Epoch: 1/8 Loss: 4.469807868003845 Epoch: 1/8 Loss: 4.3838198928833005 Epoch: 1/8 Loss: 4.348790532588959 Epoch: 1/8 Loss: 4.28408527469635 Epoch: 2/8 Loss: 4.177651564528545 Epoch: 2/8 Loss: 4.081936648368836 Epoch: 2/8 Loss: 4.079673293113708 Epoch: 2/8 Loss: 4.068662234306336 Epoch: 2/8 Loss: 4.04325536775589 Epoch: 2/8 Loss: 4.009149151325226 Epoch: 2/8 Loss: 4.020483733177185 Epoch: 2/8 Loss: 3.9962571992874145 Epoch: 3/8 Loss: 3.9034119735161465 Epoch: 3/8 Loss: 3.86343590927124 Epoch: 3/8 Loss: 3.8537089614868165 Epoch: 3/8 Loss: 3.8412228307724 Epoch: 3/8 Loss: 3.846558000087738 Epoch: 3/8 Loss: 3.8416546840667722 Epoch: 3/8 Loss: 3.8378375749588014 Epoch: 3/8 Loss: 3.831935047149658 Epoch: 4/8 Loss: 3.7613330808778604 Epoch: 4/8 Loss: 3.6869794187545777 Epoch: 4/8 Loss: 3.7026803255081178 Epoch: 4/8 Loss: 3.7180724806785586 Epoch: 4/8 Loss: 3.7059155254364016 Epoch: 4/8 Loss: 3.724037839412689 Epoch: 4/8 Loss: 3.7190098152160647 Epoch: 4/8 Loss: 3.7236519036293028 Epoch: 5/8 Loss: 3.647038556387027 Epoch: 5/8 Loss: 3.6019871573448183 Epoch: 5/8 Loss: 3.6007642459869387 Epoch: 5/8 Loss: 3.6029805097579954 Epoch: 5/8 Loss: 3.622204779148102 Epoch: 5/8 Loss: 3.6282464880943297 Epoch: 5/8 Loss: 3.6074222950935364 Epoch: 5/8 Loss: 3.6257841272354128 Epoch: 6/8 Loss: 3.5581482090055943 Epoch: 6/8 Loss: 3.513393308639526 Epoch: 6/8 Loss: 3.513257884025574 Epoch: 6/8 Loss: 3.5227911357879638 Epoch: 6/8 Loss: 3.523511145591736 Epoch: 6/8 Loss: 3.5454648828506468 Epoch: 6/8 Loss: 3.5306159801483155 Epoch: 6/8 Loss: 3.5454433569908144 Epoch: 7/8 Loss: 3.490649246176084 Epoch: 7/8 Loss: 3.4405820550918578 Epoch: 7/8 Loss: 3.4513167791366577 Epoch: 7/8 Loss: 3.460797918796539 Epoch: 7/8 Loss: 3.468031313419342 Epoch: 7/8 Loss: 3.4589882307052613 Epoch: 7/8 Loss: 3.465713171958923 Epoch: 7/8 Loss: 3.4684483218193054 Epoch: 8/8 Loss: 3.4220041977862516 Epoch: 8/8 Loss: 3.3742277727127075 Epoch: 8/8 Loss: 3.3936182470321654 Epoch: 8/8 Loss: 3.3995863003730773 Epoch: 8/8 Loss: 3.3969829425811766 Epoch: 8/8 Loss: 3.3975289940834044 Epoch: 8/8 Loss: 3.3959989790916443 Epoch: 8/8 Loss: 3.4389727234840395 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** * I tried different sequence lengths and my observations was that a sequence length around 20 was good and it made the model converge faster as compared to a sequence length of 70-80 words.* With n_layers = 2 the model was able to learn more as compared to n_layers = 1.* First I tried with hidden_dim = 128 and the loss was decreasing but upto a certain point and in my second attempt I used hidden_dim = 256 and it helped me to take the loss beyond 3.5 --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: *any* deal's eyeliner's deal's deal's rented rented rented rented deal's deal's rented rented rented //www rented. george: oh, well i- i can't do it. jerry: i don't think i can do it. jerry: i know, i- i don't know. jerry: yeah, but it's just a great idea.(to george) i mean, i think we have to go to the bathroom. jerry:(to kramer) i don't know how you want it. jerry: what happened? jerry: yeah. kramer: oh....... elaine: yeah. jerry:(trying to hear it to george) hey, hey, i got a lot of money for you, but, you got the whole deal for you and i can be able to get the whole thing on your face. george: well i don't think it's the only thing i can do, but, you can do it for a while. elaine: what? what? jerry: i can't believe you were doing that. jerry: i know, i just want to know what i mean, but i was thinking about it. i mean, i don't think so, you know, i know. jerry: i thought you were a woman? elaine: well, it's a lot of a situation. it's a little bit of a semi. jerry:(to jerry) hey, i don't want to talk to you! jerry: well i don't want a lot of people in the shower and then i was a couple of times and i got to tell you what.. i mean... you think i'm going to go out? jerry: no, i'm not... jerry: yeah. george:(to jerry) you know what i think? you don't know how you are. george: yeah, yeah. elaine: you think i can be able to be in the bathroom? ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown The TV Script is Not PerfectIt's ok if the TV script doesn't make perfect sense. It should look like alternating lines of dialogue, here is one such example of a few generated lines. Example generated script>jerry: what about me?>>jerry: i don't have to wait.>>kramer:(to the sales table)>>elaine:(to jerry) hey, look at this, i'm a good doctor.>>newman:(to elaine) you think i have no idea of this...>>elaine: oh, you better take the phone, and he was a little nervous.>>kramer:(to the phone) hey, hey, jerry, i don't want to be a little bit.(to kramer and jerry) you can't.>>jerry: oh, yeah. i don't even know, i know.>>jerry:(to the phone) oh, i know.>>kramer:(laughing) you know...(to jerry) you don't know.You can see that there are multiple characters that say (somewhat) complete sentences, but it doesn't have to be perfect! It takes quite a while to get good results, and often, you'll have to use a smaller vocabulary (and discard uncommon words), or get more data. The Seinfeld dataset is about 3.4 MB, which is big enough for our purposes; for script generation you'll want more than 1 MB of text, generally. Submitting This ProjectWhen submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_tv_script_generation.ipynb" and save another copy as an HTML file by clicking "File" -> "Download as.."->"html". Include the "helper.py" and "problem_unittests.py" files in your submission. Once you download these files, compress them into one zip file for submission. ###Code ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) len(text) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function cnt = Counter(text) vocab = sorted(cnt, key=cnt.get, reverse=True) vocab_to_int = { word:idx for idx, word in enumerate(vocab) } int_to_vocab = { idx:word for idx, word in enumerate(vocab) } # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) test_text = ['no', 'the', 'one', 'is', 'the','the', 'no'] # test_cnt = Counter(test_text) # print(test_cnt) # d = sorted(test_cnt, key=test_cnt.get, reverse=True) # print(d) # for i, word in enumerate(d): # print(i, word) test_vocab_to_int, test_int_to_vocab = create_lookup_tables(test_text) print(test_vocab_to_int) ###Output {'the': 0, 'no': 1, 'one': 2, 'is': 3} ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function ret = { '.': '||Period||', ',': '||Comma||', '"': '||Quotation||', ';': '||Semicolon||', '!': '||Exclamation||', '?': '||Question||', '(': '||Left_Parentheses||', ')': '||Right_Parentheses||', '-': '||Dash||', '\n': '||Return||' } return ret """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() int_text[:200] vocab_to_int ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ x = []; y = []; # TODO: Implement function for i in range(0, len(words) - sequence_length - 1): x.append(words[i: i + sequence_length]); y.append(words[i+sequence_length]) data = TensorDataset(torch.LongTensor(x), torch.LongTensor(y)) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own data_loader = batch_data(int_text, 4, 5); dataiter = iter(data_loader) batch_x, batch_y = dataiter.next(); print(int_text[:50]) print(batch_x); print(batch_y); ###Output [24, 22, 47, 1, 1, 1, 17, 47, 22, 82, 20, 6, 1252, 545, 8782, 7189, 20, 241, 1, 149, 1, 1, 1, 84, 4, 200, 238, 149, 208, 58, 55, 135, 64, 47, 3, 24, 22, 18, 677, 208, 58, 1, 1, 1, 24, 220, 126, 2, 121, 50] tensor([[ 24, 22, 47, 1], [ 22, 47, 1, 1], [ 47, 1, 1, 1], [ 1, 1, 1, 17], [ 1, 1, 17, 47]]) tensor([ 1, 1, 17, 47, 22]) ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.hidden_dim = hidden_dim self.n_layers = n_layers # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.dropout = nn.Dropout(0.2) self.fc = nn.Linear(hidden_dim, output_size) #self.sigmoid = nn.Sigmoid() def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) lstm_out = self.dropout(lstm_out) fc_out = self.fc(lstm_out) #sigmoid_out = self.sigmoid(out) out = fc_out.view(batch_size, -1, self.output_size) out = out[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): rnn.cuda() inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization # zero accumulated gradients rnn.zero_grad() # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history hidden = tuple([each.data for each in hidden]) output, hidden = rnn(inp, hidden) loss = criterion(output.squeeze(), target.long()) loss.backward() optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code from datetime import datetime print("Current Time =", datetime.now()) """ DON'T MODIFY ANYTHING IN THIS CELL """ import numpy as np from datetime import datetime def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] epoch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) epoch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {}/{}, Progress in Epoch: {}/{}, Loss: {}. Time = {}'.format( epoch_i, n_epochs, batch_i, len(train_loader), np.average(batch_losses), datetime.now())) batch_losses = [] print('Epoch: {}/{}, Complete. AVRG Loss : {}. \n\n'.format( epoch_i, n_epochs, np.average(epoch_losses))) epoch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code len(int_text) # Data params # Sequence Length sequence_length = 8 # of words in a sequence # Batch Size batch_size = 64 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.0003 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 400 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) # rnn = helper.load_model('./save/trained_rnn') """ DON'T MODIFY ANYTHING IN THIS CELL """ from workspace_utils import active_session with active_session(): # rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10, Progress in Epoch: 400/13940, Loss: 3.605054897069931. Time = 2020-02-18 12:01:09.591732 Epoch: 1/10, Progress in Epoch: 800/13940, Loss: 3.571416969001293. Time = 2020-02-18 12:01:27.222853 Epoch: 1/10, Progress in Epoch: 1200/13940, Loss: 3.6262794977426527. Time = 2020-02-18 12:01:44.794836 Epoch: 1/10, Progress in Epoch: 1600/13940, Loss: 3.63182344853878. Time = 2020-02-18 12:02:02.386451 Epoch: 1/10, Progress in Epoch: 2000/13940, Loss: 3.567817769944668. Time = 2020-02-18 12:02:19.988084 Epoch: 1/10, Progress in Epoch: 2400/13940, Loss: 3.5950572127103806. Time = 2020-02-18 12:02:37.577387 Epoch: 1/10, Progress in Epoch: 2800/13940, Loss: 3.524261798262596. Time = 2020-02-18 12:02:55.147918 Epoch: 1/10, Progress in Epoch: 3200/13940, Loss: 3.4371326106786726. Time = 2020-02-18 12:03:12.740083 Epoch: 1/10, Progress in Epoch: 3600/13940, Loss: 3.4395338034629823. Time = 2020-02-18 12:03:30.333782 Epoch: 1/10, Progress in Epoch: 4000/13940, Loss: 3.542424525022507. Time = 2020-02-18 12:03:47.914981 Epoch: 1/10, Progress in Epoch: 4400/13940, Loss: 3.612706404328346. Time = 2020-02-18 12:04:05.537210 Epoch: 1/10, Progress in Epoch: 4800/13940, Loss: 3.5227244263887405. Time = 2020-02-18 12:04:23.145631 Epoch: 1/10, Progress in Epoch: 5200/13940, Loss: 3.49071392595768. Time = 2020-02-18 12:04:40.750032 Epoch: 1/10, Progress in Epoch: 5600/13940, Loss: 3.665648688673973. Time = 2020-02-18 12:04:58.582860 Epoch: 1/10, Progress in Epoch: 6000/13940, Loss: 3.718160879611969. Time = 2020-02-18 12:05:16.192778 Epoch: 1/10, Progress in Epoch: 6400/13940, Loss: 3.634050798416138. Time = 2020-02-18 12:05:33.802871 Epoch: 1/10, Progress in Epoch: 6800/13940, Loss: 3.589769725203514. Time = 2020-02-18 12:05:51.402862 Epoch: 1/10, Progress in Epoch: 7200/13940, Loss: 3.4900585186481474. Time = 2020-02-18 12:06:08.998451 Epoch: 1/10, Progress in Epoch: 7600/13940, Loss: 3.6459556722640993. Time = 2020-02-18 12:06:26.617825 Epoch: 1/10, Progress in Epoch: 8000/13940, Loss: 3.428907346725464. Time = 2020-02-18 12:06:44.231577 Epoch: 1/10, Progress in Epoch: 8400/13940, Loss: 3.5053271022439003. Time = 2020-02-18 12:07:01.837052 Epoch: 1/10, Progress in Epoch: 8800/13940, Loss: 3.548306875228882. Time = 2020-02-18 12:07:19.442637 Epoch: 1/10, Progress in Epoch: 9200/13940, Loss: 3.4951591509580613. Time = 2020-02-18 12:07:37.056759 Epoch: 1/10, Progress in Epoch: 9600/13940, Loss: 3.4763741570711137. Time = 2020-02-18 12:07:54.674413 Epoch: 1/10, Progress in Epoch: 10000/13940, Loss: 3.469826722741127. Time = 2020-02-18 12:08:12.286407 Epoch: 1/10, Progress in Epoch: 10400/13940, Loss: 3.619101067185402. Time = 2020-02-18 12:08:29.917437 Epoch: 1/10, Progress in Epoch: 10800/13940, Loss: 3.614825845360756. Time = 2020-02-18 12:08:47.545706 Epoch: 1/10, Progress in Epoch: 11200/13940, Loss: 3.7850104904174806. Time = 2020-02-18 12:09:05.395728 Epoch: 1/10, Progress in Epoch: 11600/13940, Loss: 3.6875649243593216. Time = 2020-02-18 12:09:23.017526 Epoch: 1/10, Progress in Epoch: 12000/13940, Loss: 3.671543435454369. Time = 2020-02-18 12:09:40.633408 Epoch: 1/10, Progress in Epoch: 12400/13940, Loss: 3.6527459222078322. Time = 2020-02-18 12:09:58.233821 Epoch: 1/10, Progress in Epoch: 12800/13940, Loss: 3.661191913485527. Time = 2020-02-18 12:10:15.858400 Epoch: 1/10, Progress in Epoch: 13200/13940, Loss: 3.644480064511299. Time = 2020-02-18 12:10:33.466185 Epoch: 1/10, Progress in Epoch: 13600/13940, Loss: 3.6915398734807967. Time = 2020-02-18 12:10:51.069107 Epoch: 1/10, Complete. AVRG Loss : 3.5862797902538475. Epoch: 2/10, Progress in Epoch: 400/13940, Loss: 3.566291666159933. Time = 2020-02-18 12:11:23.628535 Epoch: 2/10, Progress in Epoch: 800/13940, Loss: 3.491341718733311. Time = 2020-02-18 12:11:41.232535 Epoch: 2/10, Progress in Epoch: 1200/13940, Loss: 3.5244996482133866. Time = 2020-02-18 12:11:58.863655 Epoch: 2/10, Progress in Epoch: 1600/13940, Loss: 3.537008687853813. Time = 2020-02-18 12:12:16.469568 Epoch: 2/10, Progress in Epoch: 2000/13940, Loss: 3.484640632867813. Time = 2020-02-18 12:12:34.110590 Epoch: 2/10, Progress in Epoch: 2400/13940, Loss: 3.49609339594841. Time = 2020-02-18 12:12:51.749783 Epoch: 2/10, Progress in Epoch: 2800/13940, Loss: 3.441936358809471. Time = 2020-02-18 12:13:09.558525 Epoch: 2/10, Progress in Epoch: 3200/13940, Loss: 3.3490901833772657. Time = 2020-02-18 12:13:27.171983 Epoch: 2/10, Progress in Epoch: 3600/13940, Loss: 3.3565933644771575. Time = 2020-02-18 12:13:44.790880 Epoch: 2/10, Progress in Epoch: 4000/13940, Loss: 3.452413011789322. Time = 2020-02-18 12:14:02.398197 Epoch: 2/10, Progress in Epoch: 4400/13940, Loss: 3.508250970840454. Time = 2020-02-18 12:14:19.998558 Epoch: 2/10, Progress in Epoch: 4800/13940, Loss: 3.437790619134903. Time = 2020-02-18 12:14:37.618669 Epoch: 2/10, Progress in Epoch: 5200/13940, Loss: 3.4107190912961958. Time = 2020-02-18 12:14:55.229646 Epoch: 2/10, Progress in Epoch: 5600/13940, Loss: 3.5701881366968156. Time = 2020-02-18 12:15:12.836225 Epoch: 2/10, Progress in Epoch: 6000/13940, Loss: 3.6215085220336913. Time = 2020-02-18 12:15:30.452934 Epoch: 2/10, Progress in Epoch: 6400/13940, Loss: 3.5377633535861968. Time = 2020-02-18 12:15:48.064833 Epoch: 2/10, Progress in Epoch: 6800/13940, Loss: 3.5052747529745103. Time = 2020-02-18 12:16:05.691164 Epoch: 2/10, Progress in Epoch: 7200/13940, Loss: 3.3933733141422273. Time = 2020-02-18 12:16:23.303511 Epoch: 2/10, Progress in Epoch: 7600/13940, Loss: 3.5405786830186843. Time = 2020-02-18 12:16:40.912407 Epoch: 2/10, Progress in Epoch: 8000/13940, Loss: 3.3607068854570388. Time = 2020-02-18 12:16:58.822231 Epoch: 2/10, Progress in Epoch: 8400/13940, Loss: 3.4140745347738264. Time = 2020-02-18 12:17:16.434415 Epoch: 2/10, Progress in Epoch: 8800/13940, Loss: 3.472627356648445. Time = 2020-02-18 12:17:34.052971 Epoch: 2/10, Progress in Epoch: 9200/13940, Loss: 3.4039964652061463. Time = 2020-02-18 12:17:51.659067 Epoch: 2/10, Progress in Epoch: 9600/13940, Loss: 3.4198771893978117. Time = 2020-02-18 12:18:09.258317 Epoch: 2/10, Progress in Epoch: 10000/13940, Loss: 3.380286959707737. Time = 2020-02-18 12:18:26.873423 Epoch: 2/10, Progress in Epoch: 10400/13940, Loss: 3.543619269132614. Time = 2020-02-18 12:18:44.499123 Epoch: 2/10, Progress in Epoch: 10800/13940, Loss: 3.530225414633751. Time = 2020-02-18 12:19:02.139164 Epoch: 2/10, Progress in Epoch: 11200/13940, Loss: 3.674264022707939. Time = 2020-02-18 12:19:19.756478 Epoch: 2/10, Progress in Epoch: 11600/13940, Loss: 3.613612679839134. Time = 2020-02-18 12:19:37.357876 Epoch: 2/10, Progress in Epoch: 12000/13940, Loss: 3.595281681418419. Time = 2020-02-18 12:19:54.977162 Epoch: 2/10, Progress in Epoch: 12400/13940, Loss: 3.587793853878975. Time = 2020-02-18 12:20:12.575412 Epoch: 2/10, Progress in Epoch: 12800/13940, Loss: 3.5641394674777986. Time = 2020-02-18 12:20:30.223344 Epoch: 2/10, Progress in Epoch: 13200/13940, Loss: 3.5645328480005265. Time = 2020-02-18 12:20:47.860818 Epoch: 2/10, Progress in Epoch: 13600/13940, Loss: 3.612954514026642. Time = 2020-02-18 12:21:05.725547 Epoch: 2/10, Complete. AVRG Loss : 3.498609483571295. Epoch: 3/10, Progress in Epoch: 400/13940, Loss: 3.5031374241244326. Time = 2020-02-18 12:21:38.252756 Epoch: 3/10, Progress in Epoch: 800/13940, Loss: 3.448405632674694. Time = 2020-02-18 12:21:55.871650 Epoch: 3/10, Progress in Epoch: 1200/13940, Loss: 3.480855928063393. Time = 2020-02-18 12:22:13.469913 Epoch: 3/10, Progress in Epoch: 1600/13940, Loss: 3.486117476224899. Time = 2020-02-18 12:22:31.090728 Epoch: 3/10, Progress in Epoch: 2000/13940, Loss: 3.4260716885328293. Time = 2020-02-18 12:22:48.704472 Epoch: 3/10, Progress in Epoch: 2400/13940, Loss: 3.457034966945648. Time = 2020-02-18 12:23:06.327414 Epoch: 3/10, Progress in Epoch: 2800/13940, Loss: 3.3993911331892015. Time = 2020-02-18 12:23:23.954594 Epoch: 3/10, Progress in Epoch: 3200/13940, Loss: 3.3062002471089365. Time = 2020-02-18 12:23:41.581893 Epoch: 3/10, Progress in Epoch: 3600/13940, Loss: 3.314637385010719. Time = 2020-02-18 12:23:59.221918 Epoch: 3/10, Progress in Epoch: 4000/13940, Loss: 3.408686335682869. Time = 2020-02-18 12:24:16.858855 Epoch: 3/10, Progress in Epoch: 4400/13940, Loss: 3.4719362276792527. Time = 2020-02-18 12:24:34.479498 Epoch: 3/10, Progress in Epoch: 4800/13940, Loss: 3.383262341618538. Time = 2020-02-18 12:24:52.333150 Epoch: 3/10, Progress in Epoch: 5200/13940, Loss: 3.370024404525757. Time = 2020-02-18 12:25:09.942362 Epoch: 3/10, Progress in Epoch: 5600/13940, Loss: 3.5325735819339754. Time = 2020-02-18 12:25:27.583553 Epoch: 3/10, Progress in Epoch: 6000/13940, Loss: 3.57635999083519. Time = 2020-02-18 12:25:45.197884 Epoch: 3/10, Progress in Epoch: 6400/13940, Loss: 3.501342144012451. Time = 2020-02-18 12:26:02.832990 Epoch: 3/10, Progress in Epoch: 6800/13940, Loss: 3.466717317700386. Time = 2020-02-18 12:26:20.455457 Epoch: 3/10, Progress in Epoch: 7200/13940, Loss: 3.350389167070389. Time = 2020-02-18 12:26:38.067786 Epoch: 3/10, Progress in Epoch: 7600/13940, Loss: 3.4917218190431596. Time = 2020-02-18 12:26:55.690710 Epoch: 3/10, Progress in Epoch: 8000/13940, Loss: 3.3131301873922347. Time = 2020-02-18 12:27:13.319596 Epoch: 3/10, Progress in Epoch: 8400/13940, Loss: 3.35322684854269. Time = 2020-02-18 12:27:30.946262 Epoch: 3/10, Progress in Epoch: 8800/13940, Loss: 3.41247697532177. Time = 2020-02-18 12:27:48.566585 Epoch: 3/10, Progress in Epoch: 9200/13940, Loss: 3.3569095546007155. Time = 2020-02-18 12:28:06.199323 Epoch: 3/10, Progress in Epoch: 9600/13940, Loss: 3.3754072308540346. Time = 2020-02-18 12:28:23.849517 Epoch: 3/10, Progress in Epoch: 10000/13940, Loss: 3.333665554225445. Time = 2020-02-18 12:28:41.482029 Epoch: 3/10, Progress in Epoch: 10400/13940, Loss: 3.496324677467346. Time = 2020-02-18 12:28:59.311515 Epoch: 3/10, Progress in Epoch: 10800/13940, Loss: 3.489862497448921. Time = 2020-02-18 12:29:16.922888 Epoch: 3/10, Progress in Epoch: 11200/13940, Loss: 3.61966025531292. Time = 2020-02-18 12:29:34.538748 Epoch: 3/10, Progress in Epoch: 11600/13940, Loss: 3.568893506526947. Time = 2020-02-18 12:29:52.156655 Epoch: 3/10, Progress in Epoch: 12000/13940, Loss: 3.5405802798271178. Time = 2020-02-18 12:30:09.779412 Epoch: 3/10, Progress in Epoch: 12400/13940, Loss: 3.5214705842733385. Time = 2020-02-18 12:30:27.380147 Epoch: 3/10, Progress in Epoch: 12800/13940, Loss: 3.524023380279541. Time = 2020-02-18 12:30:44.983281 Epoch: 3/10, Progress in Epoch: 13200/13940, Loss: 3.5160969358682634. Time = 2020-02-18 12:31:02.621368 Epoch: 3/10, Progress in Epoch: 13600/13940, Loss: 3.558420597910881. Time = 2020-02-18 12:31:20.229090 Epoch: 3/10, Complete. AVRG Loss : 3.4513036534933152. Epoch: 4/10, Progress in Epoch: 400/13940, Loss: 3.447636641088132. Time = 2020-02-18 12:31:52.761734 Epoch: 4/10, Progress in Epoch: 800/13940, Loss: 3.4203410986065865. Time = 2020-02-18 12:32:10.363003 Epoch: 4/10, Progress in Epoch: 1200/13940, Loss: 3.4442234909534455. Time = 2020-02-18 12:32:27.989534 Epoch: 4/10, Progress in Epoch: 1600/13940, Loss: 3.462333211302757. Time = 2020-02-18 12:32:45.590862 Epoch: 4/10, Progress in Epoch: 2000/13940, Loss: 3.392588405907154. Time = 2020-02-18 12:33:03.365817 Epoch: 4/10, Progress in Epoch: 2400/13940, Loss: 3.4093611109256745. Time = 2020-02-18 12:33:20.991110 Epoch: 4/10, Progress in Epoch: 2800/13940, Loss: 3.3776717972755432. Time = 2020-02-18 12:33:38.613449 Epoch: 4/10, Progress in Epoch: 3200/13940, Loss: 3.262619821727276. Time = 2020-02-18 12:33:56.228927 Epoch: 4/10, Progress in Epoch: 3600/13940, Loss: 3.2774949631094934. Time = 2020-02-18 12:34:13.846927 Epoch: 4/10, Progress in Epoch: 4000/13940, Loss: 3.3836532151699066. Time = 2020-02-18 12:34:31.462323 Epoch: 4/10, Progress in Epoch: 4400/13940, Loss: 3.444744099974632. Time = 2020-02-18 12:34:49.070401 Epoch: 4/10, Progress in Epoch: 4800/13940, Loss: 3.3544535505771638. Time = 2020-02-18 12:35:06.688854 Epoch: 4/10, Progress in Epoch: 5200/13940, Loss: 3.345361199378967. Time = 2020-02-18 12:35:24.289325 Epoch: 4/10, Progress in Epoch: 5600/13940, Loss: 3.504314076602459. Time = 2020-02-18 12:35:41.907953 Epoch: 4/10, Progress in Epoch: 6000/13940, Loss: 3.5284016239643097. Time = 2020-02-18 12:35:59.519496 Epoch: 4/10, Progress in Epoch: 6400/13940, Loss: 3.4650064414739608. Time = 2020-02-18 12:36:17.132119 Epoch: 4/10, Progress in Epoch: 6800/13940, Loss: 3.4362853527069093. Time = 2020-02-18 12:36:34.758740 Epoch: 4/10, Progress in Epoch: 7200/13940, Loss: 3.3104356861114503. Time = 2020-02-18 12:36:52.516510 Epoch: 4/10, Progress in Epoch: 7600/13940, Loss: 3.457484288215637. Time = 2020-02-18 12:37:10.121406 Epoch: 4/10, Progress in Epoch: 8000/13940, Loss: 3.28550971865654. Time = 2020-02-18 12:37:27.729468 Epoch: 4/10, Progress in Epoch: 8400/13940, Loss: 3.3187692767381667. Time = 2020-02-18 12:37:45.359397 Epoch: 4/10, Progress in Epoch: 8800/13940, Loss: 3.3853594183921816. Time = 2020-02-18 12:38:02.986054 Epoch: 4/10, Progress in Epoch: 9200/13940, Loss: 3.328881596326828. Time = 2020-02-18 12:38:20.595988 Epoch: 4/10, Progress in Epoch: 9600/13940, Loss: 3.354059534072876. Time = 2020-02-18 12:38:38.206016 Epoch: 4/10, Progress in Epoch: 10000/13940, Loss: 3.3002479714155197. Time = 2020-02-18 12:38:55.811125 Epoch: 4/10, Progress in Epoch: 10400/13940, Loss: 3.4738124850392342. Time = 2020-02-18 12:39:13.407891 Epoch: 4/10, Progress in Epoch: 10800/13940, Loss: 3.4687465119361875. Time = 2020-02-18 12:39:31.031487 Epoch: 4/10, Progress in Epoch: 11200/13940, Loss: 3.590900978446007. Time = 2020-02-18 12:39:48.647307 Epoch: 4/10, Progress in Epoch: 11600/13940, Loss: 3.5221056115627287. Time = 2020-02-18 12:40:06.263333 Epoch: 4/10, Progress in Epoch: 12000/13940, Loss: 3.485120722055435. Time = 2020-02-18 12:40:23.880699 Epoch: 4/10, Progress in Epoch: 12400/13940, Loss: 3.4905200719833376. Time = 2020-02-18 12:40:41.475225 Epoch: 4/10, Progress in Epoch: 12800/13940, Loss: 3.4802138659358026. Time = 2020-02-18 12:40:59.309151 Epoch: 4/10, Progress in Epoch: 13200/13940, Loss: 3.492168377041817. Time = 2020-02-18 12:41:16.917540 Epoch: 4/10, Progress in Epoch: 13600/13940, Loss: 3.513845224380493. Time = 2020-02-18 12:41:34.543631 Epoch: 4/10, Complete. AVRG Loss : 3.417355781588769. Epoch: 5/10, Progress in Epoch: 400/13940, Loss: 3.4108232732393424. Time = 2020-02-18 12:42:07.084957 Epoch: 5/10, Progress in Epoch: 800/13940, Loss: 3.3872651305794714. Time = 2020-02-18 12:42:24.701399 Epoch: 5/10, Progress in Epoch: 1200/13940, Loss: 3.4272228586673736. Time = 2020-02-18 12:42:42.308570 Epoch: 5/10, Progress in Epoch: 1600/13940, Loss: 3.427277734279633. Time = 2020-02-18 12:42:59.929482 Epoch: 5/10, Progress in Epoch: 2000/13940, Loss: 3.361164151132107. Time = 2020-02-18 12:43:17.531985 Epoch: 5/10, Progress in Epoch: 2400/13940, Loss: 3.3849739098548888. Time = 2020-02-18 12:43:35.161836 Epoch: 5/10, Progress in Epoch: 2800/13940, Loss: 3.344558856487274. Time = 2020-02-18 12:43:52.768950 Epoch: 5/10, Progress in Epoch: 3200/13940, Loss: 3.229952166378498. Time = 2020-02-18 12:44:10.383083 Epoch: 5/10, Progress in Epoch: 3600/13940, Loss: 3.2592759209871294. Time = 2020-02-18 12:44:28.019061 Epoch: 5/10, Progress in Epoch: 4000/13940, Loss: 3.3515184247493743. Time = 2020-02-18 12:44:45.621950 Epoch: 5/10, Progress in Epoch: 4400/13940, Loss: 3.414866480231285. Time = 2020-02-18 12:45:03.441324 Epoch: 5/10, Progress in Epoch: 4800/13940, Loss: 3.322731137871742. Time = 2020-02-18 12:45:21.060549 Epoch: 5/10, Progress in Epoch: 5200/13940, Loss: 3.3129196214675902. Time = 2020-02-18 12:45:38.679244 Epoch: 5/10, Progress in Epoch: 5600/13940, Loss: 3.479432844519615. Time = 2020-02-18 12:45:56.298598 Epoch: 5/10, Progress in Epoch: 6000/13940, Loss: 3.501705523133278. Time = 2020-02-18 12:46:13.921029 Epoch: 5/10, Progress in Epoch: 6400/13940, Loss: 3.435933470129967. Time = 2020-02-18 12:46:31.518693 Epoch: 5/10, Progress in Epoch: 6800/13940, Loss: 3.4150149637460707. Time = 2020-02-18 12:46:49.154495 Epoch: 5/10, Progress in Epoch: 7200/13940, Loss: 3.2944598776102065. Time = 2020-02-18 12:47:06.770693 Epoch: 5/10, Progress in Epoch: 7600/13940, Loss: 3.4326196336746215. Time = 2020-02-18 12:47:24.369967 Epoch: 5/10, Progress in Epoch: 8000/13940, Loss: 3.274423359632492. Time = 2020-02-18 12:47:41.987533 Epoch: 5/10, Progress in Epoch: 8400/13940, Loss: 3.297988620698452. Time = 2020-02-18 12:47:59.574118 Epoch: 5/10, Progress in Epoch: 8800/13940, Loss: 3.377900887131691. Time = 2020-02-18 12:48:17.188768 Epoch: 5/10, Progress in Epoch: 9200/13940, Loss: 3.3018263867497444. Time = 2020-02-18 12:48:34.799148 Epoch: 5/10, Progress in Epoch: 9600/13940, Loss: 3.3156812340021133. Time = 2020-02-18 12:48:52.603325 Epoch: 5/10, Progress in Epoch: 10000/13940, Loss: 3.275946944952011. Time = 2020-02-18 12:49:10.216602 Epoch: 5/10, Progress in Epoch: 10400/13940, Loss: 3.440433329343796. Time = 2020-02-18 12:49:27.829874 Epoch: 5/10, Progress in Epoch: 10800/13940, Loss: 3.444994344115257. Time = 2020-02-18 12:49:45.435158 Epoch: 5/10, Progress in Epoch: 11200/13940, Loss: 3.55953544318676. Time = 2020-02-18 12:50:03.049835 Epoch: 5/10, Progress in Epoch: 11600/13940, Loss: 3.495890570282936. Time = 2020-02-18 12:50:20.665894 Epoch: 5/10, Progress in Epoch: 12000/13940, Loss: 3.465507603883743. Time = 2020-02-18 12:50:38.261543 Epoch: 5/10, Progress in Epoch: 12400/13940, Loss: 3.4655830842256545. Time = 2020-02-18 12:50:55.881063 Epoch: 5/10, Progress in Epoch: 12800/13940, Loss: 3.4481960052251814. Time = 2020-02-18 12:51:13.493568 Epoch: 5/10, Progress in Epoch: 13200/13940, Loss: 3.4673463493585586. Time = 2020-02-18 12:51:31.126223 Epoch: 5/10, Progress in Epoch: 13600/13940, Loss: 3.4747747099399566. Time = 2020-02-18 12:51:48.729825 Epoch: 5/10, Complete. AVRG Loss : 3.3908053439336885. Epoch: 6/10, Progress in Epoch: 400/13940, Loss: 3.3828285956737636. Time = 2020-02-18 12:52:21.296581 Epoch: 6/10, Progress in Epoch: 800/13940, Loss: 3.3763101053237916. Time = 2020-02-18 12:52:38.920644 Epoch: 6/10, Progress in Epoch: 1200/13940, Loss: 3.4091614985466006. Time = 2020-02-18 12:52:56.750758 Epoch: 6/10, Progress in Epoch: 1600/13940, Loss: 3.3972772747278213. Time = 2020-02-18 12:53:14.379473 Epoch: 6/10, Progress in Epoch: 2000/13940, Loss: 3.335883587896824. Time = 2020-02-18 12:53:32.024724 Epoch: 6/10, Progress in Epoch: 2400/13940, Loss: 3.3623815125226972. Time = 2020-02-18 12:53:49.645033 Epoch: 6/10, Progress in Epoch: 2800/13940, Loss: 3.335407648086548. Time = 2020-02-18 12:54:07.276401 Epoch: 6/10, Progress in Epoch: 3200/13940, Loss: 3.2287586975097655. Time = 2020-02-18 12:54:24.888284 Epoch: 6/10, Progress in Epoch: 3600/13940, Loss: 3.243279631435871. Time = 2020-02-18 12:54:42.513079 Epoch: 6/10, Progress in Epoch: 4000/13940, Loss: 3.342167426943779. Time = 2020-02-18 12:55:00.135712 Epoch: 6/10, Progress in Epoch: 4400/13940, Loss: 3.40387444794178. Time = 2020-02-18 12:55:17.727636 Epoch: 6/10, Progress in Epoch: 4800/13940, Loss: 3.3219415980577467. Time = 2020-02-18 12:55:35.351464 Epoch: 6/10, Progress in Epoch: 5200/13940, Loss: 3.2969096744060518. Time = 2020-02-18 12:55:52.948383 Epoch: 6/10, Progress in Epoch: 5600/13940, Loss: 3.452347872853279. Time = 2020-02-18 12:56:10.599882 Epoch: 6/10, Progress in Epoch: 6000/13940, Loss: 3.4840889954566956. Time = 2020-02-18 12:56:28.213041 Epoch: 6/10, Progress in Epoch: 6400/13940, Loss: 3.4170104521512985. Time = 2020-02-18 12:56:45.815773 Epoch: 6/10, Progress in Epoch: 6800/13940, Loss: 3.398458643555641. Time = 2020-02-18 12:57:03.624248 Epoch: 6/10, Progress in Epoch: 7200/13940, Loss: 3.2693808060884475. Time = 2020-02-18 12:57:21.234502 Epoch: 6/10, Progress in Epoch: 7600/13940, Loss: 3.4141890144348146. Time = 2020-02-18 12:57:38.874471 Epoch: 6/10, Progress in Epoch: 8000/13940, Loss: 3.2552785363793375. Time = 2020-02-18 12:57:56.477082 Epoch: 6/10, Progress in Epoch: 8400/13940, Loss: 3.2764982852339744. Time = 2020-02-18 12:58:14.097678 Epoch: 6/10, Progress in Epoch: 8800/13940, Loss: 3.34302699893713. Time = 2020-02-18 12:58:31.742772 Epoch: 6/10, Progress in Epoch: 9200/13940, Loss: 3.2825796875357627. Time = 2020-02-18 12:58:49.366781 Epoch: 6/10, Progress in Epoch: 9600/13940, Loss: 3.2935839653015138. Time = 2020-02-18 12:59:06.992827 Epoch: 6/10, Progress in Epoch: 10000/13940, Loss: 3.257418552339077. Time = 2020-02-18 12:59:24.635777 Epoch: 6/10, Progress in Epoch: 10400/13940, Loss: 3.4252628538012506. Time = 2020-02-18 12:59:42.274283 Epoch: 6/10, Progress in Epoch: 10800/13940, Loss: 3.4205311810970307. Time = 2020-02-18 12:59:59.922306 Epoch: 6/10, Progress in Epoch: 11200/13940, Loss: 3.531415318250656. Time = 2020-02-18 13:00:17.580545 Epoch: 6/10, Progress in Epoch: 11600/13940, Loss: 3.4643097096681594. Time = 2020-02-18 13:00:35.244050 Epoch: 6/10, Progress in Epoch: 12000/13940, Loss: 3.4401284140348434. Time = 2020-02-18 13:00:53.084721 Epoch: 6/10, Progress in Epoch: 12400/13940, Loss: 3.4575736439228058. Time = 2020-02-18 13:01:10.688277 Epoch: 6/10, Progress in Epoch: 12800/13940, Loss: 3.4228893661499025. Time = 2020-02-18 13:01:28.325460 Epoch: 6/10, Progress in Epoch: 13200/13940, Loss: 3.44178814470768. Time = 2020-02-18 13:01:45.953812 Epoch: 6/10, Progress in Epoch: 13600/13940, Loss: 3.431964892745018. Time = 2020-02-18 13:02:03.561575 Epoch: 6/10, Complete. AVRG Loss : 3.3707824770300516. Epoch: 7/10, Progress in Epoch: 400/13940, Loss: 3.3626325312744783. Time = 2020-02-18 13:02:36.134631 Epoch: 7/10, Progress in Epoch: 800/13940, Loss: 3.358048400878906. Time = 2020-02-18 13:02:53.771417 Epoch: 7/10, Progress in Epoch: 1200/13940, Loss: 3.3932857447862625. Time = 2020-02-18 13:03:11.384532 Epoch: 7/10, Progress in Epoch: 1600/13940, Loss: 3.3885148537158964. Time = 2020-02-18 13:03:29.021403 Epoch: 7/10, Progress in Epoch: 2000/13940, Loss: 3.314033052921295. Time = 2020-02-18 13:03:46.651835 Epoch: 7/10, Progress in Epoch: 2400/13940, Loss: 3.350456181764603. Time = 2020-02-18 13:04:04.297637 Epoch: 7/10, Progress in Epoch: 2800/13940, Loss: 3.305575399696827. Time = 2020-02-18 13:04:21.949355 Epoch: 7/10, Progress in Epoch: 3200/13940, Loss: 3.2123086738586424. Time = 2020-02-18 13:04:39.581789 Epoch: 7/10, Progress in Epoch: 3600/13940, Loss: 3.2066237625479697. Time = 2020-02-18 13:04:57.367528 Epoch: 7/10, Progress in Epoch: 4000/13940, Loss: 3.333804697394371. Time = 2020-02-18 13:05:15.003218 Epoch: 7/10, Progress in Epoch: 4400/13940, Loss: 3.363949829339981. Time = 2020-02-18 13:05:32.638921 Epoch: 7/10, Progress in Epoch: 4800/13940, Loss: 3.2942299526929855. Time = 2020-02-18 13:05:50.263616 Epoch: 7/10, Progress in Epoch: 5200/13940, Loss: 3.2856011813879014. Time = 2020-02-18 13:06:07.894425 Epoch: 7/10, Progress in Epoch: 5600/13940, Loss: 3.43520455121994. Time = 2020-02-18 13:06:25.493539 Epoch: 7/10, Progress in Epoch: 6000/13940, Loss: 3.457996132969856. Time = 2020-02-18 13:06:43.100016 Epoch: 7/10, Progress in Epoch: 6400/13940, Loss: 3.3964185202121735. Time = 2020-02-18 13:07:00.709251 Epoch: 7/10, Progress in Epoch: 6800/13940, Loss: 3.376386004090309. Time = 2020-02-18 13:07:18.330281 Epoch: 7/10, Progress in Epoch: 7200/13940, Loss: 3.2651589387655258. Time = 2020-02-18 13:07:35.953452 Epoch: 7/10, Progress in Epoch: 7600/13940, Loss: 3.3859938365221023. Time = 2020-02-18 13:07:53.570393 Epoch: 7/10, Progress in Epoch: 8000/13940, Loss: 3.241196416914463. Time = 2020-02-18 13:08:11.197552 Epoch: 7/10, Progress in Epoch: 8400/13940, Loss: 3.2484081745147706. Time = 2020-02-18 13:08:28.809354 Epoch: 7/10, Progress in Epoch: 8800/13940, Loss: 3.316608633995056. Time = 2020-02-18 13:08:46.426644 Epoch: 7/10, Progress in Epoch: 9200/13940, Loss: 3.2708351898193357. Time = 2020-02-18 13:09:04.362867 Epoch: 7/10, Progress in Epoch: 9600/13940, Loss: 3.2808942264318466. Time = 2020-02-18 13:09:21.981876 Epoch: 7/10, Progress in Epoch: 10000/13940, Loss: 3.234231291115284. Time = 2020-02-18 13:09:39.602579 Epoch: 7/10, Progress in Epoch: 10400/13940, Loss: 3.3981568828225135. Time = 2020-02-18 13:09:57.224116 Epoch: 7/10, Progress in Epoch: 10800/13940, Loss: 3.4003751373291013. Time = 2020-02-18 13:10:14.853034 Epoch: 7/10, Progress in Epoch: 11200/13940, Loss: 3.515982626080513. Time = 2020-02-18 13:10:32.476774 Epoch: 7/10, Progress in Epoch: 11600/13940, Loss: 3.453178927898407. Time = 2020-02-18 13:10:50.110717 Epoch: 7/10, Progress in Epoch: 12000/13940, Loss: 3.4081598049402237. Time = 2020-02-18 13:11:07.726935 Epoch: 7/10, Progress in Epoch: 12400/13940, Loss: 3.4288965541124345. Time = 2020-02-18 13:11:25.355465 Epoch: 7/10, Progress in Epoch: 12800/13940, Loss: 3.4012474930286407. Time = 2020-02-18 13:11:42.966442 Epoch: 7/10, Progress in Epoch: 13200/13940, Loss: 3.417665944099426. Time = 2020-02-18 13:12:00.592392 Epoch: 7/10, Progress in Epoch: 13600/13940, Loss: 3.4246517407894133. Time = 2020-02-18 13:12:18.213411 Epoch: 7/10, Complete. AVRG Loss : 3.3504397688743945. Epoch: 8/10, Progress in Epoch: 400/13940, Loss: 3.344726390864433. Time = 2020-02-18 13:12:50.767028 Epoch: 8/10, Progress in Epoch: 800/13940, Loss: 3.3338813084363936. Time = 2020-02-18 13:13:08.864565 Epoch: 8/10, Progress in Epoch: 1200/13940, Loss: 3.3693611550331117. Time = 2020-02-18 13:13:26.488860 Epoch: 8/10, Progress in Epoch: 1600/13940, Loss: 3.3748216849565504. Time = 2020-02-18 13:13:44.118674 Epoch: 8/10, Progress in Epoch: 2000/13940, Loss: 3.2970508444309234. Time = 2020-02-18 13:14:01.748374 Epoch: 8/10, Progress in Epoch: 2400/13940, Loss: 3.3394521194696427. Time = 2020-02-18 13:14:19.364802 Epoch: 8/10, Progress in Epoch: 2800/13940, Loss: 3.3004163920879366. Time = 2020-02-18 13:14:36.982610 Epoch: 8/10, Progress in Epoch: 3200/13940, Loss: 3.1849263501167298. Time = 2020-02-18 13:14:54.626321 Epoch: 8/10, Progress in Epoch: 3600/13940, Loss: 3.209246135354042. Time = 2020-02-18 13:15:12.275440 Epoch: 8/10, Progress in Epoch: 4000/13940, Loss: 3.314252491593361. Time = 2020-02-18 13:15:29.892410 Epoch: 8/10, Progress in Epoch: 4400/13940, Loss: 3.3598943465948103. Time = 2020-02-18 13:15:47.500806 Epoch: 8/10, Progress in Epoch: 4800/13940, Loss: 3.273265761733055. Time = 2020-02-18 13:16:05.116953 Epoch: 8/10, Progress in Epoch: 5200/13940, Loss: 3.2735425460338594. Time = 2020-02-18 13:16:22.732951 Epoch: 8/10, Progress in Epoch: 5600/13940, Loss: 3.400097432434559. Time = 2020-02-18 13:16:40.343120 Epoch: 8/10, Progress in Epoch: 6000/13940, Loss: 3.4398484522104265. Time = 2020-02-18 13:16:58.187094 Epoch: 8/10, Progress in Epoch: 6400/13940, Loss: 3.386214165687561. Time = 2020-02-18 13:17:15.799178 Epoch: 8/10, Progress in Epoch: 6800/13940, Loss: 3.3728552544116974. Time = 2020-02-18 13:17:33.419174 Epoch: 8/10, Progress in Epoch: 7200/13940, Loss: 3.245937911272049. Time = 2020-02-18 13:17:51.014402 Epoch: 8/10, Progress in Epoch: 7600/13940, Loss: 3.3687852799892424. Time = 2020-02-18 13:18:08.627643 Epoch: 8/10, Progress in Epoch: 8000/13940, Loss: 3.2030282524228095. Time = 2020-02-18 13:18:26.261875 Epoch: 8/10, Progress in Epoch: 8400/13940, Loss: 3.2398369708657264. Time = 2020-02-18 13:18:43.864796 Epoch: 8/10, Progress in Epoch: 8800/13940, Loss: 3.304183844923973. Time = 2020-02-18 13:19:01.474309 Epoch: 8/10, Progress in Epoch: 9200/13940, Loss: 3.254605756402016. Time = 2020-02-18 13:19:19.075208 Epoch: 8/10, Progress in Epoch: 9600/13940, Loss: 3.257960031032562. Time = 2020-02-18 13:19:36.682979 Epoch: 8/10, Progress in Epoch: 10000/13940, Loss: 3.2214042010903357. Time = 2020-02-18 13:19:54.310548 Epoch: 8/10, Progress in Epoch: 10400/13940, Loss: 3.3710079535841944. Time = 2020-02-18 13:20:11.917438 Epoch: 8/10, Progress in Epoch: 10800/13940, Loss: 3.3888149678707125. Time = 2020-02-18 13:20:29.537910 Epoch: 8/10, Progress in Epoch: 11200/13940, Loss: 3.4792627054452896. Time = 2020-02-18 13:20:47.176811 Epoch: 8/10, Progress in Epoch: 11600/13940, Loss: 3.420331249833107. Time = 2020-02-18 13:21:04.966884 Epoch: 8/10, Progress in Epoch: 12000/13940, Loss: 3.4004440504312514. Time = 2020-02-18 13:21:22.572464 Epoch: 8/10, Progress in Epoch: 12400/13940, Loss: 3.397537671327591. Time = 2020-02-18 13:21:40.185981 Epoch: 8/10, Progress in Epoch: 12800/13940, Loss: 3.3923223036527634. Time = 2020-02-18 13:21:57.798712 Epoch: 8/10, Progress in Epoch: 13200/13940, Loss: 3.397378239035606. Time = 2020-02-18 13:22:15.422006 Epoch: 8/10, Progress in Epoch: 13600/13940, Loss: 3.3953550881147385. Time = 2020-02-18 13:22:33.054845 Epoch: 8/10, Complete. AVRG Loss : 3.332282440384779. Epoch: 9/10, Progress in Epoch: 400/13940, Loss: 3.318012382245354. Time = 2020-02-18 13:23:05.623474 Epoch: 9/10, Progress in Epoch: 800/13940, Loss: 3.3225846028327943. Time = 2020-02-18 13:23:23.247614 Epoch: 9/10, Progress in Epoch: 1200/13940, Loss: 3.3539452731609343. Time = 2020-02-18 13:23:40.893826 Epoch: 9/10, Progress in Epoch: 1600/13940, Loss: 3.347273669242859. Time = 2020-02-18 13:23:58.521997 Epoch: 9/10, Progress in Epoch: 2000/13940, Loss: 3.2863294103741647. Time = 2020-02-18 13:24:16.129619 Epoch: 9/10, Progress in Epoch: 2400/13940, Loss: 3.3139397406578066. Time = 2020-02-18 13:24:33.763862 Epoch: 9/10, Progress in Epoch: 2800/13940, Loss: 3.284566843211651. Time = 2020-02-18 13:24:51.391791 Epoch: 9/10, Progress in Epoch: 3200/13940, Loss: 3.1677611231803895. Time = 2020-02-18 13:25:09.211742 Epoch: 9/10, Progress in Epoch: 3600/13940, Loss: 3.189292680621147. Time = 2020-02-18 13:25:26.837927 Epoch: 9/10, Progress in Epoch: 4000/13940, Loss: 3.3176461908221246. Time = 2020-02-18 13:25:44.466706 Epoch: 9/10, Progress in Epoch: 4400/13940, Loss: 3.3321087276935577. Time = 2020-02-18 13:26:02.094395 Epoch: 9/10, Progress in Epoch: 4800/13940, Loss: 3.2616928571462633. Time = 2020-02-18 13:26:19.711131 Epoch: 9/10, Progress in Epoch: 5200/13940, Loss: 3.2561175739765167. Time = 2020-02-18 13:26:37.328976 Epoch: 9/10, Progress in Epoch: 5600/13940, Loss: 3.374616189301014. Time = 2020-02-18 13:26:54.933078 Epoch: 9/10, Progress in Epoch: 6000/13940, Loss: 3.4272401881217958. Time = 2020-02-18 13:27:12.561818 Epoch: 9/10, Progress in Epoch: 6400/13940, Loss: 3.3726720744371415. Time = 2020-02-18 13:27:30.174654 Epoch: 9/10, Progress in Epoch: 6800/13940, Loss: 3.3509815526008606. Time = 2020-02-18 13:27:47.785067 Epoch: 9/10, Progress in Epoch: 7200/13940, Loss: 3.232228834629059. Time = 2020-02-18 13:28:05.399055 Epoch: 9/10, Progress in Epoch: 7600/13940, Loss: 3.3554340386390686. Time = 2020-02-18 13:28:23.006537 Epoch: 9/10, Progress in Epoch: 8000/13940, Loss: 3.20594984382391. Time = 2020-02-18 13:28:40.619984 Epoch: 9/10, Progress in Epoch: 8400/13940, Loss: 3.2213180661201477. Time = 2020-02-18 13:28:58.443809 Epoch: 9/10, Progress in Epoch: 8800/13940, Loss: 3.282545200586319. Time = 2020-02-18 13:29:16.080800 Epoch: 9/10, Progress in Epoch: 9200/13940, Loss: 3.2314607438445093. Time = 2020-02-18 13:29:33.714896 Epoch: 9/10, Progress in Epoch: 9600/13940, Loss: 3.242471357584. Time = 2020-02-18 13:29:51.337772 Epoch: 9/10, Progress in Epoch: 10000/13940, Loss: 3.2015815353393555. Time = 2020-02-18 13:30:08.964297 Epoch: 9/10, Progress in Epoch: 10400/13940, Loss: 3.3652059069275855. Time = 2020-02-18 13:30:26.584001 Epoch: 9/10, Progress in Epoch: 10800/13940, Loss: 3.3702369326353074. Time = 2020-02-18 13:30:44.225479 Epoch: 9/10, Progress in Epoch: 11200/13940, Loss: 3.4617551904916763. Time = 2020-02-18 13:31:01.863130 Epoch: 9/10, Progress in Epoch: 11600/13940, Loss: 3.4118455094099045. Time = 2020-02-18 13:31:19.480164 Epoch: 9/10, Progress in Epoch: 12000/13940, Loss: 3.3820173555612563. Time = 2020-02-18 13:31:37.074764 Epoch: 9/10, Progress in Epoch: 12400/13940, Loss: 3.401015085577965. Time = 2020-02-18 13:31:54.694958 Epoch: 9/10, Progress in Epoch: 12800/13940, Loss: 3.376161198616028. Time = 2020-02-18 13:32:12.309701 Epoch: 9/10, Progress in Epoch: 13200/13940, Loss: 3.3795107650756835. Time = 2020-02-18 13:32:29.931118 Epoch: 9/10, Progress in Epoch: 13600/13940, Loss: 3.3800493067502977. Time = 2020-02-18 13:32:47.528931 Epoch: 9/10, Complete. AVRG Loss : 3.3165540001606. Epoch: 10/10, Progress in Epoch: 400/13940, Loss: 3.3039505770467774. Time = 2020-02-18 13:33:20.403269 Epoch: 10/10, Progress in Epoch: 800/13940, Loss: 3.307705990076065. Time = 2020-02-18 13:33:37.989985 Epoch: 10/10, Progress in Epoch: 1200/13940, Loss: 3.3366662749648093. Time = 2020-02-18 13:33:55.601742 Epoch: 10/10, Progress in Epoch: 1600/13940, Loss: 3.343503560423851. Time = 2020-02-18 13:34:13.210332 Epoch: 10/10, Progress in Epoch: 2000/13940, Loss: 3.265174173116684. Time = 2020-02-18 13:34:30.832761 Epoch: 10/10, Progress in Epoch: 2400/13940, Loss: 3.3095200884342195. Time = 2020-02-18 13:34:48.442800 Epoch: 10/10, Progress in Epoch: 2800/13940, Loss: 3.2743437337875365. Time = 2020-02-18 13:35:06.054073 Epoch: 10/10, Progress in Epoch: 3200/13940, Loss: 3.15618098795414. Time = 2020-02-18 13:35:23.660255 Epoch: 10/10, Progress in Epoch: 3600/13940, Loss: 3.1697662022709845. Time = 2020-02-18 13:35:41.279366 Epoch: 10/10, Progress in Epoch: 4000/13940, Loss: 3.295374717116356. Time = 2020-02-18 13:35:58.894276 Epoch: 10/10, Progress in Epoch: 4400/13940, Loss: 3.315100667476654. Time = 2020-02-18 13:36:16.521167 Epoch: 10/10, Progress in Epoch: 4800/13940, Loss: 3.241660770773888. Time = 2020-02-18 13:36:34.159783 Epoch: 10/10, Progress in Epoch: 5200/13940, Loss: 3.2415979713201524. Time = 2020-02-18 13:36:51.763240 Epoch: 10/10, Progress in Epoch: 5600/13940, Loss: 3.365173881649971. Time = 2020-02-18 13:37:09.572336 Epoch: 10/10, Progress in Epoch: 6000/13940, Loss: 3.40133036673069. Time = 2020-02-18 13:37:27.217169 Epoch: 10/10, Progress in Epoch: 6400/13940, Loss: 3.3609454107284544. Time = 2020-02-18 13:37:44.834047 Epoch: 10/10, Progress in Epoch: 6800/13940, Loss: 3.3211549481749536. Time = 2020-02-18 13:38:02.470504 Epoch: 10/10, Progress in Epoch: 7200/13940, Loss: 3.2221082133054733. Time = 2020-02-18 13:38:20.087559 Epoch: 10/10, Progress in Epoch: 7600/13940, Loss: 3.344998365044594. Time = 2020-02-18 13:38:37.728510 Epoch: 10/10, Progress in Epoch: 8000/13940, Loss: 3.1881481409072876. Time = 2020-02-18 13:38:55.358886 Epoch: 10/10, Progress in Epoch: 8400/13940, Loss: 3.2015286061167716. Time = 2020-02-18 13:39:12.978595 Epoch: 10/10, Progress in Epoch: 8800/13940, Loss: 3.268630896806717. Time = 2020-02-18 13:39:30.612609 Epoch: 10/10, Progress in Epoch: 9200/13940, Loss: 3.2269287917017935. Time = 2020-02-18 13:39:48.226728 Epoch: 10/10, Progress in Epoch: 9600/13940, Loss: 3.2328739160299302. Time = 2020-02-18 13:40:05.837411 Epoch: 10/10, Progress in Epoch: 10000/13940, Loss: 3.1850824117660523. Time = 2020-02-18 13:40:23.438273 Epoch: 10/10, Progress in Epoch: 10400/13940, Loss: 3.3594769191741944. Time = 2020-02-18 13:40:41.053714 Epoch: 10/10, Progress in Epoch: 10800/13940, Loss: 3.354418889284134. Time = 2020-02-18 13:40:58.857603 Epoch: 10/10, Progress in Epoch: 11200/13940, Loss: 3.4641233384609222. Time = 2020-02-18 13:41:16.508514 Epoch: 10/10, Progress in Epoch: 11600/13940, Loss: 3.3771490609645842. Time = 2020-02-18 13:41:34.122624 Epoch: 10/10, Progress in Epoch: 12000/13940, Loss: 3.3536438608169554. Time = 2020-02-18 13:41:51.763390 Epoch: 10/10, Progress in Epoch: 12400/13940, Loss: 3.38925786703825. Time = 2020-02-18 13:42:09.394109 Epoch: 10/10, Progress in Epoch: 12800/13940, Loss: 3.3545562505722044. Time = 2020-02-18 13:42:27.035500 Epoch: 10/10, Progress in Epoch: 13200/13940, Loss: 3.3701386821269987. Time = 2020-02-18 13:42:44.629973 Epoch: 10/10, Progress in Epoch: 13600/13940, Loss: 3.3596088737249374. Time = 2020-02-18 13:43:02.230739 Epoch: 10/10, Complete. AVRG Loss : 3.3016379591860896. Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) 第一次训练初始超参数: ```pythonsequence_length = 8 batch_size = 32learning_rate = 0.01vocab_size = len(vocab_to_int)output_size = vocab_sizeembedding_dim = 200hidden_dim = 256n_layers = 3show_every_n_batches = 100```结果:Loss 一直在 9.3 左右震荡,不收敛。 第二次训练更改参数:```pythonlearning_rate = 0.001```结果: Loss:从 9.38 降到 9.16 左右,便不再收敛了。分析: learning_rate 的减小有助于降低 loss,但不明显。说明:* 可以持续降低 learning_rate* loss 不收敛可能还有其他原因,比如模型参数太少,以至于不足以描述此模型。 第三次训练更改函数 `create_lookup_tables`,先对单词进行词频排序,然后在生成 lookup dictionary。更改参数:```pythonsequence_length = 5batch_size = 64learning_rate = 0.0001embedding_dim = 300hidden_dim = 512n_layers = 2```结果: - Epoch Loss:`[9.48, 9.20, 9.143, 9.128, 9.127, 9.115]`分析:- 收敛速度很慢,learning_rate 可能需要提高。 第四次训练更改参数:```pythonlearning_rate = 0.0005```结果: Epoch Loss:有增长。说明:- learning_rate 还需要降低。 第N次训练尝试修改各种参数,Loss 一直在 9.1 以上,下不来。分析:- 应该是模型除了问题,去网上寻找答案。- 在 Udacity 论坛上看到有人在定义 Module 的时候加了 sigmoid 层,导致 Loss 不能降低。我发现我也犯了一样的错误。 第N+1次训练更改:- 定义 Module 时,去掉 sigmoid 层。- 每次 epoch 等待时间太长,影响效率。于是,想先只取 `int_text[:40000]` 来训练,修改代码:`train_loader = batch_data(int_text[:40000], sequence_length, batch_size)`。参数调整好后再改回去。```pythonlearning_rate = 0.001embedding_dim = 200hidden_dim = 512```结果:- 在 20 个 epoch 后,loss 降到了 1.37。分析:- 干的不错,趋势是对的。换上全量数据集,开始训练吧! 第N+2次训练 --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:43: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (30, 50) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 30 to 50: george: wait a second, wait a second, what coming in, what woman is coming in? jerry: i told you about laura, the girl i met in michigan? george: no, you didnt! jerry: i thought i told you about it, yes, she teaches political science? i met her the night i did the show in lansing... george: ha. jerry: (looks in the creamer) theres no milk in here, what... george: wait wait wait, what is she... (takes the milk can from jerry and puts it on the table) what is she like? jerry: oh, shes really great. i mean, shes got like a real warmth about her and shes really bright and really pretty and uh... the conversation though, i mean, it was... talking with her is like talking with you, but, you know, obviously much better. george: (smiling) so, you know, what, what happened? jerry: oh, nothing happened, you know, but is was great. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from string import punctuation from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # get rid of punctuation and standardize (from RNN sentiment and word2vec embeddings exercises) #text = text.lower() # lowercase all capitals #all_text = ''.join([c for c in text if c not in punctuation]) # split by new lines and spaces #text_split = all_text.split('\n') #all_text = ' '.join(text_split) # create list of words #words = all_text.split() # create the dictionaires counts = Counter(text) vocab = sorted(counts, key=counts.get, reverse=True) int_to_vocab = {ii: word for ii, word in enumerate(vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function toke = { '.': '||Period||', ',': '||Comma||', '"': '||Quotation_Mark||', ';': '||Semi_Colon||', '!': '||Exclamation_Mark||', '?': '||Question_Mark||', '(': '||Left_Parentheses||', ')': '||Right_Parentheses||', '-': '||Dash||', '\n': '||Return||', } return toke """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader import torch def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function feature_tensors = [] target_tensors = [] for idx in range(len(words)-1-sequence_length): feature_tensors.append(words[idx:idx+sequence_length]) # get next sequence_length number of words following index target_tensors.append(words[idx+sequence_length]) # get immediately following word integer for target feature_tensors = torch.tensor(feature_tensors) target_tensors = torch.tensor(target_tensors) # return a dataloader data = TensorDataset(feature_tensors, target_tensors) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True) return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[28, 29, 30, 31, 32], [17, 18, 19, 20, 21], [19, 20, 21, 22, 23], [39, 40, 41, 42, 43], [15, 16, 17, 18, 19], [ 7, 8, 9, 10, 11], [ 6, 7, 8, 9, 10], [ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [36, 37, 38, 39, 40]]) torch.Size([10]) tensor([33, 22, 24, 44, 20, 12, 11, 5, 10, 41]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim self.embedding_dim = embedding_dim # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim, output_size) self.dropout = nn.Dropout(0.3) # initialize embedding tables with uniform distribution self.embedding.weight.data.uniform_(-1, 1) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # get first value of tensor x = nn_input.long() embeds = self.embedding(x) lstm_out, hidden = self.lstm(embeds, hidden) # get last batch of labels (i.e. the top predictions) lstm_out = lstm_out[:, -1] # stack LSTM out = lstm_out.contiguous().view(-1, self.hidden_dim) out = self.dropout(out) out = self.fc(out) # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function clip = 5 # gradient clipping # move data to GPU, if available if(train_on_gpu): inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization # create new variable for hidden state so we don't backpropogate over entire history hidden = tuple([each.data for each in hidden]) # zero accumualated gradients rnn.zero_grad() # get output from model output, hidden = rnn(inp, hidden) # calculate loss and perform backpropogation loss = criterion(output.squeeze(), target.long()) loss.backward() nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 200 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 500 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.334586154937744 Epoch: 1/10 Loss: 4.797140218257904 Epoch: 1/10 Loss: 4.595639789104462 Epoch: 1/10 Loss: 4.44755672454834 Epoch: 1/10 Loss: 4.42781433057785 Epoch: 1/10 Loss: 4.354476883888244 Epoch: 1/10 Loss: 4.295695515632629 Epoch: 1/10 Loss: 4.262855576515197 Epoch: 1/10 Loss: 4.248539539337158 Epoch: 1/10 Loss: 4.236551188468933 Epoch: 1/10 Loss: 4.213077045440674 Epoch: 1/10 Loss: 4.202364300251007 Epoch: 1/10 Loss: 4.179191162109375 Epoch: 2/10 Loss: 4.076817929498421 Epoch: 2/10 Loss: 4.017686247348785 Epoch: 2/10 Loss: 3.9865696363449095 Epoch: 2/10 Loss: 3.997194850921631 Epoch: 2/10 Loss: 3.984932848930359 Epoch: 2/10 Loss: 3.9910859718322755 Epoch: 2/10 Loss: 4.003655794143676 Epoch: 2/10 Loss: 3.960712371826172 Epoch: 2/10 Loss: 3.9844819622039793 Epoch: 2/10 Loss: 3.9616341958045957 Epoch: 2/10 Loss: 3.9752440967559814 Epoch: 2/10 Loss: 3.963847270488739 Epoch: 2/10 Loss: 3.9581854982376097 Epoch: 3/10 Loss: 3.870664988913812 Epoch: 3/10 Loss: 3.8055054931640626 Epoch: 3/10 Loss: 3.8039415345191956 Epoch: 3/10 Loss: 3.819620738506317 Epoch: 3/10 Loss: 3.826831775665283 Epoch: 3/10 Loss: 3.8198120632171633 Epoch: 3/10 Loss: 3.833869047641754 Epoch: 3/10 Loss: 3.8217194204330442 Epoch: 3/10 Loss: 3.8340025668144224 Epoch: 3/10 Loss: 3.828302626132965 Epoch: 3/10 Loss: 3.8071245694160463 Epoch: 3/10 Loss: 3.8046836643218995 Epoch: 3/10 Loss: 3.8572446103096008 Epoch: 4/10 Loss: 3.753773261446598 Epoch: 4/10 Loss: 3.6804130439758302 Epoch: 4/10 Loss: 3.6787006554603576 Epoch: 4/10 Loss: 3.7163219866752626 Epoch: 4/10 Loss: 3.733499647140503 Epoch: 4/10 Loss: 3.7071649508476257 Epoch: 4/10 Loss: 3.7347512803077696 Epoch: 4/10 Loss: 3.718183452606201 Epoch: 4/10 Loss: 3.7174845147132873 Epoch: 4/10 Loss: 3.721019902229309 Epoch: 4/10 Loss: 3.730444617271423 Epoch: 4/10 Loss: 3.740888171195984 Epoch: 4/10 Loss: 3.7371507019996644 Epoch: 5/10 Loss: 3.6477775886531703 Epoch: 5/10 Loss: 3.5950684504508974 Epoch: 5/10 Loss: 3.6123854398727415 Epoch: 5/10 Loss: 3.624672025203705 Epoch: 5/10 Loss: 3.6450956172943116 Epoch: 5/10 Loss: 3.6297607488632204 Epoch: 5/10 Loss: 3.6236435842514036 Epoch: 5/10 Loss: 3.6514062147140502 Epoch: 5/10 Loss: 3.63631249332428 Epoch: 5/10 Loss: 3.6581852040290834 Epoch: 5/10 Loss: 3.652893509864807 Epoch: 5/10 Loss: 3.6630671105384827 Epoch: 5/10 Loss: 3.6642883038520813 Epoch: 6/10 Loss: 3.589667251287413 Epoch: 6/10 Loss: 3.5291729593276977 Epoch: 6/10 Loss: 3.5271378355026246 Epoch: 6/10 Loss: 3.5441640973091126 Epoch: 6/10 Loss: 3.5441652855873107 Epoch: 6/10 Loss: 3.5695030293464662 Epoch: 6/10 Loss: 3.5788466606140137 Epoch: 6/10 Loss: 3.566995312690735 Epoch: 6/10 Loss: 3.5882584991455078 Epoch: 6/10 Loss: 3.592465175151825 Epoch: 6/10 Loss: 3.6163834280967713 Epoch: 6/10 Loss: 3.6108879370689393 Epoch: 6/10 Loss: 3.613585807800293 Epoch: 7/10 Loss: 3.537235260748666 Epoch: 7/10 Loss: 3.4488248257637024 Epoch: 7/10 Loss: 3.4847021589279175 Epoch: 7/10 Loss: 3.4764876284599304 Epoch: 7/10 Loss: 3.4782873797416687 Epoch: 7/10 Loss: 3.519772076129913 Epoch: 7/10 Loss: 3.5255536546707154 Epoch: 7/10 Loss: 3.536333700180054 Epoch: 7/10 Loss: 3.5371217584609984 Epoch: 7/10 Loss: 3.537506432056427 Epoch: 7/10 Loss: 3.5342215604782106 Epoch: 7/10 Loss: 3.5489294104576112 Epoch: 7/10 Loss: 3.5646995477676393 Epoch: 8/10 Loss: 3.4739869133500028 Epoch: 8/10 Loss: 3.411940787315369 Epoch: 8/10 Loss: 3.432815299987793 Epoch: 8/10 Loss: 3.4482377791404724 Epoch: 8/10 Loss: 3.461714812755585 Epoch: 8/10 Loss: 3.4574203820228577 Epoch: 8/10 Loss: 3.4470387706756593 Epoch: 8/10 Loss: 3.4905773940086364 Epoch: 8/10 Loss: 3.478639932155609 Epoch: 8/10 Loss: 3.4813049745559694 Epoch: 8/10 Loss: 3.484394829273224 Epoch: 8/10 Loss: 3.516914571762085 Epoch: 8/10 Loss: 3.5124652733802795 Epoch: 9/10 Loss: 3.4374983108733312 Epoch: 9/10 Loss: 3.3787284741401673 Epoch: 9/10 Loss: 3.3779114418029783 Epoch: 9/10 Loss: 3.3890338644981384 Epoch: 9/10 Loss: 3.4027763972282408 Epoch: 9/10 Loss: 3.4187504153251647 Epoch: 9/10 Loss: 3.429298345088959 Epoch: 9/10 Loss: 3.436389921665192 Epoch: 9/10 Loss: 3.4261458411216736 Epoch: 9/10 Loss: 3.441896110534668 Epoch: 9/10 Loss: 3.466687527179718 Epoch: 9/10 Loss: 3.4494317874908447 Epoch: 9/10 Loss: 3.4809471225738524 Epoch: 10/10 Loss: 3.3794581399968835 Epoch: 10/10 Loss: 3.325902421951294 Epoch: 10/10 Loss: 3.3176732869148253 Epoch: 10/10 Loss: 3.3336499962806703 Epoch: 10/10 Loss: 3.374622347831726 Epoch: 10/10 Loss: 3.4176028409004213 Epoch: 10/10 Loss: 3.3704512639045716 Epoch: 10/10 Loss: 3.3957737865447997 Epoch: 10/10 Loss: 3.398438769817352 Epoch: 10/10 Loss: 3.401325791835785 Epoch: 10/10 Loss: 3.421415294647217 Epoch: 10/10 Loss: 3.425583827972412 Epoch: 10/10 Loss: 3.430330708026886 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:**I actually made a pretty good first initialization. I assumed the model would train relatively well as a smaller net given the amount of data was pretty limited.I initially went with a sequence length of 200 and batch size of 32. I generally use 32 for my batch size for most of my other models as a starting point. However, training didn't progress at the pace I wanted so I increased the batch size to 128 to see if that would help. (It did).I initially trained for 5 epochs but didn't get great accuracy, so I increased that to 10. While it wasn't super great, it did result in a loss of less than the 3.5 as requested by this project.My learning rate may be a bit high, as the model quickly converged after about 2-3k steps within each epoch, so I could have changed that but kept it at 0.001.Now for embedding dim, I looked at several of the previous assignments we worked on and decided that 500 was near the upper range for most of our previous work, and didn't really want to spend a long time optimizing my hyperparameters, so I decided to use it.The number of hidden dimensions was 512 based on previous assignments as well. I thought about calculating the number of parameters and comparing them to the size of the data that was suggested in one of the earlier lessons, but the model trained sufficiently well and I didn't need to change it.I selected two LSTMs based on literature that said 2 was a good choice for complex problems and 3 provided mixed results. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'kramer' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output kramer: and then the yankees are the only way to get the money. elaine: i think it's just... jerry: oh my god!(kramer enters.) jerry: hey, you want to go out with a little bit, you can get the hell outta here. george: i don't know. jerry: no, i'm gonna get a call. george: i don't want it. jerry: you don't understand. i don't want you to be a little bit, but i got a little nervous with that. george: you know what? i mean, i think i can get my car, and i want to know, and i think i can get my own. i mean, i don't know what i think. jerry: well, you can't believe this. elaine:(to jerry, george) hey, you know, you don't have to talk to him. jerry: oh, i think i got a little problem with this. elaine: oh.(he exits) jerry:(on phone) oh, hi.(listens) george:(to kramer) hey, you want to get back to my house? george: yeah. i think i was in the hospital. you know, i was hoping i was a lot of.(jerry nods) jerry: oh, i know.... jerry: i was thinking i didn't get a job interview. i was hoping i got to see her. george: i mean, i mean, what about the show? jerry: well, i don't know. but you don't think she wants me to get a little more than a little. george: yeah, yeah, but i'm sorry. i just don't know what to do. jerry: you can't do this. george: you want to go. jerry: no. elaine: i mean, i don't know if i'm not gonna do it for you. ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ word_counts = Counter(text) # sorting the words from most to least frequent in text occurrence sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) # create int_to_vocab dictionaries int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function punctuation_dict = { "." : "||Period||", ",":"||Comma||", '"':"||QuotationMark||", ";": "||Semicolon||", "!":"||Exclamationmark||", "?":"||Questionmark||", "(":"||LeftParentheses||", ")":"||RightParentheses||", "-":"||Dash||", "\n":"||Return||" } return punctuation_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output No GPU found. Please use a GPU to train your neural network. ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # partial_feature = [] # features = [] # targets = [] # count = 0 # for i in range(0,len(words)): # if count == sequence_length: # adding plus one as the last value is to included into feature # features.append(partial_feature) # partial_feature = [] # count=0 # targets.append(words[i]) # here i value is already next value so saving this value as target # partial_feature.append(words[i]) # count+=1 # train_dataset = TensorDataset(torch.from_numpy(np.array(features)),torch.from_numpy(np.array(targets))) # train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size) n_batches = len(words)//batch_size # only full batches words = words[:n_batches*batch_size] y_len = len(words) - sequence_length x, y = [], [] for idx in range(0, y_len): idx_end = sequence_length + idx x_batch = words[idx:idx_end] x.append(x_batch) # print("feature: ",x_batch) batch_y = words[idx_end] # print("target: ", batch_y) y.append(batch_y) # create Tensor datasets data = TensorDataset(torch.from_numpy(np.asarray(x)), torch.from_numpy(np.asarray(y))) # make sure the SHUFFLE your training data data_loader = DataLoader(data, shuffle=False, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]], dtype=torch.int32) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], dtype=torch.int32) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.vocab_size = vocab_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers # define model layers self.embed = nn.Embedding(num_embeddings=self.vocab_size, embedding_dim=self.embedding_dim) self.lstm = nn.LSTM(input_size=self.embedding_dim,hidden_size=self.hidden_dim, num_layers=self.n_layers,batch_first=True,dropout=dropout) self.dropout = nn.Dropout(0.3) self.fc1 = nn.Linear(self.hidden_dim,self.output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) embed = self.embed(nn_input) nn_input, hidden = self.lstm(embed,hidden) output = nn_input.contiguous().view(-1, self.hidden_dim) output = self.fc1(output) output = output.view(batch_size,-1,self.output_size) output = output[:,-1] # return one batch of output word scores and the hidden state return output, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move model to GPU, if available if(train_on_gpu): rnn.cuda() # # Creating new variables for the hidden state, otherwise # # we'd backprop through the entire training history h = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() if(train_on_gpu): inp, target = inp.cuda(), target.cuda() # get predicted outputs output, h = rnn(inp, h) # calculate loss loss = criterion(output, target) # optimizer.zero_grad() loss.backward() # 'clip_grad_norm' helps prevent the exploding gradient problem in RNNs / LSTMs nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() return loss.item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 250 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code print(lines[0]) import problem_unittests as tests from collections import Counter, defaultdict def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_counter = Counter(text) vocab_to_int = defaultdict(int) int_to_vocab = defaultdict(str) for i, word_count in enumerate(word_counter.most_common()): word = word_count[0] vocab_to_int[word] = i+1 int_to_vocab[i+1] = word # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ punctuations = ['.', ',', '"', ';', '!', '?', '(', ')', '-', '\n'] tokens = ['||period||', '||comma||', '||quotation_mark||', '||semicolon||', '||exclamation_mark||', '||question_mark||', '||left_parantheses||', '||right_parantheses||', '||dash||', '||return||'] punctuation_to_token = defaultdict(str) for i, item in enumerate(punctuations): punctuation_to_token[item] = tokens[i] return punctuation_to_token """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function features = [] targets = [] #Iterate over the words, moving one word at a time. #Only iterate until len(words)-sequence_length because of out of range when iterating further than this. Target #would be out of range..... for ibatch in range(0, len(words) - sequence_length, 1): features.append(words[ibatch:ibatch+sequence_length]) targets.append(words[ibatch+sequence_length]) features = torch.tensor(features) targets = torch.tensor(targets) #print(targets) dataset = TensorDataset(features, targets) data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True) #print(features[0:10]) #print(targets[0:10]) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) print(t_loader.dataset.tensors) ###Output (tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13], [ 10, 11, 12, 13, 14], [ 11, 12, 13, 14, 15], [ 12, 13, 14, 15, 16], [ 13, 14, 15, 16, 17], [ 14, 15, 16, 17, 18], [ 15, 16, 17, 18, 19], [ 16, 17, 18, 19, 20], [ 17, 18, 19, 20, 21], [ 18, 19, 20, 21, 22], [ 19, 20, 21, 22, 23], [ 20, 21, 22, 23, 24], [ 21, 22, 23, 24, 25], [ 22, 23, 24, 25, 26], [ 23, 24, 25, 26, 27], [ 24, 25, 26, 27, 28], [ 25, 26, 27, 28, 29], [ 26, 27, 28, 29, 30], [ 27, 28, 29, 30, 31], [ 28, 29, 30, 31, 32], [ 29, 30, 31, 32, 33], [ 30, 31, 32, 33, 34], [ 31, 32, 33, 34, 35], [ 32, 33, 34, 35, 36], [ 33, 34, 35, 36, 37], [ 34, 35, 36, 37, 38], [ 35, 36, 37, 38, 39], [ 36, 37, 38, 39, 40], [ 37, 38, 39, 40, 41], [ 38, 39, 40, 41, 42], [ 39, 40, 41, 42, 43], [ 40, 41, 42, 43, 44], [ 41, 42, 43, 44, 45], [ 42, 43, 44, 45, 46], [ 43, 44, 45, 46, 47], [ 44, 45, 46, 47, 48]]), tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49])) ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 30, 31, 32, 33, 34], [ 26, 27, 28, 29, 30], [ 35, 36, 37, 38, 39], [ 20, 21, 22, 23, 24], [ 33, 34, 35, 36, 37], [ 28, 29, 30, 31, 32], [ 39, 40, 41, 42, 43], [ 31, 32, 33, 34, 35], [ 19, 20, 21, 22, 23], [ 44, 45, 46, 47, 48]]) torch.Size([10]) tensor([ 35, 31, 40, 25, 38, 33, 44, 36, 24, 49]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of words** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output one, next word. ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function #self.hidden = self.init_hidden() # set class variables self.vocab_size = vocab_size self.n_layers = n_layers self.hidden_dim = hidden_dim self.output_size = output_size # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.LSTM = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) #Map LSTM output to predictions self.fc = nn.Linear(hidden_dim, output_size) #self.Dropout = nn.Dropout(0.2) #self.sigmoid = nn.Sigmoid() def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) #print("batch size : {}" .format(batch_size)) #Get word embeddings embeddings = self.embedding(nn_input) #print(embeddings.size()) #get lstm outputs lstm_out, hidden_state = self.LSTM(embeddings, hidden) #print("Shape before stacking lstm: {}" .format(lstm_out.contiguous().size())) #Reorder/stack the outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) #print("Shape after stacking lstm: {}" .format(lstm_out.size())) out = self.fc(lstm_out) #Would include this if i had more time to train #out = self.Dropout(out) #print("output size before reshaped to batch size first: {}" .format(out.size())) #Reorder to batch_size, seq_length, output_size out = out.view(batch_size, -1, self.output_size) #print("output size after reshaped to batch size first: {}" .format(out.size())) #print(out.size()) prediction = out[:, -1] # get last batch of labels # print(prediction.size()) # return one batch of output word scores and the hidden state return prediction, hidden_state def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data #Know that I'm training on GPU if (train_on_gpu): hidden_state = (weight.new(self.n_layers,batch_size,self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: print("Why aren't you using GPU?") return hidden_state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code from torch.nn.utils import clip_grad_norm_ def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ if train_on_gpu: inp = inp.cuda() target = target.cuda() hidden= [each.data.cuda() for each in hidden] #print(hidden) optimizer.zero_grad() output, hidden_state = rnn(inp, hidden) #print(output) loss = criterion(output, target) loss.backward() clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden_state # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): #print(labels) # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. Trying to find the average sequence length in the script ###Code import re line_lengths = [] #Half of the lines are empty (odd numbers are just blank spaces) for i, line in enumerate(lines): #Check that we are on an even number (contains text) if not i%2: line_lengths.append(len(line.split())) print("average number of words per line in seinfeld: {}" .format(int(np.mean(line_lengths)))) ###Output average number of words per line in seinfeld: 11 ###Markdown The average number of words per line is used as the sequence length ###Code # Data params # Sequence Length sequence_length = 11 # of words in a sequence # Batch Size batch_size = 256 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 20 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. Just copied the content from workspace_utils to enable training over time ###Code import signal from contextlib import contextmanager import requests DELAY = INTERVAL = 4 * 60 # interval time in seconds MIN_DELAY = MIN_INTERVAL = 2 * 60 KEEPALIVE_URL = "https://nebula.udacity.com/api/v1/remote/keep-alive" TOKEN_URL = "http://metadata.google.internal/computeMetadata/v1/instance/attributes/keep_alive_token" TOKEN_HEADERS = {"Metadata-Flavor":"Google"} def _request_handler(headers): def _handler(signum, frame): requests.request("POST", KEEPALIVE_URL, headers=headers) return _handler @contextmanager def active_session(delay=DELAY, interval=INTERVAL): """ Example: from workspace_utils import active session with active_session(): # do long-running work here """ token = requests.request("GET", TOKEN_URL, headers=TOKEN_HEADERS).text headers = {'Authorization': "STAR " + token} delay = max(delay, MIN_DELAY) interval = max(interval, MIN_INTERVAL) original_handler = signal.getsignal(signal.SIGALRM) try: signal.signal(signal.SIGALRM, _request_handler(headers)) signal.setitimer(signal.ITIMER_REAL, delay, interval) yield finally: signal.signal(signal.SIGALRM, original_handler) signal.setitimer(signal.ITIMER_REAL, 0) def keep_awake(iterable, delay=DELAY, interval=INTERVAL): """ Example: from workspace_utils import keep_awake for i in keep_awake(range(5)): # do iteration with lots of work here """ with active_session(delay, interval): yield from iterable """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model for i in keep_awake(range(1)): # do iteration with lots of work here trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 20 epoch(s)... Epoch: 1/20 Loss: 5.3030669279098515 Epoch: 1/20 Loss: 4.620214327812195 Epoch: 1/20 Loss: 4.433250930786133 Epoch: 1/20 Loss: 4.293495012760163 Epoch: 1/20 Loss: 4.230082350254059 Epoch: 1/20 Loss: 4.168107018947602 Epoch: 2/20 Loss: 4.0285630340014045 Epoch: 2/20 Loss: 3.9249883275032045 Epoch: 2/20 Loss: 3.9215549778938295 Epoch: 2/20 Loss: 3.8988177995681763 Epoch: 2/20 Loss: 3.8650728163719177 Epoch: 2/20 Loss: 3.8652200956344602 Epoch: 3/20 Loss: 3.7584196871858304 Epoch: 3/20 Loss: 3.6690328950881956 Epoch: 3/20 Loss: 3.677587031841278 Epoch: 3/20 Loss: 3.6664019713401794 Epoch: 3/20 Loss: 3.6574306178092955 Epoch: 3/20 Loss: 3.6558912591934205 Epoch: 4/20 Loss: 3.5670045902573966 Epoch: 4/20 Loss: 3.4957964677810667 Epoch: 4/20 Loss: 3.486451469421387 Epoch: 4/20 Loss: 3.49300568151474 Epoch: 4/20 Loss: 3.5131288185119627 Epoch: 4/20 Loss: 3.5089879660606385 Epoch: 5/20 Loss: 3.412592833119679 Epoch: 5/20 Loss: 3.3397996444702147 Epoch: 5/20 Loss: 3.361472554206848 Epoch: 5/20 Loss: 3.3689837012290953 Epoch: 5/20 Loss: 3.369387209892273 Epoch: 5/20 Loss: 3.392926040649414 Epoch: 6/20 Loss: 3.2918449279254043 Epoch: 6/20 Loss: 3.23577649974823 Epoch: 6/20 Loss: 3.2408394708633423 Epoch: 6/20 Loss: 3.242942500591278 Epoch: 6/20 Loss: 3.264701265335083 Epoch: 6/20 Loss: 3.2813189492225647 Epoch: 7/20 Loss: 3.1913416392919496 Epoch: 7/20 Loss: 3.1375364003181456 Epoch: 7/20 Loss: 3.1472790060043336 Epoch: 7/20 Loss: 3.159783121585846 Epoch: 7/20 Loss: 3.1825279612541197 Epoch: 7/20 Loss: 3.182379403591156 Epoch: 8/20 Loss: 3.104790642736404 Epoch: 8/20 Loss: 3.050485185623169 Epoch: 8/20 Loss: 3.07590904378891 Epoch: 8/20 Loss: 3.091768286705017 Epoch: 8/20 Loss: 3.0943512878417967 Epoch: 8/20 Loss: 3.1168371138572692 Epoch: 9/20 Loss: 3.0355744698667912 Epoch: 9/20 Loss: 2.9791538524627685 Epoch: 9/20 Loss: 2.988285686969757 Epoch: 9/20 Loss: 3.0176438517570494 Epoch: 9/20 Loss: 3.0452546997070313 Epoch: 9/20 Loss: 3.066123980998993 Epoch: 10/20 Loss: 2.977760581708536 Epoch: 10/20 Loss: 2.9160740399360656 Epoch: 10/20 Loss: 2.9462120776176453 Epoch: 10/20 Loss: 2.9596316838264465 Epoch: 10/20 Loss: 2.980649769306183 Epoch: 10/20 Loss: 3.003009355545044 Epoch: 11/20 Loss: 2.923106189908051 Epoch: 11/20 Loss: 2.862457206726074 Epoch: 11/20 Loss: 2.9037794451713563 Epoch: 11/20 Loss: 2.917519901752472 Epoch: 11/20 Loss: 2.927754180431366 Epoch: 11/20 Loss: 2.9438069467544556 Epoch: 12/20 Loss: 2.8753611903365064 Epoch: 12/20 Loss: 2.820076726436615 Epoch: 12/20 Loss: 2.8434745416641234 Epoch: 12/20 Loss: 2.867061561584473 Epoch: 12/20 Loss: 2.8823512825965882 Epoch: 12/20 Loss: 2.9043544535636903 Epoch: 13/20 Loss: 2.831178372710701 Epoch: 13/20 Loss: 2.788753336429596 Epoch: 13/20 Loss: 2.811571711063385 Epoch: 13/20 Loss: 2.8314144930839538 Epoch: 13/20 Loss: 2.848972408294678 Epoch: 13/20 Loss: 2.8588183851242066 Epoch: 14/20 Loss: 2.79452690821353 Epoch: 14/20 Loss: 2.7534012842178344 Epoch: 14/20 Loss: 2.769148416042328 Epoch: 14/20 Loss: 2.7953113560676575 Epoch: 14/20 Loss: 2.8087381014823913 Epoch: 14/20 Loss: 2.8223458380699156 Epoch: 15/20 Loss: 2.7667517514248203 Epoch: 15/20 Loss: 2.717128375530243 Epoch: 15/20 Loss: 2.7278556532859803 Epoch: 15/20 Loss: 2.750905842781067 Epoch: 15/20 Loss: 2.772277947425842 Epoch: 15/20 Loss: 2.7999129528999327 Epoch: 16/20 Loss: 2.7273548015249456 Epoch: 16/20 Loss: 2.672714412689209 Epoch: 16/20 Loss: 2.7014059419631957 Epoch: 16/20 Loss: 2.7294003405570986 Epoch: 16/20 Loss: 2.754824188232422 Epoch: 16/20 Loss: 2.768513523578644 Epoch: 17/20 Loss: 2.696716475292919 Epoch: 17/20 Loss: 2.6618661236763 Epoch: 17/20 Loss: 2.6799789052009584 Epoch: 17/20 Loss: 2.694623122692108 Epoch: 17/20 Loss: 2.7209681930541993 Epoch: 17/20 Loss: 2.728618656158447 Epoch: 18/20 Loss: 2.672928665227037 Epoch: 18/20 Loss: 2.6243604826927185 Epoch: 18/20 Loss: 2.65350098657608 Epoch: 18/20 Loss: 2.6734824132919313 Epoch: 18/20 Loss: 2.7050926628112792 Epoch: 18/20 Loss: 2.702825466632843 Epoch: 19/20 Loss: 2.6487108401166712 Epoch: 19/20 Loss: 2.595060845851898 Epoch: 19/20 Loss: 2.6304976534843445 Epoch: 19/20 Loss: 2.6442951736450193 Epoch: 19/20 Loss: 2.668322277069092 Epoch: 19/20 Loss: 2.6911623067855834 Epoch: 20/20 Loss: 2.6228444375158326 Epoch: 20/20 Loss: 2.5815917649269102 Epoch: 20/20 Loss: 2.599704447746277 Epoch: 20/20 Loss: 2.627982174873352 Epoch: 20/20 Loss: 2.64976882314682 Epoch: 20/20 Loss: 2.6682947492599487 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** From a previous task in this course it was highlighted that having a large batch size is optimal in theory, but small batch sizes often provide good results in practice. A batch size of 32 was therefore used as a starting point, increasing with a power of 2 to better the results. The best results was gained with a batch size of 256.The starting number of elements in a sequence was chosen by calculating the average number of words for each line. Learning rate started on 0.01 and was thought to be decreased if no improvement in loss was shown or if the loss bumped too much back and forth. It was shown to be better with lr = 0.001I had read somewhere that 256 and 512 were normal values to start out with for the hidden_dimension, i started with 512 and was gonna tweak this with a power of 2 if the network couldn't converge. I also read that there rarely is any gain in going over 2-3 hidden layers rarely improved anything, therefore i started with n_layers = 2.One thing i noticed was that i first got very bad results with sigmoid, removing this drastically improved the results. If you have a good explanation for this, i would be greatful for some input!My thought is that the "squashing" of values using the sigmoid function might be counter-productive when there are so many possible output values. I was quite unsure about the embedding dimension, but thought that experimenting with different values (100, 150,200,....) would give a decent indication. An embedding dimension of 200 showed great results(Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat it's predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # eval mode # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the index of the most likely next word top_i = torch.multinomial(output.exp().data, 1).item() # retrieve that word from the dictionary word = int_to_vocab[top_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = top_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) Cuda is making me struggle pretty bad, training went fine and i got good results. The testing however won''t let me through. ###Code # run the cell multiple times to get different results! gen_length = 20 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:59: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code # https://github.com/taimurzahid/Deep-Learning-Nanodegree/blob/master/sentiment-rnn/Sentiment_RNN_Exercise_mine.ipynb import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # DONE: Implement Function ## Build a dictionary that maps words to integers counts = Counter(text) vocab = sorted(counts, key=counts.get, reverse=True) int_to_vocab = {ii: word for ii, word in enumerate(vocab, 1)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return {'.' : '||period||', ',' : '||comma||', '\"' : '||quotation_mark||', ';' : '||semicolon||', '!' : '||exclamationmark||', '?' : '||questionmark||', '(' : '||leftparentheses||', ')' : '||rightparentheses||', '-' : '||dash||', '\n' : '||return||'} """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') else: print('Training on GPU') ###Output Training on GPU ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader import math def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function #data = TensorDataset(feature_tensors, target_tensors) #data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size) words_truncated = words[:-sequence_length] #words_truncated = words_len - (batch_size * sequence_length) #words_truncated = words_len - (batch_size * total_batches) #upper_limit = total_batches * batch_size #total_batches = batch_size * sequence_length total_batches = len(words_truncated) // batch_size print('Words Lenght: ' + str(len(words))) print('Sequence Lenght: ' + str(sequence_length)) print('Batch Size: ' + str(batch_size)) print('Total Batches: ' + str(total_batches)) print('Words Truncated: ' + str(words_truncated)) #words = words[:words_len - words_truncated] #words = words[:upper_limit] #words_len = len(words) #print('New Words Lenght: ' + str(len(words))) features = [] targets = [] for i in range(0, len(words_truncated)): last = i + sequence_length #print('Feature Tensor: ' + str(words[i:last])) #print('Target Tensor: ' + str(words[last])) feature = words[i:last] target = words[last] features.append(feature) targets.append(target) features = features[:total_batches*batch_size] targets = targets[:total_batches*batch_size] data = TensorDataset(torch.from_numpy(np.array(features)), torch.from_numpy(np.array(targets))) data_loader = torch.utils.data.DataLoader(data, shuffle=True, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own batch_data(int_text[:53], 5, 10) ###Output Words Lenght: 53 Sequence Lenght: 5 Batch Size: 10 Total Batches: 4 Words Truncated: [25, 23, 48, 2, 2, 2, 18, 48, 23, 83, 21, 7, 1253, 546, 8783, 7190, 21, 242, 2, 150, 2, 2, 2, 85, 5, 201, 239, 150, 209, 59, 56, 136, 65, 48, 4, 25, 23, 19, 678, 209, 59, 2, 2, 2, 25, 221, 127, 3] ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output Words Lenght: 50 Sequence Lenght: 5 Batch Size: 10 Total Batches: 4 Words Truncated: range(0, 45) torch.Size([10, 5]) tensor([[ 11, 12, 13, 14, 15], [ 19, 20, 21, 22, 23], [ 30, 31, 32, 33, 34], [ 38, 39, 40, 41, 42], [ 16, 17, 18, 19, 20], [ 36, 37, 38, 39, 40], [ 32, 33, 34, 35, 36], [ 24, 25, 26, 27, 28], [ 25, 26, 27, 28, 29], [ 35, 36, 37, 38, 39]]) torch.Size([10]) tensor([ 16, 24, 35, 43, 21, 41, 37, 29, 30, 40]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn import torch.optim as optim # https://github.com/taimurzahid/Deep-Learning-Nanodegree/blob/master/sentiment-rnn/Sentiment_RNN_Exercise_mine.ipynb class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.vocab_size = vocab_size self.n_layers = n_layers self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.dropout = dropout # define model layers # embedding and LSTM layers self.embedding = nn.Embedding(self.vocab_size, self.embedding_dim) self.lstm = nn.LSTM(self.embedding_dim, self.hidden_dim, self.n_layers, dropout=self.dropout, batch_first=True) # dropout layer #self.dropout = nn.Dropout(0.3) # linear layer self.fc = nn.Linear(self.hidden_dim, self.output_size) #self.sig = nn.Sigmoid() def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # embeddings and lstm_out embeds = self.embedding(nn_input.long()) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer #out = self.dropout(lstm_out) out = self.fc(lstm_out) #sigmoid function #out = self.sig(out) # reshape to be batch_size first out = out.view(batch_size, -1, self.output_size) out = out[:, -1] # get last batch of labels # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available # Create two new tensors with sizes n_layers x batch_size x hidden_dim, # initialized to zero, for hidden state and cell state of LSTM weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code # https://github.com/taimurzahid/Deep-Learning-Nanodegree/blob/master/sentiment-rnn/Sentiment_RNN_Exercise_mine.ipynb def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: #rnn.cuda() inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization h = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() # get the output from the model output, h = rnn(inp, h) # calculate the loss and perform backprop loss = criterion(output.squeeze(), target.long()) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. clip=5 # gradient clipping nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 16 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) + 1 # 1 is added based on Slack discussion # Output size output_size = len(vocab_to_int) + 1 # 1 is added based on Slack discussion # Embedding Dimension embedding_dim = 400 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.471050339698792 Epoch: 1/10 Loss: 4.83803058385849 Epoch: 1/10 Loss: 4.610782274723053 Epoch: 1/10 Loss: 4.520275905609131 Epoch: 1/10 Loss: 4.413108244895935 Epoch: 1/10 Loss: 4.36340319442749 Epoch: 1/10 Loss: 4.334854992866516 Epoch: 1/10 Loss: 4.273975263118744 Epoch: 1/10 Loss: 4.2341670255661015 Epoch: 1/10 Loss: 4.2165902523994445 Epoch: 1/10 Loss: 4.1803207430839535 Epoch: 1/10 Loss: 4.165702053070069 Epoch: 1/10 Loss: 4.159639587402344 Epoch: 2/10 Loss: 4.045049037726671 Epoch: 2/10 Loss: 3.9613006258010866 Epoch: 2/10 Loss: 3.938518739700317 Epoch: 2/10 Loss: 3.9416296734809877 Epoch: 2/10 Loss: 3.931606788635254 Epoch: 2/10 Loss: 3.934953164100647 Epoch: 2/10 Loss: 3.9185888533592226 Epoch: 2/10 Loss: 3.9147161779403685 Epoch: 2/10 Loss: 3.91242454957962 Epoch: 2/10 Loss: 3.93124987745285 Epoch: 2/10 Loss: 3.8877110123634337 Epoch: 2/10 Loss: 3.8978343958854675 Epoch: 2/10 Loss: 3.8805348863601683 Epoch: 3/10 Loss: 3.7956401014967724 Epoch: 3/10 Loss: 3.722789454936981 Epoch: 3/10 Loss: 3.7303161554336546 Epoch: 3/10 Loss: 3.74334672164917 Epoch: 3/10 Loss: 3.7583466691970826 Epoch: 3/10 Loss: 3.735187967300415 Epoch: 3/10 Loss: 3.749377622127533 Epoch: 3/10 Loss: 3.728091073036194 Epoch: 3/10 Loss: 3.757435890674591 Epoch: 3/10 Loss: 3.732640972614288 Epoch: 3/10 Loss: 3.767749113082886 Epoch: 3/10 Loss: 3.7501944437026977 Epoch: 3/10 Loss: 3.7486029677391053 Epoch: 4/10 Loss: 3.67139998456642 Epoch: 4/10 Loss: 3.5945886602401735 Epoch: 4/10 Loss: 3.6112404036521912 Epoch: 4/10 Loss: 3.6088072242736815 Epoch: 4/10 Loss: 3.6137901096343996 Epoch: 4/10 Loss: 3.6236182446479797 Epoch: 4/10 Loss: 3.6320138945579528 Epoch: 4/10 Loss: 3.617330150604248 Epoch: 4/10 Loss: 3.616030725479126 Epoch: 4/10 Loss: 3.656285080909729 Epoch: 4/10 Loss: 3.6391136193275453 Epoch: 4/10 Loss: 3.645322675704956 Epoch: 4/10 Loss: 3.662479877471924 Epoch: 5/10 Loss: 3.582206561961533 Epoch: 5/10 Loss: 3.509097593784332 Epoch: 5/10 Loss: 3.5116215534210204 Epoch: 5/10 Loss: 3.5309250173568727 Epoch: 5/10 Loss: 3.5161764755249023 Epoch: 5/10 Loss: 3.531072009563446 Epoch: 5/10 Loss: 3.554388628959656 Epoch: 5/10 Loss: 3.550441417694092 Epoch: 5/10 Loss: 3.542397045612335 Epoch: 5/10 Loss: 3.544317928314209 Epoch: 5/10 Loss: 3.577099612236023 Epoch: 5/10 Loss: 3.587551784515381 Epoch: 5/10 Loss: 3.590496362686157 Epoch: 6/10 Loss: 3.5002912805791486 Epoch: 6/10 Loss: 3.442498236656189 Epoch: 6/10 Loss: 3.430368718624115 Epoch: 6/10 Loss: 3.450769548892975 Epoch: 6/10 Loss: 3.4606251792907714 Epoch: 6/10 Loss: 3.4698970947265626 Epoch: 6/10 Loss: 3.480668309688568 Epoch: 6/10 Loss: 3.4796881718635557 Epoch: 6/10 Loss: 3.5031061816215514 Epoch: 6/10 Loss: 3.4850419368743895 Epoch: 6/10 Loss: 3.517740294933319 Epoch: 6/10 Loss: 3.513252761363983 Epoch: 6/10 Loss: 3.518762966632843 Epoch: 7/10 Loss: 3.4310088472592697 Epoch: 7/10 Loss: 3.364038896560669 Epoch: 7/10 Loss: 3.3791239199638365 Epoch: 7/10 Loss: 3.3790149116516113 Epoch: 7/10 Loss: 3.3892043924331663 Epoch: 7/10 Loss: 3.412972182273865 Epoch: 7/10 Loss: 3.4104024200439453 Epoch: 7/10 Loss: 3.4254494071006776 Epoch: 7/10 Loss: 3.451978789329529 Epoch: 7/10 Loss: 3.463737847805023 Epoch: 7/10 Loss: 3.4808978543281555 Epoch: 7/10 Loss: 3.454183559894562 Epoch: 7/10 Loss: 3.4894270219802856 Epoch: 8/10 Loss: 3.3934042680128194 Epoch: 8/10 Loss: 3.3336652588844298 Epoch: 8/10 Loss: 3.3350847973823545 Epoch: 8/10 Loss: 3.3370099563598634 Epoch: 8/10 Loss: 3.361009126186371 Epoch: 8/10 Loss: 3.37625600194931 Epoch: 8/10 Loss: 3.3666697998046873 Epoch: 8/10 Loss: 3.3862027969360353 Epoch: 8/10 Loss: 3.4105325055122377 Epoch: 8/10 Loss: 3.390837902545929 Epoch: 8/10 Loss: 3.4133527789115905 Epoch: 8/10 Loss: 3.4063360571861265 Epoch: 8/10 Loss: 3.433782564163208 Epoch: 9/10 Loss: 3.36070151176492 Epoch: 9/10 Loss: 3.2830175766944887 Epoch: 9/10 Loss: 3.29934467792511 Epoch: 9/10 Loss: 3.298807931423187 Epoch: 9/10 Loss: 3.3278138399124146 Epoch: 9/10 Loss: 3.330359736442566 Epoch: 9/10 Loss: 3.3381458597183227 Epoch: 9/10 Loss: 3.3494182267189028 Epoch: 9/10 Loss: 3.348780823230743 Epoch: 9/10 Loss: 3.345073464870453 Epoch: 9/10 Loss: 3.3820195574760437 Epoch: 9/10 Loss: 3.382025594711304 Epoch: 9/10 Loss: 3.402317970752716 Epoch: 10/10 Loss: 3.323510438911194 Epoch: 10/10 Loss: 3.2669842920303345 Epoch: 10/10 Loss: 3.2750245847702026 Epoch: 10/10 Loss: 3.2779884939193726 Epoch: 10/10 Loss: 3.2674008169174193 Epoch: 10/10 Loss: 3.3014803156852723 Epoch: 10/10 Loss: 3.313063966751099 Epoch: 10/10 Loss: 3.329684274196625 Epoch: 10/10 Loss: 3.318878095149994 Epoch: 10/10 Loss: 3.330470955371857 Epoch: 10/10 Loss: 3.3408906922340393 Epoch: 10/10 Loss: 3.346896275520325 Epoch: 10/10 Loss: 3.3508639421463013 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** I went with the value for n_layers already given but I reduced that to 2 as the model wasn't improving with 4 hidden layers. I also went with 10 epochs which was an overkill as the loss didn't improve significantly in the later epochs. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code # https://stackoverflow.com/questions/53900910/typeerror-can-t-convert-cuda-tensor-to-numpy-use-tensor-cpu-to-copy-the-tens """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cuda() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) if train_on_gpu: top_i = top_i.cpu().numpy().squeeze() else: top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness if train_on_gpu: p = p.cpu().numpy().squeeze() else: p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq.cpu(), -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'elaine' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:53: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {} '.format(np.average(word_count_line))) print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output _____no_output_____ ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # return tuple return (None, None) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # return a dataloader return None # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables # define model layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state return None, None def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return None, None # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = # of words in a sequence # Batch Size batch_size = # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = # Learning Rate learning_rate = # Model parameters # Vocab size vocab_size = # Output size output_size = # Embedding Dimension embedding_dim = # Hidden Dimension hidden_dim = # Number of RNN Layers n_layers = # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function words =tuple(set(text)) print("UNIQUE_WORDS,WORDS",len(words),len(list(text))) vocab_to_int = {j:i+1 for i,j in (enumerate(words))} int_to_vocab = {i+1:j for i,j in (enumerate(words))} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output UNIQUE_WORDS,WORDS 71 104 Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function dic ={".":"||period||",",":"||comma||","\"":"||quotation_Mark||", \ ";":"||semicolon||","!":"||exclamation_mark||","?":"||question_mark||", \ "(":"||left_Parentheses||",")":"||right_Parentheses||","-":"||dash||", \ "\n":"||return||"} return dic """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output UNIQUE_WORDS,WORDS 21388 892111 ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() print(int_text[:100]) ###Output [6827, 16899, 14656, 11245, 11245, 11245, 3713, 14656, 16899, 5574, 6465, 19096, 533, 933, 1508, 20850, 6465, 2015, 11245, 20273, 11245, 11245, 11245, 692, 15011, 7188, 5553, 20273, 12593, 3958, 9229, 14284, 16250, 14656, 14132, 6827, 16899, 12419, 7121, 12593, 3958, 11245, 11245, 11245, 6827, 185, 1412, 16845, 8206, 11223, 14656, 9134, 16845, 167, 5574, 16899, 6761, 11245, 18425, 5574, 20454, 16725, 16899, 6761, 16845, 8206, 11223, 14656, 20632, 19314, 20626, 20273, 2094, 20736, 7248, 12943, 16845, 3597, 20975, 3868, 21243, 9229, 20626, 11245, 17269, 10972, 14349, 21021, 18784, 3467, 692, 15011, 5968, 14132, 16845, 6200, 9626, 7248, 9036, 11245] ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output No GPU found. Please use a GPU to train your neural network. ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function print("Seq_length Batch_size",sequence_length,batch_size) print("Word type",type(words),len(words)) x_list = [] y_list = [] #n_batches = len(words)//(batch_size) #print("No_batches",n_batches) #words = words[:n_batches*batch_size] no_of_iter = (len(words)-sequence_length)//batch_size #print("no_of_iter_btch_size",no_of_iter*batch_size) words =np.array(list(words)) for i in range(0,len(words)-sequence_length): if(i<no_of_iter*batch_size): x = words[i:i+sequence_length] y = words[i+sequence_length] x_list.append(x) y_list.append(y) #print(x_list) #print(y_list) data = TensorDataset(torch.from_numpy(np.array(x_list)), torch.from_numpy(np.array( y_list))) data_loader = DataLoader(data, shuffle=True, batch_size=batch_size) return data_loader def test_batch_data(lst, seq_len, batch_size, expected_nb_batches, expected_nb_examples): nb_batches = 0 nb_examples = 0 dl = batch_data(lst, seq_len, batch_size) for x, y in dl: print(x) print(y) nb_batches += 1 nb_examples += x.size(0) assert x.size() == (batch_size, seq_len), " x.size(): {} found, expected {}".format(list(x.size()), [batch_size, seq_len]) assert y.size() == (batch_size,), "y.size(): {} found, expected {}".format(y.size(), (batch_size,)) assert expected_nb_batches == nb_batches, "nb_batches: {}, expected {}".format(nb_batches, expected_nb_batches) assert expected_nb_examples == nb_examples, "nb_examples: {}, expected {}".format(nb_examples, expected_nb_examples) print("Done!") test_batch_data(list(range(0, 20)), 6, 4, expected_nb_batches=3, expected_nb_examples=12) test_batch_data(list(range(0, 20)), 4, 5, expected_nb_batches=3, expected_nb_examples=15) test_batch_data(list(range(0, 10)), 3, 3, expected_nb_batches=2, expected_nb_examples=6) ###Output Seq_length Batch_size 6 4 Word type <class 'list'> 20 tensor([[ 2, 3, 4, 5, 6, 7], [ 3, 4, 5, 6, 7, 8], [ 10, 11, 12, 13, 14, 15], [ 5, 6, 7, 8, 9, 10]]) tensor([ 8, 9, 16, 11]) tensor([[ 11, 12, 13, 14, 15, 16], [ 4, 5, 6, 7, 8, 9], [ 0, 1, 2, 3, 4, 5], [ 8, 9, 10, 11, 12, 13]]) tensor([ 17, 10, 6, 14]) tensor([[ 7, 8, 9, 10, 11, 12], [ 6, 7, 8, 9, 10, 11], [ 9, 10, 11, 12, 13, 14], [ 1, 2, 3, 4, 5, 6]]) tensor([ 13, 12, 15, 7]) Done! Seq_length Batch_size 4 5 Word type <class 'list'> 20 tensor([[ 2, 3, 4, 5], [ 10, 11, 12, 13], [ 8, 9, 10, 11], [ 13, 14, 15, 16], [ 1, 2, 3, 4]]) tensor([ 6, 14, 12, 17, 5]) tensor([[ 3, 4, 5, 6], [ 6, 7, 8, 9], [ 14, 15, 16, 17], [ 7, 8, 9, 10], [ 9, 10, 11, 12]]) tensor([ 7, 10, 18, 11, 13]) tensor([[ 5, 6, 7, 8], [ 4, 5, 6, 7], [ 11, 12, 13, 14], [ 0, 1, 2, 3], [ 12, 13, 14, 15]]) tensor([ 9, 8, 15, 4, 16]) Done! Seq_length Batch_size 3 3 Word type <class 'list'> 10 tensor([[ 1, 2, 3], [ 2, 3, 4], [ 5, 6, 7]]) tensor([ 4, 5, 8]) tensor([[ 4, 5, 6], [ 0, 1, 2], [ 3, 4, 5]]) tensor([ 7, 3, 6]) Done! ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader import numpy as np test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=5) print(t_loader) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) #print() print(sample_y.shape) print(sample_y) ###Output Seq_length Batch_size 5 5 Word type <class 'range'> 50 <torch.utils.data.dataloader.DataLoader object at 0x7fe1cefcb550> torch.Size([5, 5]) tensor([[ 3, 4, 5, 6, 7], [ 26, 27, 28, 29, 30], [ 4, 5, 6, 7, 8], [ 11, 12, 13, 14, 15], [ 21, 22, 23, 24, 25]]) torch.Size([5]) tensor([ 8, 31, 9, 16, 26]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function self.vocab_size = vocab_size self.output_size = output_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers self.output_size = output_size self.embed = nn.Embedding(vocab_size,embedding_dim) self.lst = nn.LSTM(embedding_dim,hidden_dim,n_layers,batch_first =True, dropout=dropout) # set class variables self.dropout = nn.Dropout(dropout) self.fc = nn.Linear(hidden_dim,output_size) # define model layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ batch_size =nn_input.shape[0] # TODO: Implement function x = self.embed(nn_input) self.lst.flatten_parameters() #print("embedded shape",x.shape) out_ls,hidden = self.lst(x,hidden) out_ls = out_ls.contiguous().view(-1, self.hidden_dim) out_ls = self.fc(out_ls) out_ls = out_ls.view(batch_size,-1,self.output_size) out_ls =out_ls[:,-1] # return one batch of output word scores and the hidden state return out_ls, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) # initialize hidden state with zero weights, and move to GPU if available return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization rnn.zero_grad() if(train_on_gpu): inp,target =inp.cuda(),target.cuda() hidden = tuple([each.data for each in hidden]) output,hidden = rnn(inp,hidden) #print(out.squeeze().shape) #print(output) loss =criterion(output.squeeze(), target) #print(type(loss.item())) loss.backward() optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs,scheduler, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) scheduler.step() for batch_i, (inputs, labels) in enumerate(train_loader, 1): #print(batch_i) # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length =25 # of words in a sequence # Batch Size batch_size = 256 print(len(int_text)) print("UNique",len(tuple(set(int_text)))) # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size =len(tuple(set(int_text)))+50 # Output size output_size =len(tuple(set(int_text)))+50 # Embedding Dimension embedding_dim = 256 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 400 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from torch.optim import lr_scheduler # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() scheduler = lr_scheduler.StepLR(optimizer, step_size=4, gamma=0.5) # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs,scheduler,show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn_no_rate_decay', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.380095920562744 Epoch: 1/10 Loss: 4.67059530377388 Epoch: 1/10 Loss: 4.44909031689167 Epoch: 1/10 Loss: 4.341865438818932 Epoch: 1/10 Loss: 4.2643080455064775 Epoch: 1/10 Loss: 4.2001852935552595 Epoch: 1/10 Loss: 4.139560710787773 Epoch: 1/10 Loss: 4.1191013193130495 Epoch: 2/10 Loss: 3.982674285682321 Epoch: 2/10 Loss: 3.903726255297661 Epoch: 2/10 Loss: 3.8717657566070556 Epoch: 2/10 Loss: 3.8514534956216813 Epoch: 2/10 Loss: 3.858292981982231 Epoch: 2/10 Loss: 3.8468697571754458 Epoch: 2/10 Loss: 3.8244822961091995 Epoch: 2/10 Loss: 3.8217316102981567 Epoch: 3/10 Loss: 3.7044957241816827 Epoch: 3/10 Loss: 3.633731118440628 Epoch: 3/10 Loss: 3.633208695650101 Epoch: 3/10 Loss: 3.6369596099853516 Epoch: 3/10 Loss: 3.6234382712841033 Epoch: 3/10 Loss: 3.6437795829772948 Epoch: 3/10 Loss: 3.6284162056446077 Epoch: 3/10 Loss: 3.6223182845115662 Epoch: 4/10 Loss: 3.5003589956383956 Epoch: 4/10 Loss: 3.4337933540344237 Epoch: 4/10 Loss: 3.4354637718200682 Epoch: 4/10 Loss: 3.4708599841594694 Epoch: 4/10 Loss: 3.4693118995428085 Epoch: 4/10 Loss: 3.462015705704689 Epoch: 4/10 Loss: 3.4584631085395814 Epoch: 4/10 Loss: 3.459835723042488 Epoch: 5/10 Loss: 3.338018147917519 Epoch: 5/10 Loss: 3.2398352110385895 Epoch: 5/10 Loss: 3.247293289899826 Epoch: 5/10 Loss: 3.2423013067245483 Epoch: 5/10 Loss: 3.248152292370796 Epoch: 5/10 Loss: 3.256008203625679 Epoch: 5/10 Loss: 3.2589075881242753 Epoch: 5/10 Loss: 3.2476092630624773 Epoch: 6/10 Loss: 3.1780121971292106 Epoch: 6/10 Loss: 3.142121150493622 Epoch: 6/10 Loss: 3.1441518980264664 Epoch: 6/10 Loss: 3.1487180894613265 Epoch: 6/10 Loss: 3.153564688563347 Epoch: 6/10 Loss: 3.1675422579050063 Epoch: 6/10 Loss: 3.166737269759178 Epoch: 6/10 Loss: 3.1866508322954177 Epoch: 7/10 Loss: 3.1127506281897337 Epoch: 7/10 Loss: 3.068658108711243 Epoch: 7/10 Loss: 3.0689715522527696 Epoch: 7/10 Loss: 3.075708549618721 Epoch: 7/10 Loss: 3.093345568776131 Epoch: 7/10 Loss: 3.092230723500252 Epoch: 7/10 Loss: 3.0976219362020494 Epoch: 7/10 Loss: 3.106599559187889 Epoch: 8/10 Loss: 3.029369626826013 Epoch: 8/10 Loss: 2.9889594382047653 Epoch: 8/10 Loss: 3.001965739130974 Epoch: 8/10 Loss: 3.007034165263176 Epoch: 8/10 Loss: 3.02835094332695 Epoch: 8/10 Loss: 3.0442234337329865 Epoch: 8/10 Loss: 3.053923916220665 Epoch: 8/10 Loss: 3.0556305766105654 Epoch: 9/10 Loss: 2.9651755927598966 Epoch: 9/10 Loss: 2.8981575787067415 Epoch: 9/10 Loss: 2.9150980657339094 Epoch: 9/10 Loss: 2.926441668868065 Epoch: 9/10 Loss: 2.914849742650986 Epoch: 9/10 Loss: 2.9352423095703126 Epoch: 9/10 Loss: 2.9422347676753997 Epoch: 9/10 Loss: 2.9390135484933855 Epoch: 10/10 Loss: 2.8942695148507056 Epoch: 10/10 Loss: 2.8809356051683426 Epoch: 10/10 Loss: 2.86645024895668 Epoch: 10/10 Loss: 2.878709568977356 Epoch: 10/10 Loss: 2.899056983590126 Epoch: 10/10 Loss: 2.896891574263573 Epoch: 10/10 Loss: 2.8919065654277802 Epoch: 10/10 Loss: 2.9161301946640013 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** 1.Earlier I had used a large sequence length which was causing a delay in the computation. So taking the time into consideration I chose a sequence length of 25.As Andrew Karparthy had pointed out that the number of layer should be 2-3 in RNN so I chose it to be 2.The hidden dimension were chosen to be large because the neural network had to learn the data so I chose it to be 512.When smaller hidden dimension of 128 was used they it the Neural Network was in high bias region. So I increased it to 512. The learning rate was one of the very important parameter to tune. When learning rate was high the model was not converging. So I decreased the learning rate to 0.001. The number of epoch used were 10 only to get a training loss of 2.916.Earlier I had used a batch size of 128 then the loss was noisy(increasing and decreasing) so I finally decided to increase the batch size to 256 so that the training loss graph becomes smooth. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() #trained_rnn = helper.load_model('./save/trained_rnn_no_rate_decay') trained_rnn = torch.load('./trained_rnn.pt', map_location=lambda storage, loc: storage) ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] print(predicted) print("*******************") for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) #print(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) #print(gen_sentences) #print("&&&&&&&&&&&&&&&&&&&&&&&&&&&") # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] #print(pad_word) generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function from collections import Counter counts = Counter(text) vocab = sorted(counts,key=counts.get,reverse=True) vocab_to_int = {word:ii for ii, word in enumerate(vocab,1)} int_to_vocab = {ii:word for ii, word in enumerate(vocab,1)} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) vocab_to_int, int_to_vocab=create_lookup_tables(text) vocab_to_int int_to_vocab ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function symbols = ['.', ',', '"', ';', '!', '?', '(', ')', '-', '\n'] values = ["||Period||","||Comma||","||Quotation_Mark||","||Semicolon||","||Exclamation_Mark||","||Question_Mark||","||Left_Parentheses||","||Right_Parentheses||","||Dash||","||Return||"] tokenized_punct = {sym:val for sym in symbols for val in values} return tokenized_punct """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) token_lookup() ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function batches = len(words) // batch_size # splice list of words using batchsizes words = words[:batches * batch_size] #loop through all the words and place them into separate features and targets features = [] target = [] for i in range(len(words) - sequence_length): features.append(words[i : i + sequence_length]) target.append(words[i + sequence_length]) #add data into dataset and dataloader data_set = TensorDataset(torch.from_numpy(np.asarray(features)), torch.from_numpy(np.asarray(target))) data_loader = torch.utils.data.DataLoader(data_set, shuffle=False, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers #embedding and lstm,linear and sigmoid layers self.embedding = nn.Embedding(vocab_size,embedding_dim) self.lstm = nn.LSTM(embedding_dim,hidden_dim,n_layers,dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim, output_size) self.sig = nn.Sigmoid() def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function embedding_out = self.embedding(nn_input) lstm_out, hidden = self.lstm(embedding_out, hidden) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) model_out = self.fc(lstm_out) model_out = model_out.view(nn_input.size(0), -1, self.output_size) model_out = model_out[:, -1] # return one batch of output word scores and the hidden state return model_out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): rnn.cuda() inp = inp.cuda() target = target.cuda() # perform backpropagation and optimization h = tuple([el.data for el in hidden]) rnn.zero_grad() output, h = rnn(inp, h) loss = criterion(output, target) loss.backward() nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 100 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 5 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 300 # Hidden Dimension hidden_dim = 230 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 5 epoch(s)... Epoch: 1/5 Loss: 5.181810588359832 Epoch: 1/5 Loss: 4.761937874794007 Epoch: 1/5 Loss: 4.507635155200958 Epoch: 1/5 Loss: 4.3362547564506535 Epoch: 1/5 Loss: 4.214848518371582 Epoch: 1/5 Loss: 4.332943567276001 Epoch: 1/5 Loss: 4.280406264305115 Epoch: 1/5 Loss: 4.343973028182983 Epoch: 1/5 Loss: 4.233111576080322 Epoch: 1/5 Loss: 4.212460086345673 Epoch: 1/5 Loss: 4.0091156463623046 Epoch: 1/5 Loss: 4.155004780769348 Epoch: 1/5 Loss: 4.100644754886627 Epoch: 1/5 Loss: 4.179209367275238 Epoch: 1/5 Loss: 4.22897621011734 Epoch: 1/5 Loss: 4.221843630313873 Epoch: 1/5 Loss: 4.187346902370453 Epoch: 2/5 Loss: 4.016450043346571 Epoch: 2/5 Loss: 3.8639565262794493 Epoch: 2/5 Loss: 3.8212383608818055 Epoch: 2/5 Loss: 3.7240742402076723 Epoch: 2/5 Loss: 3.6664706873893738 Epoch: 2/5 Loss: 3.802676923751831 Epoch: 2/5 Loss: 3.7680643882751466 Epoch: 2/5 Loss: 3.871439549446106 Epoch: 2/5 Loss: 3.781108927726746 Epoch: 2/5 Loss: 3.771136235713959 Epoch: 2/5 Loss: 3.624932171344757 Epoch: 2/5 Loss: 3.7446896319389342 Epoch: 2/5 Loss: 3.7066690244674683 Epoch: 2/5 Loss: 3.7910688548088074 Epoch: 2/5 Loss: 3.832498989582062 Epoch: 2/5 Loss: 3.8242098665237427 Epoch: 2/5 Loss: 3.811536384105682 Epoch: 3/5 Loss: 3.726476957227873 Epoch: 3/5 Loss: 3.6502626142501833 Epoch: 3/5 Loss: 3.6168304510116576 Epoch: 3/5 Loss: 3.5480709390640257 Epoch: 3/5 Loss: 3.488213384628296 Epoch: 3/5 Loss: 3.5959919056892393 Epoch: 3/5 Loss: 3.594506411075592 Epoch: 3/5 Loss: 3.691841463088989 Epoch: 3/5 Loss: 3.5948741245269775 Epoch: 3/5 Loss: 3.5862636632919314 Epoch: 3/5 Loss: 3.4744590702056883 Epoch: 3/5 Loss: 3.574137797355652 Epoch: 3/5 Loss: 3.530224638462067 Epoch: 3/5 Loss: 3.61676025056839 Epoch: 3/5 Loss: 3.6702242856025697 Epoch: 3/5 Loss: 3.658023064136505 Epoch: 3/5 Loss: 3.6524762167930604 Epoch: 4/5 Loss: 3.5726160324138143 Epoch: 4/5 Loss: 3.527915768623352 Epoch: 4/5 Loss: 3.4881118440628054 Epoch: 4/5 Loss: 3.4276241149902344 Epoch: 4/5 Loss: 3.3685462641716004 Epoch: 4/5 Loss: 3.4655395698547364 Epoch: 4/5 Loss: 3.467364187717438 Epoch: 4/5 Loss: 3.5770102009773255 Epoch: 4/5 Loss: 3.4727519826889037 Epoch: 4/5 Loss: 3.4620379576683042 Epoch: 4/5 Loss: 3.361168047904968 Epoch: 4/5 Loss: 3.4462191457748412 Epoch: 4/5 Loss: 3.4130006065368654 Epoch: 4/5 Loss: 3.513098111629486 Epoch: 4/5 Loss: 3.551846893787384 Epoch: 4/5 Loss: 3.5437567119598388 Epoch: 4/5 Loss: 3.5235899271965025 Epoch: 5/5 Loss: 3.4799447914828425 Epoch: 5/5 Loss: 3.449487123012543 Epoch: 5/5 Loss: 3.4066185812950134 Epoch: 5/5 Loss: 3.340015625476837 Epoch: 5/5 Loss: 3.2913143305778503 Epoch: 5/5 Loss: 3.381657392024994 Epoch: 5/5 Loss: 3.3818252635002137 Epoch: 5/5 Loss: 3.492859775543213 Epoch: 5/5 Loss: 3.3845377788543702 Epoch: 5/5 Loss: 3.3782970786094664 Epoch: 5/5 Loss: 3.28645951461792 Epoch: 5/5 Loss: 3.364845615386963 Epoch: 5/5 Loss: 3.3303483180999756 Epoch: 5/5 Loss: 3.421983045101166 Epoch: 5/5 Loss: 3.4754480834007264 Epoch: 5/5 Loss: 3.4561420121192934 Epoch: 5/5 Loss: 3.4427926907539366 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? I tried using a small sequence lengths with a small batch size but adjusted by increasing the batch size so the model as more words to train on per batch. I also adjusted the learning rate in order to help increase accuracy. I chose the hidden_dim and n_layers based on the RNN excercise and adjusted those values slightly to see what worked best but overall it helped achieve best accuracy for the model. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code import os os.environ['CUDA_LAUNCH_BLOCKING'] = '1' # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_counts = Counter(text) sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) int_to_vocab = {i: word for i, word in enumerate(sorted_vocab)} vocab_to_int = {word: i for i, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function tokens = { '.': '||period||', ',': '||comma||', '"': '||quotemark||', ';': '||semicolon||', '!': '||exclammark||', '?': '||questionmark||', '(': '||leftparen||', ')': '||rightparen||', '-': '||dash||', '\n': '||return||' } return tokens """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function n_targets = len(words) - sequence_length feature, target = [], [] for idx in range(n_targets): feature.append(words[idx: idx + sequence_length]) target.append(words[idx + sequence_length]) # print(feature[:10]) # print(target[:10]) # create tensor dataset data = TensorDataset(torch.from_numpy(np.asarray(feature)), torch.from_numpy(np.asarray(target))) # create and return dataloader data_loader = DataLoader(data, shuffle=False, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own test = [1, 2, 3, 4, 5, 6, 7] batch_data(test, 4, 3) ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.vocab_size = vocab_size self.output_size = output_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers self.dropout = dropout # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout = dropout, batch_first = True) self.fc = nn.Linear(hidden_dim, output_size) self.dropout = nn.Dropout(dropout) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # embeddings and lstm_out embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) # add lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer # final_output = self.dropout(lstm_out) final_output = self.fc(lstm_out) # reshape into (batch_size, seq_length, output_size) final_output = final_output.view(batch_size, -1, self.output_size) # get last batch final_output = final_output[:, -1] # return one batch of output word scores and the hidden state return final_output, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): rnn.cuda() inp = inp.cuda() target = target.cuda() # perform backpropagation and optimization hidden = tuple([each.data for each in hidden]) # clear grad rnn.zero_grad() # run rnn output, hidden = rnn(inp, hidden) # calculate loss, and run backpropagation loss = criterion(output, target) loss.backward() # avoid the exploding gradient clip = 5 nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 150 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 300 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.529310809612274 Epoch: 1/10 Loss: 4.868192484378815 Epoch: 1/10 Loss: 4.583770613193512 Epoch: 1/10 Loss: 4.595194550991058 Epoch: 1/10 Loss: 4.5430461149215695 Epoch: 1/10 Loss: 4.4930935263633724 Epoch: 1/10 Loss: 4.348288031578064 Epoch: 1/10 Loss: 4.336965585231781 Epoch: 1/10 Loss: 4.30256972026825 Epoch: 1/10 Loss: 4.4140385413169865 Epoch: 1/10 Loss: 4.409925877094269 Epoch: 2/10 Loss: 4.19606430981202 Epoch: 2/10 Loss: 4.019548659801483 Epoch: 2/10 Loss: 3.8814735498428345 Epoch: 2/10 Loss: 3.9618682022094727 Epoch: 2/10 Loss: 3.971702713012695 Epoch: 2/10 Loss: 3.9697001032829284 Epoch: 2/10 Loss: 3.8743876752853392 Epoch: 2/10 Loss: 3.8787233324050905 Epoch: 2/10 Loss: 3.847103949069977 Epoch: 2/10 Loss: 3.9560626306533813 Epoch: 2/10 Loss: 3.9548972272872924 Epoch: 3/10 Loss: 3.858106634307185 Epoch: 3/10 Loss: 3.7653660554885864 Epoch: 3/10 Loss: 3.655870846271515 Epoch: 3/10 Loss: 3.722901219844818 Epoch: 3/10 Loss: 3.7476988835334777 Epoch: 3/10 Loss: 3.7488549032211305 Epoch: 3/10 Loss: 3.6617639536857607 Epoch: 3/10 Loss: 3.662154232978821 Epoch: 3/10 Loss: 3.635809054374695 Epoch: 3/10 Loss: 3.750231619358063 Epoch: 3/10 Loss: 3.735472125053406 Epoch: 4/10 Loss: 3.672470674847096 Epoch: 4/10 Loss: 3.599847785949707 Epoch: 4/10 Loss: 3.5190424242019653 Epoch: 4/10 Loss: 3.560512351036072 Epoch: 4/10 Loss: 3.591423318862915 Epoch: 4/10 Loss: 3.6137986092567442 Epoch: 4/10 Loss: 3.508136905670166 Epoch: 4/10 Loss: 3.522643671989441 Epoch: 4/10 Loss: 3.5122790293693544 Epoch: 4/10 Loss: 3.616040725708008 Epoch: 4/10 Loss: 3.590441781044006 Epoch: 5/10 Loss: 3.5479151077230227 Epoch: 5/10 Loss: 3.4855239949226378 Epoch: 5/10 Loss: 3.4174019122123718 Epoch: 5/10 Loss: 3.4489142622947693 Epoch: 5/10 Loss: 3.48048273563385 Epoch: 5/10 Loss: 3.516224744796753 Epoch: 5/10 Loss: 3.4033279757499697 Epoch: 5/10 Loss: 3.4352164211273193 Epoch: 5/10 Loss: 3.415852860927582 Epoch: 5/10 Loss: 3.5154579553604126 Epoch: 5/10 Loss: 3.4879583950042723 Epoch: 6/10 Loss: 3.466111128030634 Epoch: 6/10 Loss: 3.4112982540130616 Epoch: 6/10 Loss: 3.3276610789299013 Epoch: 6/10 Loss: 3.348341537952423 Epoch: 6/10 Loss: 3.4047589569091796 Epoch: 6/10 Loss: 3.434948842525482 Epoch: 6/10 Loss: 3.3213865656852724 Epoch: 6/10 Loss: 3.3389402017593386 Epoch: 6/10 Loss: 3.333437083244324 Epoch: 6/10 Loss: 3.4354339814186097 Epoch: 6/10 Loss: 3.397718542098999 Epoch: 7/10 Loss: 3.3891836554598784 Epoch: 7/10 Loss: 3.3408581585884094 Epoch: 7/10 Loss: 3.26220672082901 Epoch: 7/10 Loss: 3.2768125886917114 Epoch: 7/10 Loss: 3.3408994336128233 Epoch: 7/10 Loss: 3.3691354298591616 Epoch: 7/10 Loss: 3.2598521389961244 Epoch: 7/10 Loss: 3.2744753460884093 Epoch: 7/10 Loss: 3.270019622325897 Epoch: 7/10 Loss: 3.3687969222068785 Epoch: 7/10 Loss: 3.3324436416625978 Epoch: 8/10 Loss: 3.3327781237669707 Epoch: 8/10 Loss: 3.2885419187545777 Epoch: 8/10 Loss: 3.2035139918327333 Epoch: 8/10 Loss: 3.2243862705230715 Epoch: 8/10 Loss: 3.284676920890808 Epoch: 8/10 Loss: 3.3176104331016543 Epoch: 8/10 Loss: 3.208045747756958 Epoch: 8/10 Loss: 3.2179781918525694 Epoch: 8/10 Loss: 3.2211408581733703 Epoch: 8/10 Loss: 3.316591622829437 Epoch: 8/10 Loss: 3.275346101760864 Epoch: 9/10 Loss: 3.285159317719521 Epoch: 9/10 Loss: 3.2380096702575685 Epoch: 9/10 Loss: 3.1613839750289916 Epoch: 9/10 Loss: 3.1752956504821777 Epoch: 9/10 Loss: 3.235776946544647 Epoch: 9/10 Loss: 3.272580080032349 Epoch: 9/10 Loss: 3.1652264504432677 Epoch: 9/10 Loss: 3.1764199013710024 Epoch: 9/10 Loss: 3.1848195600509643 Epoch: 9/10 Loss: 3.2628794412612914 Epoch: 9/10 Loss: 3.241360436439514 Epoch: 10/10 Loss: 3.2420118245303065 Epoch: 10/10 Loss: 3.195278388500214 Epoch: 10/10 Loss: 3.1218719692230223 Epoch: 10/10 Loss: 3.136446934223175 Epoch: 10/10 Loss: 3.2008880047798156 Epoch: 10/10 Loss: 3.227733317375183 Epoch: 10/10 Loss: 3.120765627384186 Epoch: 10/10 Loss: 3.1420690217018126 Epoch: 10/10 Loss: 3.1429441833496092 Epoch: 10/10 Loss: 3.226587522983551 Epoch: 10/10 Loss: 3.1974760723114013 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)Yes, it seems the short sequence is faster. Finally I choose 10 words as a sequence length.According to the previous lessons, the n_layers of LSTM is better between 1~3, and the hidden_dim is normally 128, 256, 512, and so on. So I choose n_layers is 2 and hidden_dim is 256. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'steven' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:44: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output No GPU found. Please use a GPU to train your neural network. ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader import numpy as np def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ n_batches = len(words) // batch_size words = words[:(n_batches * batch_size)] features = [] targets = [] for i in range(len(words) - sequence_length): features.append(words[i:(i + sequence_length)]) targets.append(words[i + sequence_length]) feature_tensor = torch.from_numpy(np.asarray(features)) target_tensor = torch.from_numpy(np.asarray(targets)) data = TensorDataset(feature_tensor, target_tensor) data_loader = DataLoader(data, shuffle = True, batch_size = batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own _test_loader = batch_data(int_text, sequence_length = 10, batch_size = 10) _feature, _target = next(iter(_test_loader)) for _batch in _feature: print(' '.join([int_to_vocab[i] for i in _batch.numpy()])) ###Output which part ||question_mark|| the renovating the restaurant you dont own pit ||question_mark|| ||return|| ||return|| kramer: ||left_parentheses|| fake laugh ||right_parantheses|| look elaine: but he's okay ||question_mark|| ||return|| ||return|| jerry: yeah but leave the apartment ||period|| it's almost like she doesn't wanna some other time ||period|| ||return|| ||return|| kramer: what tonight ||question_mark|| that is so ridiculous ||period|| ||return|| ||return|| jerry: come on jerry: ||left_parentheses|| a little confused ||right_parantheses|| you wanna hang out a new one i'll send you back this one ||period|| kramer: ||left_parentheses|| holds up some small white sachets ||right_parantheses|| i do me a favor ||comma|| could ya tape the rest ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[28, 29, 30, 31, 32], [30, 31, 32, 33, 34], [ 4, 5, 6, 7, 8], [34, 35, 36, 37, 38], [32, 33, 34, 35, 36], [14, 15, 16, 17, 18], [29, 30, 31, 32, 33], [25, 26, 27, 28, 29], [12, 13, 14, 15, 16], [37, 38, 39, 40, 41]]) torch.Size([10]) tensor([33, 35, 9, 39, 37, 19, 34, 30, 17, 42]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.hidden_dim = hidden_dim self.n_layers = n_layers # define model layers self.embed = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout = dropout, batch_first = True) #self.dropout = nn.Dropout(0.3) self.fc = nn.Linear(hidden_dim, vocab_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) #nn_input = nn_input.long() embeds = self.embed(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) #out = self.dropout(lstm_out) out = self.fc(lstm_out) out = out.view(batch_size, -1, self.output_size) out = out[:, -1] # we're only interested in the last # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: inp, target = inp.cuda(), target.cuda() # creating new variables for the hidden state, otherwise we'd backprop through the entire training history hidden = tuple([each.data for each in hidden]) # perform backpropagation and optimization rnn.zero_grad() output, hidden = rnn(inp, hidden) loss = criterion(output, target) loss.backward() #nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 20 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 1 # Learning Rate learning_rate = 1e-3 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ counts = Counter(text) # Need to sort words from most to least frequent vocab_sorted = sorted(counts, key=counts.get, reverse=True) # create int_to_vocab dictionaries int_to_vocab = {ii: word for ii, word in enumerate(vocab_sorted)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ tokens = dict() tokens['.'] = '<period>' tokens[','] = '<comma>' tokens['"'] = '<quotation_mark>' tokens[';'] = '<semicolon>' tokens['?'] = '<question_mark>' tokens['!'] = '<exclamation_mark>' tokens['('] = '<left_paren>' tokens[')'] = '<right_paren>' tokens['-'] = '<dash>' tokens['\n'] = '<new_line>' return tokens """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ #initialise feature_tensor, target_tensor = [], [] #create data with TensorDataset for i in range(len(words)): target_idx = i + sequence_length if target_idx < len(words): features = words[i:i + sequence_length] feature_tensor.append(features) target = words[target_idx] target_tensor.append(target) data_set = TensorDataset( torch.from_numpy(np.array(feature_tensor)), torch.from_numpy(np.array(target_tensor)) ) #create dataloader data_loader = DataLoader(data_set, batch_size=batch_size, shuffle=True) # return a dataloader return data_loader ### Test your dataloader below for printing and testing ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 19, 20, 21, 22, 23], [ 13, 14, 15, 16, 17], [ 42, 43, 44, 45, 46], [ 3, 4, 5, 6, 7], [ 18, 19, 20, 21, 22], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 37, 38, 39, 40, 41], [ 16, 17, 18, 19, 20], [ 15, 16, 17, 18, 19]]) torch.Size([10]) tensor([ 24, 18, 47, 8, 23, 11, 43, 42, 21, 20]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # define embedding layer self.embedding = nn.Embedding(vocab_size, embedding_dim) ## Define the LSTM self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # Define the final, fully-connected output layer self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ batch_size = nn_input.size(0) # embeddings and lstm_out embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer out = self.fc(lstm_out) # reshape into (batch_size, seq_length, output_size) out = out.view(batch_size, -1, self.output_size) # get last batch out = out[:, -1] return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Create two new tensors with sizes n_layers x batch_size x hidden_dim, # initialized to zero, for hidden state and cell state of LSTM weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # move model to GPU, if available if(train_on_gpu): rnn.cuda() # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history h = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() if(train_on_gpu): inputs, target = inp.cuda(), target.cuda() # get predicted outputs output, h = rnn(inputs, h) # calculate loss loss = criterion(output, target) # optimizer.zero_grad() loss.backward() # 'clip_grad_norm' helps prevent the exploding gradient problem in RNNs / LSTMs nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() return loss.item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 250 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 1000 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.211868348836899 Epoch: 1/10 Loss: 4.622847301483154 Epoch: 1/10 Loss: 4.430748433828354 Epoch: 1/10 Loss: 4.326240783452987 Epoch: 1/10 Loss: 4.258989337205887 Epoch: 1/10 Loss: 4.204880309343338 Epoch: 2/10 Loss: 4.0973720341058115 Epoch: 2/10 Loss: 3.9711267096996306 Epoch: 2/10 Loss: 3.957555563688278 Epoch: 2/10 Loss: 3.943263653755188 Epoch: 2/10 Loss: 3.9399359176158906 Epoch: 2/10 Loss: 3.922368621110916 Epoch: 3/10 Loss: 3.8426766694651575 Epoch: 3/10 Loss: 3.7671526267528535 Epoch: 3/10 Loss: 3.7748427736759185 Epoch: 3/10 Loss: 3.7617118771076203 Epoch: 3/10 Loss: 3.774270247936249 Epoch: 3/10 Loss: 3.7749944460391998 Epoch: 4/10 Loss: 3.702938645669444 Epoch: 4/10 Loss: 3.6361771178245545 Epoch: 4/10 Loss: 3.6471969335079195 Epoch: 4/10 Loss: 3.6455666177272796 Epoch: 4/10 Loss: 3.6701570279598235 Epoch: 4/10 Loss: 3.676929558515549 Epoch: 5/10 Loss: 3.6110563346006472 Epoch: 5/10 Loss: 3.5416511824131014 Epoch: 5/10 Loss: 3.576618997335434 Epoch: 5/10 Loss: 3.5472562327384947 Epoch: 5/10 Loss: 3.600982535123825 Epoch: 5/10 Loss: 3.593803001642227 Epoch: 6/10 Loss: 3.529087289569946 Epoch: 6/10 Loss: 3.466048729658127 Epoch: 6/10 Loss: 3.484813708782196 Epoch: 6/10 Loss: 3.495199167013168 Epoch: 6/10 Loss: 3.5389509155750276 Epoch: 6/10 Loss: 3.528209956884384 Epoch: 7/10 Loss: 3.474839057941737 Epoch: 7/10 Loss: 3.425573988676071 Epoch: 7/10 Loss: 3.4244571204185488 Epoch: 7/10 Loss: 3.439885439157486 Epoch: 7/10 Loss: 3.47168997836113 Epoch: 7/10 Loss: 3.476027591943741 Epoch: 8/10 Loss: 3.4200368578994618 Epoch: 8/10 Loss: 3.368068772792816 Epoch: 8/10 Loss: 3.3651770911216734 Epoch: 8/10 Loss: 3.407411741733551 Epoch: 8/10 Loss: 3.4263857192993163 Epoch: 8/10 Loss: 3.4460477793216704 Epoch: 9/10 Loss: 3.3887716292608445 Epoch: 9/10 Loss: 3.3302845506668093 Epoch: 9/10 Loss: 3.3480998182296755 Epoch: 9/10 Loss: 3.360688591003418 Epoch: 9/10 Loss: 3.384992310523987 Epoch: 9/10 Loss: 3.4016382229328155 Epoch: 10/10 Loss: 3.3434098266961914 Epoch: 10/10 Loss: 3.3047204802036285 Epoch: 10/10 Loss: 3.3225907707214355 Epoch: 10/10 Loss: 3.332591115951538 Epoch: 10/10 Loss: 3.3545617566108703 Epoch: 10/10 Loss: 3.3662430727481842 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** Going over the course material and examples, I tried with smaller batch_size [32,64] and sequence_[5,10]. I also tried a variety of learning_rate [1, 0.1, 0.01, 0.001]. Following the common approach in the course material, I tried embedding/hidden dimensions of [200,250,300]. The first few trials with small batch sizes performed poorly, with the learning rate and number of epochs making little difference, and returning quite a large loss with slow and nonsignificant reduction. After increasing the parameters, I eventually settled on sequence_length = 10 and batch_size = 128.With these, I then tried different learning rates and noticed lower learning rates and bigger hidden_dim were yielding faster converge. Having also notice plateauing of the loss decrease, I decided to opt for 10 epochs. The final model had • sequence_length = 10• batch_size = 128• learning_rate = 0.1• embedding_dim = 200• hidden_dim = 200 • n_layers = 2 Started with Training for 10 epochs reached Epoch: 10/10 Loss: 3.3047204802036285 --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:41: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function ## Build a dictionary that maps words to integers counts = Counter(text) vocab = sorted(counts, key=counts.get, reverse=True) vocab_to_int = {word: ii for ii, word in enumerate(vocab, 1)} int_to_vocab = {ii: word for ii, word in enumerate(vocab, 1)} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return {'.': '||period||', ',': '||comma||', '\"': '||quotation||', ';': '||semicolon||', '!': '||exclamation_mark||', '?': '||question_mark||', '(': '||left_parentheses||', ')': '||right_parentheses||', '-': '||dash||', '\n': '||return||' } """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ n_batches = len(words)//batch_size #truncate the last few extra words, only save full batches words = words[:n_batches * batch_size] # print(len(words)) # print(sequence_length) # print(len(words) - sequence_length) x, y = [], [] for i in range(0, len(words) - sequence_length): i_end = i + sequence_length x_batch = words[i:i_end] y_batch = words[i_end] x.append(x_batch) y.append(y_batch) # create a dataset and dataloader dataset = TensorDataset(torch.from_numpy(np.asarray(x)), torch.from_numpy(np.asarray(y))) data_loader = DataLoader(dataset, shuffle=True, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own # batch_data(int_text[:31], 4, 5) ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[20, 21, 22, 23, 24], [13, 14, 15, 16, 17], [22, 23, 24, 25, 26], [21, 22, 23, 24, 25], [10, 11, 12, 13, 14], [38, 39, 40, 41, 42], [19, 20, 21, 22, 23], [28, 29, 30, 31, 32], [23, 24, 25, 26, 27], [41, 42, 43, 44, 45]], dtype=torch.int32) torch.Size([10]) tensor([25, 18, 27, 26, 15, 43, 24, 33, 28, 46], dtype=torch.int32) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # finaly fully connected linear layer self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ batch_size = nn_input.size(0) # embeddings and lstm_out embeds = self.embedding(nn_input.long()) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # fully-connected layer out = self.fc(lstm_out) # reshape to be batch_size first out = out.view(batch_size, -1, self.output_size) out = out[:, -1] # get last batch of labels # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: rnn.cuda() inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history h = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() # get the output from the model output, h = rnn(inp, h) # calculate the loss and perform backprop loss = criterion(output.squeeze(), target.long()) loss.backward() optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 16 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 5 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 350 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 5 epoch(s)... Epoch: 1/5 Loss: 5.449370867729187 Epoch: 1/5 Loss: 4.807767615795136 Epoch: 1/5 Loss: 4.611214173793793 Epoch: 1/5 Loss: 4.476137000560761 Epoch: 1/5 Loss: 4.422181371212005 Epoch: 1/5 Loss: 4.323347067832946 Epoch: 1/5 Loss: 4.277462675571441 Epoch: 1/5 Loss: 4.244762655258179 Epoch: 1/5 Loss: 4.221954915046692 Epoch: 1/5 Loss: 4.169711175918579 Epoch: 1/5 Loss: 4.154976448059082 Epoch: 1/5 Loss: 4.10861354637146 Epoch: 1/5 Loss: 4.117494498252869 Epoch: 2/5 Loss: 4.0157997418533675 Epoch: 2/5 Loss: 3.9197484226226806 Epoch: 2/5 Loss: 3.9177947392463683 Epoch: 2/5 Loss: 3.8988905987739564 Epoch: 2/5 Loss: 3.8829252243041994 Epoch: 2/5 Loss: 3.866315701007843 Epoch: 2/5 Loss: 3.8654651746749877 Epoch: 2/5 Loss: 3.871019511222839 Epoch: 2/5 Loss: 3.8825811767578124 Epoch: 2/5 Loss: 3.8640567889213564 Epoch: 2/5 Loss: 3.841289692878723 Epoch: 2/5 Loss: 3.8531268496513364 Epoch: 2/5 Loss: 3.848750068664551 Epoch: 3/5 Loss: 3.750009061383807 Epoch: 3/5 Loss: 3.6664652819633483 Epoch: 3/5 Loss: 3.6597061467170717 Epoch: 3/5 Loss: 3.681975291252136 Epoch: 3/5 Loss: 3.6669215922355654 Epoch: 3/5 Loss: 3.677124358654022 Epoch: 3/5 Loss: 3.6883189163208008 Epoch: 3/5 Loss: 3.6848109169006347 Epoch: 3/5 Loss: 3.6760306401252745 Epoch: 3/5 Loss: 3.7014954924583434 Epoch: 3/5 Loss: 3.6787463788986208 Epoch: 3/5 Loss: 3.70131125497818 Epoch: 3/5 Loss: 3.712094340324402 Epoch: 4/5 Loss: 3.613202652409057 Epoch: 4/5 Loss: 3.5351931643486023 Epoch: 4/5 Loss: 3.520432821750641 Epoch: 4/5 Loss: 3.5300108675956725 Epoch: 4/5 Loss: 3.507746780872345 Epoch: 4/5 Loss: 3.5395720262527464 Epoch: 4/5 Loss: 3.545678609371185 Epoch: 4/5 Loss: 3.5577009558677672 Epoch: 4/5 Loss: 3.545559913635254 Epoch: 4/5 Loss: 3.5700124411582945 Epoch: 4/5 Loss: 3.585894054889679 Epoch: 4/5 Loss: 3.578835521697998 Epoch: 4/5 Loss: 3.574189555644989 Epoch: 5/5 Loss: 3.5035635836360868 Epoch: 5/5 Loss: 3.4062910966873168 Epoch: 5/5 Loss: 3.4056600265502928 Epoch: 5/5 Loss: 3.416020705699921 Epoch: 5/5 Loss: 3.406880359649658 Epoch: 5/5 Loss: 3.422125506401062 Epoch: 5/5 Loss: 3.441306739807129 Epoch: 5/5 Loss: 3.4627443494796752 Epoch: 5/5 Loss: 3.452195415973663 Epoch: 5/5 Loss: 3.4728175683021547 Epoch: 5/5 Loss: 3.471756200313568 Epoch: 5/5 Loss: 3.4886891112327576 Epoch: 5/5 Loss: 3.4871754336357115 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** Well, luckily I didn't have to explore many different hyperparameter values. I chose the sequence_length to be 16, randomly, but I wanted it to be a multiple of 2. For batch size, I selected one of the few most used values, i-e 128 (others being 8, 64, 128, 256). For num_epochs, I chose a relatively small number, i.e. 5, because I wanted to quickly iterate over the dataset and be able to quickly explore different hyperparameters (luckily I didn't have to). I chose a relatively common learning_rate, i.e. 0.001. For the embedding_layer, I choose 200, because in the nanodegree, they suggested to use values between 200 and 500. I chose the smallest possible recommended value, 200, so I could quickly train it. For hidden_dim, I wanted it to be slightly bigger than embedding_dim, so I chose 300 at first. During first try, it gave the loss value of 3.52, so I knew if I increased the size of epoch to be like 6 or 10, it would give a loss value below 3.5. But instead, I tried to change the number of hidden layers just to see if I could get the desired loss value in 5 epochs. I tried 250 value which gave an error 3.56, then I changed it to be 350, and lo and behold, it gave the loss error of 3.48, which is less than the desired value of 3.5 Final Loss: 3.4871754336357115 --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq.cpu(), -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'elaine' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output elaine: elaine: oh, yeah. elaine: what? newman: oh, you can't tell him that you didn't have to get a big deal... kramer: no, no. no, no. no. no, no. no, no, no. no. no, no. no. no, you can't get the camera. george: you know, i'm not gonna be able to make the keys. elaine: what? elaine: i told you, i can't go. george: oh, you know, i think i should see him. elaine: oh, well, you gotta get a little problem, and you can do that. jerry: i don't know, but you don't even know. you know, you know, you should be able to take that checked. george: well, it's the first thing, huh? jerry: yeah. elaine: oh, i was just curious. i can't tell you that. i was just wondering if you could do it. jerry: what do you think, the worst part. elaine: oh, well, i was in the mood for the new york. i was just wondering, but i don't even know how to go. george: oh, no, i'm not really sure. elaine: oh! oh, i can't believe i got to talk about.(he is laughing.) elaine: i told her, i don't think i'm gonna go to the bathroom. george: well, i think i could. i was wondering if i can tell him. george: you know, i know, i was in the mood. kramer:(looking at the door, then he gets) you know, this is all i do, but i don't want to get the hell out of my mind. jerry: well, i don't know. i mean, you can't tell me. elaine:(to george) what is that ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests import numpy as np def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function #paramText= text.lower() #paramText = text.split() #vocab_to_int, int_to_vocab = create_lookup_tables(paramText) word_set = set(text) vocab_to_int = {word: i for i, word in enumerate(word_set)} int_to_vocab = {i: word for i, word in enumerate(vocab_to_int)} # return tuple return (vocab_to_int, int_to_vocab) # return tuple return (vocab_to_int, int_to_vocab) #create_lookup_tables(1) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function values = ['||Period||','||Comma||','||Quotation_Mark||','||Semicolon||','||Exclamation_mark||','||Question_mark||','||Left_Parentheses||','||Right_Parentheses||','||Return||','||Dash||'] keys = ['.', ',', '"', ';', '!', '?', '(', ')','\n','-'] return (dict(zip(keys,values))) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ #n_batches = int(len(words) / (batch_size * sequence_length)) n_targets = len(words) - sequence_length feature ,target = [],[] for i in range(n_targets): x = words[i : i+sequence_length] # get some words from the given list feature.append(x) y = words[i+sequence_length] # get the next word to be the target target.append(y) feature_tensors=torch.from_numpy(np.array(feature)) target_tensors=torch.from_numpy(np.array(target)) data = TensorDataset(feature_tensors, target_tensors) data_loader = torch.utils.data.DataLoader(data,batch_size) #return np.array(list(zip(feature_tensors, target_tensors))) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own batch_data([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], 3, 2) ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) print(test_text) #test_text = [ 28, 29, 30, 31, 32] t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output range(0, 50) torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # embedding and LSTM layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) #self.dropout = nn.Dropout(0.3) # dropout layer # set class variables #self.chars = vocab_size #self.int2char = dict(enumerate(self.chars)) #self.char2int = {ch: ii for ii, ch in self.int2char.items()} # define model layers self.fc = nn.Linear(hidden_dim, output_size) # linear #self.sig = nn.Sigmoid() #sigmoid layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # embeddings and lstm_out x = nn_input.long() embeds = self.embedding(x) r_output, hidden = self.lstm(embeds, hidden)## Get the outputs and the new hidden state from the lstm out = r_output.contiguous().view(-1, self.hidden_dim )# Stack up LSTM outputs using view# you may need to use contiguous to reshape the output sig_out = self.fc(out)## put x(input) through the fully-connected layer #sig_out=out # reshape into (batch_size, seq_length, output_size) #sig_out = out.view(batch_size, -1, self.output_size) sig_out = sig_out.view(batch_size, -1, self.output_size) sig_out = sig_out[:, -1] # get last batch of labels # return one batch of output(y) word scores and the hidden state return sig_out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): rnn.cuda() inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history h = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() # get the output from the model output, h = rnn(inp, h) # calculate the loss and perform backprop loss = criterion(output, target) loss.backward() #optimizer = torch.optim.Adam(rnn.parameters(), lr=0.003) optimizer.step() #to convert input to tensor #pool = nn.MaxPool2d(2, stride=2, return_indices=True) #unpool = nn.MaxUnpool2d(2, stride=2) #output, indices = pool(input) #unpool(output, indices) # return the loss over a batch and the hidden state produced by our model return loss.item(),h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length =10 # of words in a sequence # Batch Size batch_size = 200 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 150 # Hidden Dimension hidden_dim = 300 # Number of RNN Layers n_layers = 3 # Show stats for every n number of batches show_every_n_batches = 1000 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.808836177825928 Epoch: 1/10 Loss: 5.770952031612397 Epoch: 1/10 Loss: 5.29177312040329 Epoch: 1/10 Loss: 4.671103951215744 Epoch: 2/10 Loss: 4.382948416553131 Epoch: 2/10 Loss: 4.240608947277069 Epoch: 2/10 Loss: 4.103333241701126 Epoch: 2/10 Loss: 4.080638859272003 Epoch: 3/10 Loss: 3.986224267580738 Epoch: 3/10 Loss: 3.9209645738601684 Epoch: 3/10 Loss: 3.8340556132793426 Epoch: 3/10 Loss: 3.8579432373046876 Epoch: 4/10 Loss: 3.7793105117262225 Epoch: 4/10 Loss: 3.7384330024719237 Epoch: 4/10 Loss: 3.6481493561267855 Epoch: 4/10 Loss: 3.698090669631958 Epoch: 5/10 Loss: 3.6343697765102125 Epoch: 5/10 Loss: 3.5940310513973235 Epoch: 5/10 Loss: 3.5124545404911043 Epoch: 5/10 Loss: 3.5755082693099975 Epoch: 6/10 Loss: 3.527618736763523 Epoch: 6/10 Loss: 3.492864129304886 Epoch: 6/10 Loss: 3.418653825044632 Epoch: 6/10 Loss: 3.4798633608818053 Epoch: 7/10 Loss: 3.4379712072137285 Epoch: 7/10 Loss: 3.4046829326152803 Epoch: 7/10 Loss: 3.337872090816498 Epoch: 7/10 Loss: 3.4017954483032224 Epoch: 8/10 Loss: 3.3671753450615767 Epoch: 8/10 Loss: 3.3372667450904845 Epoch: 8/10 Loss: 3.2712749412059785 Epoch: 8/10 Loss: 3.3423393864631654 Epoch: 9/10 Loss: 3.305119448491972 Epoch: 9/10 Loss: 3.2808288826942444 Epoch: 9/10 Loss: 3.2138831961154937 Epoch: 9/10 Loss: 3.2827796609401703 Epoch: 10/10 Loss: 3.253008118394303 Epoch: 10/10 Loss: 3.22671203827858 Epoch: 10/10 Loss: 3.171477886199951 Epoch: 10/10 Loss: 3.2335320267677305 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)when i put vocab_size equal len(vocab_to_int)hidden_dim : i select it as duble size of embaddin dinmetion for more eccuracy but not too much for not overfitting. (no best value here)n_layers :i use 3 layers as will outperform a tow layer net ( its the best value) sequence_length : i reduce for fasting the tratinig bach size: reduceing for reduce loss and raise accuracy(no best value here) learning rate :i reduce it for more eccuracy(but it shouldn’t be too large) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:48: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_counts = Counter(text) sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # return tuple return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token_dict = {'.': '||Period||', ',': '||Comma||', '"': '||Quotation_Mark||', ';': '||Semicolon||', '!': '||Exclamation_Mark||', '?': '||Question_Mark||', '(': '||Left_Parentheses||', ')': '||Right_Parentheses||', '-': '||Dash||', '\n': '||Return||' } return token_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader from torch import LongTensor def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function feature_tensors, target_tensors = [], [] for i in range(len(words)): if i + sequence_length >= len(words): break feature_tensors.append(words[i:i+sequence_length]) target_tensors.append(words[i+sequence_length]) feature_tensors = LongTensor(feature_tensors) target_tensors = LongTensor(target_tensors) data = TensorDataset(feature_tensors, target_tensors) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own words = list(range(10)) iter(batch_data(words, 4, 3)).next() ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # set class variables # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.dropout = nn.Dropout(0.3) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # nn_input = nn_input.long() embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) out = self.dropout(lstm_out) out = self.fc(out) out = out.view(batch_size, -1, self.output_size) out = out[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function weight = next(self.parameters()).data # initialize hidden state with zero weights, and move to GPU if available if train_on_gpu: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function clip = 5 # move data to GPU, if available if train_on_gpu: rnn.cuda() inp, target = inp.cuda(), target.cuda() h = tuple([each.data for each in hidden]) rnn.zero_grad() output, hidden = rnn(inp, h) # perform backpropagation and optimization loss = criterion(output, target)#.long()) loss.backward()#retain_graph=True) nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 6 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 30 # Learning Rate learning_rate = 1e-3 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = len(vocab_to_int) # Embedding Dimension embedding_dim = 300 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 1000 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 30 epoch(s)... Epoch: 1/30 Loss: 5.084580048322677 Epoch: 1/30 Loss: 4.557066640138626 Epoch: 1/30 Loss: 4.541537858009338 Epoch: 1/30 Loss: 4.419931567907334 Epoch: 1/30 Loss: 4.313605940580368 Epoch: 1/30 Loss: 4.423010891675949 Epoch: 2/30 Loss: 4.249989838815692 Epoch: 2/30 Loss: 3.9766130843162535 Epoch: 2/30 Loss: 4.07036221408844 Epoch: 2/30 Loss: 4.009245562314987 Epoch: 2/30 Loss: 3.943030775308609 Epoch: 2/30 Loss: 4.094046101808548 Epoch: 3/30 Loss: 3.998621705221367 Epoch: 3/30 Loss: 3.8033325910568236 Epoch: 3/30 Loss: 3.899204357147217 Epoch: 3/30 Loss: 3.845042642354965 Epoch: 3/30 Loss: 3.7852564511299134 Epoch: 3/30 Loss: 3.93153954911232 Epoch: 4/30 Loss: 3.8491245930179114 Epoch: 4/30 Loss: 3.6902875807285307 Epoch: 4/30 Loss: 3.7767852036952974 Epoch: 4/30 Loss: 3.7181156973838805 Epoch: 4/30 Loss: 3.6768465995788575 Epoch: 4/30 Loss: 3.8193777720928193 Epoch: 5/30 Loss: 3.7576469090337254 Epoch: 5/30 Loss: 3.6006077923774717 Epoch: 5/30 Loss: 3.678778804540634 Epoch: 5/30 Loss: 3.6325654046535494 Epoch: 5/30 Loss: 3.6017089734077454 Epoch: 5/30 Loss: 3.732928256034851 Epoch: 6/30 Loss: 3.6839546125633817 Epoch: 6/30 Loss: 3.523293900489807 Epoch: 6/30 Loss: 3.602577045440674 Epoch: 6/30 Loss: 3.5691404159069062 Epoch: 6/30 Loss: 3.536283244609833 Epoch: 6/30 Loss: 3.662341813802719 Epoch: 7/30 Loss: 3.615004067496033 Epoch: 7/30 Loss: 3.4620967202186583 Epoch: 7/30 Loss: 3.5381310691833496 Epoch: 7/30 Loss: 3.506252078294754 Epoch: 7/30 Loss: 3.479160343170166 Epoch: 7/30 Loss: 3.60372793841362 Epoch: 8/30 Loss: 3.5601333138178664 Epoch: 8/30 Loss: 3.4220535094738005 Epoch: 8/30 Loss: 3.4877538206577303 Epoch: 8/30 Loss: 3.46400217294693 Epoch: 8/30 Loss: 3.4290434563159944 Epoch: 8/30 Loss: 3.550292696714401 Epoch: 9/30 Loss: 3.516703648031999 Epoch: 9/30 Loss: 3.3777057156562806 Epoch: 9/30 Loss: 3.442356826305389 Epoch: 9/30 Loss: 3.426946301460266 Epoch: 9/30 Loss: 3.3884910480976105 Epoch: 9/30 Loss: 3.507748664855957 Epoch: 10/30 Loss: 3.478255246604621 Epoch: 10/30 Loss: 3.347915611743927 Epoch: 10/30 Loss: 3.404020783185959 Epoch: 10/30 Loss: 3.3921905906200407 Epoch: 10/30 Loss: 3.3548373084068297 Epoch: 10/30 Loss: 3.4692150990962984 Epoch: 11/30 Loss: 3.4439151168414455 Epoch: 11/30 Loss: 3.316784155368805 Epoch: 11/30 Loss: 3.374495920419693 Epoch: 11/30 Loss: 3.3694745795726777 Epoch: 11/30 Loss: 3.3234372375011443 Epoch: 11/30 Loss: 3.4330719435214996 Epoch: 12/30 Loss: 3.416563112642512 Epoch: 12/30 Loss: 3.293692454338074 Epoch: 12/30 Loss: 3.350555213212967 Epoch: 12/30 Loss: 3.346169707775116 Epoch: 12/30 Loss: 3.296534299135208 Epoch: 12/30 Loss: 3.4009602777957917 Epoch: 13/30 Loss: 3.3865375934124233 Epoch: 13/30 Loss: 3.268074172735214 Epoch: 13/30 Loss: 3.3141181790828704 Epoch: 13/30 Loss: 3.3210704760551453 Epoch: 13/30 Loss: 3.2698616359233856 Epoch: 13/30 Loss: 3.373006115436554 Epoch: 14/30 Loss: 3.3679953238999194 Epoch: 14/30 Loss: 3.244525763273239 Epoch: 14/30 Loss: 3.29574050116539 Epoch: 14/30 Loss: 3.3040728302001954 Epoch: 14/30 Loss: 3.2484118444919585 Epoch: 14/30 Loss: 3.3575907225608828 Epoch: 15/30 Loss: 3.3448792450799743 Epoch: 15/30 Loss: 3.223085729837418 Epoch: 15/30 Loss: 3.2762039811611174 Epoch: 15/30 Loss: 3.281678933620453 Epoch: 15/30 Loss: 3.22863160610199 Epoch: 15/30 Loss: 3.332759441137314 Epoch: 16/30 Loss: 3.3235383756636603 Epoch: 16/30 Loss: 3.2087944324016573 Epoch: 16/30 Loss: 3.2585117728710173 Epoch: 16/30 Loss: 3.2640167453289033 Epoch: 16/30 Loss: 3.212729797363281 Epoch: 16/30 Loss: 3.312464111804962 Epoch: 17/30 Loss: 3.3047417181285277 Epoch: 17/30 Loss: 3.196009305715561 Epoch: 17/30 Loss: 3.2426465272903444 Epoch: 17/30 Loss: 3.2462061040401458 Epoch: 17/30 Loss: 3.1951277561187745 Epoch: 17/30 Loss: 3.2954153513908384 Epoch: 18/30 Loss: 3.2933347820932943 Epoch: 18/30 Loss: 3.180704066514969 Epoch: 18/30 Loss: 3.222182501077652 Epoch: 18/30 Loss: 3.23581387090683 Epoch: 18/30 Loss: 3.1807278969287873 Epoch: 18/30 Loss: 3.2773541338443755 Epoch: 19/30 Loss: 3.275315307129937 Epoch: 19/30 Loss: 3.168750624895096 Epoch: 19/30 Loss: 3.208614781618118 Epoch: 19/30 Loss: 3.2200562987327577 Epoch: 19/30 Loss: 3.1651264278888704 Epoch: 19/30 Loss: 3.264369606733322 Epoch: 20/30 Loss: 3.2636970837991695 Epoch: 20/30 Loss: 3.1530574271678926 Epoch: 20/30 Loss: 3.2056119816303252 Epoch: 20/30 Loss: 3.214386161804199 Epoch: 20/30 Loss: 3.155025992393494 Epoch: 20/30 Loss: 3.2494461867809297 Epoch: 21/30 Loss: 3.247305773550511 Epoch: 21/30 Loss: 3.1462849230766294 Epoch: 21/30 Loss: 3.185898665189743 Epoch: 21/30 Loss: 3.2018489487171173 Epoch: 21/30 Loss: 3.1438140380382538 Epoch: 21/30 Loss: 3.236833574771881 Epoch: 22/30 Loss: 3.239420629625335 Epoch: 22/30 Loss: 3.1318942947387693 Epoch: 22/30 Loss: 3.1809025826454165 Epoch: 22/30 Loss: 3.1882017199993133 Epoch: 22/30 Loss: 3.131958144664764 Epoch: 22/30 Loss: 3.231216861486435 Epoch: 23/30 Loss: 3.2238120909812427 Epoch: 23/30 Loss: 3.1226953790187837 Epoch: 23/30 Loss: 3.1698591079711913 Epoch: 23/30 Loss: 3.1793776986598967 Epoch: 23/30 Loss: 3.119948390007019 Epoch: 23/30 Loss: 3.215026288986206 Epoch: 24/30 Loss: 3.21672063033674 Epoch: 24/30 Loss: 3.1092625601291655 Epoch: 24/30 Loss: 3.1556823587417604 Epoch: 24/30 Loss: 3.168131458520889 Epoch: 24/30 Loss: 3.10874280333519 Epoch: 24/30 Loss: 3.2112116651535034 Epoch: 25/30 Loss: 3.205730247763948 Epoch: 25/30 Loss: 3.1062616651058197 Epoch: 25/30 Loss: 3.1500544204711916 Epoch: 25/30 Loss: 3.1599951698780058 Epoch: 25/30 Loss: 3.099935098171234 Epoch: 25/30 Loss: 3.199685146570206 Epoch: 26/30 Loss: 3.1917980676256743 Epoch: 26/30 Loss: 3.096990537643433 Epoch: 26/30 Loss: 3.1379871826171875 Epoch: 26/30 Loss: 3.148208943128586 Epoch: 26/30 Loss: 3.0952279560565947 Epoch: 26/30 Loss: 3.1915375134944917 Epoch: 27/30 Loss: 3.1839449498906482 Epoch: 27/30 Loss: 3.087524526357651 Epoch: 27/30 Loss: 3.1337972748279572 Epoch: 27/30 Loss: 3.142251579761505 Epoch: 27/30 Loss: 3.0873891971111296 Epoch: 27/30 Loss: 3.1779980220794677 Epoch: 28/30 Loss: 3.174762592272083 Epoch: 28/30 Loss: 3.08094087767601 Epoch: 28/30 Loss: 3.1201308219432833 Epoch: 28/30 Loss: 3.1329622395038603 Epoch: 28/30 Loss: 3.0763747534751893 Epoch: 28/30 Loss: 3.17627747964859 Epoch: 29/30 Loss: 3.1672786248402285 Epoch: 29/30 Loss: 3.070994129657745 Epoch: 29/30 Loss: 3.1141885929107667 Epoch: 29/30 Loss: 3.1182726130485534 Epoch: 29/30 Loss: 3.070542600631714 Epoch: 29/30 Loss: 3.1658234694004057 Epoch: 30/30 Loss: 3.163955475001725 Epoch: 30/30 Loss: 3.0649259111881255 Epoch: 30/30 Loss: 3.113813718557358 Epoch: 30/30 Loss: 3.1122830049991608 Epoch: 30/30 Loss: 3.0582309074401857 Epoch: 30/30 Loss: 3.1654540483951568 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** The initial choice of the hyperparameter is from 'Character-Level LSTM in PyTorch' and 'Sentiment Analysis with an RNN.' The first analysis is on the 'sequence_length' with the following hyperparameters, and I got the minimum loss at 8.{'batch_size: 128, 'num_epochs': 10, 'learning_rate': 1e-3, 'vocab_size': len(vocab_to_int), 'output_size': len(vocab_to_int), 'embedding_dim': 300, 'hidden_dim': 256, 'n_layers': 2} ###Code import matplotlib.pyplot as plt analysis_data = np.array([[2, 3.874522655248642], [3, 3.8155457878112795], [4, 3.7750240275859834], [5, 3.7593853921890257], [6, 3.7249092943668365], [7, 3.7283163669109345], [8, 3.7121295800209047], [12, 4.162398101806641], [25, 4.175854583740234], [50, 4.152703736782074]]) plt.plot(analysis_data[:, 0], analysis_data[:, 1], '-o') plt.xlabel('sequence_length') plt.ylabel('loss') plt.grid(True) ###Output _____no_output_____ ###Markdown The next hyperparameter to analyze was 'hidden_dim.' The 'num_epochs' increased to 30, and I eventually got the loss of less than 3.5 with 'hidden_dim' value of 512.{'sequence_length': 8, 'batch_size: 128, 'num_epochs': 30, 'learning_rate': 1e-3, 'vocab_size': len(vocab_to_int), 'output_size': len(vocab_to_int), 'embedding_dim': 300, 'n_layers': 2} ###Code import matplotlib.pyplot as plt analysis_data = np.array([[128, 3.818365662574768], [256, 3.5466213097572328], [512, 3.1654540483951568]]) plt.plot(analysis_data[:, 0], analysis_data[:, 1], '-o') plt.xlabel('hidden_dim') plt.ylabel('loss') plt.grid(True) ###Output _____no_output_____ ###Markdown --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: you know, if i have to get the feeling to you, and i don't even know how much this is going to cost the tour? george: i don't think you have a problem. jerry: i thought you said you'd be a lot better than that. jerry: what are you doing here? elaine:(sarcastic) oh yeah, yeah. kramer: well, that's the way i can go back to the airport. jerry:(sarcastically) oh, that's a good idea. george: what? jerry:(leaving) i thought you said i was in love with him. george: well, it's the damnedest thing. it's a big deal to the beach. jerry: you think i was wrong? kramer: yeah, well... jerry: oh! i think i have the best of your car and the rest of the movie) oh my god! [setting: george's apartment building] jerry: oh, i got it. jerry:(pleading) i think you should do it. george: what? elaine: oh! [setting: jerry's apartment] kramer: oh no, no. jerry: what is that? jerry: yeah, i know. newman: i don't understand...... george: what are you doing? kramer:(entering monk's) oh, no. i got to get a new car? kramer: well, you know what i'm thinking? jerry: yeah. george: i thought you said i was just going to have to be able to be a bit. george:(sarcastic) oh, hi. jerry. jerry: oh, yeah. george: well...(mutters) kramer: hey, hey! hey! kramer: hey, jerry. george: i know. i can't get that image on you. kramer: well, i think it's a good idea, i ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code # For better debugging import os os.environ['CUDA_LAUNCH_BLOCKING'] = "1" """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (11, 50) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 11 to 50: george: (on an imaginary microphone) uh, no, not at this time. jerry: well, senator, id just like to know, what you knew and when you knew it. claire: mr. seinfeld. mr. costanza. george: are, are you sure this is decaf? wheres the orange indicator? claire: its missing, i have to do it in my head decaf left, regular right, decaf left, regular right...its very challenging work. jerry: can you relax, its a cup of coffee. claire is a professional waitress. claire: trust me george. no one has any interest in seeing you on caffeine. george: how come youre not doing the second show tomorrow? jerry: well, theres this uh, woman might be coming in. george: wait a second, wait a second, what coming in, what woman is coming in? jerry: i told you about laura, the girl i met in michigan? george: no, you didnt! jerry: i thought i told you about it, yes, she teaches political science? i met her the night i did the show in lansing... george: ha. jerry: (looks in the creamer) theres no milk in here, what... george: wait wait wait, what is she... (takes the milk can from jerry and puts it on the table) what is she like? jerry: oh, shes really great. i mean, shes got like a real warmth about her and shes really bright and really pretty and uh... the conversation though, i mean, it was... talking with her is like talking with you, but, you know, obviously much better. george: (smiling) so, you know, what, what happened? jerry: oh, nothing happened, you know, but is was great. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function vocab_to_int = {} for idx, word in enumerate(set(text)): if word not in vocab_to_int: vocab_to_int[word] = int(idx) int_to_vocab = {v: k for k, v in vocab_to_int.items()} print(len(vocab_to_int)) # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output 71 Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return { ".": "||Period||", ",": "||Comma||", "\"": "||Quotation_Mark||", ";": "||Semicolon||", "!": "||Exclamation_Mark||", "?": "||Question_Mark||", "(": "||Left_Parentheses||", ")": "||Right_Parentheses||", "-": "||Dash||", "\n": "||Return||", } """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output 21388 ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function feature_tensors = [] target_tensors = [] n_words = len(words) for i in range(n_words): if i + sequence_length < n_words: feature_tensors.append(words[i:i + sequence_length]) target_tensors.append(words[i + sequence_length]) else: break data = TensorDataset(torch.LongTensor(feature_tensors), torch.LongTensor(target_tensors)) return DataLoader(data, batch_size=batch_size, shuffle=True) # there is no test for this function, but you are encouraged to create # print statements and tests of your own print(batch_data([1,2,3,4,5,6,7,8,9,0], 3, 7)) ###Output <torch.utils.data.dataloader.DataLoader object at 0x7f6c1a1b3978> ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 8, 9, 10, 11, 12], [34, 35, 36, 37, 38], [ 5, 6, 7, 8, 9], [38, 39, 40, 41, 42], [26, 27, 28, 29, 30], [29, 30, 31, 32, 33], [11, 12, 13, 14, 15], [25, 26, 27, 28, 29], [21, 22, 23, 24, 25], [30, 31, 32, 33, 34]]) torch.Size([10]) tensor([13, 39, 10, 43, 31, 34, 16, 30, 26, 35]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # set class variables self.n_layers = n_layers self.output_size = output_size self.hidden_dim = hidden_dim self.word_embeddings = nn.Embedding(vocab_size, embedding_dim) # define model layers self.lstm_layer = nn.LSTM( embedding_dim, hidden_dim, num_layers=n_layers, dropout=dropout, batch_first=True ) self.output_layer = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ embeds = self.word_embeddings(nn_input) lstm_out, hidden = self.lstm_layer(embeds, hidden) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) batch_size = nn_input.size(0) output = self.output_layer(lstm_out) output = output.view(batch_size, -1, self.output_size) last_batch = output[:, -1] return last_batch, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if train_on_gpu: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ if train_on_gpu: inp, target = inp.cuda(), target.cuda() h = tuple([x.data for x in hidden]) rnn.zero_grad() output, h = rnn(inp, hidden) loss = criterion(output, target) loss.backward() nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() return loss.item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code def repackage_hidden(h): """Wraps hidden states in new Tensors, to detach them from their history.""" if isinstance(h, torch.Tensor): return h.detach() else: return tuple(repackage_hidden(v) for v in h) """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop hidden = repackage_hidden(hidden) loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 8 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.515188800811767 Epoch: 1/10 Loss: 4.894205183506012 Epoch: 1/10 Loss: 4.680005712985992 Epoch: 1/10 Loss: 4.556370007038116 Epoch: 1/10 Loss: 4.45140567445755 Epoch: 1/10 Loss: 4.404972780227661 Epoch: 1/10 Loss: 4.32517939043045 Epoch: 1/10 Loss: 4.31841893196106 Epoch: 1/10 Loss: 4.265971234798432 Epoch: 1/10 Loss: 4.246224465847015 Epoch: 1/10 Loss: 4.212311903953553 Epoch: 1/10 Loss: 4.201020967483521 Epoch: 1/10 Loss: 4.170561553001404 Epoch: 2/10 Loss: 4.055712251348269 Epoch: 2/10 Loss: 3.9973594183921812 Epoch: 2/10 Loss: 3.986263379096985 Epoch: 2/10 Loss: 3.9635803208351135 Epoch: 2/10 Loss: 3.9599059619903563 Epoch: 2/10 Loss: 3.94514505815506 Epoch: 2/10 Loss: 3.935329864501953 Epoch: 2/10 Loss: 3.938438714504242 Epoch: 2/10 Loss: 3.942914291381836 Epoch: 2/10 Loss: 3.952489317417145 Epoch: 2/10 Loss: 3.910309956073761 Epoch: 2/10 Loss: 3.913070430278778 Epoch: 2/10 Loss: 3.931608271598816 Epoch: 3/10 Loss: 3.8426282580545936 Epoch: 3/10 Loss: 3.7449702105522156 Epoch: 3/10 Loss: 3.7627976350784302 Epoch: 3/10 Loss: 3.7916578917503356 Epoch: 3/10 Loss: 3.7599433608055115 Epoch: 3/10 Loss: 3.754775415420532 Epoch: 3/10 Loss: 3.7655256996154787 Epoch: 3/10 Loss: 3.7686352763175965 Epoch: 3/10 Loss: 3.766996611595154 Epoch: 3/10 Loss: 3.767058864116669 Epoch: 3/10 Loss: 3.780586408138275 Epoch: 3/10 Loss: 3.773424741744995 Epoch: 3/10 Loss: 3.7779603548049927 Epoch: 4/10 Loss: 3.705124765480758 Epoch: 4/10 Loss: 3.6273978176116946 Epoch: 4/10 Loss: 3.616773958206177 Epoch: 4/10 Loss: 3.6674270362854005 Epoch: 4/10 Loss: 3.6360745553970335 Epoch: 4/10 Loss: 3.6589384570121766 Epoch: 4/10 Loss: 3.6663544912338257 Epoch: 4/10 Loss: 3.6454354720115663 Epoch: 4/10 Loss: 3.6662793803215026 Epoch: 4/10 Loss: 3.665962187767029 Epoch: 4/10 Loss: 3.6781682834625244 Epoch: 4/10 Loss: 3.676956202983856 Epoch: 4/10 Loss: 3.6632711391448973 Epoch: 5/10 Loss: 3.60518525849924 Epoch: 5/10 Loss: 3.5266586937904356 Epoch: 5/10 Loss: 3.5491776027679443 Epoch: 5/10 Loss: 3.546335247039795 Epoch: 5/10 Loss: 3.5509201469421385 Epoch: 5/10 Loss: 3.558977521896362 Epoch: 5/10 Loss: 3.5540020489692687 Epoch: 5/10 Loss: 3.589643236160278 Epoch: 5/10 Loss: 3.5868148427009583 Epoch: 5/10 Loss: 3.586656662464142 Epoch: 5/10 Loss: 3.584798780441284 Epoch: 5/10 Loss: 3.6107240200042723 Epoch: 5/10 Loss: 3.6055909996032716 Epoch: 6/10 Loss: 3.5303016454442737 Epoch: 6/10 Loss: 3.464726659297943 Epoch: 6/10 Loss: 3.4647241320610047 Epoch: 6/10 Loss: 3.4753291630744934 Epoch: 6/10 Loss: 3.470268227100372 Epoch: 6/10 Loss: 3.496699033737183 Epoch: 6/10 Loss: 3.4944398765563967 Epoch: 6/10 Loss: 3.519511894226074 Epoch: 6/10 Loss: 3.505395049571991 Epoch: 6/10 Loss: 3.520570902347565 Epoch: 6/10 Loss: 3.5238463711738586 Epoch: 6/10 Loss: 3.541940945625305 Epoch: 6/10 Loss: 3.5522071013450622 Epoch: 7/10 Loss: 3.470562788232069 Epoch: 7/10 Loss: 3.403359667301178 Epoch: 7/10 Loss: 3.4054346995353697 Epoch: 7/10 Loss: 3.414729241371155 Epoch: 7/10 Loss: 3.425702956676483 Epoch: 7/10 Loss: 3.4432071204185486 Epoch: 7/10 Loss: 3.446086753845215 Epoch: 7/10 Loss: 3.4525076165199278 Epoch: 7/10 Loss: 3.459822273731232 Epoch: 7/10 Loss: 3.4869738287925722 Epoch: 7/10 Loss: 3.4988680334091184 Epoch: 7/10 Loss: 3.496957610607147 Epoch: 7/10 Loss: 3.4960529704093934 Epoch: 8/10 Loss: 3.42372932498054 Epoch: 8/10 Loss: 3.3471236605644226 Epoch: 8/10 Loss: 3.3584524660110473 Epoch: 8/10 Loss: 3.3678841986656187 Epoch: 8/10 Loss: 3.391036041736603 Epoch: 8/10 Loss: 3.3893140263557435 Epoch: 8/10 Loss: 3.411256212234497 Epoch: 8/10 Loss: 3.4137536835670472 Epoch: 8/10 Loss: 3.409756651878357 Epoch: 8/10 Loss: 3.4282371163368226 Epoch: 8/10 Loss: 3.4518254375457764 Epoch: 8/10 Loss: 3.4454548215866088 Epoch: 8/10 Loss: 3.460259379863739 Epoch: 9/10 Loss: 3.3755362506252324 Epoch: 9/10 Loss: 3.306753198623657 Epoch: 9/10 Loss: 3.3166620497703554 Epoch: 9/10 Loss: 3.327660037994385 Epoch: 9/10 Loss: 3.3482672100067137 Epoch: 9/10 Loss: 3.3388496203422546 Epoch: 9/10 Loss: 3.381403299331665 Epoch: 9/10 Loss: 3.3726201076507567 Epoch: 9/10 Loss: 3.36599197101593 Epoch: 9/10 Loss: 3.4029546031951905 Epoch: 9/10 Loss: 3.4057063155174254 Epoch: 9/10 Loss: 3.4091373586654665 Epoch: 9/10 Loss: 3.4280067586898806 Epoch: 10/10 Loss: 3.3318529320944203 Epoch: 10/10 Loss: 3.2924032731056214 Epoch: 10/10 Loss: 3.275689582824707 Epoch: 10/10 Loss: 3.3046683926582334 Epoch: 10/10 Loss: 3.3120004024505616 Epoch: 10/10 Loss: 3.3203927888870237 Epoch: 10/10 Loss: 3.330588330745697 Epoch: 10/10 Loss: 3.3430827460289003 Epoch: 10/10 Loss: 3.3565797243118287 Epoch: 10/10 Loss: 3.3760718536376952 Epoch: 10/10 Loss: 3.368762094974518 Epoch: 10/10 Loss: 3.3841377515792845 Epoch: 10/10 Loss: 3.3717826838493345 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:**We started with hyperparameters that were too huge, thus the learning process was really slow and did not converge after 4 epochs. Through several attempts, we decreased/increased the following hyperparameters as followed: - epochs: from 4 to 10- sequence_length: from 10 to 8 - batch size: from 256 to 128 - embedding dim: from 300 to 200 - hidden dim: from 512 to 256 With these final hyperparameters, we finally obtained convergence with a loss under 3.5. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: kramer: well, it's not a good thing. george:(to kramer) i think you're going to be a good guy. jerry: i don't know, i don't know. george:(to himself) you got the car! jerry: i know. i mean, i have no idea that i was doing the same exercises, i can't believe it. george:(to kramer) you know, it's a little problem. elaine: what? kramer: no, no. no. i don't have to do it, but i have a lot of money. elaine: what is the point of the exterminator? jerry: well, i got the job. elaine: oh, yeah. jerry: well, i got a call. kramer: well, what do you think? i mean, i have a little nervous. jerry:(looking at jerry) you can't believe it. you know what you're doing here? elaine:(from a very accent) i mean, i just want to go to the bathroom. jerry: oh, you know, i'm sorry, i don't think so. i don't know what happened. you can do this.(jerry looks at the woman in the air and walks away) i don't want to hear this! elaine:(looking at his watch) oh, no! kramer: well, you know, i think i should be going to do that. elaine: what do you mean, that i'm a good idea for you. jerry:(to george) i don't want you chuckle. kramer: well, i'm going to the hospital, and you didn't get it. jerry: you know what? i just got a little depressed. george:(looking around, and starts dancing back) kramer: oh, no. i just want the tape. jerry: you can't do it? george:(from the phone) oh my ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_counts = Counter(text) vocab = sorted(word_counts, key=word_counts.get, reverse=True) vocab_to_int = {word: ii for ii, word in enumerate(vocab)} int_to_vocab = {ii:word for ii, word in enumerate(vocab)} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code from string import punctuation def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token_lookup = {'.' : '<PERIOD>', ',' : '<COMMA>', '"' : '<QUOTATION_MARK>', ';' : '<SEMICOLON>', '!' : '<EXCLAMATION_MARK>', '?' : '<QUESTION_MARK>', '(' : '<LEFT_PAREN>', ')' : '<RIGHT_PAREN>', '?' : '<QUESTION_MARK>', '-' : '<DASH>', '\n' : '<NEW_LINE>' } return token_lookup """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function n_batches = len(words)//batch_size words = words[:n_batches*batch_size] features = [] targets = [] for idx in range(0, len(words) - sequence_length): features.append(words[idx : idx + sequence_length]) targets.append(words[idx + sequence_length]) data = TensorDataset(torch.from_numpy(np.asarray(features)), torch.from_numpy(np.asarray(targets))) data_loader = torch.utils.data.DataLoader(data, shuffle=False , batch_size = batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) out = self.fc(lstm_out) out = out.view(batch_size, -1, self.output_size) # return one batch of output word scores and the hidden state output = out[:, -1] return output, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function weight = next(self.parameters()).data # initialize hidden state with zero weights, and move to GPU if available if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): rnn.cuda() # perform backpropagation and optimization h = tuple([each.data for each in hidden]) rnn.zero_grad() if(train_on_gpu): inp, target = inp.cuda(), target.cuda() output, h = rnn(inp, h) loss = criterion(output, target) loss.backward() nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() _loss = loss.item() # return the loss over a batch and the hidden state produced by our model return _loss, h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 8 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 8 epoch(s)... Epoch: 1/8 Loss: 5.5322976059913636 Epoch: 1/8 Loss: 4.905174459934234 Epoch: 1/8 Loss: 4.659348671913147 Epoch: 1/8 Loss: 4.530960459232331 Epoch: 1/8 Loss: 4.525175276279449 Epoch: 1/8 Loss: 4.560917906284332 Epoch: 1/8 Loss: 4.4576641521453855 Epoch: 1/8 Loss: 4.33813676404953 Epoch: 1/8 Loss: 4.309417385578156 Epoch: 1/8 Loss: 4.248244787693023 Epoch: 1/8 Loss: 4.361484883785248 Epoch: 1/8 Loss: 4.380487771987915 Epoch: 1/8 Loss: 4.385624749183655 Epoch: 2/8 Loss: 4.176683894366272 Epoch: 2/8 Loss: 4.009177144527436 Epoch: 2/8 Loss: 3.9248783888816834 Epoch: 2/8 Loss: 3.8828868799209593 Epoch: 2/8 Loss: 3.9278798971176148 Epoch: 2/8 Loss: 4.003253318786621 Epoch: 2/8 Loss: 3.9587276787757872 Epoch: 2/8 Loss: 3.8582862396240234 Epoch: 2/8 Loss: 3.8608912954330443 Epoch: 2/8 Loss: 3.8152741413116456 Epoch: 2/8 Loss: 3.9530254421234132 Epoch: 2/8 Loss: 3.94459757900238 Epoch: 2/8 Loss: 3.936078099727631 Epoch: 3/8 Loss: 3.8280178379913994 Epoch: 3/8 Loss: 3.7554098348617555 Epoch: 3/8 Loss: 3.6783560771942136 Epoch: 3/8 Loss: 3.6489162855148316 Epoch: 3/8 Loss: 3.6808696751594545 Epoch: 3/8 Loss: 3.7744146695137024 Epoch: 3/8 Loss: 3.74846625995636 Epoch: 3/8 Loss: 3.6554874119758605 Epoch: 3/8 Loss: 3.6674591946601867 Epoch: 3/8 Loss: 3.62701020860672 Epoch: 3/8 Loss: 3.7350317368507384 Epoch: 3/8 Loss: 3.749186454296112 Epoch: 3/8 Loss: 3.734345266819 Epoch: 4/8 Loss: 3.6477463097611733 Epoch: 4/8 Loss: 3.602082010746002 Epoch: 4/8 Loss: 3.536734944343567 Epoch: 4/8 Loss: 3.5097719435691834 Epoch: 4/8 Loss: 3.5255525641441343 Epoch: 4/8 Loss: 3.6225003170967103 Epoch: 4/8 Loss: 3.616239989757538 Epoch: 4/8 Loss: 3.5258395104408264 Epoch: 4/8 Loss: 3.497856577396393 Epoch: 4/8 Loss: 3.4795735268592836 Epoch: 4/8 Loss: 3.588129153728485 Epoch: 4/8 Loss: 3.6102542405128477 Epoch: 4/8 Loss: 3.591351550579071 Epoch: 5/8 Loss: 3.523304050865252 Epoch: 5/8 Loss: 3.4892584409713745 Epoch: 5/8 Loss: 3.4241340975761414 Epoch: 5/8 Loss: 3.412660810470581 Epoch: 5/8 Loss: 3.4268025426864623 Epoch: 5/8 Loss: 3.516488340854645 Epoch: 5/8 Loss: 3.520873282909393 Epoch: 5/8 Loss: 3.4241799364089966 Epoch: 5/8 Loss: 3.4138887639045716 Epoch: 5/8 Loss: 3.3838316583633423 Epoch: 5/8 Loss: 3.5008965816497803 Epoch: 5/8 Loss: 3.5092281589508056 Epoch: 5/8 Loss: 3.497810969829559 Epoch: 6/8 Loss: 3.4379875421031447 Epoch: 6/8 Loss: 3.411441514968872 Epoch: 6/8 Loss: 3.3444636688232423 Epoch: 6/8 Loss: 3.3374139881134033 Epoch: 6/8 Loss: 3.346661656856537 Epoch: 6/8 Loss: 3.440621413230896 Epoch: 6/8 Loss: 3.4377436027526858 Epoch: 6/8 Loss: 3.346252854347229 Epoch: 6/8 Loss: 3.324707386493683 Epoch: 6/8 Loss: 3.3005346908569337 Epoch: 6/8 Loss: 3.408595465183258 Epoch: 6/8 Loss: 3.4262085876464843 Epoch: 6/8 Loss: 3.4145790710449218 Epoch: 7/8 Loss: 3.369618340710963 Epoch: 7/8 Loss: 3.3499011301994326 Epoch: 7/8 Loss: 3.27999951171875 Epoch: 7/8 Loss: 3.287960659503937 Epoch: 7/8 Loss: 3.293981553077698 Epoch: 7/8 Loss: 3.382100666999817 Epoch: 7/8 Loss: 3.378078860759735 Epoch: 7/8 Loss: 3.2818254389762878 Epoch: 7/8 Loss: 3.2670616817474367 Epoch: 7/8 Loss: 3.2399463267326354 Epoch: 7/8 Loss: 3.339293287754059 Epoch: 7/8 Loss: 3.3616325244903567 Epoch: 7/8 Loss: 3.3500450859069826 Epoch: 8/8 Loss: 3.3117458441040735 Epoch: 8/8 Loss: 3.3048712882995606 Epoch: 8/8 Loss: 3.231137599468231 Epoch: 8/8 Loss: 3.2351998553276062 Epoch: 8/8 Loss: 3.2364736914634706 Epoch: 8/8 Loss: 3.3298539748191835 Epoch: 8/8 Loss: 3.3275475611686707 Epoch: 8/8 Loss: 3.237054452896118 Epoch: 8/8 Loss: 3.2113740792274474 Epoch: 8/8 Loss: 3.198173487186432 Epoch: 8/8 Loss: 3.293269034385681 Epoch: 8/8 Loss: 3.316383964061737 Epoch: 8/8 Loss: 3.302833655357361 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)- As mentioned in course videos, it is good to have big batch size unless facing performance issues and I have tried with 64 and 128. So, I saw that 128 is better for batch size. Also, I googled this kind of projects and their hyperparameters and saw that 10 +-2 has a good performance on seq_length. - I have used 0.01 as learning rate for starting but I saw that loss values were changing up and down too much and decided to make it small.- I have checked other project and solutions that we made during RNN course and thought that 200 embedding_dim and 256 hidden_dim seems pretty fine.- I have added 2 layer to create complexity but not too much.- I have trained my model several times with num_epochs over 10 and I saw that after 7th epoch it is not changing too much. So, I used 8 since it was enough and time saver. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:37: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output _____no_output_____ ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # return tuple return (None, None) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # return a dataloader return None # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables # define model layers def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # return one batch of output word scores and the hidden state return None, None def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output _____no_output_____ ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available # perform backpropagation and optimization # return the loss over a batch and the hidden state produced by our model return None, None # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output _____no_output_____ ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = # of words in a sequence # Batch Size batch_size = # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = # Learning Rate learning_rate = # Model parameters # Vocab size vocab_size = # Output size output_size = # Embedding Dimension embedding_dim = # Hidden Dimension hidden_dim = # Number of RNN Layers n_layers = # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (2, 12) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 2 to 12: jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. jerry: oh, you dont recall? ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function #reference source: inspired/copied from course samples word_counts = Counter(text) sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # return tuple return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function retval = { ".": "||Period||", ",": "||Comma||", "\"": "||QuotationMark||", ";": "||Semicolon||", "!": "||ExclamationMark||", "?": "||QuestionMark||", "(": "||LeftParentheses||", ")": "||RightParentheses||", "-": "||Dash||", "\n": "||Return||", } return retval """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() len(int_text) ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader nb_samples = 6 features = torch.randn(nb_samples, 10) labels = torch.empty(nb_samples, dtype=torch.long).random_(10) dataset = TensorDataset(features, labels) loader = DataLoader( dataset, batch_size=2 ) for batch_idx, (x, y) in enumerate(loader): print(x.shape, y.shape) print(features) from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function batch = len(words)//batch_size words = words[:batch*batch_size] feature_tensors, target_tensors = [], [] for ndx in range(len(words) - sequence_length): feature_tensors += [words[ndx:ndx+sequence_length]] target_tensors += [words[ndx+sequence_length]] feature_tensors = torch.LongTensor(feature_tensors) target_tensors = torch.LongTensor(target_tensors) data = TensorDataset(feature_tensors, target_tensors) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True ) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=6, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 6]) tensor([[ 13, 14, 15, 16, 17, 18], [ 20, 21, 22, 23, 24, 25], [ 30, 31, 32, 33, 34, 35], [ 2, 3, 4, 5, 6, 7], [ 16, 17, 18, 19, 20, 21], [ 24, 25, 26, 27, 28, 29], [ 0, 1, 2, 3, 4, 5], [ 38, 39, 40, 41, 42, 43], [ 7, 8, 9, 10, 11, 12], [ 18, 19, 20, 21, 22, 23]]) torch.Size([10]) tensor([ 19, 26, 36, 8, 22, 30, 6, 44, 13, 24]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code #reference source: inspired/copied from course samples import numpy as np def one_hot_encode(arr, n_labels): arr = arr.cpu().numpy() # Initialize the the encoded array one_hot = np.zeros((np.multiply(*arr.shape), n_labels), dtype=np.float32) # Fill the appropriate elements with ones one_hot[np.arange(one_hot.shape[0]), arr.flatten()] = 1. # Finally reshape it to get back to the original array one_hot = one_hot.reshape((*arr.shape, n_labels)) if(train_on_gpu): return torch.from_numpy(one_hot).cuda() else: return torch.from_numpy(one_hot) # check that the function works as expected test_seq = np.array([[3, 5, 1]]) test_seq = torch.from_numpy(test_seq) print(test_seq) one_hot = one_hot_encode(test_seq, 8) print(one_hot) import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them a :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.input_dim = vocab_size self.hidden_dim = hidden_dim self.output_dim = output_size self.n_layers = n_layers self.dropout_prob = dropout self.embedding_dim = embedding_dim ## define model layers self.embed = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, self.hidden_dim, self.n_layers, dropout=self.dropout_prob, batch_first=True) self.dropout = nn.Dropout(dropout) #final fully connected self.fc = nn.Linear(self.hidden_dim, self.output_dim) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # ## outputs and the new hidden state # nn_input = one_hot_encode(nn_input, self.input_dim) embedding = self.embed(nn_input) lstm_output, hidden = self.lstm(embedding, hidden) # lstm_output, hidden = self.lstm(nn_input, hidden) #without embedding out = self.dropout(lstm_output) #stack the outputs of the lstm to pass to your fully-connected layer out = out.contiguous().view(-1, self.hidden_dim) out = self.fc(out) ##From notes above #The output of this model should be the last batch of word scores after a complete sequence has been processed. #That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. # reshape into (batch_size, seq_length, output_size) out = out.view(self.batch_size, -1, self.output_dim) # get last batch out = out[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function self.batch_size = batch_size weight = next(self.parameters()).data # two new tensors with sizes n_layers x batch_size x n_hidden # initialize hidden state with zero weights, and move to GPU if available if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function #one hot encoding? #required for non embeded case only # zero accumulated gradients rnn.zero_grad() #To avoid retain_graph=True, inspired from course discussions hidden = (hidden[0].detach(), hidden[1].detach()) # move data to GPU, if available if(train_on_gpu): inp = inp.cuda() target = target.cuda() output, hidden = rnn(inp, hidden) loss = criterion(output, target) #target.view(batch_size*sequence_length) # perform backpropagation and optimization # loss.backward(retain_graph=True) #Removed due to high resource consumption loss.backward() ##did not get any advantage # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. # nn.utils.clip_grad_norm_(rnn.parameters(), clip) ? optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s), %d batch size, %d show every..." % (n_epochs, batch_size, show_every_n_batches)) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn #modified version with detailed printing, global loss for loaded network (rnn), and saving network def train_rnn_copy(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100, myGlobalLoss=10): batch_losses = [] rnn.train() print("Training for %d epoch(s), %d batch size, show every %d, global loss %.4f..." % (n_epochs, batch_size, show_every_n_batches, myGlobalLoss)) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: avgLoss = np.average(batch_losses) print('Epoch: {:>4}/{:<4} Batch: {:>4}/{:<4} Loss: {}'.format( epoch_i, n_epochs, batch_i, n_batches, np.average(batch_losses))) batch_losses = [] if(myGlobalLoss > avgLoss): print('Global Loss {} ---> {}. Saving...'.format(myGlobalLoss, avgLoss)) myGlobalLoss = avgLoss #saved at batch level for quick testing and restart #should be moved to epoch level to avoid saving semi-trained network helper.save_model('./save/trained_rnn_mid_we', rnn) # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length, # of words in a sequence sequence_length = 10 # Batch Size if(train_on_gpu): batch_size = 512 #128 #64 else: batch_size = 5 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters myGlobalLoss = 5 myDropout = 0.5 #0.8 # Number of Epochs num_epochs = 10 #5 #50 # Learning Rate learning_rate = 0.001 #0.002 #0.005 #0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int)+1 # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 300 #256 #200 # Hidden Dimension, Usually larger is better performance wise. Common values are 128, 256, 512, hidden_dim = 512 #256 # Number of RNN Layers, Typically between 1-3 n_layers = 2 # Show stats for every n number of batches if(train_on_gpu): show_every_n_batches = 200 else: show_every_n_batches = 1 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code #for debugging purposes # import os # os.environ['CUDA_LAUNCH_BLOCKING'] = "1" """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=myDropout) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() try: rnn = helper.load_model('./save/trained_rnn_mid_we') print("loaded mid save model") except: try: rnn = helper.load_model('./save/trained_rnn') print("failed mid save.. loaded global model") except: print("could not load any model") finally: print(rnn) # training the model trained_rnn = train_rnn_copy(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches, myGlobalLoss) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output could not load any model RNN( (dropout): Dropout(p=0.5) (embed): Embedding(21389, 300) (lstm): LSTM(300, 512, num_layers=2, batch_first=True, dropout=0.5) (fc): Linear(in_features=512, out_features=21389, bias=True) ) Training for 10 epoch(s), 512 batch size, show every 200, global loss 5.0000... Epoch: 1/10 Batch: 200/1741 Loss: 5.5300157618522645 Epoch: 1/10 Batch: 400/1741 Loss: 4.861690397262573 Global Loss 5 ---> 4.861690397262573. Saving... ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)- Tried with multiple combinations of hyperparameters to get optimum results. - sequence_length: Tried different sequence lengths between 5-30. Higher sequence lengths took more time to train. Therefore, used 10 which gave satisfactory results.- batch size: Higher batch size resulted in better results. Due to GPU memory limitations used 512 with embedding. When tried without embedding, the maximum size (again due to memory limitation) was 128- embedding layer: To begin with, for experimentation purposes, did not use embedding. Later, when the embedding was used memory and time seedup were recorded.- learning rate: Tried different leanring rates. During initial investigations, higher learning rates ~0.01 did not converge well to a satisfactory solution. Also, tried decreaing learning rate (manually) after a few epoches to see marginal improvements. Then tried between 0.001 to 0.0005. 0.001 gave the best results. Therefore, used the same.- hidden dim: Increasing hidden dim decreased loss. But, due to memory limitations used 512- n_layers: A value between 1-3 is recommended. 2 was a good choice and gave good results. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:51: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function words = list(set(text)) vocab_to_int = {word: i for i, word in enumerate(words)} int_to_vocab = {i: word for i, word in enumerate(words)} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token_list = [['Period', '.'], ['Comma', ','], ['Quotation_Mark', '"'], ['Semicolon', ';'], ['Exclamation_mark','!'], ['Question_mark','?'], ['Left_Parentheses','('], ['Right_Parentheses',')'], ['Dash','-'], ['Return','\n']] token_dict = {char:f"||{token}||" for token, char in token_list} return token_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function features = [] targets = [] num_sequences = len(words) - sequence_length - 1 for start_i in range(num_sequences): features.append(words[start_i : start_i + sequence_length]) targets.append(words[start_i + sequence_length]) data = TensorDataset(torch.tensor(features, dtype=torch.long), torch.tensor(targets, dtype=torch.long)) dataloader = DataLoader(data, batch_size=batch_size, shuffle=True) # return a dataloader return dataloader # there is no test for this function, but you are encouraged to create # print statements and tests of your own batch_data(int_text, 4, 128) ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 4, 5, 6, 7, 8], [35, 36, 37, 38, 39], [34, 35, 36, 37, 38], [ 1, 2, 3, 4, 5], [17, 18, 19, 20, 21], [39, 40, 41, 42, 43], [31, 32, 33, 34, 35], [37, 38, 39, 40, 41], [27, 28, 29, 30, 31]]) torch.Size([10]) tensor([ 5, 9, 40, 39, 6, 22, 44, 36, 42, 32]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.vocab_size = vocab_size self.output_size = output_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.embedding.weight.data.uniform_(-1, 1) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.dropout = nn.Dropout(dropout) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, x, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = x.shape[0] x = x.long() embed = self.embedding(x) raw_out, hidden = self.lstm(embed, hidden) out = raw_out.contiguous().view(-1, self.hidden_dim) out = self.dropout(raw_out) out = self.fc(out) out = out.view(batch_size, -1, self.output_size) out = out[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available w = next(self.parameters()).data def get_hidden_w(weight, has_gpu): hidden_w = weight.new(self.n_layers, batch_size, self.hidden_dim).zero_() if has_gpu: hidden_w = hidden_w.cuda() return hidden_w hidden = (get_hidden_w(w, train_on_gpu), get_hidden_w(w, train_on_gpu)) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: inp, target = inp.cuda(), target.cuda() rnn.cuda() # perform backpropagation and optimization hidden = tuple([each.data for each in hidden]) rnn.zero_grad() out, hidden = rnn(inp, hidden) loss = criterion(out, target.long()) loss.backward() nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] counter = 0 rnn.train() n_batches = len(train_loader.dataset)//batch_size print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): counter += 1 # make sure you iterate over completely full batches, only if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if counter % show_every_n_batches == 0: print('Loss: {:.3f} Epoch progess {:.0f}%... Epoch: {:>4}/{:<4} ' .format( np.average(batch_losses), batch_i/n_batches* 100, epoch_i, n_epochs ) ) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 15 # of words in a sequence # Batch Size batch_size = 1024 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) ## Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 400 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 50 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Loss: 6.475 Epoch progess 6%... Epoch: 1/10 Loss: 5.581 Epoch progess 11%... Epoch: 1/10 Loss: 5.271 Epoch progess 17%... Epoch: 1/10 Loss: 5.060 Epoch progess 23%... Epoch: 1/10 Loss: 4.975 Epoch progess 29%... Epoch: 1/10 Loss: 4.867 Epoch progess 34%... Epoch: 1/10 Loss: 4.761 Epoch progess 40%... Epoch: 1/10 Loss: 4.715 Epoch progess 46%... Epoch: 1/10 Loss: 4.659 Epoch progess 52%... Epoch: 1/10 Loss: 4.605 Epoch progess 57%... Epoch: 1/10 Loss: 4.575 Epoch progess 63%... Epoch: 1/10 Loss: 4.504 Epoch progess 69%... Epoch: 1/10 Loss: 4.499 Epoch progess 75%... Epoch: 1/10 Loss: 4.465 Epoch progess 80%... Epoch: 1/10 Loss: 4.415 Epoch progess 86%... Epoch: 1/10 Loss: 4.415 Epoch progess 92%... Epoch: 1/10 Loss: 4.379 Epoch progess 98%... Epoch: 1/10 Loss: 4.324 Epoch progess 3%... Epoch: 2/10 Loss: 4.285 Epoch progess 9%... Epoch: 2/10 Loss: 4.278 Epoch progess 15%... Epoch: 2/10 Loss: 4.241 Epoch progess 20%... Epoch: 2/10 Loss: 4.245 Epoch progess 26%... Epoch: 2/10 Loss: 4.267 Epoch progess 32%... Epoch: 2/10 Loss: 4.224 Epoch progess 38%... Epoch: 2/10 Loss: 4.209 Epoch progess 43%... Epoch: 2/10 Loss: 4.225 Epoch progess 49%... Epoch: 2/10 Loss: 4.185 Epoch progess 55%... Epoch: 2/10 Loss: 4.183 Epoch progess 61%... Epoch: 2/10 Loss: 4.170 Epoch progess 66%... Epoch: 2/10 Loss: 4.180 Epoch progess 72%... Epoch: 2/10 Loss: 4.170 Epoch progess 78%... Epoch: 2/10 Loss: 4.158 Epoch progess 84%... Epoch: 2/10 Loss: 4.146 Epoch progess 89%... Epoch: 2/10 Loss: 4.129 Epoch progess 95%... Epoch: 2/10 Loss: 4.148 Epoch progess 1%... Epoch: 3/10 Loss: 4.066 Epoch progess 6%... Epoch: 3/10 Loss: 4.021 Epoch progess 12%... Epoch: 3/10 Loss: 4.037 Epoch progess 18%... Epoch: 3/10 Loss: 4.029 Epoch progess 24%... Epoch: 3/10 Loss: 4.034 Epoch progess 29%... Epoch: 3/10 Loss: 4.035 Epoch progess 35%... Epoch: 3/10 Loss: 4.011 Epoch progess 41%... Epoch: 3/10 Loss: 4.018 Epoch progess 47%... Epoch: 3/10 Loss: 4.029 Epoch progess 52%... Epoch: 3/10 Loss: 4.033 Epoch progess 58%... Epoch: 3/10 Loss: 4.002 Epoch progess 64%... Epoch: 3/10 Loss: 4.006 Epoch progess 70%... Epoch: 3/10 Loss: 3.987 Epoch progess 75%... Epoch: 3/10 Loss: 4.017 Epoch progess 81%... Epoch: 3/10 Loss: 4.001 Epoch progess 87%... Epoch: 3/10 Loss: 4.003 Epoch progess 93%... Epoch: 3/10 Loss: 3.966 Epoch progess 98%... Epoch: 3/10 Loss: 3.932 Epoch progess 4%... Epoch: 4/10 Loss: 3.881 Epoch progess 10%... Epoch: 4/10 Loss: 3.909 Epoch progess 15%... Epoch: 4/10 Loss: 3.897 Epoch progess 21%... Epoch: 4/10 Loss: 3.880 Epoch progess 27%... Epoch: 4/10 Loss: 3.890 Epoch progess 33%... Epoch: 4/10 Loss: 3.893 Epoch progess 38%... Epoch: 4/10 Loss: 3.892 Epoch progess 44%... Epoch: 4/10 Loss: 3.906 Epoch progess 50%... Epoch: 4/10 Loss: 3.888 Epoch progess 56%... Epoch: 4/10 Loss: 3.896 Epoch progess 61%... Epoch: 4/10 Loss: 3.878 Epoch progess 67%... Epoch: 4/10 Loss: 3.905 Epoch progess 73%... Epoch: 4/10 Loss: 3.871 Epoch progess 79%... Epoch: 4/10 Loss: 3.882 Epoch progess 84%... Epoch: 4/10 Loss: 3.876 Epoch progess 90%... Epoch: 4/10 Loss: 3.885 Epoch progess 96%... Epoch: 4/10 Loss: 3.850 Epoch progess 1%... Epoch: 5/10 Loss: 3.785 Epoch progess 7%... Epoch: 5/10 Loss: 3.783 Epoch progess 13%... Epoch: 5/10 Loss: 3.787 Epoch progess 19%... Epoch: 5/10 Loss: 3.807 Epoch progess 24%... Epoch: 5/10 Loss: 3.777 Epoch progess 30%... Epoch: 5/10 Loss: 3.789 Epoch progess 36%... Epoch: 5/10 Loss: 3.789 Epoch progess 42%... Epoch: 5/10 Loss: 3.774 Epoch progess 47%... Epoch: 5/10 Loss: 3.783 Epoch progess 53%... Epoch: 5/10 Loss: 3.774 Epoch progess 59%... Epoch: 5/10 Loss: 3.794 Epoch progess 65%... Epoch: 5/10 Loss: 3.793 Epoch progess 70%... Epoch: 5/10 Loss: 3.795 Epoch progess 76%... Epoch: 5/10 Loss: 3.798 Epoch progess 82%... Epoch: 5/10 Loss: 3.808 Epoch progess 87%... Epoch: 5/10 Loss: 3.787 Epoch progess 93%... Epoch: 5/10 Loss: 3.825 Epoch progess 99%... Epoch: 5/10 Loss: 3.723 Epoch progess 5%... Epoch: 6/10 Loss: 3.684 Epoch progess 10%... Epoch: 6/10 Loss: 3.706 Epoch progess 16%... Epoch: 6/10 Loss: 3.689 Epoch progess 22%... Epoch: 6/10 Loss: 3.693 Epoch progess 28%... Epoch: 6/10 Loss: 3.709 Epoch progess 33%... Epoch: 6/10 Loss: 3.723 Epoch progess 39%... Epoch: 6/10 Loss: 3.742 Epoch progess 45%... Epoch: 6/10 Loss: 3.720 Epoch progess 51%... Epoch: 6/10 Loss: 3.692 Epoch progess 56%... Epoch: 6/10 Loss: 3.700 Epoch progess 62%... Epoch: 6/10 Loss: 3.714 Epoch progess 68%... Epoch: 6/10 Loss: 3.703 Epoch progess 73%... Epoch: 6/10 Loss: 3.701 Epoch progess 79%... Epoch: 6/10 Loss: 3.697 Epoch progess 85%... Epoch: 6/10 Loss: 3.733 Epoch progess 91%... Epoch: 6/10 Loss: 3.712 Epoch progess 96%... Epoch: 6/10 Loss: 3.675 Epoch progess 2%... Epoch: 7/10 Loss: 3.606 Epoch progess 8%... Epoch: 7/10 Loss: 3.639 Epoch progess 14%... Epoch: 7/10 Loss: 3.624 Epoch progess 19%... Epoch: 7/10 Loss: 3.655 Epoch progess 25%... Epoch: 7/10 Loss: 3.633 Epoch progess 31%... Epoch: 7/10 Loss: 3.615 Epoch progess 37%... Epoch: 7/10 Loss: 3.637 Epoch progess 42%... Epoch: 7/10 Loss: 3.642 Epoch progess 48%... Epoch: 7/10 Loss: 3.636 Epoch progess 54%... Epoch: 7/10 Loss: 3.652 Epoch progess 59%... Epoch: 7/10 Loss: 3.629 Epoch progess 65%... Epoch: 7/10 Loss: 3.634 Epoch progess 71%... Epoch: 7/10 Loss: 3.651 Epoch progess 77%... Epoch: 7/10 Loss: 3.648 Epoch progess 82%... Epoch: 7/10 Loss: 3.648 Epoch progess 88%... Epoch: 7/10 Loss: 3.627 Epoch progess 94%... Epoch: 7/10 Loss: 3.658 Epoch progess 100%... Epoch: 7/10 Loss: 3.526 Epoch progess 5%... Epoch: 8/10 Loss: 3.553 Epoch progess 11%... Epoch: 8/10 Loss: 3.554 Epoch progess 17%... Epoch: 8/10 Loss: 3.574 Epoch progess 23%... Epoch: 8/10 Loss: 3.586 Epoch progess 28%... Epoch: 8/10 Loss: 3.586 Epoch progess 34%... Epoch: 8/10 Loss: 3.544 Epoch progess 40%... Epoch: 8/10 Loss: 3.566 Epoch progess 45%... Epoch: 8/10 Loss: 3.574 Epoch progess 51%... Epoch: 8/10 Loss: 3.560 Epoch progess 57%... Epoch: 8/10 Loss: 3.593 Epoch progess 63%... Epoch: 8/10 Loss: 3.574 Epoch progess 68%... Epoch: 8/10 Loss: 3.583 Epoch progess 74%... Epoch: 8/10 Loss: 3.591 Epoch progess 80%... Epoch: 8/10 Loss: 3.597 Epoch progess 86%... Epoch: 8/10 Loss: 3.573 Epoch progess 91%... Epoch: 8/10 Loss: 3.586 Epoch progess 97%... Epoch: 8/10 Loss: 3.534 Epoch progess 3%... Epoch: 9/10 Loss: 3.448 Epoch progess 8%... Epoch: 9/10 Loss: 3.497 Epoch progess 14%... Epoch: 9/10 Loss: 3.484 Epoch progess 20%... Epoch: 9/10 Loss: 3.502 Epoch progess 26%... Epoch: 9/10 Loss: 3.491 Epoch progess 31%... Epoch: 9/10 Loss: 3.549 Epoch progess 37%... Epoch: 9/10 Loss: 3.498 Epoch progess 43%... Epoch: 9/10 Loss: 3.519 Epoch progess 49%... Epoch: 9/10 Loss: 3.523 Epoch progess 54%... Epoch: 9/10 Loss: 3.524 Epoch progess 60%... Epoch: 9/10 Loss: 3.520 Epoch progess 66%... Epoch: 9/10 Loss: 3.517 Epoch progess 72%... Epoch: 9/10 Loss: 3.517 Epoch progess 77%... Epoch: 9/10 Loss: 3.528 Epoch progess 83%... Epoch: 9/10 Loss: 3.521 Epoch progess 89%... Epoch: 9/10 Loss: 3.521 Epoch progess 95%... Epoch: 9/10 Loss: 3.541 Epoch progess 0%... Epoch: 10/10 Loss: 3.420 Epoch progess 6%... Epoch: 10/10 Loss: 3.447 Epoch progess 12%... Epoch: 10/10 Loss: 3.431 Epoch progess 17%... Epoch: 10/10 Loss: 3.421 Epoch progess 23%... Epoch: 10/10 Loss: 3.439 Epoch progess 29%... Epoch: 10/10 Loss: 3.460 Epoch progess 35%... Epoch: 10/10 Loss: 3.440 Epoch progess 40%... Epoch: 10/10 Loss: 3.454 Epoch progess 46%... Epoch: 10/10 Loss: 3.472 Epoch progess 52%... Epoch: 10/10 Loss: 3.483 Epoch progess 58%... Epoch: 10/10 Loss: 3.460 Epoch progess 63%... Epoch: 10/10 Loss: 3.459 Epoch progess 69%... Epoch: 10/10 Loss: 3.483 Epoch progess 75%... Epoch: 10/10 Loss: 3.474 Epoch progess 81%... Epoch: 10/10 Loss: 3.459 Epoch progess 86%... Epoch: 10/10 Loss: 3.475 Epoch progess 92%... Epoch: 10/10 Loss: 3.483 Epoch progess 98%... Epoch: 10/10 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)+ I tried different sequence lenghts and using 200 and 15 values gave me similar results, but smaller value decreases iteration time, so I chose it.+ I tried hidden_dim 256, 512 and 1024. 512 seem to be the optimal choice.+ I tried n_layers 3, but it increased iteration time considerably, so I decided to stick with 2. + I chose batch size of 1024, this is the largest one my card can handle. I started with 50 and it was very slow.+ Emdedding size and learning rate are the same as in sentimentRNN notebook. I tried to change embedding size, but 400 seem to work well. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: o!" elaine:" oh, you know you know, i was wondering... i think i'm a little tired of this. i was wondering if i could have to go to a hospital with a little while. jerry: well, i don't know.. elaine: what? jerry: well, i'm sorry to go. i got a good time. kramer:(to jerry) you know, the whole thing was the only time i ever had. jerry: oh, you know, you should have a good name, and i don't have any idea how i am. george: i know. i was just wondering... george:(to jerry) you know, it's like an old person who lives out. george: yeah, i think i'm going to get out of your life! kramer: hey. jerry:(to elaine) you know, i think you could have to get out of the way to go. george: what do you mean, you know, i was just thinking about the other person. george: yeah, but, i'm not a good guy. george:(smiling as he gets up) oh, i'm not gonna get some help.(kramer leaves) kramer:(to jerry and george) hey, what about the car? kramer: no, you got a problem?(jerry shakes the head and takes it off) jerry: hey, hey! jerry: oh, hi. george: hey.(he leaves) george: hey, hey. elaine: hey. kramer:(to jerry) i know, i was just curious. elaine: what? jerry: i think we could get the car. kramer: yeah. elaine: yeah? elaine: yeah, yeah. jerry:(still in the room) oh, you know, the whole thing is a good story, i think i ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_counts = Counter(text) # sorting the words from most to least frequent in text occurrence sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) # create int_to_vocab and vocab_to_int dictionaries int_to_vocab = {i: word for i, word in enumerate(sorted_vocab)} vocab_to_int = {word: i for i, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function dict_punc={} dict_punc['.']= '||Period||' dict_punc[',']= '||Comma||' dict_punc['"']= '||QuotationMark||' dict_punc[';']= '||Semicolon||' dict_punc['!']= '||ExclamationMark||' dict_punc['?']= '||QuestionMark||' dict_punc['(']= '||LeftParentheses||' dict_punc[')']= '||RightParentheses||' dict_punc['-']= '||Dash||' dict_punc['\n']= '||Return||' return dict_punc """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader import torch import numpy as np def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function overall_batch_size = batch_size * sequence_length n_batches = len(words)//overall_batch_size words = words[:n_batches * overall_batch_size] features = [] targets = [] for n in range(0, len(words) - sequence_length): extract = words[n:n+sequence_length+1] features.append(extract[:-1]) targets.append(extract[-1]) data = TensorDataset(torch.from_numpy(np.asarray(features)),torch.from_numpy(np.asarray(targets))) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle= True) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[29, 30, 31, 32, 33], [18, 19, 20, 21, 22], [12, 13, 14, 15, 16], [24, 25, 26, 27, 28], [ 9, 10, 11, 12, 13], [22, 23, 24, 25, 26], [ 0, 1, 2, 3, 4], [42, 43, 44, 45, 46], [44, 45, 46, 47, 48], [17, 18, 19, 20, 21]]) torch.Size([10]) tensor([34, 23, 17, 29, 14, 27, 5, 47, 49, 22]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.hidden_dim = hidden_dim self.n_layers = n_layers # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers,dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim, output_size) self.sig = nn.Sigmoid() def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # determine new output and new hidden state lstm_out, hidden = self.lstm(self.embedding(nn_input), hidden) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # format output by providning last batch of labels out = self.fc(lstm_out) out = out.view(batch_size, -1, self.output_size) out = out[:,-1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): rnn.cuda() inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization h = tuple([each.data for each in hidden]) rnn.zero_grad() output, h = rnn(inp, h) # calculate the loss and perform backprop loss = criterion(output, target) loss.backward() optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 75 # of words in a sequence # Batch Size batch_size = 256 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 100 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.468788607597351 Epoch: 1/10 Loss: 4.708209788322448 Epoch: 1/10 Loss: 4.5116928157806395 Epoch: 1/10 Loss: 4.3805000948905946 Epoch: 1/10 Loss: 4.276957492351532 Epoch: 1/10 Loss: 4.202009693145752 Epoch: 2/10 Loss: 4.089056338349434 Epoch: 2/10 Loss: 3.9647012057304383 Epoch: 2/10 Loss: 3.9526324934959414 Epoch: 2/10 Loss: 3.9264090890884398 Epoch: 2/10 Loss: 3.8922725286483764 Epoch: 2/10 Loss: 3.886980987548828 Epoch: 3/10 Loss: 3.793838778587237 Epoch: 3/10 Loss: 3.698517692089081 Epoch: 3/10 Loss: 3.694029365062714 Epoch: 3/10 Loss: 3.693326570510864 Epoch: 3/10 Loss: 3.6970602197647096 Epoch: 3/10 Loss: 3.681812164783478 Epoch: 4/10 Loss: 3.6275707034843614 Epoch: 4/10 Loss: 3.5559589643478393 Epoch: 4/10 Loss: 3.558397488117218 Epoch: 4/10 Loss: 3.569981798648834 Epoch: 4/10 Loss: 3.550428279876709 Epoch: 4/10 Loss: 3.5651992645263673 Epoch: 5/10 Loss: 3.504249768463151 Epoch: 5/10 Loss: 3.460891184806824 Epoch: 5/10 Loss: 3.4593525285720825 Epoch: 5/10 Loss: 3.4697485666275023 Epoch: 5/10 Loss: 3.466137366771698 Epoch: 5/10 Loss: 3.4760731177330015 Epoch: 6/10 Loss: 3.486960964283275 Epoch: 6/10 Loss: 3.4841730070114134 Epoch: 6/10 Loss: 3.4751413831710813 Epoch: 6/10 Loss: 3.4929092803001405 Epoch: 6/10 Loss: 3.4733638048171995 Epoch: 6/10 Loss: 3.4908827805519103 Epoch: 7/10 Loss: 3.553412668571834 Epoch: 7/10 Loss: 3.596403796195984 Epoch: 7/10 Loss: 3.570721734046936 Epoch: 7/10 Loss: 3.5697068161964416 Epoch: 7/10 Loss: 3.552559132575989 Epoch: 7/10 Loss: 3.5417642970085144 Epoch: 8/10 Loss: 3.4532359601072065 Epoch: 8/10 Loss: 3.4146340131759643 Epoch: 8/10 Loss: 3.4002895312309267 Epoch: 8/10 Loss: 3.392551321029663 Epoch: 8/10 Loss: 3.399917004108429 Epoch: 8/10 Loss: 3.3987038106918335 Epoch: 9/10 Loss: 3.313203875207047 Epoch: 9/10 Loss: 3.2371962213516237 Epoch: 9/10 Loss: 3.2601167340278625 Epoch: 9/10 Loss: 3.265363881111145 Epoch: 9/10 Loss: 3.2717169580459595 Epoch: 9/10 Loss: 3.2813616585731507 Epoch: 10/10 Loss: 3.188305862083073 Epoch: 10/10 Loss: 3.118462990283966 Epoch: 10/10 Loss: 3.1387903776168824 Epoch: 10/10 Loss: 3.1454210653305053 Epoch: 10/10 Loss: 3.1648027210235594 Epoch: 10/10 Loss: 3.1711217975616455 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)I played around with the three values for sequence_length, hidden_dim and n_layers until I found a setting which reduced the loss below 3.5 for 10 epochs.**sequence_length = 75** I experimented with several values for sequence length. In general, the shorter the sequence, the faster the training. The longer the sequence, the better the results **hidden_dim = 512**The higher the values, the better the results but also the longer the training took.**n_layers = 2**I took the value suggested in the course, i.e. 2 for n_layers. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') #print (trained_rnn) ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: # MP change current_seq = current_seq.cpu() # MP change current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 500 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry:...(they both laugh) i mean it's a lot of pressure, and the big screen. george:(laughs) oh, i got the money! i'm sure you were in the lobby! elaine:(shouting) well, i don't think so. elaine: well, what d'you think? george: what is that, a vampire? jerry: well, i was trying to make a little gangrene. elaine:(looking at the door) well, that's why we just need a job. jerry:(to george) what are you doing? george:(looking at her watch) well, i guess. jerry: so you think i can go out? jerry: no. no. no... george:(to jerry) what about you? elaine: well, i don't know what this is. i don't have to do something like that. jerry: no, no, no. jerry: no, i don't think so. elaine: no. jerry: i can't do that. george: i can't do this. you don't wanna have to do this. jerry: what are you gonna do? george: you know... i think that's it. i don't want to see him. jerry: you mean," oh no! i don't want to talk about this. i mean, i know i could go to the movies..." george: i can't. jerry: no, you can't...... jerry: no, no... no. i can't. i'm gonna be a good person. i don't have a job... george: i know, i don't want to see her, so i can get going. george: you know, i mean, i was just thinking about it, you know, you know what? i mean, what are you doing with this now? kramer: well, i'm sure you flourish. i mean, what is it about? jerry: i don't think so. george: well, maybe you should see each other... jerry: no, no, i don't know. no, no, no no. i can't go to the bathroom... george: i can't. i don't think i can get you. george: no. jerry: so what do you think? george: well, i don't ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # Capture all unique words text = set(text) # Use enumerate to number each unique word # Convert to a dictionary vocab_to_int = {word: x for x, word in enumerate(text)} int_to_vocab = {value: key for key, value in vocab_to_int.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function punc_tokens = {'.': '||Period||', '"': '||Quotation_Mark||', ',': '||Comma||', ';': '||Semicolon||', '!': '||Exclamation_mark||', '?': '||Question_mark||', '(': '||Left_Parentheses||', ')': '||Right_Parentheses||', '-': '||Dash||', '\n': '||Return||' } return punc_tokens """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # Create list for all features and target # Convert to tensor later features = list() target = list() # Set a tracking variable equal to sequence_length # Also set intial index # Keep track that each loops captures values of # sequence_length and that it doesn't go out of range track = sequence_length idx = 0 while track != len(words): features.append(words[idx:track]) target.append(words[track]) track += 1 idx += 1 feature_tensor, target_tensor = torch.from_numpy(np.array(features)), torch.from_numpy(np.array(target)) data = TensorDataset(feature_tensor, target_tensor) dataloader = DataLoader(data, batch_size=batch_size, shuffle=True) # return a dataloader return dataloader ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 27, 28, 29, 30, 31], [ 28, 29, 30, 31, 32], [ 11, 12, 13, 14, 15], [ 2, 3, 4, 5, 6], [ 33, 34, 35, 36, 37], [ 12, 13, 14, 15, 16], [ 39, 40, 41, 42, 43], [ 44, 45, 46, 47, 48], [ 41, 42, 43, 44, 45], [ 17, 18, 19, 20, 21]]) torch.Size([10]) tensor([ 32, 33, 16, 7, 38, 17, 44, 49, 46, 22]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.vocab_size = vocab_size self.output_size = output_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers self.dropout = dropout # define model layers self.embed = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.dropout = nn.Dropout(0.25) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) embedding = self.embed(nn_input) output, hidden = self.lstm(embedding, hidden) output = output.contiguous().view(-1, self.hidden_dim) output = self.dropout(output) output = self.fc(output) output = output.view(batch_size, -1, self.output_size) # return one batch of output word scores and the hidden state return output[:, -1], hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: inp, target = inp.cuda(), target.cuda() # Create new variables for the hidden state hidden = tuple([each.data for each in hidden]) # Zero out gradients for each loop rnn.zero_grad() # Perform backpropagation and optimization output, hidden = rnn(inp, hidden) loss = criterion(output, target) loss.backward() # Apply clip_grad_norm to prevent exploding gradients nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 256 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 15 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 3 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 15 epoch(s)... Epoch: 1/15 Loss: 5.932481727600098 Epoch: 1/15 Loss: 5.609589366912842 Epoch: 1/15 Loss: 4.915335075378418 Epoch: 1/15 Loss: 4.662799255371094 Epoch: 1/15 Loss: 4.524736275672913 Epoch: 1/15 Loss: 4.461187871456146 Epoch: 2/15 Loss: 4.318342820415652 Epoch: 2/15 Loss: 4.241352446079254 Epoch: 2/15 Loss: 4.198463047981262 Epoch: 2/15 Loss: 4.1829080476760865 Epoch: 2/15 Loss: 4.155256084442138 Epoch: 2/15 Loss: 4.141346951007843 Epoch: 3/15 Loss: 4.064674224068479 Epoch: 3/15 Loss: 3.996867968082428 Epoch: 3/15 Loss: 3.989917013168335 Epoch: 3/15 Loss: 3.9693440270423888 Epoch: 3/15 Loss: 3.965656131744385 Epoch: 3/15 Loss: 3.9609901819229125 Epoch: 4/15 Loss: 3.891640623652838 Epoch: 4/15 Loss: 3.830382008075714 Epoch: 4/15 Loss: 3.8481295218467713 Epoch: 4/15 Loss: 3.8383309936523435 Epoch: 4/15 Loss: 3.8204400143623354 Epoch: 4/15 Loss: 3.8388526749610903 Epoch: 5/15 Loss: 3.7714360724619733 Epoch: 5/15 Loss: 3.7292725639343263 Epoch: 5/15 Loss: 3.7187277369499205 Epoch: 5/15 Loss: 3.72862787771225 Epoch: 5/15 Loss: 3.7329050831794737 Epoch: 5/15 Loss: 3.735792852401733 Epoch: 6/15 Loss: 3.6696951813329526 Epoch: 6/15 Loss: 3.630079164505005 Epoch: 6/15 Loss: 3.6309495787620545 Epoch: 6/15 Loss: 3.653272488117218 Epoch: 6/15 Loss: 3.6412178597450255 Epoch: 6/15 Loss: 3.6696426706314087 Epoch: 7/15 Loss: 3.6001835252211345 Epoch: 7/15 Loss: 3.564189603805542 Epoch: 7/15 Loss: 3.566000518321991 Epoch: 7/15 Loss: 3.5795662059783937 Epoch: 7/15 Loss: 3.588450217247009 Epoch: 7/15 Loss: 3.585212655544281 Epoch: 8/15 Loss: 3.5395417828870013 Epoch: 8/15 Loss: 3.5026482157707215 Epoch: 8/15 Loss: 3.512623707294464 Epoch: 8/15 Loss: 3.5089778084754943 Epoch: 8/15 Loss: 3.5217876381874085 Epoch: 8/15 Loss: 3.545771559238434 Epoch: 9/15 Loss: 3.4811750468684406 Epoch: 9/15 Loss: 3.430513657093048 Epoch: 9/15 Loss: 3.456518579483032 Epoch: 9/15 Loss: 3.4504245810508727 Epoch: 9/15 Loss: 3.472285758495331 Epoch: 9/15 Loss: 3.4976372919082643 Epoch: 10/15 Loss: 3.432078034897161 Epoch: 10/15 Loss: 3.378758978843689 Epoch: 10/15 Loss: 3.414504225730896 Epoch: 10/15 Loss: 3.423582736492157 Epoch: 10/15 Loss: 3.425485800266266 Epoch: 10/15 Loss: 3.4443059549331667 Epoch: 11/15 Loss: 3.390011310335097 Epoch: 11/15 Loss: 3.3476593317985537 Epoch: 11/15 Loss: 3.3624373059272767 Epoch: 11/15 Loss: 3.3882552642822263 Epoch: 11/15 Loss: 3.378609456539154 Epoch: 11/15 Loss: 3.4005018153190614 Epoch: 12/15 Loss: 3.3481186279436437 Epoch: 12/15 Loss: 3.312580629825592 Epoch: 12/15 Loss: 3.3290738682746888 Epoch: 12/15 Loss: 3.3391229257583617 Epoch: 12/15 Loss: 3.3450065274238585 Epoch: 12/15 Loss: 3.360274095058441 Epoch: 13/15 Loss: 3.313242359616892 Epoch: 13/15 Loss: 3.273540425777435 Epoch: 13/15 Loss: 3.287512360572815 Epoch: 13/15 Loss: 3.2953737897872926 Epoch: 13/15 Loss: 3.322347050666809 Epoch: 13/15 Loss: 3.3345552592277525 Epoch: 14/15 Loss: 3.280492841470532 Epoch: 14/15 Loss: 3.2335841975212096 Epoch: 14/15 Loss: 3.252591944694519 Epoch: 14/15 Loss: 3.257689573764801 Epoch: 14/15 Loss: 3.275568275928497 Epoch: 14/15 Loss: 3.307724580287933 Epoch: 15/15 Loss: 3.2501531638265626 Epoch: 15/15 Loss: 3.2193027510643004 Epoch: 15/15 Loss: 3.2298267803192138 Epoch: 15/15 Loss: 3.2346806817054747 Epoch: 15/15 Loss: 3.250320815086365 Epoch: 15/15 Loss: 3.2484185514450075 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)My models hyperparameters were mainly influenced by the standard recommended parameters for an RNN model. I started of by using a batch size of 256. As opposed to having larger batch sizes or smaller batch size, the standard is around 128-256. I started of by us 256 hidden dimension which I got average results in. After changing it to 512, I noticed significant improvement. As you may notice, the model was still improving and would have continue to improve with more epochs had it not been for my limited GPU hours.For the the number of layers, I also saw improvement when I used 3 layer instead of my initial 2 layers. I applied the recommended 0.001 learning rate and felt no need to alter that particular parameter. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 750 # modify the length to your preference prime_word = 'elaine' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output elaine: distracted apparatus huhh argh chunky. jerry: hey, what do you think? kramer: oh yeah, i know what i did. jerry: well, you know.. i know, you don't have to talk to you. george:(to elaine) hey... george:(to the intercom) you know i got the new plates. kramer: yeah..(to elaine)... george:(to the waitress) oh, yeah? kramer:(laughing) well, you know, i think i'm gonna be a good driver.(to george) so what? newman: oh, i think you know. jerry: oh, no, no, no, no... jerry:(to kramer) i don't know, i think i was just a comedian! jerry: oh my god.(she leaves) elaine: hey, jerry. jerry:(to george) hey, hey, how ya doing? elaine: what are you talking about? jerry: i got it. george: well you know you don't think you have to talk with him? george: i don't know, i just wanted you to get the money. elaine: oh, i got a great idea. kramer: oh, you know i think i was gonna be the usher of a friend of mine. jerry: well, i guess you could have said something. kramer:(to jerry) oh, you don't have to go. kramer: i don't want to talk to him about that, but you don't want to get together. george: i thought it was the same way in a long time. george: oh, i know. kramer: well, you know, i'm gonna call her. i got a lot of coffee.(elaine leaves.) jerry:(to kramer) hey, what are you doing? george: i don't know. i don't care. elaine: i know what i'm gonna do. elaine: i thought it was a little bit.(to george) hey, how 'bout you? elaine: well, i was thinking about a lot of people, you know, i was gonna be honest. i'm a man. jerry:(to elaine) you know i was just curious, i don't know if you don't have any trouble, but i got to get it out. jerry: i thought you were in a hospital. elaine: well, i'm gonna go see that... jerry: oh, i got it. i just wanted to be a little chat. i don't know if it was a little trouble. kramer: well, you should see the bathrooms to the left. kramer:(to jerry) well, i just want to see you again.(they shake a kiss) kramer: yeah. jerry: oh.......... george: i don't know. george:(to kramer) what are you doing here? george: i'm a comedian. jerry: oh yeah, i got it. jerry: oh, yeah, yeah.. i don't know what you want. kramer: i don't think so. george:(to jerry) i know, but you know, the other door is not a little uncomfortable. elaine:(to george and george) hey. elaine:(to elaine) you can't get me to a woman, and i think i was in the shower. kramer: i got a big problem. i can't get you a discount.(to jerry) so you got a little problem ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # find out unique text elements text_uniq = np.unique(text) # build the dicts vocab_to_int, int_to_vocab = {},{} for i, vocab in enumerate(text_uniq): vocab_to_int[vocab] = i int_to_vocab[i] = vocab # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token_dict = {} key_list = ['.',',','"',';','!','?','(',')','-','\n'] value_list = ['||period||','||comma||','||question_mark||','||semicolon||','||exclamation_mark||','||question_mark||', '||left_parentheses||','||right_parentheses||','||dash||','||return||'] for key,value in zip(key_list,value_list): token_dict[key] = value return token_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # divide words sequence into groups size_feature = sequence_length size_target = 1 num_complete_tensors = len(words)-size_feature-size_target+1 feature_tensors, target_tensors = [],[] for i in range(num_complete_tensors): cur_chunk = words[i:i+size_feature] feature_tensors.append(torch.tensor(cur_chunk)) target_tensors.append(torch.tensor(words[i+size_feature:i+size_feature+size_target])) feature_tensors, target_tensors = torch.stack(feature_tensors, dim=0), torch.stack(target_tensors, dim=0).squeeze() # prepare dataset and dataloader data = TensorDataset(feature_tensors, target_tensors) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own batch_dl = batch_data(list(int_to_vocab.keys()), 5, 12) print('Number of batches: {:d}'.format(len(batch_dl))) for i,(x,y) in enumerate(batch_dl): if i == 0: print('data shape:',x.numpy().shape) print('target shape:',y.numpy().shape) else: break ###Output Number of batches: 1782 data shape: (12, 5) target shape: (12,) ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function self.embedding = nn.Embedding(vocab_size,embedding_dim) # set class variables self.vocab_size = vocab_size self.output_size = output_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers # define model layers self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function if train_on_gpu: nn_input = nn_input.cuda() batch_size = nn_input.size(0) embeds = self.embedding(nn_input) lstm_out, hidden_out = self.lstm(embeds, hidden) lstm_out = lstm_out.contiguous().view(-1,self.hidden_dim) out = self.fc(lstm_out) out = out.view(batch_size, -1, self.output_size) out = out[:,-1] # return one batch of output word scores and the hidden state return out, hidden_out def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function h_0,c_0 = torch.randn(self.n_layers, batch_size, self.hidden_dim), torch.randn(self.n_layers, batch_size, self.hidden_dim) # initialize hidden state with zero weights, and move to GPU if available if train_on_gpu: h_0, c_0 = h_0.cuda(), c_0.cuda() return (h_0, c_0) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available hidden = tuple([item.data for item in hidden]) if train_on_gpu: rnn = rnn.cuda() inp = inp.cuda() target = target.cuda() optimizer.zero_grad() # perform backpropagation and optimization output, hidden_out = rnn(inp,hidden) # return the loss over a batch and the hidden state produced by our model loss = criterion(output,target) loss.backward() optimizer.step() return loss.item(), hidden_out # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 20 # Learning Rate learning_rate = 1e-3 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 256 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 3 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 20 epoch(s)... Epoch: 1/20 Loss: 5.8827545433044435 Epoch: 1/20 Loss: 5.471796773910523 Epoch: 1/20 Loss: 4.897974108695984 Epoch: 1/20 Loss: 4.709197922229767 Epoch: 1/20 Loss: 4.672951670646667 Epoch: 1/20 Loss: 4.684121459960937 Epoch: 1/20 Loss: 4.5736645269393925 Epoch: 1/20 Loss: 4.434690805912018 Epoch: 1/20 Loss: 4.401263837337494 Epoch: 1/20 Loss: 4.339982184410095 Epoch: 1/20 Loss: 4.4515293908119205 Epoch: 1/20 Loss: 4.473567490577698 Epoch: 1/20 Loss: 4.472095362663269 Epoch: 2/20 Loss: 4.2811312776354935 Epoch: 2/20 Loss: 4.14436742734909 Epoch: 2/20 Loss: 4.041140449523926 Epoch: 2/20 Loss: 3.984357841014862 Epoch: 2/20 Loss: 4.029985696792602 Epoch: 2/20 Loss: 4.107645743370056 Epoch: 2/20 Loss: 4.037956480503082 Epoch: 2/20 Loss: 3.9308385152816774 Epoch: 2/20 Loss: 3.9431484541893007 Epoch: 2/20 Loss: 3.8947560715675356 Epoch: 2/20 Loss: 4.013376460075379 Epoch: 2/20 Loss: 4.011820290088654 Epoch: 2/20 Loss: 4.020317241191864 Epoch: 3/20 Loss: 3.9347498252049813 Epoch: 3/20 Loss: 3.8635044817924498 Epoch: 3/20 Loss: 3.79850256729126 Epoch: 3/20 Loss: 3.760134382724762 Epoch: 3/20 Loss: 3.804867191314697 Epoch: 3/20 Loss: 3.895087893486023 Epoch: 3/20 Loss: 3.8341637301445006 Epoch: 3/20 Loss: 3.744856756210327 Epoch: 3/20 Loss: 3.7439158334732054 Epoch: 3/20 Loss: 3.6921118960380555 Epoch: 3/20 Loss: 3.814968077659607 Epoch: 3/20 Loss: 3.818302644252777 Epoch: 3/20 Loss: 3.8344378204345704 Epoch: 4/20 Loss: 3.749680287820759 Epoch: 4/20 Loss: 3.7008279113769533 Epoch: 4/20 Loss: 3.6371273674964906 Epoch: 4/20 Loss: 3.6005082235336303 Epoch: 4/20 Loss: 3.644476945400238 Epoch: 4/20 Loss: 3.760942946910858 Epoch: 4/20 Loss: 3.6968390197753904 Epoch: 4/20 Loss: 3.606396040916443 Epoch: 4/20 Loss: 3.592374572753906 Epoch: 4/20 Loss: 3.566641948223114 Epoch: 4/20 Loss: 3.661299341201782 Epoch: 4/20 Loss: 3.681837968349457 Epoch: 4/20 Loss: 3.692543801307678 Epoch: 5/20 Loss: 3.6275897530456325 Epoch: 5/20 Loss: 3.581077600002289 Epoch: 5/20 Loss: 3.532329022884369 Epoch: 5/20 Loss: 3.4922583351135255 Epoch: 5/20 Loss: 3.535411409854889 Epoch: 5/20 Loss: 3.643982630252838 Epoch: 5/20 Loss: 3.6017822046279906 Epoch: 5/20 Loss: 3.5154053139686585 Epoch: 5/20 Loss: 3.4829505133628844 Epoch: 5/20 Loss: 3.4649724316596986 Epoch: 5/20 Loss: 3.573293375492096 Epoch: 5/20 Loss: 3.587392466545105 Epoch: 5/20 Loss: 3.5993476929664614 Epoch: 6/20 Loss: 3.539543304896084 Epoch: 6/20 Loss: 3.4914314432144167 Epoch: 6/20 Loss: 3.4489063720703124 Epoch: 6/20 Loss: 3.409725233078003 Epoch: 6/20 Loss: 3.451918685913086 Epoch: 6/20 Loss: 3.5574803409576417 Epoch: 6/20 Loss: 3.527270511627197 Epoch: 6/20 Loss: 3.4441512217521666 Epoch: 6/20 Loss: 3.4065813708305357 Epoch: 6/20 Loss: 3.3922367510795595 Epoch: 6/20 Loss: 3.498180916309357 Epoch: 6/20 Loss: 3.5089379954338074 Epoch: 6/20 Loss: 3.5202835512161257 Epoch: 7/20 Loss: 3.466540114429344 Epoch: 7/20 Loss: 3.4293387637138366 Epoch: 7/20 Loss: 3.37921977186203 Epoch: 7/20 Loss: 3.3467257833480835 Epoch: 7/20 Loss: 3.3857890625 Epoch: 7/20 Loss: 3.4920310673713684 Epoch: 7/20 Loss: 3.4634868988990783 Epoch: 7/20 Loss: 3.3942826914787294 Epoch: 7/20 Loss: 3.3400264410972595 Epoch: 7/20 Loss: 3.335711709022522 Epoch: 7/20 Loss: 3.435256112575531 Epoch: 7/20 Loss: 3.4504217257499694 Epoch: 7/20 Loss: 3.453887300491333 Epoch: 8/20 Loss: 3.4101044391084874 Epoch: 8/20 Loss: 3.3705474805831908 Epoch: 8/20 Loss: 3.3313017230033877 Epoch: 8/20 Loss: 3.3031418352127075 Epoch: 8/20 Loss: 3.322565710067749 Epoch: 8/20 Loss: 3.4285081362724306 Epoch: 8/20 Loss: 3.4071185383796694 Epoch: 8/20 Loss: 3.3390920276641847 Epoch: 8/20 Loss: 3.285259199619293 Epoch: 8/20 Loss: 3.28136901140213 Epoch: 8/20 Loss: 3.3814146580696107 Epoch: 8/20 Loss: 3.3921678657531737 Epoch: 8/20 Loss: 3.402129384994507 Epoch: 9/20 Loss: 3.367977087465725 Epoch: 9/20 Loss: 3.3292803716659547 Epoch: 9/20 Loss: 3.285241536617279 Epoch: 9/20 Loss: 3.2622166481018064 Epoch: 9/20 Loss: 3.28110412979126 Epoch: 9/20 Loss: 3.377574740886688 Epoch: 9/20 Loss: 3.3644859809875487 Epoch: 9/20 Loss: 3.2914617862701414 Epoch: 9/20 Loss: 3.245231585979462 Epoch: 9/20 Loss: 3.24176548910141 Epoch: 9/20 Loss: 3.334145568370819 Epoch: 9/20 Loss: 3.355361909389496 Epoch: 9/20 Loss: 3.362131910800934 Epoch: 10/20 Loss: 3.323807299813742 Epoch: 10/20 Loss: 3.2924648237228396 Epoch: 10/20 Loss: 3.252436424255371 Epoch: 10/20 Loss: 3.225214361667633 Epoch: 10/20 Loss: 3.2471663670539854 Epoch: 10/20 Loss: 3.33991685628891 Epoch: 10/20 Loss: 3.330364699840546 Epoch: 10/20 Loss: 3.247652466773987 Epoch: 10/20 Loss: 3.2045754976272582 Epoch: 10/20 Loss: 3.210772439956665 Epoch: 10/20 Loss: 3.3014297075271606 Epoch: 10/20 Loss: 3.312302227973938 Epoch: 10/20 Loss: 3.32081632900238 Epoch: 11/20 Loss: 3.2925097076270355 Epoch: 11/20 Loss: 3.2598066701889037 Epoch: 11/20 Loss: 3.2215188722610475 Epoch: 11/20 Loss: 3.192022349834442 Epoch: 11/20 Loss: 3.207159646987915 Epoch: 11/20 Loss: 3.3021978573799133 Epoch: 11/20 Loss: 3.295800669670105 Epoch: 11/20 Loss: 3.2167235169410704 Epoch: 11/20 Loss: 3.1715054354667664 Epoch: 11/20 Loss: 3.180895182132721 Epoch: 11/20 Loss: 3.2694139246940614 Epoch: 11/20 Loss: 3.2763503761291504 Epoch: 11/20 Loss: 3.2853624773025514 Epoch: 12/20 Loss: 3.2595213640585032 Epoch: 12/20 Loss: 3.228976185321808 Epoch: 12/20 Loss: 3.1904720010757446 Epoch: 12/20 Loss: 3.1677104144096373 Epoch: 12/20 Loss: 3.1771764454841613 Epoch: 12/20 Loss: 3.2625682702064513 Epoch: 12/20 Loss: 3.2598324780464174 Epoch: 12/20 Loss: 3.1825680804252623 Epoch: 12/20 Loss: 3.14391504573822 Epoch: 12/20 Loss: 3.1515842213630676 Epoch: 12/20 Loss: 3.2465812997817993 Epoch: 12/20 Loss: 3.255126944065094 Epoch: 12/20 Loss: 3.252337818145752 Epoch: 13/20 Loss: 3.228453645273136 Epoch: 13/20 Loss: 3.1969143118858336 Epoch: 13/20 Loss: 3.160392182350159 Epoch: 13/20 Loss: 3.1498020768165587 Epoch: 13/20 Loss: 3.1527626843452454 Epoch: 13/20 Loss: 3.23797203540802 Epoch: 13/20 Loss: 3.2397040314674377 Epoch: 13/20 Loss: 3.159898642539978 Epoch: 13/20 Loss: 3.112909959793091 Epoch: 13/20 Loss: 3.126127009868622 Epoch: 13/20 Loss: 3.216250279903412 Epoch: 13/20 Loss: 3.2206654920578 Epoch: 13/20 Loss: 3.2250590567588806 Epoch: 14/20 Loss: 3.2057413028858766 Epoch: 14/20 Loss: 3.174961276054382 Epoch: 14/20 Loss: 3.1433686108589174 Epoch: 14/20 Loss: 3.128344171047211 Epoch: 14/20 Loss: 3.1300667433738707 Epoch: 14/20 Loss: 3.21014280462265 Epoch: 14/20 Loss: 3.2106705827713014 Epoch: 14/20 Loss: 3.1333493208885193 Epoch: 14/20 Loss: 3.0931936955451964 Epoch: 14/20 Loss: 3.118290696144104 Epoch: 14/20 Loss: 3.1940725479125978 Epoch: 14/20 Loss: 3.1885512571334838 Epoch: 14/20 Loss: 3.198356782913208 Epoch: 15/20 Loss: 3.1788542937445077 Epoch: 15/20 Loss: 3.1494881253242495 Epoch: 15/20 Loss: 3.12201313829422 Epoch: 15/20 Loss: 3.1047225017547606 Epoch: 15/20 Loss: 3.1048373336791992 Epoch: 15/20 Loss: 3.1902570605278013 Epoch: 15/20 Loss: 3.184747663974762 Epoch: 15/20 Loss: 3.1126883883476255 Epoch: 15/20 Loss: 3.0690169372558596 Epoch: 15/20 Loss: 3.0904337477684023 Epoch: 15/20 Loss: 3.170151035308838 Epoch: 15/20 Loss: 3.176811032772064 Epoch: 15/20 Loss: 3.1765131573677063 Epoch: 16/20 Loss: 3.1604603412104586 Epoch: 16/20 Loss: 3.1303557682037355 Epoch: 16/20 Loss: 3.1007839751243593 Epoch: 16/20 Loss: 3.090423481464386 Epoch: 16/20 Loss: 3.080367215156555 Epoch: 16/20 Loss: 3.1715230650901796 Epoch: 16/20 Loss: 3.1666041359901427 Epoch: 16/20 Loss: 3.092101203918457 Epoch: 16/20 Loss: 3.0528088274002076 Epoch: 16/20 Loss: 3.0694243574142455 Epoch: 16/20 Loss: 3.1546624503135683 Epoch: 16/20 Loss: 3.1471745347976685 Epoch: 16/20 Loss: 3.1516128964424133 Epoch: 17/20 Loss: 3.146731736367209 Epoch: 17/20 Loss: 3.1116217761039735 Epoch: 17/20 Loss: 3.0825230402946473 Epoch: 17/20 Loss: 3.074547887802124 Epoch: 17/20 Loss: 3.0634388513565063 Epoch: 17/20 Loss: 3.1554924945831297 Epoch: 17/20 Loss: 3.145382293701172 Epoch: 17/20 Loss: 3.0732890739440917 Epoch: 17/20 Loss: 3.0398951873779296 Epoch: 17/20 Loss: 3.0498748807907106 Epoch: 17/20 Loss: 3.1394288368225096 Epoch: 17/20 Loss: 3.128764380455017 Epoch: 17/20 Loss: 3.131531785964966 Epoch: 18/20 Loss: 3.126443617853218 Epoch: 18/20 Loss: 3.097953369140625 Epoch: 18/20 Loss: 3.069013321876526 Epoch: 18/20 Loss: 3.059356016159058 Epoch: 18/20 Loss: 3.0507427201271056 Epoch: 18/20 Loss: 3.1432304277420045 Epoch: 18/20 Loss: 3.129775236606598 Epoch: 18/20 Loss: 3.058178415775299 Epoch: 18/20 Loss: 3.0284024324417116 Epoch: 18/20 Loss: 3.041048900604248 Epoch: 18/20 Loss: 3.1125103726387024 Epoch: 18/20 Loss: 3.1079008116722107 Epoch: 18/20 Loss: 3.114216778755188 Epoch: 19/20 Loss: 3.1124168340389695 Epoch: 19/20 Loss: 3.080207706451416 Epoch: 19/20 Loss: 3.0497253031730653 Epoch: 19/20 Loss: 3.045476428985596 Epoch: 19/20 Loss: 3.0336588478088378 Epoch: 19/20 Loss: 3.1272361021041872 Epoch: 19/20 Loss: 3.1134327125549315 Epoch: 19/20 Loss: 3.0428115601539614 Epoch: 19/20 Loss: 3.008831652164459 Epoch: 19/20 Loss: 3.027957892894745 Epoch: 19/20 Loss: 3.095298026561737 Epoch: 19/20 Loss: 3.09766544675827 Epoch: 19/20 Loss: 3.120760479927063 Epoch: 20/20 Loss: 3.092309493152473 Epoch: 20/20 Loss: 3.0657439670562745 Epoch: 20/20 Loss: 3.042880407333374 Epoch: 20/20 Loss: 3.033113569736481 Epoch: 20/20 Loss: 3.0219835548400877 Epoch: 20/20 Loss: 3.1120588240623475 Epoch: 20/20 Loss: 3.100849515914917 Epoch: 20/20 Loss: 3.0251371483802796 Epoch: 20/20 Loss: 2.994367801189423 Epoch: 20/20 Loss: 3.0078635754585266 Epoch: 20/20 Loss: 3.076541030406952 Epoch: 20/20 Loss: 3.0813296260833742 Epoch: 20/20 Loss: 3.0846407613754274 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** By a few trial-and-error tests. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: a half of us. jerry: what" kramer: yeah. kramer: hey, i got a castle. elaine: i think i could go to the bathroom today. i'm going to be honest with the girl. george: well, i know how much it is. i mean, you don't want to be ashamed of us. i mean, i would have to get you a little bit. jerry: i think you're a real animal. captain: you can't do it. jerry: you can't get a lesson. kramer: well, i can't get a call with you to the *have*. jerry: so you don't want it" george: no, i got it from the pet and then i can go back to the bathroom. george: i don't understand. george: you know what" what is that" kramer: oh, no, no, no! jerry: i don't care! jerry:(to himself) hey. jerry: hey! jerry: i got a challenge! elaine: oh, no. jerry:(agonised) oh, i'm sure i'm not a fine guy. jerry: so... elaine: oh, thank you, lloyd question, and you know, i don't know what the electricity is. jerry:(doubtful) what do you mean" jerry: i don't know, but you know what they did with the same thing. jerry:(horrified) oh, i can't believe that. i can't believe you could do something. george: what about the movie" kramer: yeah. elaine: so, uh, uh, what are you doing" george: i think it's a comedian, and it's a good one, and the only thing i was in korea, and the police will be. elaine: oh, you know what, what" sally: i can't do it! estelle: i don't care ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ vocab_to_int = {} int_to_vocab = {} # Build a dictionary that maps words to integers for index, word in enumerate(set(text)): vocab_to_int[word] = index int_to_vocab[index] = word ## Other way of a creating a lookup table: ## This is shorter implementation and personally looks prettier, ## but uses more computing power, since it would loop through the text twice # vocab_to_int = {word: index for index, word in enumerate(set(text))} # int_to_vocab = {index: word for word, index in vocab_to_int.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ punctuation_tokens = { '.' : '||Period||', ',' : '||Comma||', '"' : '||Quotation_Mark||', ';' : '||Semicolon||', '!' : '||Exclamation_Mark||', '?' : '||Question_Mark||', '(' : '||Left_Parentheses||', ')' : '||Right_Parentheses||', '-' : '||Dash||', '\n': '||Return||' } return punctuation_tokens """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ n_batches = len(words)//batch_size # Get only full batches words = words[:n_batches*batch_size] # Get words sequence length words_seq = len(words) - sequence_length # Initialize features and targets array features, targets = [], [] # Iterate through words_seq array for index in range(0, words_seq): features.append(words[index: index + sequence_length]) targets.append(words[index + sequence_length]) # Create Tensor datasets data = TensorDataset(torch.from_numpy(np.array(features)), torch.from_numpy(np.array(targets))) # Define DataLoader with SHUFFLE enabled data_loader = torch.utils.data.DataLoader(data, shuffle=True, batch_size=batch_size) # Return a dataloader return data_loader ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 34, 35, 36, 37, 38], [ 42, 43, 44, 45, 46], [ 18, 19, 20, 21, 22], [ 26, 27, 28, 29, 30], [ 13, 14, 15, 16, 17], [ 40, 41, 42, 43, 44], [ 44, 45, 46, 47, 48], [ 19, 20, 21, 22, 23], [ 8, 9, 10, 11, 12], [ 39, 40, 41, 42, 43]]) torch.Size([10]) tensor([ 39, 47, 23, 31, 18, 45, 49, 24, 13, 44]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # Set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # Define embedding and LSTM layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # Define dropout layer self.dropout = nn.Dropout(dropout) # Define linear and sigmoid layers self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ batch_size = nn_input.size(0) # Apply embeddings and lstm_out embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) # Apply stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # Fully-connected layer out = self.fc(lstm_out) # Reshape Tensor into (batch_size, seq_length, output_size) out = out.view(batch_size, -1, self.output_size) out = out[:, -1] # get last batch # Return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # if GPU is available, move data to cuda if(train_on_gpu): inp, target = inp.cuda(), target.cuda() # creating new variables for the hidden state hidden = tuple([each.data for each in hidden]) # apply zero gradients rnn.zero_grad() # get the output and hidden state from our RNN model output, hidden = rnn(inp, hidden) # perform backpropagation loss = criterion(output, target) loss.backward() # prevent the exploding gradient problem nn.utils.clip_grad_norm_(rnn.parameters(), 5) # using clipping size 5 # perform optimization optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 15 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code import signal from contextlib import contextmanager import requests DELAY = INTERVAL = 4 * 60 # interval time in seconds MIN_DELAY = MIN_INTERVAL = 2 * 60 KEEPALIVE_URL = "https://nebula.udacity.com/api/v1/remote/keep-alive" TOKEN_URL = "http://metadata.google.internal/computeMetadata/v1/instance/attributes/keep_alive_token" TOKEN_HEADERS = {"Metadata-Flavor":"Google"} def _request_handler(headers): def _handler(signum, frame): requests.request("POST", KEEPALIVE_URL, headers=headers) return _handler @contextmanager def active_session(delay=DELAY, interval=INTERVAL): """ Example: from workspace_utils import active session with active_session(): # do long-running work here """ token = requests.request("GET", TOKEN_URL, headers=TOKEN_HEADERS).text headers = {'Authorization': "STAR " + token} delay = max(delay, MIN_DELAY) interval = max(interval, MIN_INTERVAL) original_handler = signal.getsignal(signal.SIGALRM) try: signal.signal(signal.SIGALRM, _request_handler(headers)) signal.setitimer(signal.ITIMER_REAL, delay, interval) yield finally: signal.signal(signal.SIGALRM, original_handler) signal.setitimer(signal.ITIMER_REAL, 0) def keep_awake(iterable, delay=DELAY, interval=INTERVAL): """ Example: from workspace_utils import keep_awake for i in keep_awake(range(5)): # do iteration with lots of work here """ with active_session(delay, interval): yield from iterable """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model with active_session(): trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.647586232185364 Epoch: 1/10 Loss: 4.915851899147034 Epoch: 1/10 Loss: 4.708997131824494 Epoch: 1/10 Loss: 4.584449920654297 Epoch: 1/10 Loss: 4.459322264194489 Epoch: 1/10 Loss: 4.3853831396102905 Epoch: 1/10 Loss: 4.355678760528565 Epoch: 1/10 Loss: 4.329544389247895 Epoch: 1/10 Loss: 4.2798150453567505 Epoch: 1/10 Loss: 4.2664533681869505 Epoch: 1/10 Loss: 4.207230734825134 Epoch: 1/10 Loss: 4.194660914421082 Epoch: 1/10 Loss: 4.160004375934601 Epoch: 2/10 Loss: 4.077065358723491 Epoch: 2/10 Loss: 3.9927687644958496 Epoch: 2/10 Loss: 3.9700258765220644 Epoch: 2/10 Loss: 3.965728746891022 Epoch: 2/10 Loss: 3.944202760219574 Epoch: 2/10 Loss: 3.9456622161865234 Epoch: 2/10 Loss: 3.9429451003074645 Epoch: 2/10 Loss: 3.9441390428543093 Epoch: 2/10 Loss: 3.9431638832092286 Epoch: 2/10 Loss: 3.9218858842849733 Epoch: 2/10 Loss: 3.94416619682312 Epoch: 2/10 Loss: 3.9136468710899353 Epoch: 2/10 Loss: 3.9300042304992675 Epoch: 3/10 Loss: 3.8301444031482887 Epoch: 3/10 Loss: 3.747689549922943 Epoch: 3/10 Loss: 3.7435680756568908 Epoch: 3/10 Loss: 3.7652660818099974 Epoch: 3/10 Loss: 3.780910517215729 Epoch: 3/10 Loss: 3.7442073192596435 Epoch: 3/10 Loss: 3.7715844507217406 Epoch: 3/10 Loss: 3.7534438972473145 Epoch: 3/10 Loss: 3.7664890785217287 Epoch: 3/10 Loss: 3.7494632449150087 Epoch: 3/10 Loss: 3.7663048615455628 Epoch: 3/10 Loss: 3.785918951511383 Epoch: 3/10 Loss: 3.7936558322906495 Epoch: 4/10 Loss: 3.6896489784737265 Epoch: 4/10 Loss: 3.6305820322036744 Epoch: 4/10 Loss: 3.6111019825935364 Epoch: 4/10 Loss: 3.629357347488403 Epoch: 4/10 Loss: 3.6163987798690798 Epoch: 4/10 Loss: 3.641990068435669 Epoch: 4/10 Loss: 3.628404330253601 Epoch: 4/10 Loss: 3.643685276031494 Epoch: 4/10 Loss: 3.662715617656708 Epoch: 4/10 Loss: 3.663536382675171 Epoch: 4/10 Loss: 3.6722543935775755 Epoch: 4/10 Loss: 3.663912796974182 Epoch: 4/10 Loss: 3.6782504148483275 Epoch: 5/10 Loss: 3.590292312882163 Epoch: 5/10 Loss: 3.5230266184806824 Epoch: 5/10 Loss: 3.537108985424042 Epoch: 5/10 Loss: 3.536691324710846 Epoch: 5/10 Loss: 3.552379696846008 Epoch: 5/10 Loss: 3.549173876285553 Epoch: 5/10 Loss: 3.5439232172966 Epoch: 5/10 Loss: 3.564034878730774 Epoch: 5/10 Loss: 3.5638724241256714 Epoch: 5/10 Loss: 3.5705464839935304 Epoch: 5/10 Loss: 3.5798576941490174 Epoch: 5/10 Loss: 3.590088435649872 Epoch: 5/10 Loss: 3.6058732466697694 Epoch: 6/10 Loss: 3.5092677732637108 Epoch: 6/10 Loss: 3.424694261074066 Epoch: 6/10 Loss: 3.4490982160568238 Epoch: 6/10 Loss: 3.44060208940506 Epoch: 6/10 Loss: 3.4697526264190675 Epoch: 6/10 Loss: 3.4857979879379273 Epoch: 6/10 Loss: 3.4981783933639528 Epoch: 6/10 Loss: 3.4996261191368103 Epoch: 6/10 Loss: 3.497036925792694 Epoch: 6/10 Loss: 3.4993367347717284 Epoch: 6/10 Loss: 3.5351843285560607 Epoch: 6/10 Loss: 3.5169530653953553 Epoch: 6/10 Loss: 3.5304459300041198 Epoch: 7/10 Loss: 3.453754098454783 Epoch: 7/10 Loss: 3.379715575695038 Epoch: 7/10 Loss: 3.393222677230835 Epoch: 7/10 Loss: 3.4129773449897765 Epoch: 7/10 Loss: 3.403028757095337 Epoch: 7/10 Loss: 3.423676063537598 Epoch: 7/10 Loss: 3.4175072388648986 Epoch: 7/10 Loss: 3.434573110103607 Epoch: 7/10 Loss: 3.452266815185547 Epoch: 7/10 Loss: 3.4461662254333496 Epoch: 7/10 Loss: 3.4583889331817628 Epoch: 7/10 Loss: 3.46296471118927 Epoch: 7/10 Loss: 3.4933126888275146 Epoch: 8/10 Loss: 3.3884432133564277 Epoch: 8/10 Loss: 3.3305090460777285 Epoch: 8/10 Loss: 3.3453262214660646 Epoch: 8/10 Loss: 3.3505094079971314 Epoch: 8/10 Loss: 3.3469587635993956 Epoch: 8/10 Loss: 3.3652437143325806 Epoch: 8/10 Loss: 3.374142222881317 Epoch: 8/10 Loss: 3.3998689737319947 Epoch: 8/10 Loss: 3.4054835710525513 Epoch: 8/10 Loss: 3.410038697242737 Epoch: 8/10 Loss: 3.405794072628021 Epoch: 8/10 Loss: 3.4406572251319885 Epoch: 8/10 Loss: 3.427229196548462 Epoch: 9/10 Loss: 3.357062491503629 Epoch: 9/10 Loss: 3.2949435071945192 Epoch: 9/10 Loss: 3.288629199028015 Epoch: 9/10 Loss: 3.3159893465042116 Epoch: 9/10 Loss: 3.335582625389099 Epoch: 9/10 Loss: 3.3342440614700317 Epoch: 9/10 Loss: 3.324640080451965 Epoch: 9/10 Loss: 3.3436761827468873 Epoch: 9/10 Loss: 3.340917959690094 Epoch: 9/10 Loss: 3.3731163539886473 Epoch: 9/10 Loss: 3.3803577036857604 Epoch: 9/10 Loss: 3.3862738556861878 Epoch: 9/10 Loss: 3.374608239173889 Epoch: 10/10 Loss: 3.313469806239625 Epoch: 10/10 Loss: 3.256133699417114 Epoch: 10/10 Loss: 3.278370774269104 Epoch: 10/10 Loss: 3.2552844524383544 Epoch: 10/10 Loss: 3.2916567215919494 Epoch: 10/10 Loss: 3.2963435263633727 Epoch: 10/10 Loss: 3.3065272932052614 Epoch: 10/10 Loss: 3.3204574265480042 Epoch: 10/10 Loss: 3.3246264982223512 Epoch: 10/10 Loss: 3.33449991941452 Epoch: 10/10 Loss: 3.343105429649353 Epoch: 10/10 Loss: 3.3348606910705567 Epoch: 10/10 Loss: 3.35474857711792 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:**The majority of the hyperparameters were chosen by experimenting and based on the previous experience, as well as, the lessons before.- I choose `sequence_length = 15`. Using larger `sequence_length` results in the slower training, however very small `sequence_length` reduces the context of the text and results in a higher loss. Through experimenting, I've decided to choose `15` as a reasonable balance between training time and training results.- I choose `batch_size = 128`. I've also tried experimenting `32`, `64` and `256`. However, the larger `batch_size` requires more computational resources so I've settled on `128` as this provided optimal results. I might use a different size, but I believe for my `learning_rate` it's an optimal choice.- I choose `num_epochs = 10`. Generally, training for the higher number of `epochs` potentially results in better network performance. On the other hand, there's a risk of overfitting. Training for too many `epochs` might result in a good performance with training data, but poor performance on the validation set because the network will poorly generalize other/unseen data.- I choose `learning_rate = 0.001`. This `learning_rate` usually works well with Adam's Optimizer in most of the cases, therefore I've decided to stick to the `0.001` as my `learning_rate`.- I choose `embedding_dim = 200`. There a rule that the `embedding dimension` must be smaller than the `vocab_size`. However, getting this right was a result of constant experimentation. I believe it's a good idea to experiment with different `embedding dimension` sizes, starting from `100` to maybe even `1000`, as different `RNN Architectures` uses various sizes. In my case, I found, that using between `200` to `300`, resulted in optimal performance, but in the end, I've chosen `200`.- I choose `hidden_dim = 256`. Usually, it's a good practice to try `hidden dimension` size of `128`, `256` and `512`, maybe even less/more, depending on the data set. It's worth to mention that the higher `hidden dimension` size requires more computational power and smaller size might result in a bad classification.- I choose `n_layers = 2`. I referred to a quote from Andrej Karpathy, where he said: *"In practice, it is often the case that 3-layer neural networks will outperform 2-layer nets, but going even deeper (4,5,6-layer) rarely helps much more."* However, using more layers also requires more computing power and takes a longer time to train. Therefore, I've chosen to use `2` layers. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:42: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_count = Counter(text) sorted_vocab = sorted(word_count, key=word_count.get, reverse=True) vocab_to_int = {word:idx for idx,word in enumerate(sorted_vocab)} int_to_vocab = {idx:word for word,idx in vocab_to_int.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token_dict = { '.': '||Period||', ',': '||Comma||', '"': '||Quotation_Mark||', ';': '||Semicolon||', '!': '||Exclamation_mark||', '?': '||Question_mark||', '(': '||Left_Parentheses||', ')': '||Right_Parentheses||', '-': '||Dash||', '\n': '||Return||' } return token_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function feature_tensors = np.array([words[idx:idx+sequence_length] for idx in range(len(words)-sequence_length+1)]) target_tensors = np.roll(feature_tensors[:, -1], -1) target_tensors[-1] = feature_tensors[0][0] data = TensorDataset(torch.from_numpy(feature_tensors), torch.from_numpy(target_tensors)) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0, 1, 2, 3, 4], [ 1, 2, 3, 4, 5], [ 2, 3, 4, 5, 6], [ 3, 4, 5, 6, 7], [ 4, 5, 6, 7, 8], [ 5, 6, 7, 8, 9], [ 6, 7, 8, 9, 10], [ 7, 8, 9, 10, 11], [ 8, 9, 10, 11, 12], [ 9, 10, 11, 12, 13]]) torch.Size([10]) tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.hidden_dim = hidden_dim self.n_layers = n_layers # define model layers self.embed = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers=n_layers, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) embed_out = self.embed(nn_input) lstm_out, hidden = self.lstm(embed_out, hidden) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) out = self.fc(lstm_out) # reshape into (batch_size, seq_length, output_size) out = out.view(batch_size, -1, self.output_size) # get last batch out = out[:, -1] # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if train_on_gpu: inp, target = inp.cuda(), target.cuda() hidden = tuple([each.data for each in hidden]) rnn.zero_grad() output, hidden = rnn(inp, hidden) # perform backpropagation and optimization loss = criterion(output.squeeze(), target) loss.backward() optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 200 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 2000 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 4.925563133716583 Epoch: 1/10 Loss: 4.46799368929863 Epoch: 1/10 Loss: 4.326589870333671 Epoch: 2/10 Loss: 4.092425009504879 Epoch: 2/10 Loss: 3.935730939745903 Epoch: 2/10 Loss: 3.9000248016119 Epoch: 3/10 Loss: 3.796361310829736 Epoch: 3/10 Loss: 3.7286092329025267 Epoch: 3/10 Loss: 3.7069442616701127 Epoch: 4/10 Loss: 3.619192291566843 Epoch: 4/10 Loss: 3.581351883530617 Epoch: 4/10 Loss: 3.57560409617424 Epoch: 5/10 Loss: 3.511567875928612 Epoch: 5/10 Loss: 3.4792624189853667 Epoch: 5/10 Loss: 3.476007718205452 Epoch: 6/10 Loss: 3.4206481310766366 Epoch: 6/10 Loss: 3.3911499347686767 Epoch: 6/10 Loss: 3.3962059500217436 Epoch: 7/10 Loss: 3.35711593152538 Epoch: 7/10 Loss: 3.3309505153894423 Epoch: 7/10 Loss: 3.3335655217170714 Epoch: 8/10 Loss: 3.3050681187593405 Epoch: 8/10 Loss: 3.2832074712514876 Epoch: 8/10 Loss: 3.2866541645526888 Epoch: 9/10 Loss: 3.261805445548058 Epoch: 9/10 Loss: 3.237679073691368 Epoch: 9/10 Loss: 3.241973174214363 Epoch: 10/10 Loss: 3.223333733215923 Epoch: 10/10 Loss: 3.2023458824157713 Epoch: 10/10 Loss: 3.204044640421867 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:**First I tried a model with a dropout and sigmoid layers. The model was not performing well and was too slow. The starting loss for the model was >9.5 and did go below 7.0 even after 5 epochsThen after removing the dropout and sigmoid layer, the model started with loss of 4.925563133716583 and went till 3.204044640421867 after 10 epochs* **sequence_length** sequence of 5 gave very slow convergance. Increasing it to 10 gave enough speed* **batch_size** set to 128. higher batch sizes started slowing down the model and required more memory. When using lower batch sizes, loss was oscilating.* **num_epochs** set to 10. Convergence became slower after 10 epochs* **learning_rate** set to 0.001, using trial and error method. 0.0001 had very slow convergence.* **vocab_size** set to number of unique words in our text* **output_size** equal to vocab size, it gives id of next vocab* **hidden_dim** tried hidden dim of 128, 256 and 512. 256 Gave better results in less epochs. 512 was bit slower than 256.* **n_layers set** to 2 based on trial and error. 2 layers gave good results in less time* **show_every_n_batches** set to 2000 as there are too many batches --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:39: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from string import punctuation from collections import Counter def create_lookup_tables(text): # print(text[:2000]) """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function all_text = ' '.join([word for word in text]) # consolidate to one string # all_text = ''.join([c for c in all_text if c not in punctuation]) # remove punctuation # all_text = all_text.lower() # change upper to lower print(all_text[:2000]) # test text_split = all_text.split('\n') all_text = ''.join(text_split) words = all_text.split() word_counts = Counter(words) sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab, 0)} # int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab, 1)} # print(type(sorted_vocab)) # <class 'list'> # print(len(sorted_vocab)) # 71 # print(type(int_to_vocab)) # <class 'dict'> # print(len(int_to_vocab)) # 71 vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # for i in range(len(int_to_vocab)): # print(i) # print(int_to_vocab[i]) # print(vocab_to_int['||Comma||']) # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output moe_szyslak moe's tavern where the elite meet to drink bart_simpson eh yeah hello is mike there last name rotch moe_szyslak hold on i'll check mike rotch mike rotch hey has anybody seen mike rotch lately moe_szyslak listen you little puke one of these days i'm gonna catch you and i'm gonna carve my name on your back with an ice pick moe_szyslak whats the matter homer you're not your normal effervescent self homer_simpson i got my problems moe give me another one moe_szyslak homer hey you should not drink to forget your problems barney_gumble yeah you should only drink to enhance your social skills Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function punc_to_token = { '.': "||Period||", ',': "||Comma||", '"': "||Quotation_Mark||", ';': "||Semicolon||", '!': "||Exclamation_mark||", '?': "||Question_mark||", '(': "||Left_Parentheses||", ')': "||Right_Parentheses||", '-': "||Dash||", '\n': "||Return||" } return punc_to_token """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output this is out ||period|| ||period|| ||period|| and out is one of the single most enjoyable experiences of life ||period|| people ||period|| ||period|| ||period|| did you ever hear people talking about we should go out ||question_mark|| this is what theyre talking about ||period|| ||period|| ||period|| this whole thing ||comma|| were all out now ||comma|| no one is home ||period|| not one person here is home ||comma|| were all out ||exclamation_mark|| there are people trying to find us ||comma|| they dont know where we are ||period|| ||left_parentheses|| on an imaginary phone ||right_parentheses|| did you ring ||question_mark|| ||comma|| i cant find him ||period|| where did he go ||question_mark|| he didnt tell me where he was going ||period|| he must have gone out ||period|| you wanna go out you get ready ||comma|| you pick out the clothes ||comma|| right ||question_mark|| you take the shower ||comma|| you get all ready ||comma|| get the cash ||comma|| get your friends ||comma|| the car ||comma|| the spot ||comma|| the reservation ||period|| ||period|| ||period|| then youre standing around ||comma|| what do you do ||question_mark|| you go we gotta be getting back ||period|| once youre out ||comma|| you wanna get back ||exclamation_mark|| you wanna go to sleep ||comma|| you wanna get up ||comma|| you wanna go out again tomorrow ||comma|| right ||question_mark|| where ever you are in life ||comma|| its my feeling ||comma|| youve gotta go ||period|| ||return|| ||return|| jerry: ||left_parentheses|| pointing at georges shirt ||right_parentheses|| see ||comma|| to me ||comma|| that button is in the worst possible spot ||period|| the second button literally makes or breaks the shirt ||comma|| look at it ||period|| its too high ||exclamation_mark|| its in no ||dash|| mans ||dash|| land ||period|| you look like you live with your mother ||period|| ||return|| ||return|| george: are you through ||question_mark|| ||return|| ||return|| jerry: you do of course try on ||comma|| whe ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function features = np.zeros(((len(words) - sequence_length), sequence_length), dtype=int) targets = np.zeros((len(words) - sequence_length), dtype=int) for i in range(len(words) - sequence_length): features[i] = words[i : i + sequence_length] targets[i] = words[i + sequence_length] ## test # print(type(features)) # <class 'numpy.ndarray'> # print(features[0]) # [0 1 2 3 4] # print(targets[0]) # 5 # print(features[1]) # [1 2 3 4 5] # print(targets[1]) # 6 # print(features[len(words) - sequence_length - 1]) # [44 45 46 47 48] # print(targets[len(words) - sequence_length - 1]) # 49 data = TensorDataset(torch.from_numpy(features), torch.from_numpy(targets)) data_loader = torch.utils.data.DataLoader(data, shuffle=True, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ## test #test_text = range(50) #batch_data(test_text, sequence_length=5, batch_size=10) ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[15, 16, 17, 18, 19], [24, 25, 26, 27, 28], [ 5, 6, 7, 8, 9], [44, 45, 46, 47, 48], [22, 23, 24, 25, 26], [ 3, 4, 5, 6, 7], [21, 22, 23, 24, 25], [38, 39, 40, 41, 42], [34, 35, 36, 37, 38], [ 7, 8, 9, 10, 11]]) torch.Size([10]) tensor([20, 29, 10, 49, 27, 8, 26, 43, 39, 12]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers self.embd = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout = dropout, batch_first = True) self.dropout = nn.Dropout(0.3) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # print(type(nn_input)) # print(type(nn_input.size)) batch_size = nn_input.size(0) # print(batch_size) # 50 # embeddings and lstm_out embeds = self.embd(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) # print(type(hidden)) # stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer out = self.dropout(lstm_out) out = self.fc(out) # reshape to be batch_size first out = out.view(batch_size, -1, self.output_size) out = out[:, -1] # get last batch of outputs # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function clip=5 # gradient clipping # move data to GPU, if available if(train_on_gpu): inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization hidden = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() # get the output from the model output, hidden = rnn(inp, hidden) # calculate the loss and perform backprop loss = criterion(output.squeeze(), target) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: # print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( # epoch_i, n_epochs, np.average(batch_losses))) print('Epoch: {:>4}/{:<4} Loss: {}'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 64 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 50 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 256 # Hidden Dimension hidden_dim = 800 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 640 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 50 epoch(s)... Epoch: 1/50 Loss: 5.253700656816363 Epoch: 1/50 Loss: 4.782527927309275 Epoch: 1/50 Loss: 4.629239576682449 Epoch: 1/50 Loss: 4.565429873764515 Epoch: 1/50 Loss: 4.454377238079905 Epoch: 1/50 Loss: 4.429828142374754 Epoch: 1/50 Loss: 4.383285737410188 Epoch: 1/50 Loss: 4.351274823397398 Epoch: 1/50 Loss: 4.319598229974508 Epoch: 1/50 Loss: 4.3010002840310335 Epoch: 1/50 Loss: 4.300960117578507 Epoch: 1/50 Loss: 4.22971854172647 Epoch: 1/50 Loss: 4.243915567919612 Epoch: 1/50 Loss: 4.201597314327955 Epoch: 1/50 Loss: 4.236023548990488 Epoch: 1/50 Loss: 4.206151943653822 Epoch: 1/50 Loss: 4.153445649892092 Epoch: 1/50 Loss: 4.19222059212625 Epoch: 1/50 Loss: 4.207992108166218 Epoch: 1/50 Loss: 4.163940661028027 Epoch: 1/50 Loss: 4.169988998025656 Epoch: 2/50 Loss: 4.067798764377021 Epoch: 2/50 Loss: 4.020531105622649 Epoch: 2/50 Loss: 4.037669951096177 Epoch: 2/50 Loss: 4.028175422921777 Epoch: 2/50 Loss: 4.011055763810873 Epoch: 2/50 Loss: 4.035206806287169 Epoch: 2/50 Loss: 4.03218558691442 Epoch: 2/50 Loss: 4.050158818438649 Epoch: 2/50 Loss: 4.02089707441628 Epoch: 2/50 Loss: 4.036111611127853 Epoch: 2/50 Loss: 4.046011611074209 Epoch: 2/50 Loss: 4.00139140971005 Epoch: 2/50 Loss: 4.017154048010707 Epoch: 2/50 Loss: 4.031743712723255 Epoch: 2/50 Loss: 4.035793996602297 Epoch: 2/50 Loss: 4.036028683185577 Epoch: 2/50 Loss: 4.054708698391915 Epoch: 2/50 Loss: 4.037981457635761 Epoch: 2/50 Loss: 4.008058787509799 Epoch: 2/50 Loss: 4.02766479216516 Epoch: 2/50 Loss: 4.02071329690516 Epoch: 3/50 Loss: 3.944538163343368 Epoch: 3/50 Loss: 3.8696200150996445 Epoch: 3/50 Loss: 3.8714216008782385 Epoch: 3/50 Loss: 3.908541977778077 Epoch: 3/50 Loss: 3.898345560953021 Epoch: 3/50 Loss: 3.925573145225644 Epoch: 3/50 Loss: 3.924049727246165 Epoch: 3/50 Loss: 3.9024879980832337 Epoch: 3/50 Loss: 3.921890266239643 Epoch: 3/50 Loss: 3.927990100905299 Epoch: 3/50 Loss: 3.9660375442355873 Epoch: 3/50 Loss: 3.9030546128749846 Epoch: 3/50 Loss: 3.9538080327212812 Epoch: 3/50 Loss: 3.9419815838336945 Epoch: 3/50 Loss: 3.944943027943373 Epoch: 3/50 Loss: 3.914364117011428 Epoch: 3/50 Loss: 3.953220413252711 Epoch: 3/50 Loss: 3.9551561255007983 Epoch: 3/50 Loss: 3.9888630975037813 Epoch: 3/50 Loss: 3.962743601575494 Epoch: 3/50 Loss: 3.964763989672065 Epoch: 4/50 Loss: 3.8705020949336078 Epoch: 4/50 Loss: 3.8253324795514345 Epoch: 4/50 Loss: 3.82480561286211 Epoch: 4/50 Loss: 3.7882513221353293 Epoch: 4/50 Loss: 3.813043589890003 Epoch: 4/50 Loss: 3.847968678548932 Epoch: 4/50 Loss: 3.8585231617093085 Epoch: 4/50 Loss: 3.82973028421402 Epoch: 4/50 Loss: 3.851959860697389 Epoch: 4/50 Loss: 3.8600806016474962 Epoch: 4/50 Loss: 3.8835461150854824 Epoch: 4/50 Loss: 3.8602547336369755 Epoch: 4/50 Loss: 3.8948065619915724 Epoch: 4/50 Loss: 3.8749670960009097 Epoch: 4/50 Loss: 3.8551158852875234 Epoch: 4/50 Loss: 3.9038047298789023 Epoch: 4/50 Loss: 3.8732550203800202 Epoch: 4/50 Loss: 3.9106360882520677 Epoch: 4/50 Loss: 3.9058148112148046 Epoch: 4/50 Loss: 3.907001294568181 Epoch: 4/50 Loss: 3.886706656217575 Epoch: 5/50 Loss: 3.808642924302916 Epoch: 5/50 Loss: 3.740386075153947 Epoch: 5/50 Loss: 3.7607973624020814 Epoch: 5/50 Loss: 3.786749940738082 Epoch: 5/50 Loss: 3.7805189918726683 Epoch: 5/50 Loss: 3.7845669619739057 Epoch: 5/50 Loss: 3.7942766156047583 Epoch: 5/50 Loss: 3.7910614032298326 Epoch: 5/50 Loss: 3.814380073547363 Epoch: 5/50 Loss: 3.8070463545620443 Epoch: 5/50 Loss: 3.815601183101535 Epoch: 5/50 Loss: 3.8312596712261437 Epoch: 5/50 Loss: 3.8114951375871895 Epoch: 5/50 Loss: 3.846424401178956 Epoch: 5/50 Loss: 3.8215173527598383 Epoch: 5/50 Loss: 3.840273302420974 Epoch: 5/50 Loss: 3.8424410365521906 Epoch: 5/50 Loss: 3.8538716416805983 Epoch: 5/50 Loss: 3.8840495612472297 Epoch: 5/50 Loss: 3.839904710277915 Epoch: 5/50 Loss: 3.866504903510213 Epoch: 6/50 Loss: 3.769699031580321 Epoch: 6/50 Loss: 3.7049839947372676 Epoch: 6/50 Loss: 3.733559547737241 Epoch: 6/50 Loss: 3.7120644196867945 Epoch: 6/50 Loss: 3.731315530091524 Epoch: 6/50 Loss: 3.7415507029742003 Epoch: 6/50 Loss: 3.7296938303858043 Epoch: 6/50 Loss: 3.7685168646275997 Epoch: 6/50 Loss: 3.7984403163194655 Epoch: 6/50 Loss: 3.75751036144793 Epoch: 6/50 Loss: 3.740093453601003 Epoch: 6/50 Loss: 3.752611465752125 Epoch: 6/50 Loss: 3.8064439587295054 Epoch: 6/50 Loss: 3.8134737070649862 Epoch: 6/50 Loss: 3.7888033472001554 Epoch: 6/50 Loss: 3.7987955920398235 Epoch: 6/50 Loss: 3.77656222358346 Epoch: 6/50 Loss: 3.818206524848938 Epoch: 6/50 Loss: 3.8012230299413203 Epoch: 6/50 Loss: 3.8344946809113027 Epoch: 6/50 Loss: 3.819535595923662 Epoch: 7/50 Loss: 3.7353359030672495 Epoch: 7/50 Loss: 3.6713490672409534 Epoch: 7/50 Loss: 3.66371367610991 Epoch: 7/50 Loss: 3.6677056018263103 Epoch: 7/50 Loss: 3.688985545933247 Epoch: 7/50 Loss: 3.7449356436729433 Epoch: 7/50 Loss: 3.712756483629346 Epoch: 7/50 Loss: 3.72131201736629 Epoch: 7/50 Loss: 3.7027687944471834 Epoch: 7/50 Loss: 3.7348790619522334 Epoch: 7/50 Loss: 3.7286715917289257 Epoch: 7/50 Loss: 3.737143274396658 Epoch: 7/50 Loss: 3.7802848126739264 Epoch: 7/50 Loss: 3.742055954411626 Epoch: 7/50 Loss: 3.7745925046503546 Epoch: 7/50 Loss: 3.753599840402603 Epoch: 7/50 Loss: 3.7628398548811672 Epoch: 7/50 Loss: 3.7981450211256744 Epoch: 7/50 Loss: 3.818891394138336 Epoch: 7/50 Loss: 3.7802766114473343 Epoch: 7/50 Loss: 3.786262919008732 Epoch: 8/50 Loss: 3.6951171376393277 Epoch: 8/50 Loss: 3.6472966499626636 Epoch: 8/50 Loss: 3.662723157927394 Epoch: 8/50 Loss: 3.6800824109464885 Epoch: 8/50 Loss: 3.652492796629667 Epoch: 8/50 Loss: 3.6624051328748464 Epoch: 8/50 Loss: 3.686840457469225 Epoch: 8/50 Loss: 3.7009461764246225 Epoch: 8/50 Loss: 3.714610445871949 Epoch: 8/50 Loss: 3.6799667228013275 Epoch: 8/50 Loss: 3.730845034122467 Epoch: 8/50 Loss: 3.7200362868607044 Epoch: 8/50 Loss: 3.711618630960584 Epoch: 8/50 Loss: 3.7234140444546937 Epoch: 8/50 Loss: 3.7211993243545294 Epoch: 8/50 Loss: 3.741114177182317 Epoch: 8/50 Loss: 3.750632618740201 Epoch: 8/50 Loss: 3.7483046911656857 Epoch: 8/50 Loss: 3.7457224164158105 Epoch: 8/50 Loss: 3.7504187412559986 Epoch: 8/50 Loss: 3.7798055570572613 Epoch: 9/50 Loss: 3.6881754429744356 Epoch: 9/50 Loss: 3.6242952913045885 Epoch: 9/50 Loss: 3.6272049475461245 Epoch: 9/50 Loss: 3.628608123213053 Epoch: 9/50 Loss: 3.635802112519741 Epoch: 9/50 Loss: 3.6489970050752163 Epoch: 9/50 Loss: 3.6721540220081805 Epoch: 9/50 Loss: 3.6496964756399395 Epoch: 9/50 Loss: 3.6754121251404284 Epoch: 9/50 Loss: 3.656955474615097 Epoch: 9/50 Loss: 3.676737105846405 Epoch: 9/50 Loss: 3.6906002059578897 Epoch: 9/50 Loss: 3.6854868937283753 Epoch: 9/50 Loss: 3.672032630071044 Epoch: 9/50 Loss: 3.733842030912638 Epoch: 9/50 Loss: 3.7055791333317756 Epoch: 9/50 Loss: 3.732548328116536 Epoch: 9/50 Loss: 3.7009195894002915 Epoch: 9/50 Loss: 3.7444977063685654 Epoch: 9/50 Loss: 3.747268568724394 Epoch: 9/50 Loss: 3.733583019673824 Epoch: 10/50 Loss: 3.6582457462458153 Epoch: 10/50 Loss: 3.6209939189255236 Epoch: 10/50 Loss: 3.634983092173934 Epoch: 10/50 Loss: 3.6201229099184276 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)For sequence_length, I tried 10, 16, 20 and 10 was better than others. And I guessed smaller numbers than 10 might be too small to estimate the next word appropreately from the sequence.For batch_size,I tried only 64. I confirmed that the training was going well. In addition, according to the nvidia-smi command, the memory usage was 3333MiB / 7973MiB. I thought it was appropreate.For num_epochs, I tried 10, 20, 30 and 50. 30 might be appropreate. But I couldn't get the loss lower than 3.0 at the end of the training. So I chose 50 instead of 30.For learning_rate, I tried only 0.001. I found some article that mentioned 0.001 or around numbers were appropreate.For embedding_dim, I tried 128, 256, 400, and 512. At the final, I chose 256 considering that the number of unique words were 46367. Because in the Sentiment_RNN_Exercise exsample, we used 400 for 74072 unique words.For hidden_dim, I tried 128, 256, 400, and 800. At the final, I chose 800 because I couldn't get the loss less than 3.5 using smaller numbers as hidden_dim.For n_layers, I chose 2 because it must be 1-3 from the criteria. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: i think you're a comedian, i don't want to know how you could make a mistake. you don't even have to pay me to be able to make it up. elaine:(laughing) i know, it's just the damnedest side. elaine: what is that? george:(to himself, picks up his glasses) oh yeah.(kramer walks into the kitchen) kramer: yeah jerry:(to elaine) i thought you'd be upset.. jerry: i mean, i don't even have it.(to elaine) so, you want a new george:(pauses. elaine enters) george: you want to take your shoes? jerry:(to kramer) oh, i can't believe i just have to be able to get a new suit. i have to tell you, i was thinking of myself, and i was a little rough of the. george: oh, yeah. jerry: so, what do you think? george: well, you know, i think i could take care of you.(jerry leaves) jerry: hey! hey! hey! i thought you got any good friends. george: you don't think i could have a ticket, but i don't know how it is.. i don't know..(he pushes jerry in the kitchen; he falls towards his head.) elaine: oh, yeah. i was a little embarrassed. i was wondering if we could get going. kramer: well, i gotta take it. i can't come out, i don't have to go to the bathroom..(george leaves) kramer: yeah, yeah, yeah..(pulls up his bag)... [setting: jerry's car] kramer:(looking) hey. kramer: oh, hey. elaine:(from phone, to kramer) oh, yeah? george: yeah. jerry:(to george) i don't think you could get any bread. ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function counts = Counter(text) vocab = sorted(counts, key=counts.get, reverse=True) vocab_to_int = {word: ii for ii, word in enumerate(vocab, 1)} int_to_vocab = {ii: word for word, ii in vocab_to_int.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token_dict = {'.':'||Period||', ',':'||Comma||', '"':'||Quotation_mark||', ';':'||Semicolon||', '!':'||Exclamation_mark||', '?':'||Question_mark||', '(':'||Left_parentheses||', ')':'||Right_parentheses||', '-':'||Dash||', '\n':'||Return||'} return token_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader import numpy as np def batch(iterable, n=1): l = len(iterable) for ndx in range(0, l, n): yield iterable[ndx:min(ndx + n, l)] def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function # batch_size_total = batch_size * sequence_length # n_batches = len(words)//batch_size_total # words = np.array(words[:n_batches * batch_size_total]) # feature_tensors = [] # target_tensors = [] # y = None # first=True # for x in batch(list(words), sequence_length): # if (first==False): # y=x[0] # target_tensors.append(y) # else: # first=False # feature_tensors.append(x) # target_tensors.append(words[0]) # feature_tensors = torch.Tensor(feature_tensors) # target_tensors = torch.Tensor(target_tensors) # data = TensorDataset(feature_tensors, target_tensors) # data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True) # return data_loader n_batches = len(words)//batch_size # only full batches words = words[:n_batches*batch_size] y_len = len(words) - sequence_length x, y = [], [] for idx in range(0, y_len): idx_end = sequence_length + idx x_batch = words[idx:idx_end] x.append(x_batch) batch_y = words[idx_end] y.append(batch_y) # create Tensor datasets data = TensorDataset(torch.from_numpy(np.asarray(x)), torch.from_numpy(np.asarray(y))) # make sure the SHUFFLE your training data data_loader = DataLoader(data, shuffle=True, batch_size=batch_size) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 4, 5, 6, 7, 8], [34, 35, 36, 37, 38], [39, 40, 41, 42, 43], [ 5, 6, 7, 8, 9], [18, 19, 20, 21, 22], [43, 44, 45, 46, 47], [42, 43, 44, 45, 46], [37, 38, 39, 40, 41], [ 0, 1, 2, 3, 4], [28, 29, 30, 31, 32]]) torch.Size([10]) tensor([ 9, 39, 44, 10, 23, 48, 47, 42, 5, 33]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.3): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers # self.embedding = nn.Embedding(vocab_size, embedding_dim) # self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, # dropout=dropout, batch_first=True) # self.fc = nn.Linear(hidden_dim, output_size) self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # self.dropout = nn.Dropout(0.3) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function # batch_size = nn_input.size(0) # embeds = self.embedding(nn_input) # lstm_out, hidden = self.lstm(embeds, hidden) # lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # out = self.fc(lstm_out) # out = out.view(batch_size, -1, self.output_size) # out = out[:, -1] # # return one batch of output word scores and the hidden state # return out, hidden batch_size = nn_input.size(0) # print("batch_size: ", batch_size) # print("nn_input.shape: ", nn_input.shape) #(batch_size, sequence_len) # print("hidden[0].shape: ", hidden[0].shape) #(n_layers, batch_size, hidden_dim) # nn_input = nn_input.long() embed = self.embedding(nn_input) #(batch_size, sequence_len, embedding_dim) # print("embed.shape: ", embed.shape) lstm_out, hidden = self.lstm(embed, hidden) #(batch_size, sequence_len, hidden_dim) # print("lstm_output.shape: ", lstm_out.shape) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) #(batch_size*sequence_len, hidden_dim) # print("lstm_output.shape: ", lstm_out.shape) # lstm_out = self.dropout(lstm_out) #(batch_size*sequence_len, hidden_dim) # print("lstm_output.shape: ", lstm_out.shape) output = self.fc(lstm_out) #(batch_size*sequence_len, output_size) # print("output.shape: ", output.shape) # reshape into (batch_size, seq_length, output_size) output = output.view(batch_size, -1, self.output_size) #(batch_size, sequence_len, output_size) # print("output.shape: ", output.shape) #get last batch out = output[:, -1] #(batch_size, output_size) # print("out.shape: ", out.shape) # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): rnn.cuda() inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization h = tuple([each.data for each in hidden]) rnn.zero_grad() output, h = rnn(inp, h) loss = criterion(output, target.long()) loss.backward() nn.utils.clip_grad_norm_(rnn.parameters(), max_norm=5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.detach().item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 20 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 10 # Learning Rate learning_rate = 0.002 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 300 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 10 epoch(s)... Epoch: 1/10 Loss: 5.2098567094802855 Epoch: 1/10 Loss: 4.644318076133728 Epoch: 1/10 Loss: 4.480203908920288 Epoch: 1/10 Loss: 4.384352329730987 Epoch: 1/10 Loss: 4.2868800768852235 Epoch: 1/10 Loss: 4.267771987438202 Epoch: 1/10 Loss: 4.2441685366630555 Epoch: 1/10 Loss: 4.167212261676788 Epoch: 1/10 Loss: 4.173274946212769 Epoch: 1/10 Loss: 4.1280538272857665 Epoch: 1/10 Loss: 4.102700160503387 Epoch: 1/10 Loss: 4.094147276878357 Epoch: 1/10 Loss: 4.105357785701751 Epoch: 2/10 Loss: 3.9575602872805162 Epoch: 2/10 Loss: 3.8778745656013487 Epoch: 2/10 Loss: 3.8685070672035216 Epoch: 2/10 Loss: 3.857060043334961 Epoch: 2/10 Loss: 3.8463902869224547 Epoch: 2/10 Loss: 3.858669671535492 Epoch: 2/10 Loss: 3.846140776634216 Epoch: 2/10 Loss: 3.841614939689636 Epoch: 2/10 Loss: 3.8634581270217896 Epoch: 2/10 Loss: 3.829445749759674 Epoch: 2/10 Loss: 3.828117290973663 Epoch: 2/10 Loss: 3.8479499197006226 Epoch: 2/10 Loss: 3.876126905918121 Epoch: 3/10 Loss: 3.7486241174138284 Epoch: 3/10 Loss: 3.6402197880744933 Epoch: 3/10 Loss: 3.64382110786438 Epoch: 3/10 Loss: 3.658150053024292 Epoch: 3/10 Loss: 3.657683217048645 Epoch: 3/10 Loss: 3.65986829996109 Epoch: 3/10 Loss: 3.6714111528396605 Epoch: 3/10 Loss: 3.67494110250473 Epoch: 3/10 Loss: 3.6938516249656677 Epoch: 3/10 Loss: 3.6947651686668395 Epoch: 3/10 Loss: 3.6952608952522277 Epoch: 3/10 Loss: 3.703232437133789 Epoch: 3/10 Loss: 3.703385347366333 Epoch: 4/10 Loss: 3.606662732264227 Epoch: 4/10 Loss: 3.5203455362319946 Epoch: 4/10 Loss: 3.5106461696624756 Epoch: 4/10 Loss: 3.528451536178589 Epoch: 4/10 Loss: 3.532740948200226 Epoch: 4/10 Loss: 3.55157106256485 Epoch: 4/10 Loss: 3.563400938510895 Epoch: 4/10 Loss: 3.5625940647125245 Epoch: 4/10 Loss: 3.579947636604309 Epoch: 4/10 Loss: 3.5858677010536195 Epoch: 4/10 Loss: 3.5631685609817505 Epoch: 4/10 Loss: 3.594450249195099 Epoch: 4/10 Loss: 3.5846909646987917 Epoch: 5/10 Loss: 3.4989527375244895 Epoch: 5/10 Loss: 3.432142825603485 Epoch: 5/10 Loss: 3.4073234243392942 Epoch: 5/10 Loss: 3.40576322221756 Epoch: 5/10 Loss: 3.448205543041229 Epoch: 5/10 Loss: 3.4586821846961975 Epoch: 5/10 Loss: 3.448937037944794 Epoch: 5/10 Loss: 3.4722106990814208 Epoch: 5/10 Loss: 3.4802585258483885 Epoch: 5/10 Loss: 3.49347841835022 Epoch: 5/10 Loss: 3.508174928188324 Epoch: 5/10 Loss: 3.5006230998039247 Epoch: 5/10 Loss: 3.5439432735443117 Epoch: 6/10 Loss: 3.418489476373373 Epoch: 6/10 Loss: 3.3386723246574403 Epoch: 6/10 Loss: 3.3412961316108705 Epoch: 6/10 Loss: 3.3607651977539064 Epoch: 6/10 Loss: 3.3828345370292663 Epoch: 6/10 Loss: 3.384122383117676 Epoch: 6/10 Loss: 3.401136927127838 Epoch: 6/10 Loss: 3.416935426235199 Epoch: 6/10 Loss: 3.4164759802818296 Epoch: 6/10 Loss: 3.4292486023902895 Epoch: 6/10 Loss: 3.4323757557868957 Epoch: 6/10 Loss: 3.436793231010437 Epoch: 6/10 Loss: 3.4763596143722535 Epoch: 7/10 Loss: 3.3665500753674626 Epoch: 7/10 Loss: 3.274177397251129 Epoch: 7/10 Loss: 3.281336480140686 Epoch: 7/10 Loss: 3.296716101169586 Epoch: 7/10 Loss: 3.3409517517089844 Epoch: 7/10 Loss: 3.3118031821250917 Epoch: 7/10 Loss: 3.348753168106079 Epoch: 7/10 Loss: 3.3537993779182433 Epoch: 7/10 Loss: 3.342844934463501 Epoch: 7/10 Loss: 3.362269327163696 Epoch: 7/10 Loss: 3.4000584650039674 Epoch: 7/10 Loss: 3.381922396659851 Epoch: 7/10 Loss: 3.405783137321472 Epoch: 8/10 Loss: 3.320220979284649 Epoch: 8/10 Loss: 3.223982222557068 Epoch: 8/10 Loss: 3.2373883028030397 Epoch: 8/10 Loss: 3.2558323068618775 Epoch: 8/10 Loss: 3.254284800052643 Epoch: 8/10 Loss: 3.2733211941719054 Epoch: 8/10 Loss: 3.3039999499320984 Epoch: 8/10 Loss: 3.306700605392456 Epoch: 8/10 Loss: 3.310398585796356 Epoch: 8/10 Loss: 3.3307930464744566 Epoch: 8/10 Loss: 3.33497225856781 Epoch: 8/10 Loss: 3.368864639759064 Epoch: 8/10 Loss: 3.3773223094940183 Epoch: 9/10 Loss: 3.2773543751436818 Epoch: 9/10 Loss: 3.171738559246063 Epoch: 9/10 Loss: 3.222451404571533 Epoch: 9/10 Loss: 3.207970099925995 Epoch: 9/10 Loss: 3.2387558765411377 Epoch: 9/10 Loss: 3.249077039241791 Epoch: 9/10 Loss: 3.2429378185272215 Epoch: 9/10 Loss: 3.2625793347358703 Epoch: 9/10 Loss: 3.266186451435089 Epoch: 9/10 Loss: 3.283919681072235 Epoch: 9/10 Loss: 3.2922026109695435 Epoch: 9/10 Loss: 3.329367748260498 Epoch: 9/10 Loss: 3.3323066096305847 Epoch: 10/10 Loss: 3.2448489424610925 Epoch: 10/10 Loss: 3.1364177231788637 Epoch: 10/10 Loss: 3.172276804447174 Epoch: 10/10 Loss: 3.1880097351074217 Epoch: 10/10 Loss: 3.184503610610962 Epoch: 10/10 Loss: 3.2146325097084048 Epoch: 10/10 Loss: 3.2194400877952574 Epoch: 10/10 Loss: 3.250775598526001 Epoch: 10/10 Loss: 3.2303061323165894 Epoch: 10/10 Loss: 3.2487965474128724 Epoch: 10/10 Loss: 3.257084801197052 Epoch: 10/10 Loss: 3.2834471111297607 Epoch: 10/10 Loss: 3.300711100101471 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** The parameters we chosen by trial and error. For chosing the senquence_length I trade-off should be made between convergence time and accuracy. Also, the hidden_dim and n_layers tend to affect the converge time so they were chosen in order to keep a reasonable training time. The learning rate I set it to 0.002 as trying a higher value, e.g. 0.005 the validation loss performance was poorer and had high variations and even increases, probably due to not able to determine correctly the local minima. Lower values for learning rate, e.g. 0.001 hurt the training time. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id print(sequence_length) print(pad_value) print(prime_id) current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] print (current_seq) for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq.cpu(), -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output 20 21388 8 [[21388 21388 21388 21388 21388 21388 21388 21388 21388 21388 21388 21388 21388 21388 21388 21388 21388 21388 21388 8]] jerry: uttered, and knocks mail) jerry:(to jerry) hey, hey, you want me to be ensconced? jerry: yeah. kramer: well, you don't know how to work.(jerry and kramer both worked out of his ear and goes to the kitchen.) jerry: well, i don't know. george:(to george) you know, it's not that easy, huh? i don't want to know that i was just saying something about it. elaine:(to elaine) hey!(kramer is speechless) kramer:(getting to leave) oh. kramer: hey, i got news with that woman, and i was wondering if we want to go back to the end of the movie, we have a deal. george: what is this? jerry: well, i'm going to do this. george: oh, i can't believe it sounds great. george: i mean, i can't believe you were going to have a little too strong to me. george: well i think it's an emergency band. jerry: i don't want it, jerry. kramer: hey buddy! jerry:(to the phone) hello. hi, jerry. george:(quietly) hey! hey, you gotta go back to work. george:(smiling) well, you know, i'm sorry if you can go. elaine: i mean you don't think that you are? what happened to the operation? kramer: well, it was a little bit. jerry: well, i don't want to talk about it. elaine: what? jerry: you know, i can't go out with you.(to jerry) so, you were supposed to get a little bit of a bitch, you know, i know, i was just wondering if you can get it all over your head, and i'll see ya, i don't know what you say. i don't even know what happened to ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown The TV Script is Not PerfectIt's ok if the TV script doesn't make perfect sense. It should look like alternating lines of dialogue, here is one such example of a few generated lines. Example generated script>jerry: what about me?>>jerry: i don't have to wait.>>kramer:(to the sales table)>>elaine:(to jerry) hey, look at this, i'm a good doctor.>>newman:(to elaine) you think i have no idea of this...>>elaine: oh, you better take the phone, and he was a little nervous.>>kramer:(to the phone) hey, hey, jerry, i don't want to be a little bit.(to kramer and jerry) you can't.>>jerry: oh, yeah. i don't even know, i know.>>jerry:(to the phone) oh, i know.>>kramer:(laughing) you know...(to jerry) you don't know.You can see that there are multiple characters that say (somewhat) complete sentences, but it doesn't have to be perfect! It takes quite a while to get good results, and often, you'll have to use a smaller vocabulary (and discard uncommon words), or get more data. The Seinfeld dataset is about 3.4 MB, which is big enough for our purposes; for script generation you'll want more than 1 MB of text, generally. Submitting This ProjectWhen submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_tv_script_generation.ipynb" and save another copy as an HTML file by clicking "File" -> "Download as.."->"html". Include the "helper.py" and "problem_unittests.py" files in your submission. Once you download these files, compress them into one zip file for submission. ###Code ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code from tqdm.auto import tqdm # Check if running in colab.research.google.com try: import google.colab IN_COLAB = True print('Running in Google Colab!') except: IN_COLAB = False # Download and extract files to colab if IN_COLAB: !mkdir -p data !wget -nc -q https://github.com/joaopamaral/deep-learning-v2-pytorch/raw/master/project-tv-script-generation/data/Seinfeld_Scripts.txt -P data !wget -nc -q https://github.com/joaopamaral/deep-learning-v2-pytorch/raw/master/project-tv-script-generation/helper.py !wget -nc -q https://github.com/joaopamaral/deep-learning-v2-pytorch/raw/master/project-tv-script-generation/problem_unittests.py """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function from collections import Counter word_counts = Counter(text) # sorting the words from most to least frequent in text occurrence sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) # create int_to_vocab dictionaries int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function lookup_dict = { '.': '||Period||', ',': '||Comma||', '"': '||QuotationMark||', ';': '||Semicolon||', '!': '||ExclamationMark||', '?': '||QuestionMark||', '(': '||LeftParentheses||', ')': '||RightParentheses||', '-': '||Dash||', '\n': '||Return||' } return lookup_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function n_batches = len(words)//batch_size # only full batches words = words[:n_batches*batch_size] features = [] targets = [] for idx in range(0, len(words)-sequence_length): features.append(words[idx:idx+sequence_length]) targets.append(words[idx+sequence_length]) data = TensorDataset(torch.LongTensor(features), torch.LongTensor(targets)) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True) # return a dataloader return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own print(iter(batch_data(int_text, 5, 10)).next()) ###Output [tensor([[ 38, 6, 90, 3, 152], [ 21, 76, 6208, 10, 67], [ 0, 7, 35, 352, 45], [ 0, 13, 31, 45, 1096], [ 0, 0, 7, 5, 27], [ 1, 93, 17496, 1, 1], [ 134, 163, 1, 0, 0], [ 6, 16061, 21, 6, 278], [ 2304, 1, 0, 0, 1514], [ 60, 12, 0, 0, 13]]), tensor([ 15, 98, 87, 38, 604, 1, 16, 20, 18, 1804])] ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[16, 17, 18, 19, 20], [37, 38, 39, 40, 41], [42, 43, 44, 45, 46], [34, 35, 36, 37, 38], [ 4, 5, 6, 7, 8], [11, 12, 13, 14, 15], [ 8, 9, 10, 11, 12], [ 1, 2, 3, 4, 5], [44, 45, 46, 47, 48], [18, 19, 20, 21, 22]]) torch.Size([10]) tensor([21, 42, 47, 39, 9, 16, 13, 6, 49, 23]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.n_layers = n_layers self.hidden_dim = hidden_dim self.output_size = output_size # define model layers # define embedding layers for input and output words self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(input_size=embedding_dim, hidden_size=hidden_dim, num_layers=n_layers, dropout=dropout, batch_first=True) # Initialize both embedding tables with uniform distribution self.embedding.weight.data.uniform_(-1, 1) self.dropout = nn.Dropout(dropout) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # embeddings and lstm_out embeds = self.embedding(nn_input) lstm_output, hidden = self.lstm(embeds, hidden) # stack up lstm outputs lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer output = self.dropout(lstm_output) output = self.fc(output) # reshape into (batch_size, seq_length, output_size) output = output.view(batch_size, -1, self.output_size) # get last batch output = output[:, -1] # return one batch of output word scores and the hidden state return output, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) if (train_on_gpu): hidden = hidden[0].cuda(), hidden[1].cuda() return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history hidden = tuple([each.data for each in hidden]) # move data to GPU, if available if(train_on_gpu): inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization # zero accumulated gradients rnn.zero_grad() # get the output from the model output, hidden = rnn(inp, hidden) # calculate the loss and perform backprop loss = criterion(output.squeeze(), target.long()) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(tqdm(train_loader, desc=f'T{epoch_i}'), 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 60 # of words in a sequence # Batch Size batch_size = 256 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 4 # Learning Rate learning_rate = 0.0001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = len(vocab_to_int) # Embedding Dimension embedding_dim = 512 # Hidden Dimension hidden_dim = 256 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 200 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 4 epoch(s)... ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here) --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output _____no_output_____ ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown The TV Script is Not PerfectIt's ok if the TV script doesn't make perfect sense. It should look like alternating lines of dialogue, here is one such example of a few generated lines. Example generated script>jerry: what about me?>>jerry: i don't have to wait.>>kramer:(to the sales table)>>elaine:(to jerry) hey, look at this, i'm a good doctor.>>newman:(to elaine) you think i have no idea of this...>>elaine: oh, you better take the phone, and he was a little nervous.>>kramer:(to the phone) hey, hey, jerry, i don't want to be a little bit.(to kramer and jerry) you can't.>>jerry: oh, yeah. i don't even know, i know.>>jerry:(to the phone) oh, i know.>>kramer:(laughing) you know...(to jerry) you don't know.You can see that there are multiple characters that say (somewhat) complete sentences, but it doesn't have to be perfect! It takes quite a while to get good results, and often, you'll have to use a smaller vocabulary (and discard uncommon words), or get more data. The Seinfeld dataset is about 3.4 MB, which is big enough for our purposes; for script generation you'll want more than 1 MB of text, generally. Submitting This ProjectWhen submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_tv_script_generation.ipynb" and save another copy as an HTML file by clicking "File" -> "Download as.."->"html". Include the "helper.py" and "problem_unittests.py" files in your submission. Once you download these files, compress them into one zip file for submission. ###Code ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code import os os.environ['CUDA_LAUNCH_BLOCKING'] = '1' import torch torch.cuda.set_device(0) """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_count = dict(Counter(text).most_common()) # list of words sorted in popularity sorted_words = list(word_count.keys()) word_dict = {} # a dictionary that translates words into integers for idx, word in enumerate(sorted_words): word_dict[word] = idx + 1 # 'infrequent' labels return (word_dict, {v: k for k, v in word_dict.items()}) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function punct_dict = {} punct_dict['.'] = 'Period' punct_dict[','] = 'Comma' punct_dict['"'] = 'Quotation_Mark' punct_dict[';'] = 'Semicolon' punct_dict['!'] = 'Exclamation_mark' punct_dict['?'] = 'Question_mark' punct_dict['('] = 'Left_Parentheses' punct_dict[')'] = 'Right_Parentheses' punct_dict['-'] = 'Dash' punct_dict['\n'] = 'Return' return punct_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to look at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() # Learn what int_text is! The transformation of text into int_number by vocab_to_int len(int_text), type(int_text) ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') print(train_on_gpu) ###Output True ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function print(type(words), len(words), sequence_length, words[:50]) # getting the correct rows x cols shape n_rows = len(words)-sequence_length-1 feature_tensors = np.zeros((n_rows, sequence_length), dtype=int) target_tensors = np.zeros(n_rows, dtype=int) # for each review, I grab that review and for i in range(n_rows): feature_tensors[i,:] = np.array(words[i:i+sequence_length]) target_tensors[i] = words[i+sequence_length] train_data = TensorDataset(torch.from_numpy(feature_tensors), torch.from_numpy(target_tensors) ) dataloader = DataLoader(train_data, shuffle=True, batch_size=batch_size) return dataloader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output <class 'range'> 50 5 range(0, 50) torch.Size([10, 5]) tensor([[36, 37, 38, 39, 40], [37, 38, 39, 40, 41], [41, 42, 43, 44, 45], [42, 43, 44, 45, 46], [11, 12, 13, 14, 15], [15, 16, 17, 18, 19], [26, 27, 28, 29, 30], [40, 41, 42, 43, 44], [23, 24, 25, 26, 27], [13, 14, 15, 16, 17]]) torch.Size([10]) tensor([41, 42, 46, 47, 16, 20, 31, 45, 28, 18]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define all layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.dropout = nn.Dropout(0.25) self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # embeddings and lstm_out x = nn_input.long() embeds = self.embedding(x) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # fully-connected layer out = self.fc(lstm_out) # reshape into (batch_size, seq_length, output_size) out = out.view(batch_size, -1, self.output_size) out = out[:, -1] # get last batch of labels # return one batch of output word scores and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param rnn: The PyTorch Module that holds the neural network :param optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # TODO: Implement Function # move data to GPU, if available if(train_on_gpu): inputs, labels = inp.cuda(), target.cuda() else: inputs, labels = inp, target # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history hidden = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() # get the output from the model output, hidden = rnn(inputs, hidden) loss = criterion(output, labels) loss.backward() # clip_grad_norm helps prevent the exploding gradient problem in RNNs / LSTMs. clip=5 # gradient clipping nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model return float(loss.data), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop try: loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) except RuntimeError: print(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of unique tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 32 # of words in a sequence # Batch Size batch_size = 64 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 7 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(set(vocab_to_int)) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 256 # Hidden Dimension hidden_dim = 512 # Number of LSTM Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() print(rnn) # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output RNN( (embedding): Embedding(21384, 256) (lstm): LSTM(256, 512, num_layers=2, batch_first=True, dropout=0.5) (dropout): Dropout(p=0.25, inplace=False) (fc): Linear(in_features=512, out_features=21384, bias=True) ) Training for 7 epoch(s)... Epoch: 1/7 Loss: 5.440127225399017 Epoch: 1/7 Loss: 4.897754967212677 Epoch: 1/7 Loss: 4.680213342666626 Epoch: 1/7 Loss: 4.530625684738159 Epoch: 1/7 Loss: 4.477496458053589 Epoch: 1/7 Loss: 4.4489430527687075 Epoch: 1/7 Loss: 4.380565386295318 Epoch: 1/7 Loss: 4.35412612247467 Epoch: 1/7 Loss: 4.334784769058228 Epoch: 1/7 Loss: 4.314755368709564 Epoch: 1/7 Loss: 4.274496835231781 Epoch: 1/7 Loss: 4.265003135681153 Epoch: 1/7 Loss: 4.2271694922447205 Epoch: 1/7 Loss: 4.175936364173889 Epoch: 1/7 Loss: 4.173582122802735 Epoch: 1/7 Loss: 4.127317697525024 Epoch: 1/7 Loss: 4.146075783729553 Epoch: 1/7 Loss: 4.097160451412201 Epoch: 1/7 Loss: 4.096870188236236 Epoch: 1/7 Loss: 4.12374263381958 Epoch: 1/7 Loss: 4.050253786087036 Epoch: 1/7 Loss: 4.087054382324219 Epoch: 1/7 Loss: 4.1159306249618535 Epoch: 1/7 Loss: 4.084246746540069 Epoch: 1/7 Loss: 4.060337846279144 Epoch: 1/7 Loss: 4.0439495315551754 Epoch: 1/7 Loss: 4.032072714805603 Epoch: 2/7 Loss: 3.941748465810503 Epoch: 2/7 Loss: 3.8693338651657103 Epoch: 2/7 Loss: 3.8512733607292176 Epoch: 2/7 Loss: 3.8223975238800048 Epoch: 2/7 Loss: 3.822737952232361 Epoch: 2/7 Loss: 3.8429362573623655 Epoch: 2/7 Loss: 3.8815074272155763 Epoch: 2/7 Loss: 3.8553989009857177 Epoch: 2/7 Loss: 3.8375838875770567 Epoch: 2/7 Loss: 3.9019121417999267 Epoch: 2/7 Loss: 3.903789119243622 Epoch: 2/7 Loss: 3.847796236038208 Epoch: 2/7 Loss: 3.8659792437553406 Epoch: 2/7 Loss: 3.8395901260375975 Epoch: 2/7 Loss: 3.8680261654853823 Epoch: 2/7 Loss: 3.8930205755233764 Epoch: 2/7 Loss: 3.841625497817993 Epoch: 2/7 Loss: 3.866253490447998 Epoch: 2/7 Loss: 3.86496945476532 Epoch: 2/7 Loss: 3.878799920082092 Epoch: 2/7 Loss: 3.8804102311134336 Epoch: 2/7 Loss: 3.88853129529953 Epoch: 2/7 Loss: 3.8769692821502684 Epoch: 2/7 Loss: 3.9134617743492126 Epoch: 2/7 Loss: 3.8967726798057556 Epoch: 2/7 Loss: 3.875201427936554 Epoch: 2/7 Loss: 3.914641480445862 Epoch: 3/7 Loss: 3.748516866901536 Epoch: 3/7 Loss: 3.672148921966553 Epoch: 3/7 Loss: 3.649857009410858 Epoch: 3/7 Loss: 3.692138476371765 Epoch: 3/7 Loss: 3.663156278133392 Epoch: 3/7 Loss: 3.679047279834747 Epoch: 3/7 Loss: 3.6694063229560854 Epoch: 3/7 Loss: 3.712371220111847 Epoch: 3/7 Loss: 3.6903881068229674 Epoch: 3/7 Loss: 3.694471092700958 Epoch: 3/7 Loss: 3.704854001045227 Epoch: 3/7 Loss: 3.689842242717743 Epoch: 3/7 Loss: 3.7579155130386352 Epoch: 3/7 Loss: 3.737253586769104 Epoch: 3/7 Loss: 3.72706632900238 Epoch: 3/7 Loss: 3.7433354930877685 Epoch: 3/7 Loss: 3.71257719039917 Epoch: 3/7 Loss: 3.759409801006317 Epoch: 3/7 Loss: 3.729119296550751 Epoch: 3/7 Loss: 3.7226998748779296 Epoch: 3/7 Loss: 3.7610828914642336 Epoch: 3/7 Loss: 3.7970821633338927 Epoch: 3/7 Loss: 3.770445281982422 Epoch: 3/7 Loss: 3.7594774432182314 Epoch: 3/7 Loss: 3.756800744533539 Epoch: 3/7 Loss: 3.7751384620666504 Epoch: 3/7 Loss: 3.7918020520210267 Epoch: 4/7 Loss: 3.6449039628002433 Epoch: 4/7 Loss: 3.5106687302589417 Epoch: 4/7 Loss: 3.5290410652160644 Epoch: 4/7 Loss: 3.5443011288642885 Epoch: 4/7 Loss: 3.544130033016205 Epoch: 4/7 Loss: 3.5624384779930116 Epoch: 4/7 Loss: 3.5637647004127504 Epoch: 4/7 Loss: 3.569939075469971 Epoch: 4/7 Loss: 3.5743988256454466 Epoch: 4/7 Loss: 3.5669960861206054 Epoch: 4/7 Loss: 3.607184049129486 Epoch: 4/7 Loss: 3.6257673621177675 Epoch: 4/7 Loss: 3.604689902305603 Epoch: 4/7 Loss: 3.5941504912376403 Epoch: 4/7 Loss: 3.659016770362854 Epoch: 4/7 Loss: 3.6350736808776856 Epoch: 4/7 Loss: 3.666177755355835 Epoch: 4/7 Loss: 3.629788129329681 Epoch: 4/7 Loss: 3.6585483021736147 Epoch: 4/7 Loss: 3.679232474327087 Epoch: 4/7 Loss: 3.6127443680763243 Epoch: 4/7 Loss: 3.668506244182587 Epoch: 4/7 Loss: 3.6939528884887696 Epoch: 4/7 Loss: 3.647709415435791 Epoch: 4/7 Loss: 3.6739447102546694 Epoch: 4/7 Loss: 3.6843781561851503 Epoch: 4/7 Loss: 3.7024223728179932 Epoch: 5/7 Loss: 3.5740769814326563 Epoch: 5/7 Loss: 3.4174180455207823 Epoch: 5/7 Loss: 3.4536514801979066 Epoch: 5/7 Loss: 3.4686670536994932 Epoch: 5/7 Loss: 3.4594988942146303 Epoch: 5/7 Loss: 3.463566790103912 Epoch: 5/7 Loss: 3.467808780193329 Epoch: 5/7 Loss: 3.476718333721161 Epoch: 5/7 Loss: 3.502764928817749 Epoch: 5/7 Loss: 3.4945299158096312 Epoch: 5/7 Loss: 3.509504997253418 Epoch: 5/7 Loss: 3.5312786660194395 Epoch: 5/7 Loss: 3.510157462120056 Epoch: 5/7 Loss: 3.503564238548279 Epoch: 5/7 Loss: 3.5344916486740114 Epoch: 5/7 Loss: 3.5214456329345705 Epoch: 5/7 Loss: 3.555229040145874 Epoch: 5/7 Loss: 3.5498494777679444 Epoch: 5/7 Loss: 3.5592599000930787 Epoch: 5/7 Loss: 3.555350459575653 Epoch: 5/7 Loss: 3.618158135890961 Epoch: 5/7 Loss: 3.5623470377922057 Epoch: 5/7 Loss: 3.5871895570755004 Epoch: 5/7 Loss: 3.6055741362571716 Epoch: 5/7 Loss: 3.605754216194153 Epoch: 5/7 Loss: 3.5829739995002745 Epoch: 5/7 Loss: 3.5997953104972837 Epoch: 6/7 Loss: 3.4851539391698614 Epoch: 6/7 Loss: 3.3613112268447876 Epoch: 6/7 Loss: 3.368417363166809 Epoch: 6/7 Loss: 3.3763419189453123 Epoch: 6/7 Loss: 3.3974693484306338 Epoch: 6/7 Loss: 3.3874406900405885 Epoch: 6/7 Loss: 3.3713042101860045 Epoch: 6/7 Loss: 3.4227574915885923 Epoch: 6/7 Loss: 3.44297208738327 Epoch: 6/7 Loss: 3.4201958565711976 Epoch: 6/7 Loss: 3.459585627555847 Epoch: 6/7 Loss: 3.4582015042304994 Epoch: 6/7 Loss: 3.421358411312103 Epoch: 6/7 Loss: 3.445003173351288 Epoch: 6/7 Loss: 3.4456550664901733 Epoch: 6/7 Loss: 3.485937143802643 Epoch: 6/7 Loss: 3.4927955327033997 Epoch: 6/7 Loss: 3.4833500928878784 Epoch: 6/7 Loss: 3.5039338874816894 Epoch: 6/7 Loss: 3.4853085083961486 Epoch: 6/7 Loss: 3.4802650952339174 Epoch: 6/7 Loss: 3.5191545062065126 Epoch: 6/7 Loss: 3.52607638835907 Epoch: 6/7 Loss: 3.516192787647247 Epoch: 6/7 Loss: 3.563179894924164 Epoch: 6/7 Loss: 3.505838517189026 Epoch: 6/7 Loss: 3.5872170176506044 Epoch: 7/7 Loss: 3.4303122687695633 Epoch: 7/7 Loss: 3.2928627119064333 Epoch: 7/7 Loss: 3.3060529613494873 Epoch: 7/7 Loss: 3.317435031890869 Epoch: 7/7 Loss: 3.305982421398163 Epoch: 7/7 Loss: 3.327086359500885 Epoch: 7/7 Loss: 3.3422680926322936 Epoch: 7/7 Loss: 3.349820451259613 Epoch: 7/7 Loss: 3.329127327442169 Epoch: 7/7 Loss: 3.3777764086723328 Epoch: 7/7 Loss: 3.4029650230407715 Epoch: 7/7 Loss: 3.3862902793884277 Epoch: 7/7 Loss: 3.38310046005249 Epoch: 7/7 Loss: 3.424765935897827 Epoch: 7/7 Loss: 3.424185378551483 Epoch: 7/7 Loss: 3.4087417187690736 Epoch: 7/7 Loss: 3.4233316488265992 Epoch: 7/7 Loss: 3.414546513557434 Epoch: 7/7 Loss: 3.4155345373153687 Epoch: 7/7 Loss: 3.4409759402275086 Epoch: 7/7 Loss: 3.4624198012351988 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** The vocab_size is the leng of vocab_to_int, which we set up at the beginning.After several trial and errors, I figure out some notice about the set of hyper-parameters.+ The output_size should be similar to the vocab_size for beter performance+ Smaller batch size will help prevent the memory issues+ We have to balance between the accuracy and computational time.For further improvement, we can set up the learning rate to decrease when hitting a plateau for a while. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) if(train_on_gpu): current_seq = current_seq.cpu() # move to cpu # the generated word becomes the next "current sequence" and the cycle can continue if train_on_gpu: current_seq = current_seq.cpu() current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output jerry: gasoline... george: oh, you know what i mean? i don't think so. i don't know. i can't believe i can get the hell out of here. jerry: what are you gonna do? elaine: i just can't tell him that. elaine: you mean, 'what do we do? jerry: i don't know what to do. elaine: oh, no no, i can't. i can't do that, but i don't want to be. jerry: no. kramer: oh, no. jerry: you don't even know how to do it for you? george: i can't believe it. jerry: i don't know, i know. jerry: i don't know what it was, but i don't know why she is a friend about your parents. elaine:(laughs) i mean, i'm not a little nervous. i can't do that, i can't do this. kramer:(to jerry) you can't do it. morty: hey. jerry: hi, i'm sorry. i didn't do anything about this. elaine:(looking down) what happened to the movies? jerry: i was in bed for you. george: you know i didn't even want a little secret. kramer: i know, but you should take a look. i think i can do that, but, if i have to do a lot better, but i'm not really sure that i have a lot of time, i can't find that, but i can't stand myself. kramer: well, you know, i think i'm getting rid of it for you. jerry:(sarcastic) oh, that's the worst. elaine:(pause) well, i don't know. jerry: i can't believe that. george:(pause) i think it's not good. elaine: oh. oh, yeah! jerry: what do you want to get? george: i don't ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 46367 Number of lines: 109233 Average number of words in each line: 5.544240293684143 The lines 0 to 10: jerry: do you know what this is all about? do you know, why were here? to be out, this is out...and out is one of the single most enjoyable experiences of life. people...did you ever hear people talking about we should go out? this is what theyre talking about...this whole thing, were all out now, no one is home. not one person here is home, were all out! there are people trying to find us, they dont know where we are. (on an imaginary phone) did you ring?, i cant find him. where did he go? he didnt tell me where he was going. he must have gone out. you wanna go out you get ready, you pick out the clothes, right? you take the shower, you get all ready, get the cash, get your friends, the car, the spot, the reservation...then youre standing around, what do you do? you go we gotta be getting back. once youre out, you wanna get back! you wanna go to sleep, you wanna get up, you wanna go out again tomorrow, right? where ever you are in life, its my feeling, youve gotta go. jerry: (pointing at georges shirt) see, to me, that button is in the worst possible spot. the second button literally makes or breaks the shirt, look at it. its too high! its in no-mans-land. you look like you live with your mother. george: are you through? jerry: you do of course try on, when you buy? george: yes, it was purple, i liked it, i dont actually recall considering the buttons. ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_counts = Counter(text) # sorting the words from most to least frequent in text occurrence sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) # create int_to_vocab dictionaries int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return { ".": "||period||", ",": "||comma||", "\"": "||quotation_mark||", ";": "||semicolon||", "!": "||exclamation_mark||", "?": "||question_mark||", "(": "||left_parantheses", ")": "||right_paratheses||", "-": "||dash||", "\n": "||return||" } """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code from torch.utils.data import TensorDataset, DataLoader from torch import Tensor import numpy as np def get_sequences(words, sequence_length): features = [] targets = [] for index, word in enumerate(words): if (index + sequence_length) < len(words): sequence = words[index : index + sequence_length] target = words[index + sequence_length] features.append(sequence) targets.append(target) else: break return features, targets def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function features, targets = get_sequences(words, sequence_length) data = TensorDataset(Tensor(features), Tensor(targets)) return torch.utils.data.DataLoader(data, batch_size=batch_size) def test_get_sequences(): words = [1, 2, 3, 4, 5, 6, 7] sequence_length = 4 expected_features = [ [1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 5, 6] ] expected_targets = [5, 6, 7] features, targets = get_sequences(words, sequence_length) assert(expected_targets == targets) assert(expected_features == features) # there is no test for this function, but you are encouraged to create # print statements and tests of your own test_get_sequences() ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) ###Output torch.Size([10, 5]) tensor([[ 0., 1., 2., 3., 4.], [ 1., 2., 3., 4., 5.], [ 2., 3., 4., 5., 6.], [ 3., 4., 5., 6., 7.], [ 4., 5., 6., 7., 8.], [ 5., 6., 7., 8., 9.], [ 6., 7., 8., 9., 10.], [ 7., 8., 9., 10., 11.], [ 8., 9., 10., 11., 12.], [ 9., 10., 11., 12., 13.]]) torch.Size([10]) tensor([ 5., 6., 7., 8., 9., 10., 11., 12., 13., 14.]) ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # embedding and LSTM layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) # linear layer self.fc = nn.Linear(hidden_dim, output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ batch_size = nn_input.size(0) # embeddings and lstm_out nn_input = nn_input.long() embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) # stack the outputs of the lstm lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # dropout and fully-connected layer out = self.fc(lstm_out) # reshape into (batch_size, seq_length, output_size) out = out.view(batch_size, -1, self.output_size) # get last batch out = out[:, -1] # return output and hidden state return out, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Create two new tensors with sizes n_layers x batch_size x hidden_dim, # initialized to zero, for hidden state and cell state of LSTM weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code clip = 5 # gradient clipping def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ if(train_on_gpu): inp, target = inp.cuda(), target.cuda() # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history hidden = tuple([each.data for each in hidden]) # zero accumulated gradients rnn.zero_grad() # get the output from the model output, hidden = rnn(inp, hidden) # calculate the loss and perform backprop loss = criterion(output.squeeze(), target.long()) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(rnn.parameters(), clip) optimizer.step() return loss.item(), hidden # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 10 # of words in a sequence # Batch Size batch_size = 200 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 4 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 800 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./save/trained_rnn', trained_rnn) print('Model Trained and Saved') ###Output Training for 4 epoch(s)... Epoch: 1/4 Loss: 5.181237701892853 Epoch: 1/4 Loss: 4.536556556224823 Epoch: 1/4 Loss: 4.383112089633942 Epoch: 1/4 Loss: 4.399640179634094 Epoch: 1/4 Loss: 4.28509246635437 Epoch: 1/4 Loss: 4.174441674232483 Epoch: 1/4 Loss: 4.196460688591004 Epoch: 1/4 Loss: 4.273359351158142 Epoch: 2/4 Loss: 4.083352662374576 Epoch: 2/4 Loss: 3.812438132762909 Epoch: 2/4 Loss: 3.768332154750824 Epoch: 2/4 Loss: 3.84101727104187 Epoch: 2/4 Loss: 3.773102207183838 Epoch: 2/4 Loss: 3.692211805343628 Epoch: 2/4 Loss: 3.740818433761597 Epoch: 2/4 Loss: 3.811843285083771 Epoch: 3/4 Loss: 3.729530919343233 Epoch: 3/4 Loss: 3.5639186272621153 Epoch: 3/4 Loss: 3.5064866938591 Epoch: 3/4 Loss: 3.6016391167640687 Epoch: 3/4 Loss: 3.5456644682884217 Epoch: 3/4 Loss: 3.4586289110183714 Epoch: 3/4 Loss: 3.509878888130188 Epoch: 3/4 Loss: 3.5734462289810183 Epoch: 4/4 Loss: 3.508139732480049 Epoch: 4/4 Loss: 3.3647750992774963 Epoch: 4/4 Loss: 3.327261540412903 Epoch: 4/4 Loss: 3.4105386810302734 Epoch: 4/4 Loss: 3.3607396955490114 Epoch: 4/4 Loss: 3.3061361818313597 Epoch: 4/4 Loss: 3.348609555721283 Epoch: 4/4 Loss: 3.383381802558899 ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** (Write answer, here)First, I used some initial params based on the sentiment analysis project and some research. I started training the model and I had a problem with the loss not decreasing good enough and oscillating.I tried different values for the learning rate, and ended up from 0.1 to 0.001. The loss seemed to decrease better, but still not enough. I tried different values for the other params, but that didn't help.After more research, I removed the dropout from the model and changed vocab_size from `len(vocab_to_int) + 10` to `len(vocab_to_int)`. I thought I should also include the puctuation tokens, but they are already included. This improved the training a lot.Next, I tried different values for embedding_dim, hidden_dim, seq_length, but didn't see much difference. The change that made a big impact was changing batch_size from 20 to 80. I tried with smaller sizes for embedding_dim and hidden_dim, but didn't perform well and ended up with the current ones. I increased batch_size even further to 200 and the model was finally training well. --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) ###Code # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:41: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____ ###Markdown Review comments1. You could look to apply what you've learned to the following problems: - Generate your own Bach music using like [DeepBach](https://arxiv.org/pdf/1612.01010.pdf). - Predict seizures in intracranial EEG recordings on [Kaggle](https://www.kaggle.com/c/seizure-prediction).2. token_lookup: Here's a good resource discussing more preprocessing steps that you can try: - [Preprocessing text before using an RNN](https://datascience.stackexchange.com/questions/11402/preprocessing-text-before-use-rnn)3. batch_data: Overall, good work implementing the batch_data function. You may also choose to create a [generator](https://wiki.python.org/moin/Generators) that batches data similarly but returns x and y batches using yield. A generator allows you to create a function that behaves like an iterator in a fast and clean approach and they do not store their contents in memory.4. RNN network: - The output size is correct. It should be set to the vocab size because we want the model to produce a fully generated script equal in size to the script fed to the model. You could vary the output size and re-train the model to see how this impacts the model's performance. - Also, an early stopping callback could also be used to prevent the model from overfitting. See the article below to learn more about an early stopping approach: [Early Stopping with PyTorch to Restrain your Model from Overfitting](https://medium.com/analytics-vidhya/early-stopping-with-pytorch-to-restrain-your-model-from-overfitting-dce6de4081c5) My questions1. label is 1, output is vocab_size, why it still works2. why need to reshape LSTM output,3. why get the last layer of output TV Script GenerationIn this project, you'll generate your own [Seinfeld](https://en.wikipedia.org/wiki/Seinfeld) TV scripts using RNNs. You'll be using part of the [Seinfeld dataset](https://www.kaggle.com/thec03u5/seinfeld-chroniclesscripts.csv) of scripts from 9 seasons. The Neural Network you'll build will generate a new ,"fake" TV script, based on patterns it recognizes in this training data. Get the DataThe data is already provided for you in `./data/Seinfeld_Scripts.txt` and you're encouraged to open that file and look at the text. >* As a first step, we'll load in this data and look at some samples. * Then, you'll be tasked with defining and training an RNN to generate a new script! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # load in data import helper data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_line_range` to view different parts of the data. This will give you a sense of the data you'll be working with. You can see, for example, that it is all lowercase text, and each new line of dialogue is separated by a newline character `\n`. ###Code view_line_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) lines = text.split('\n') print('Number of lines: {}'.format(len(lines))) word_count_line = [len(line.split()) for line in lines] print('Average number of words in each line: {}'.format(np.average(word_count_line))) print() print('The lines {} to {}:'.format(*view_line_range)) print('\n'.join(text.split('\n')[view_line_range[0]:view_line_range[1]])) text_test = 'itical science? i met her the night i did the show in lansing... \n\ngeorge: ha.' test_words = text_test.split() t = tuple(set(test_words)) for i,k in enumerate(t): print(i,k) ###Output 0 in 1 lansing... 2 night 3 did 4 science? 5 met 6 george: 7 i 8 her 9 show 10 ha. 11 the 12 itical ###Markdown --- Implement Pre-processing FunctionsThe first thing to do to any dataset is pre-processing. Implement the following pre-processing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following **tuple** `(vocab_to_int, int_to_vocab)` ###Code import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function words = tuple(set(text)) # set is {}, tuple is (), enumerate() gives each word an index int_to_vocab = dict(enumerate(words)) vocab_to_int = {word: i for i, word in int_to_vocab.items()} # return tuple return (vocab_to_int, int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks can create multiple ids for the same word. For example, "bye" and "bye!" would generate two different word ids.Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( **.** )- Comma ( **,** )- Quotation Mark ( **"** )- Semicolon ( **;** )- Exclamation mark ( **!** )- Question mark ( **?** )- Left Parentheses ( **(** )- Right Parentheses ( **)** )- Dash ( **-** )- Return ( **\n** )This dictionary will be used to tokenize the symbols and add the delimiter (space) around it. This separates each symbols as its own word, making it easier for the neural network to predict the next word. Make sure you don't use a value that could be confused as a word; for example, instead of using the value "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function d = { ".": "||Period||", ",": "||Comma||", "\"": "||Quotation_Mark||", ";": "||Semicolon||", "!": "||Exclamation_mark||", "?": "||Question_mark||", "(": "||Left_Parentheses||", ")": "||Right_Parentheses||", "-": "||Dash||", "\n": "||Return||", } return d """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Pre-process all the data and save itRunning the code cell below will pre-process all the data and save it to file. You're encouraged to lok at the code for `preprocess_and_save_data` in the `helpers.py` file to see what it's doing in detail, but you do not need to change this code. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # pre-process training data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkIn this section, you'll build the components necessary to build an RNN by implementing the RNN Module and forward and backpropagation functions. Check Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') device = torch.device("cuda:0" if train_on_gpu else "cpu") ###Output _____no_output_____ ###Markdown InputLet's start with the preprocessed input data. We'll use [TensorDataset](http://pytorch.org/docs/master/data.htmltorch.utils.data.TensorDataset) to provide a known format to our dataset; in combination with [DataLoader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader), it will handle batching, shuffling, and other dataset iteration functions.You can create data with TensorDataset by passing in feature and target tensors. Then create a DataLoader as usual.```data = TensorDataset(feature_tensors, target_tensors)data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size)``` BatchingImplement the `batch_data` function to batch `words` data into chunks of size `batch_size` using the `TensorDataset` and `DataLoader` classes.>You can batch words using the DataLoader, but it will be up to you to create `feature_tensors` and `target_tensors` of the correct size and content for a given `sequence_length`.For example, say we have these as input:```words = [1, 2, 3, 4, 5, 6, 7]sequence_length = 4```Your first `feature_tensor` should contain the values:```[1, 2, 3, 4]```And the corresponding `target_tensor` should just be the next "word"/tokenized word value:```5```This should continue with the second `feature_tensor`, `target_tensor` being:```[2, 3, 4, 5] features6 target``` ###Code # from torch.utils.data import TensorDataset, DataLoader # def batch_data(words, sequence_length, batch_size): # """ # Batch the neural network data using DataLoader # :param words: The word ids of the TV scripts # :param sequence_length: The sequence length of each batch # :param batch_size: The size of each batch; the number of sequences in a batch # :return: DataLoader with batched data # """ # # TODO: Implement function # words = np.asarray(words) # batch_len = sequence_length*batch_size # n_batches = int(len(words) / batch_len) # words = words [: n_batches*batch_len] # words = words.reshape((batch_size, -1)) # print('reshape words:', words) # features = None # targets = None # for n in range(0, words.shape[1], sequence_length): # # The features # x = words[:, n:n+sequence_length] # y = np.zeros([batch_size, 1]) # print('words:', words.shape) # y[:, -1] = words[:, n+sequence_length] # y = y.reshape(batch_size) # if features is None: # features = x # targets = y # else: # features = np.append(features, x, axis=0) # targets = np.append(targets, y, axis=0) # # The targets, shifted by one # features_tensor = torch.from_numpy(features).to(device) # targets_tensor = torch.from_numpy(targets).to(device) # data = TensorDataset(features_tensor, targets_tensor) # data_loader = torch.utils.data.DataLoader(data, # batch_size=batch_size) # return data_loader # # there is no test for this function, but you are encouraged to create # # print statements and tests of your own from torch.utils.data import TensorDataset, DataLoader def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ # TODO: Implement function words_len = len(words) words = np.asarray(words) batch_len = sequence_length*batch_size features = [] targets = [] for s in range(0, len(words), batch_len): # The features for i in range(batch_size): if s + i +sequence_length >= words_len: break features.append(words[s + i :s + i +sequence_length]) targets.append(words[s + i +sequence_length]) # # The targets, shifted by one features = np.array(features) targets = np.array(targets) features_tensor = torch.from_numpy(features).to(device) targets_tensor = torch.from_numpy(targets).to(device) data = TensorDataset(features_tensor, targets_tensor) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size) return data_loader # there is no test for this function, but you are encouraged to create # print statements and tests of your own ###Output _____no_output_____ ###Markdown Test your dataloader You'll have to modify this code to test a batching function, but it should look fairly similar.Below, we're generating some test text data and defining a dataloader using the function you defined, above. Then, we are getting some sample batch of inputs `sample_x` and targets `sample_y` from our dataloader.Your code should return something like the following (likely in a different order, if you shuffled your data):```torch.Size([10, 5])tensor([[ 28, 29, 30, 31, 32], [ 21, 22, 23, 24, 25], [ 17, 18, 19, 20, 21], [ 34, 35, 36, 37, 38], [ 11, 12, 13, 14, 15], [ 23, 24, 25, 26, 27], [ 6, 7, 8, 9, 10], [ 38, 39, 40, 41, 42], [ 25, 26, 27, 28, 29], [ 7, 8, 9, 10, 11]])torch.Size([10])tensor([ 33, 26, 22, 39, 16, 28, 11, 43, 30, 12])``` SizesYour sample_x should be of size `(batch_size, sequence_length)` or (10, 5) in this case and sample_y should just have one dimension: batch_size (10). ValuesYou should also notice that the targets, sample_y, are the *next* value in the ordered test_text data. So, for an input sequence `[ 28, 29, 30, 31, 32]` that ends with the value `32`, the corresponding output should be `33`. ###Code # test dataloader test_text = range(50) t_loader = batch_data(test_text, sequence_length=5, batch_size=10) data_iter = iter(t_loader) sample_x, sample_y = data_iter.next() print(sample_x.shape) print(sample_x) print() print(sample_y.shape) print(sample_y) len(test_text) ###Output _____no_output_____ ###Markdown --- Build the Neural NetworkImplement an RNN using PyTorch's [Module class](http://pytorch.org/docs/master/nn.htmltorch.nn.Module). You may choose to use a GRU or an LSTM. To complete the RNN, you'll have to implement the following functions for the class: - `__init__` - The initialize function. - `init_hidden` - The initialization function for an LSTM/GRU hidden state - `forward` - Forward propagation function. The initialize function should create the layers of the neural network and save them to the class. The forward propagation function will use these layers to run forward propagation and generate an output and a hidden state.**The output of this model should be the *last* batch of word scores** after a complete sequence has been processed. That is, for each input sequence of words, we only want to output the word scores for a single, most likely, next word. Hints1. Make sure to stack the outputs of the lstm to pass to your fully-connected layer, you can do this with `lstm_output = lstm_output.contiguous().view(-1, self.hidden_dim)`2. You can get the last batch of word scores by shaping the output of the final, fully-connected layer like so:``` reshape into (batch_size, seq_length, output_size)output = output.view(batch_size, -1, self.output_size) get last batchout = output[:, -1]``` ###Code import torch.nn as nn class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # TODO: Implement function # set class variables self.vocab_size = vocab_size self.output_size = output_size self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.n_layers = n_layers self.drop_prob = dropout self.embedding = nn.Embedding(vocab_size, embedding_dim) # define model layers self.lstm = nn.LSTM(self.embedding_dim, self.hidden_dim, self.n_layers, dropout=self.drop_prob, batch_first=True) ## TODO: define a dropout layer self.dropout = nn.Dropout(self.drop_prob) ## TODO: define the final, fully-connected output layer self.fc = nn.Linear(self.hidden_dim, self.output_size) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ # TODO: Implement function batch_size = nn_input.size(0) # return one batch of output word scores and the hidden state # print('nn_input', nn_input.shape) #[128, 100] embeds = self.embedding(nn_input) lstm_out, hidden = self.lstm(embeds, hidden) # stack up lstm outputs lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) # print('reshaped lstm_out', lstm_out.shape) # [12800, 512] # dropout and fully-connected layer out = self.dropout(lstm_out) out = self.fc(out) # print('fc_out', out.shape) #[12800, 21388] # return the final output and the hidden state output = out.view(batch_size, -1, self.output_size) # print('reshape fc_out', output.shape) #[128, 100, 21388] # get last batch output = output[:, -1] # print('last batch fc_out', output.shape) #[128, 21388] return output, hidden def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function # initialize hidden state with zero weights, and move to GPU if available # print('batch_size',batch_size) weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_rnn(RNN, train_on_gpu) ###Output Tests Passed ###Markdown Define forward and backpropagationUse the RNN class you implemented to apply forward and back propagation. This function will be called, iteratively, in the training loop as follows:```loss = forward_back_prop(decoder, decoder_optimizer, criterion, inp, target)```And it should return the average loss over a batch and the hidden state returned by a call to `RNN(inp, hidden)`. Recall that you can get this loss by computing it, as usual, and calling `loss.item()`.**If a GPU is available, you should move your data to that GPU device, here.** ###Code def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ if(train_on_gpu): inp, target = inp.cuda(), target.cuda() # TODO: Implement Function rnn.zero_grad() hidden = tuple([each.data for each in hidden]) output, h = rnn(inp, hidden) loss = criterion(output, target) # print('criterion: output={} , target={}'.format(output.shape, target.shape)) # criterion: output=torch.Size([128, 21388]) , target=torch.Size([128]) # move data to GPU, if available # perform backpropagation and optimization loss.backward() # nn.utils.clip_grad_norm_(net.parameters(), clip) optimizer.step() # return the loss over a batch and the hidden state produced by our model loss_np = loss.data.cpu().numpy() return loss_np.item(), h # Note that these tests aren't completely extensive. # they are here to act as general checks on the expected outputs of your functions """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_forward_back_prop(RNN, forward_back_prop, train_on_gpu) ###Output Tests Passed ###Markdown Neural Network TrainingWith the structure of the network complete and data ready to be fed in the neural network, it's time to train it. Train LoopThe training loop is implemented for you in the `train_decoder` function. This function will train the network over all the batches for the number of epochs given. The model progress will be shown every number of batches. This number is set with the `show_every_n_batches` parameter. You'll set this parameter along with other parameters in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn ###Output _____no_output_____ ###Markdown HyperparametersSet and train the neural network with the following parameters:- Set `sequence_length` to the length of a sequence.- Set `batch_size` to the batch size.- Set `num_epochs` to the number of epochs to train for.- Set `learning_rate` to the learning rate for an Adam optimizer.- Set `vocab_size` to the number of uniqe tokens in our vocabulary.- Set `output_size` to the desired size of the output.- Set `embedding_dim` to the embedding dimension; smaller than the vocab_size.- Set `hidden_dim` to the hidden dimension of your RNN.- Set `n_layers` to the number of layers/cells in your RNN.- Set `show_every_n_batches` to the number of batches at which the neural network should print progress.If the network isn't getting the desired results, tweak these parameters and/or the layers in the `RNN` class. ###Code # Data params # Sequence Length sequence_length = 100 # of words in a sequence # Batch Size batch_size = 128 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 20 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) #21388 # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 400 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 ###Output _____no_output_____ ###Markdown TrainIn the next cell, you'll train the neural network on the pre-processed data. If you have a hard time getting a good loss, you may consider changing your hyperparameters. In general, you may get better results with larger hidden and n_layer dimensions, but larger models take a longer time to train. > **You should aim for a loss less than 3.5.** You should also experiment with different sequence lengths, which determine the size of the long range dependencies that a model can learn. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ batch_size = 64 train_loader = batch_data(int_text, sequence_length=200, batch_size=batch_size) # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim=600, n_layers=2, dropout=0.5) print(rnn) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, n_epochs=20, show_every_n_batches=3) # saving the trained model helper.save_model('./save/trained_rnn_200_v2', trained_rnn) print('Model Trained and Saved') ###Output RNN( (embedding): Embedding(21388, 400) (lstm): LSTM(400, 600, num_layers=2, batch_first=True, dropout=0.5) (dropout): Dropout(p=0.5) (fc): Linear(in_features=600, out_features=21388, bias=True) ) Training for 20 epoch(s)... Epoch: 1/20 Loss: 9.958581924438477 Epoch: 1/20 Loss: 9.706121762593588 Epoch: 1/20 Loss: 7.863609949747722 Epoch: 1/20 Loss: 7.249745051066081 Epoch: 1/20 Loss: 6.732536633809407 Epoch: 1/20 Loss: 6.5185502370198565 Epoch: 1/20 Loss: 7.0281416575113935 Epoch: 1/20 Loss: 6.508562405904134 Epoch: 1/20 Loss: 6.4359086354573565 Epoch: 1/20 Loss: 6.524682680765788 Epoch: 1/20 Loss: 6.63815450668335 Epoch: 1/20 Loss: 5.932420253753662 Epoch: 1/20 Loss: 6.360460599263509 Epoch: 1/20 Loss: 5.806179046630859 Epoch: 1/20 Loss: 6.499349753061931 Epoch: 1/20 Loss: 6.086406389872233 Epoch: 1/20 Loss: 5.316435019175212 Epoch: 1/20 Loss: 5.489927927652995 Epoch: 1/20 Loss: 6.000441869099935 Epoch: 1/20 Loss: 6.3408559163411455 Epoch: 1/20 Loss: 5.85344139734904 Epoch: 1/20 Loss: 5.796311060587565 Epoch: 1/20 Loss: 5.843286991119385 Epoch: 2/20 Loss: 5.800034046173096 Epoch: 2/20 Loss: 5.130236784617106 Epoch: 2/20 Loss: 4.5888746579488116 Epoch: 2/20 Loss: 4.815451939900716 Epoch: 2/20 Loss: 4.586483796437581 Epoch: 2/20 Loss: 4.774575710296631 Epoch: 2/20 Loss: 5.710052649180095 Epoch: 2/20 Loss: 5.263357480367024 Epoch: 2/20 Loss: 5.055178801218669 Epoch: 2/20 Loss: 5.247008482615153 Epoch: 2/20 Loss: 5.555044809977214 Epoch: 2/20 Loss: 5.052340189615886 Epoch: 2/20 Loss: 5.3099416097005205 Epoch: 2/20 Loss: 4.913182894388835 Epoch: 2/20 Loss: 5.5798079172770185 Epoch: 2/20 Loss: 5.5165127118428545 Epoch: 2/20 Loss: 4.669315497080485 Epoch: 2/20 Loss: 4.912684917449951 Epoch: 2/20 Loss: 5.355833530426025 Epoch: 2/20 Loss: 5.667577425638835 Epoch: 2/20 Loss: 5.327864011128743 Epoch: 2/20 Loss: 5.279582341512044 Epoch: 2/20 Loss: 5.300801753997803 Epoch: 3/20 Loss: 5.361390471458435 Epoch: 3/20 Loss: 4.759755929311116 Epoch: 3/20 Loss: 4.274578173955281 Epoch: 3/20 Loss: 4.559749762217204 Epoch: 3/20 Loss: 4.357134660085042 Epoch: 3/20 Loss: 4.5699920654296875 Epoch: 3/20 Loss: 5.476928075154622 Epoch: 3/20 Loss: 4.841865221659343 Epoch: 3/20 Loss: 4.733288923899333 Epoch: 3/20 Loss: 4.87429141998291 Epoch: 3/20 Loss: 5.239358425140381 Epoch: 3/20 Loss: 4.77719783782959 Epoch: 3/20 Loss: 5.019404252370198 Epoch: 3/20 Loss: 4.651350021362305 Epoch: 3/20 Loss: 5.183464050292969 Epoch: 3/20 Loss: 5.1543205579121905 Epoch: 3/20 Loss: 4.385968128840129 Epoch: 3/20 Loss: 4.674489180246989 Epoch: 3/20 Loss: 5.027946472167969 Epoch: 3/20 Loss: 5.337019443511963 Epoch: 3/20 Loss: 5.000161806742351 Epoch: 3/20 Loss: 5.033861955006917 Epoch: 3/20 Loss: 5.0126363436381025 Epoch: 4/20 Loss: 5.161085247993469 Epoch: 4/20 Loss: 4.575662771860759 Epoch: 4/20 Loss: 4.1439298788706465 Epoch: 4/20 Loss: 4.4042402903238935 Epoch: 4/20 Loss: 4.218659162521362 Epoch: 4/20 Loss: 4.417603174845378 Epoch: 4/20 Loss: 5.234302997589111 Epoch: 4/20 Loss: 4.724959214528401 Epoch: 4/20 Loss: 4.6078596115112305 Epoch: 4/20 Loss: 4.693782965342204 Epoch: 4/20 Loss: 5.064415295918782 Epoch: 4/20 Loss: 4.544859886169434 Epoch: 4/20 Loss: 4.830895900726318 Epoch: 4/20 Loss: 4.4529978434244795 Epoch: 4/20 Loss: 4.929648399353027 Epoch: 4/20 Loss: 4.929540475209554 Epoch: 4/20 Loss: 4.192008415857951 Epoch: 4/20 Loss: 4.445526917775472 Epoch: 4/20 Loss: 4.824466705322266 Epoch: 4/20 Loss: 5.1562652587890625 Epoch: 4/20 Loss: 4.769290765126546 Epoch: 4/20 Loss: 4.723865032196045 Epoch: 4/20 Loss: 4.793251673380534 Epoch: 5/20 Loss: 4.91349196434021 Epoch: 5/20 Loss: 4.423328081766765 Epoch: 5/20 Loss: 3.94789989789327 Epoch: 5/20 Loss: 4.252796411514282 Epoch: 5/20 Loss: 4.053062756856282 Epoch: 5/20 Loss: 4.213995615641276 Epoch: 5/20 Loss: 5.100189685821533 Epoch: 5/20 Loss: 4.5287894407908125 Epoch: 5/20 Loss: 4.385985533396403 Epoch: 5/20 Loss: 4.520823955535889 Epoch: 5/20 Loss: 4.864138126373291 Epoch: 5/20 Loss: 4.378387928009033 Epoch: 5/20 Loss: 4.63739013671875 Epoch: 5/20 Loss: 4.245985984802246 Epoch: 5/20 Loss: 4.765323638916016 Epoch: 5/20 Loss: 4.700669765472412 Epoch: 5/20 Loss: 4.048598210016887 Epoch: 5/20 Loss: 4.2476270993550616 Epoch: 5/20 Loss: 4.591201305389404 Epoch: 5/20 Loss: 4.898910840352376 Epoch: 5/20 Loss: 4.647054036458333 Epoch: 5/20 Loss: 4.568993250528972 Epoch: 5/20 Loss: 4.55507230758667 Epoch: 6/20 Loss: 4.710606396198273 Epoch: 6/20 Loss: 4.303759495417277 Epoch: 6/20 Loss: 3.827535311381022 Epoch: 6/20 Loss: 4.1741368770599365 Epoch: 6/20 Loss: 3.95769993464152 Epoch: 6/20 Loss: 4.106383164723714 Epoch: 6/20 Loss: 4.940904299418132 Epoch: 6/20 Loss: 4.300746361414592 Epoch: 6/20 Loss: 4.2599945068359375 Epoch: 6/20 Loss: 4.38616148630778 Epoch: 6/20 Loss: 4.701078097025554 Epoch: 6/20 Loss: 4.229288260142009 Epoch: 6/20 Loss: 4.4513265291849775 Epoch: 6/20 Loss: 4.07342791557312 Epoch: 6/20 Loss: 4.5369517008463545 Epoch: 6/20 Loss: 4.554623126983643 Epoch: 6/20 Loss: 3.866297403971354 Epoch: 6/20 Loss: 4.132340272267659 Epoch: 6/20 Loss: 4.385867118835449 Epoch: 6/20 Loss: 4.7619757652282715 Epoch: 6/20 Loss: 4.446090539296468 Epoch: 6/20 Loss: 4.42699138323466 Epoch: 6/20 Loss: 4.392768939336141 Epoch: 7/20 Loss: 4.605188190937042 Epoch: 7/20 Loss: 4.156962315241496 Epoch: 7/20 Loss: 3.738390843073527 Epoch: 7/20 Loss: 3.968114217122396 Epoch: 7/20 Loss: 3.7904086112976074 Epoch: 7/20 Loss: 3.876730442047119 Epoch: 7/20 Loss: 4.69500732421875 Epoch: 7/20 Loss: 4.190468152364095 Epoch: 7/20 Loss: 4.096696694691976 Epoch: 7/20 Loss: 4.1273103555043535 Epoch: 7/20 Loss: 4.410106976826985 Epoch: 7/20 Loss: 4.045944134394328 Epoch: 7/20 Loss: 4.317123730977376 Epoch: 7/20 Loss: 3.9064788023630777 Epoch: 7/20 Loss: 4.322257200876872 Epoch: 7/20 Loss: 4.3300395011901855 Epoch: 7/20 Loss: 3.7030864556630454 Epoch: 7/20 Loss: 3.8839136759440103 Epoch: 7/20 Loss: 4.182711680730184 Epoch: 7/20 Loss: 4.544197718302409 Epoch: 7/20 Loss: 4.23785416285197 Epoch: 7/20 Loss: 4.195225079854329 Epoch: 7/20 Loss: 4.189998944600423 Epoch: 8/20 Loss: 4.385303497314453 Epoch: 8/20 Loss: 3.9964472452799478 Epoch: 8/20 Loss: 3.6130781968434653 Epoch: 8/20 Loss: 3.8470616340637207 Epoch: 8/20 Loss: 3.7110977172851562 Epoch: 8/20 Loss: 3.727081616719564 Epoch: 8/20 Loss: 4.481795152028401 Epoch: 8/20 Loss: 3.994717597961426 Epoch: 8/20 Loss: 3.91977866490682 Epoch: 8/20 Loss: 3.949684460957845 Epoch: 8/20 Loss: 4.270252386728923 Epoch: 8/20 Loss: 3.8725639979044595 Epoch: 8/20 Loss: 4.074734767278035 Epoch: 8/20 Loss: 3.719568649927775 Epoch: 8/20 Loss: 4.15228796005249 Epoch: 8/20 Loss: 4.120411078135173 Epoch: 8/20 Loss: 3.576140801111857 Epoch: 8/20 Loss: 3.7569658756256104 Epoch: 8/20 Loss: 3.9483041763305664 Epoch: 8/20 Loss: 4.288441737492879 Epoch: 8/20 Loss: 4.012235879898071 Epoch: 8/20 Loss: 4.050031026204427 Epoch: 8/20 Loss: 4.0011264483133955 Epoch: 9/20 Loss: 4.230976402759552 Epoch: 9/20 Loss: 3.8657448291778564 Epoch: 9/20 Loss: 3.4671210447947183 Epoch: 9/20 Loss: 3.688359260559082 Epoch: 9/20 Loss: 3.5587666034698486 Epoch: 9/20 Loss: 3.607822815577189 Epoch: 9/20 Loss: 4.374560674031575 Epoch: 9/20 Loss: 3.7822327613830566 Epoch: 9/20 Loss: 3.7203831672668457 Epoch: 9/20 Loss: 3.7646692593892417 Epoch: 9/20 Loss: 4.088390827178955 Epoch: 9/20 Loss: 3.7527387936909995 Epoch: 9/20 Loss: 3.98057492574056 Epoch: 9/20 Loss: 3.5951809088389077 Epoch: 9/20 Loss: 4.009266535441081 Epoch: 9/20 Loss: 4.040239651997884 Epoch: 9/20 Loss: 3.4113131364186606 Epoch: 9/20 Loss: 3.5709175268809 Epoch: 9/20 Loss: 3.7808525562286377 Epoch: 9/20 Loss: 4.110503355662028 Epoch: 9/20 Loss: 3.8000247478485107 Epoch: 9/20 Loss: 3.790783405303955 Epoch: 9/20 Loss: 3.8263745307922363 Epoch: 10/20 Loss: 3.940158486366272 Epoch: 10/20 Loss: 3.610634962717692 Epoch: 10/20 Loss: 3.38628888130188 Epoch: 10/20 Loss: 3.619947592417399 Epoch: 10/20 Loss: 3.440582513809204 Epoch: 10/20 Loss: 3.521163543065389 Epoch: 10/20 Loss: 4.139325539271037 Epoch: 10/20 Loss: 3.5962241490681968 Epoch: 10/20 Loss: 3.5890185038248696 Epoch: 10/20 Loss: 3.6476603349049888 Epoch: 10/20 Loss: 3.902036984761556 Epoch: 10/20 Loss: 3.5244584878285727 Epoch: 10/20 Loss: 3.808178663253784 Epoch: 10/20 Loss: 3.4422265688578286 Epoch: 10/20 Loss: 3.7875329653422036 Epoch: 10/20 Loss: 3.923575242360433 Epoch: 10/20 Loss: 3.2468807697296143 Epoch: 10/20 Loss: 3.3837295373280845 Epoch: 10/20 Loss: 3.64907177289327 Epoch: 10/20 Loss: 3.9422510464986167 Epoch: 10/20 Loss: 3.5793240070343018 Epoch: 10/20 Loss: 3.6010279655456543 Epoch: 10/20 Loss: 3.558387517929077 Epoch: 11/20 Loss: 3.765770196914673 Epoch: 11/20 Loss: 3.4691654046376548 Epoch: 11/20 Loss: 3.187297979990641 Epoch: 11/20 Loss: 3.494823376337687 Epoch: 11/20 Loss: 3.2687037785847983 Epoch: 11/20 Loss: 3.3666280110677085 Epoch: 11/20 Loss: 3.9034177462259927 Epoch: 11/20 Loss: 3.4081226189931235 Epoch: 11/20 Loss: 3.4614394505818686 Epoch: 11/20 Loss: 3.4412385622660318 Epoch: 11/20 Loss: 3.608020782470703 Epoch: 11/20 Loss: 3.3132993380228677 Epoch: 11/20 Loss: 3.5873115062713623 Epoch: 11/20 Loss: 3.14542547861735 Epoch: 11/20 Loss: 3.6499172846476235 Epoch: 11/20 Loss: 3.5665555000305176 Epoch: 11/20 Loss: 2.9303673108418784 Epoch: 11/20 Loss: 3.2625865936279297 Epoch: 11/20 Loss: 3.4378462632497153 Epoch: 11/20 Loss: 3.888513962427775 Epoch: 11/20 Loss: 3.49186635017395 Epoch: 11/20 Loss: 3.4093669255574546 Epoch: 11/20 Loss: 3.46438201268514 Epoch: 12/20 Loss: 3.574786603450775 Epoch: 12/20 Loss: 3.183721939722697 Epoch: 12/20 Loss: 3.001272122065226 Epoch: 12/20 Loss: 3.239773432413737 Epoch: 12/20 Loss: 3.039099136988322 Epoch: 12/20 Loss: 3.1630152066548667 Epoch: 12/20 Loss: 3.649697224299113 Epoch: 12/20 Loss: 3.1984384854634604 Epoch: 12/20 Loss: 3.117666800816854 Epoch: 12/20 Loss: 3.243520180384318 Epoch: 12/20 Loss: 3.3705769379933677 Epoch: 12/20 Loss: 3.193171183268229 Epoch: 12/20 Loss: 3.2801406383514404 Epoch: 12/20 Loss: 2.986464023590088 Epoch: 12/20 Loss: 3.426698923110962 Epoch: 12/20 Loss: 3.3971763451894126 Epoch: 12/20 Loss: 2.874650319417318 Epoch: 12/20 Loss: 3.000187555948893 Epoch: 12/20 Loss: 3.1743199030558267 Epoch: 12/20 Loss: 3.5641395250956216 Epoch: 12/20 Loss: 3.194021304448446 Epoch: 12/20 Loss: 3.1579459508260093 Epoch: 12/20 Loss: 3.2736295064290366 Epoch: 13/20 Loss: 3.3554237484931946 Epoch: 13/20 Loss: 3.091209967931112 Epoch: 13/20 Loss: 2.868119239807129 Epoch: 13/20 Loss: 3.1162149906158447 Epoch: 13/20 Loss: 2.9672609170277915 Epoch: 13/20 Loss: 3.0157578786214194 Epoch: 13/20 Loss: 3.359011729558309 Epoch: 13/20 Loss: 2.9590441385904946 Epoch: 13/20 Loss: 2.8988802433013916 Epoch: 13/20 Loss: 3.0317410628000894 Epoch: 13/20 Loss: 3.043818473815918 Epoch: 13/20 Loss: 2.9422900676727295 Epoch: 13/20 Loss: 3.083207289377848 Epoch: 13/20 Loss: 2.8259807427724204 Epoch: 13/20 Loss: 3.1831044356028237 Epoch: 13/20 Loss: 3.1320862770080566 Epoch: 13/20 Loss: 2.64082924524943 Epoch: 13/20 Loss: 2.807501236597697 Epoch: 13/20 Loss: 2.965097665786743 Epoch: 13/20 Loss: 3.260507345199585 Epoch: 13/20 Loss: 3.0080211957295737 Epoch: 13/20 Loss: 2.9455227057139077 Epoch: 13/20 Loss: 3.001010020573934 Epoch: 14/20 Loss: 3.1319024562835693 Epoch: 14/20 Loss: 2.864835182825724 Epoch: 14/20 Loss: 2.643784205118815 Epoch: 14/20 Loss: 2.928978761037191 Epoch: 14/20 Loss: 2.742231845855713 Epoch: 14/20 Loss: 2.7589685916900635 Epoch: 14/20 Loss: 3.184190273284912 Epoch: 14/20 Loss: 2.777350425720215 Epoch: 14/20 Loss: 2.6433753172556558 Epoch: 14/20 Loss: 2.9486355781555176 Epoch: 14/20 Loss: 2.759418169657389 Epoch: 14/20 Loss: 2.7255218823750815 Epoch: 14/20 Loss: 2.857006867726644 Epoch: 14/20 Loss: 2.6643308798472085 Epoch: 14/20 Loss: 3.009838422139486 Epoch: 14/20 Loss: 2.932336409886678 Epoch: 14/20 Loss: 2.4252865314483643 Epoch: 14/20 Loss: 2.673818588256836 Epoch: 14/20 Loss: 2.758777062098185 Epoch: 14/20 Loss: 3.041149457295736 Epoch: 14/20 Loss: 2.754335641860962 Epoch: 14/20 Loss: 2.693573792775472 Epoch: 14/20 Loss: 2.811082442601522 Epoch: 15/20 Loss: 2.9645098447799683 Epoch: 15/20 Loss: 2.6276638507843018 Epoch: 15/20 Loss: 2.5081238746643066 Epoch: 15/20 Loss: 2.7691024939219155 Epoch: 15/20 Loss: 2.6209895610809326 Epoch: 15/20 Loss: 2.606226921081543 Epoch: 15/20 Loss: 3.01155956586202 Epoch: 15/20 Loss: 2.521289825439453 Epoch: 15/20 Loss: 2.4819912115732827 Epoch: 15/20 Loss: 2.652308781941732 Epoch: 15/20 Loss: 2.6202286084493003 Epoch: 15/20 Loss: 2.487241586049398 Epoch: 15/20 Loss: 2.669004281361898 Epoch: 15/20 Loss: 2.4880974292755127 Epoch: 15/20 Loss: 2.8563265800476074 Epoch: 15/20 Loss: 2.7375148932139077 Epoch: 15/20 Loss: 2.3363521099090576 Epoch: 15/20 Loss: 2.441721280415853 Epoch: 15/20 Loss: 2.5556556383768716 Epoch: 15/20 Loss: 2.807891527811686 Epoch: 15/20 Loss: 2.579338312149048 Epoch: 15/20 Loss: 2.5047314961751304 Epoch: 15/20 Loss: 2.5898847579956055 Epoch: 16/20 Loss: 2.7055962085723877 Epoch: 16/20 Loss: 2.535599946975708 Epoch: 16/20 Loss: 2.349489212036133 Epoch: 16/20 Loss: 2.5405503114064536 Epoch: 16/20 Loss: 2.348211685816447 Epoch: 16/20 Loss: 2.4864562352498374 Epoch: 16/20 Loss: 2.7471976280212402 Epoch: 16/20 Loss: 2.326981862386068 Epoch: 16/20 Loss: 2.335393031438192 Epoch: 16/20 Loss: 2.5306597550710044 Epoch: 16/20 Loss: 2.382378101348877 Epoch: 16/20 Loss: 2.256469964981079 Epoch: 16/20 Loss: 2.6152642567952475 Epoch: 16/20 Loss: 2.2749523321787515 Epoch: 16/20 Loss: 2.5816116333007812 Epoch: 16/20 Loss: 2.523202101389567 Epoch: 16/20 Loss: 2.0898168881734214 Epoch: 16/20 Loss: 2.1976340611775718 Epoch: 16/20 Loss: 2.3798329830169678 Epoch: 16/20 Loss: 2.4624365170796714 Epoch: 16/20 Loss: 2.2570886611938477 Epoch: 16/20 Loss: 2.2233104705810547 Epoch: 16/20 Loss: 2.3574225902557373 Epoch: 17/20 Loss: 2.3814817070961 Epoch: 17/20 Loss: 2.2473496198654175 Epoch: 17/20 Loss: 2.18154247601827 Epoch: 17/20 Loss: 2.3392560482025146 Epoch: 17/20 Loss: 2.252898613611857 Epoch: 17/20 Loss: 2.2631988525390625 Epoch: 17/20 Loss: 2.4476199944814048 Epoch: 17/20 Loss: 2.033381382624308 Epoch: 17/20 Loss: 2.0798938274383545 Epoch: 17/20 Loss: 2.286619265874227 Epoch: 17/20 Loss: 2.1523786385854087 Epoch: 17/20 Loss: 2.2670957247416177 Epoch: 17/20 Loss: 2.2802541255950928 Epoch: 17/20 Loss: 2.143662691116333 Epoch: 17/20 Loss: 2.4154065450032554 Epoch: 17/20 Loss: 2.360225200653076 Epoch: 17/20 Loss: 1.9934606552124023 Epoch: 17/20 Loss: 2.0037982066472373 Epoch: 17/20 Loss: 2.2459132273991904 Epoch: 17/20 Loss: 2.3470895290374756 Epoch: 17/20 Loss: 2.1696882247924805 Epoch: 17/20 Loss: 2.0657910903294883 Epoch: 17/20 Loss: 2.2231138547261557 Epoch: 18/20 Loss: 2.2304621636867523 Epoch: 18/20 Loss: 2.156540552775065 Epoch: 18/20 Loss: 2.02048397064209 Epoch: 18/20 Loss: 2.286946932474772 Epoch: 18/20 Loss: 2.0845136642456055 Epoch: 18/20 Loss: 2.0657012462615967 Epoch: 18/20 Loss: 2.1726224422454834 Epoch: 18/20 Loss: 1.921269138654073 Epoch: 18/20 Loss: 1.8292070627212524 Epoch: 18/20 Loss: 2.0982075532277427 Epoch: 18/20 Loss: 1.8747754494349163 Epoch: 18/20 Loss: 2.060596466064453 Epoch: 18/20 Loss: 2.1123546759287515 Epoch: 18/20 Loss: 1.9146449168523152 Epoch: 18/20 Loss: 2.072672128677368 Epoch: 18/20 Loss: 2.196497678756714 Epoch: 18/20 Loss: 1.7107895612716675 Epoch: 18/20 Loss: 1.9680112997690837 Epoch: 18/20 Loss: 1.9936397473017375 Epoch: 18/20 Loss: 1.9863993724187214 Epoch: 18/20 Loss: 1.9955387115478516 Epoch: 18/20 Loss: 1.8729010820388794 Epoch: 18/20 Loss: 1.95305597782135 Epoch: 19/20 Loss: 1.907970130443573 Epoch: 19/20 Loss: 1.909160852432251 Epoch: 19/20 Loss: 1.9067612489064534 Epoch: 19/20 Loss: 1.9787201881408691 Epoch: 19/20 Loss: 1.8585262298583984 Epoch: 19/20 Loss: 1.9460563659667969 Epoch: 19/20 Loss: 1.9155720472335815 Epoch: 19/20 Loss: 1.7678314447402954 Epoch: 19/20 Loss: 1.60900882879893 Epoch: 19/20 Loss: 1.8782674074172974 Epoch: 19/20 Loss: 1.749641219774882 Epoch: 19/20 Loss: 1.8779502312342327 Epoch: 19/20 Loss: 1.895182689030965 Epoch: 19/20 Loss: 1.8008026281992595 Epoch: 19/20 Loss: 1.8963688611984253 Epoch: 19/20 Loss: 1.885638952255249 Epoch: 19/20 Loss: 1.6899528503417969 Epoch: 19/20 Loss: 1.710562825202942 Epoch: 19/20 Loss: 1.8041921854019165 Epoch: 19/20 Loss: 1.7710171937942505 Epoch: 19/20 Loss: 1.848591923713684 Epoch: 19/20 Loss: 1.7242599328358967 Epoch: 19/20 Loss: 1.850838343302409 Epoch: 20/20 Loss: 1.7542192041873932 Epoch: 20/20 Loss: 1.746577501296997 Epoch: 20/20 Loss: 1.7158775726954143 Epoch: 20/20 Loss: 1.8904620011647542 Epoch: 20/20 Loss: 1.780837615331014 Epoch: 20/20 Loss: 1.7228582700093586 Epoch: 20/20 Loss: 1.8387525081634521 Epoch: 20/20 Loss: 1.5870659748713176 Epoch: 20/20 Loss: 1.5571142037709553 Epoch: 20/20 Loss: 1.7474223375320435 Epoch: 20/20 Loss: 1.5173194805781047 Epoch: 20/20 Loss: 1.6295450528462727 Epoch: 20/20 Loss: 1.6993798812230427 Epoch: 20/20 Loss: 1.6462156772613525 Epoch: 20/20 Loss: 1.755162000656128 Epoch: 20/20 Loss: 1.6685333251953125 Epoch: 20/20 Loss: 1.4382768869400024 Epoch: 20/20 Loss: 1.5612629652023315 Epoch: 20/20 Loss: 1.630523959795634 Epoch: 20/20 Loss: 1.6356765429178874 Epoch: 20/20 Loss: 1.6279030243555705 Epoch: 20/20 Loss: 1.5642908811569214 Epoch: 20/20 Loss: 1.6505850553512573 Model Trained and Saved ###Markdown Question: How did you decide on your model hyperparameters? For example, did you try different sequence_lengths and find that one size made the model converge faster? What about your hidden_dim and n_layers; how did you decide on those? **Answer:** 1. Tried sequence_lengths = 100 and 200 and find 200 makes the model converge faster2. Tried several hidden_dim and n_layers, choose these one because training loss is lower and OOM does not happen --- CheckpointAfter running the above training cell, your model will be saved by name, `trained_rnn`, and if you save your notebook progress, **you can pause here and come back to this code at another time**. You can resume your progress by running the next cell, which will load in our word:id dictionaries _and_ load in your saved model by name! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import torch import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./save/trained_rnn') ###Output _____no_output_____ ###Markdown Generate TV ScriptWith the network trained and saved, you'll use it to generate a new, "fake" Seinfeld TV script in this section. Generate TextTo generate the text, the network needs to start with a single word and repeat its predictions until it reaches a set length. You'll be using the `generate` function to do this. It takes a word id to start with, `prime_id`, and generates a set length of text, `predict_len`. Also note that it uses topk sampling to introduce some randomness in choosing the most likely next word, given an output set of word scores! ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences ###Output _____no_output_____ ###Markdown Generate a New ScriptIt's time to generate the text. Set `gen_length` to the length of TV script you want to generate and set `prime_word` to one of the following to start the prediction:- "jerry"- "elaine"- "george"- "kramer"You can set the prime word to _any word_ in our dictionary, but it's best to start with a name for generating a TV script. (You can also start with any other names you find in the original text file!) Generate script of lenght 100 ###Code trained_rnn_200_v2 = helper.load_model('./save/trained_rnn_200_v2') # run the cell multiple times to get different results! gen_length = 100 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn_200_v2, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:49: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Generate script of lenght 200 ###Code trained_rnn_200_v2 = helper.load_model('./save/trained_rnn_200_v2') # run the cell multiple times to get different results! gen_length = 200 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn_200_v2, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:49: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Generate script of lenght 400 ###Code trained_rnn_200_v2 = helper.load_model('./save/trained_rnn_200_v2') # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn_200_v2, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:49: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). ###Markdown Save your favorite scriptsOnce you have a script that you like (or find interesting), save it to a text file! ###Code # save script to a text file f = open("generated_script_1.txt","w") f.write(generated_script) f.close() ###Output _____no_output_____
ML Models/high_low_classification.ipynb
###Markdown Setup ###Code # Import Dependencies. import matplotlib.pyplot as plt import numpy as np import pandas as pd import requests import json from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.models import load_model from tensorflow.keras.utils import to_categorical from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from joblib import dump, load # Fetch the data from the API. listings_json = requests.get("http://127.0.0.1:5000/housingDataAPI/v1.0/listings").json() # Examine the data. print(json.dumps(listings_json[0], indent=4, sort_keys=True)) # Create a dataframe to use for our model. data_df = pd.DataFrame(listings_json) print(len(data_df)) data_df.head() ###Output 2056 ###Markdown Data Preprocessing ###Code # Make a copy of the original data frame to modify. model_df = data_df # Insert a lot value of 0 for condos and floating homes. for index, row in model_df.iterrows(): if ("Condo" in row["home_type"]) | ("Floating" in row["home_type"]): model_df.loc[index, "lot_size"] = 0 else: pass # Include only those columns that will be used in the deep learning model. model_df = model_df.loc[:, ["bathrooms", "bedrooms", "built", "lot_size", "square_feet", "home_type", "high_school", "zipcode", "price"] ] # Drop rows with NaN entries. model_df.dropna(inplace=True) # Check the model data. print(len(model_df)) model_df.head() # Simplify home types in model_df. for i in model_df.index: if "Floating" in model_df.at[i, "home_type"]: model_df.at[i, "home_type"] = "Floating" if "Condo" in model_df.at[i, "home_type"]: model_df.at[i, "home_type"] = "Condo" if "Single Family" in model_df.at[i, "home_type"]: model_df.at[i, "home_type"] = "Single Family" if "Manufactured" in model_df.at[i, "home_type"]: model_df.at[i, "home_type"] = "Manufactured" model_df.head() # Create district df. school_dict = ({"high_school" : ['Reynolds', 'Parkrose', 'David Douglas', 'Centennial', 'Cleveland', 'Lincoln', 'Madison', 'Jefferson', 'Roosevelt', 'Sunset','Westview', 'Liberty', 'Beaverton', 'Grant', 'Southridge', 'Tigard', 'Wilson', 'Riverdale', 'Lake Oswego', 'Franklin', 'Tualatin', 'Milwaukie', 'Scappoose'], "district" : ['Reynolds', 'Parkrose','David Douglas', 'Centennial', 'Portland Public', 'Portland Public', 'Portland Public', 'Portland Public', 'Portland Public', 'Beaverton', 'Beaverton', 'Hillsboro', 'Beaverton', 'Portland Public', 'Beaverton', 'Tigard-Tualatin', 'Portland Public', 'Riverdale', 'Lake Oswego', 'Portland Public', 'Tigard-Tualatin', 'North Clackamas', 'Scappose']}) district_df = pd.DataFrame(school_dict) # Merge into model_df. model_df = pd.merge(model_df, district_df, on="high_school") # Drop the high_school column. model_df.drop("high_school", axis=1, inplace=True) print(len(model_df)) model_df.head() # # Rank the home_types in order of mean home price. # home_type = model_df[["price","home_type"]] # home_typeAVG = home_type.groupby(["home_type"]).mean().sort_values(by=["price"], ascending=False) # home_typeRanker = home_typeAVG.reset_index(drop=False) # # Create a dictionary to rank the zipcode for a particular listing. # home_type_ranker_dict = {} # for index, row in home_typeRanker.iterrows(): # home_type_ranker_dict[row["home_type"]] = index # home_type_ranker_dict # # Create a home_type ranking for each listing. # model_df["home_type_rank"] = [home_type_ranker_dict[home_type] for home_type in model_df["home_type"]] # Drop the home_type for each listing. # model_df.drop("home_type", axis=1, inplace=True) # model_df.head() # # Rank the districts in order of mean home price. # district = model_df[["price","district"]] # districtAVG = district.groupby(["district"]).mean().sort_values(by=["price"], ascending=False) # districtRanker = districtAVG.reset_index(drop=False) # # Create a dictionary to rank the district for a particular listing. # district_ranker_dict = {} # for index, row in districtRanker.iterrows(): # district_ranker_dict[row["district"]] = index # district_ranker_dict # # Create a district ranking for each listing. # model_df["district_rank"] = [district_ranker_dict[district] for district in model_df["district"]] # # Drop the district for each listing. # model_df.drop("district", axis=1, inplace=True) # model_df.head() # # Rank the zipcodes in order of mean home price. # zipcode = model_df[["price","zipcode"]] # zipcodeAVG = zipcode.groupby(["zipcode"]).mean().sort_values(by=["price"], ascending=False) # zipcodeRanker = zipcodeAVG.reset_index(drop=False) # # Create a dictionary to rank the zipcode for a particular listing. # zipcode_ranker_dict = {} # for index, row in zipcodeRanker.iterrows(): # zipcode_ranker_dict[int(row["zipcode"])] = index # zipcode_ranker_dict # # Create a zipcode ranking for each listing. # model_df["zipcode_rank"] = [zipcode_ranker_dict[zipcode] for zipcode in model_df["zipcode"]] # Drop the zipcode for each listing. # model_df.drop("zipcode", axis=1, inplace=True) # model_df.head() # Bin prices into ten equal length ranges. model_df["price_range"] = pd.qcut(model_df["price"], 5) # Drop the original price data. model_df.drop("price", axis=1, inplace=True) model_df.head() # Get dummies for the values in home_type to use in the model. model_df = pd.get_dummies(model_df, columns=["home_type","district","zipcode"]) model_df.head() # Assign X (input) and y (target). X = model_df.drop("price_range", axis=1) y = model_df["price_range"] # Split the data into training and testing X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) # Create a MinMaxScaler model and fit it to the training data X_scaler = MinMaxScaler().fit(X_train) # Save the scalar. dump(X_scaler, 'minmax_scaler.bin', compress=True) # Transform the training and testing data using the X_scaler and y_scaler models. X_train_scaled = X_scaler.transform(X_train) X_test_scaled = X_scaler.transform(X_test) # Label encode the target data. label_encoder = LabelEncoder() label_encoder.fit(y_train) encoded_y_train = label_encoder.transform(y_train) encoded_y_test = label_encoder.transform(y_test) # Save the label encoder dump(label_encoder, 'label_encoder.bin', compress=True) # Convert encoded labels to one-hot encoding. y_train_categorical = to_categorical(encoded_y_train) y_test_categorical = to_categorical(encoded_y_test) ###Output _____no_output_____ ###Markdown Run Random Forest Classifier ###Code # Create a random forest classifier, fit to the training data, and score on the testing data. rf = RandomForestClassifier(n_estimators=1000) rf = rf.fit(X_train_scaled, y_train_categorical) print(rf.score(X_test_scaled, y_test_categorical)) # Find the importances of each feature. feature_names = X.columns importances = rf.feature_importances_ print(sorted(zip(rf.feature_importances_, feature_names), reverse=True)) ###Output 0.5761316872427984 [(0.3039031300131124, 'square_feet'), (0.1502461492277107, 'built'), (0.09013132725169214, 'bathrooms'), (0.08942538655509241, 'lot_size'), (0.07423816081124927, 'bedrooms'), (0.020151117325278307, 'district_Portland Public'), (0.016654539237920558, 'zipcode_97209'), (0.013453692412634733, 'home_type_Single Family'), (0.013447367368685476, 'home_type_Condo'), (0.013424733999524888, 'zipcode_97266'), (0.012452385192592777, 'zipcode_97217'), (0.01220417296667141, 'zipcode_97229'), (0.01117291836353492, 'zipcode_97206'), (0.011092732493363256, 'zipcode_97219'), (0.010220321800881463, 'zipcode_97211'), (0.010070429074895216, 'district_Beaverton'), (0.00991977806692704, 'zipcode_97202'), (0.009229361269160716, 'district_David Douglas'), (0.009229282265180482, 'zipcode_97201'), (0.0086838283343154, 'zipcode_97239'), (0.007821109349351542, 'zipcode_97210'), (0.0067940587391437865, 'zipcode_97203'), (0.006347414933143469, 'zipcode_97213'), (0.006234965066157125, 'zipcode_97212'), (0.006018164265230408, 'zipcode_97236'), (0.005506991846666589, 'zipcode_97218'), (0.005409949842693945, 'district_Reynolds'), (0.0053479519079011086, 'zipcode_97230'), (0.005269073289292912, 'zipcode_97220'), (0.005030736115700315, 'zipcode_97225'), (0.004796913369523958, 'zipcode_97215'), (0.00406685427550804, 'district_Parkrose'), (0.0038286428590160832, 'zipcode_97216'), (0.003759436168158648, 'district_Centennial'), (0.0037399509289997046, 'zipcode_97214'), (0.0034995471260292504, 'zipcode_97221'), (0.0034954578947348452, 'district_Riverdale'), (0.0032951945291798644, 'home_type_Floating'), (0.0031566098333256605, 'zipcode_97233'), (0.002862343853161521, 'zipcode_97232'), (0.002569094764458886, 'zipcode_97205'), (0.002276321660168568, 'zipcode_97223'), (0.0020904269917342497, 'zipcode_97231'), (0.0014562388834992895, 'zipcode_97227'), (0.001025100721998648, 'district_Hillsboro'), (0.00098033844563518, 'district_Tigard-Tualatin'), (0.0007798214587750365, 'zipcode_97224'), (0.0006435681221363556, 'zipcode_97204'), (0.000631887501361326, 'district_Scappose'), (0.0005625464400406923, 'zipcode_97035'), (0.00040442320311863286, 'district_North Clackamas'), (0.00038559876766455125, 'district_Lake Oswego'), (0.0002830445565522987, 'home_type_Manufactured'), (0.0002794082595139021, 'zipcode_97222')] ###Markdown Create a Deep Learning Model ###Code # Create a deep learning Sequential model. deep_model = Sequential() deep_model.add(Dense(units=100, activation='relu', input_dim=54)) deep_model.add(Dense(units=100, activation='relu')) deep_model.add(Dense(units=5, activation='softmax')) # Compile and fit the model. deep_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) deep_model.fit( X_train_scaled, y_train_categorical, epochs=100, shuffle=True, verbose=2 ) ###Output Train on 1457 samples Epoch 1/100 1457/1457 - 1s - loss: 1.5528 - accuracy: 0.2896 Epoch 2/100 1457/1457 - 0s - loss: 1.3527 - accuracy: 0.4180 Epoch 3/100 1457/1457 - 0s - loss: 1.1434 - accuracy: 0.5244 Epoch 4/100 1457/1457 - 0s - loss: 1.0061 - accuracy: 0.5806 Epoch 5/100 1457/1457 - 0s - loss: 0.9294 - accuracy: 0.6170 Epoch 6/100 1457/1457 - 0s - loss: 0.8729 - accuracy: 0.6404 Epoch 7/100 1457/1457 - 0s - loss: 0.8524 - accuracy: 0.6342 Epoch 8/100 1457/1457 - 0s - loss: 0.8236 - accuracy: 0.6706 Epoch 9/100 1457/1457 - 0s - loss: 0.8090 - accuracy: 0.6719 Epoch 10/100 1457/1457 - 0s - loss: 0.7960 - accuracy: 0.6644 Epoch 11/100 1457/1457 - 0s - loss: 0.7857 - accuracy: 0.6658 Epoch 12/100 1457/1457 - 0s - loss: 0.7741 - accuracy: 0.6795 Epoch 13/100 1457/1457 - 0s - loss: 0.7677 - accuracy: 0.6822 Epoch 14/100 1457/1457 - 0s - loss: 0.7582 - accuracy: 0.6802 Epoch 15/100 1457/1457 - 0s - loss: 0.7580 - accuracy: 0.6747 Epoch 16/100 1457/1457 - 0s - loss: 0.7358 - accuracy: 0.7008 Epoch 17/100 1457/1457 - 0s - loss: 0.7335 - accuracy: 0.6932 Epoch 18/100 1457/1457 - 0s - loss: 0.7212 - accuracy: 0.6939 Epoch 19/100 1457/1457 - 0s - loss: 0.7147 - accuracy: 0.6946 Epoch 20/100 1457/1457 - 0s - loss: 0.7095 - accuracy: 0.7145 Epoch 21/100 1457/1457 - 0s - loss: 0.7054 - accuracy: 0.7035 Epoch 22/100 1457/1457 - 0s - loss: 0.6994 - accuracy: 0.7028 Epoch 23/100 1457/1457 - 0s - loss: 0.7065 - accuracy: 0.7152 Epoch 24/100 1457/1457 - 0s - loss: 0.7037 - accuracy: 0.7042 Epoch 25/100 1457/1457 - 0s - loss: 0.6885 - accuracy: 0.7138 Epoch 26/100 1457/1457 - 0s - loss: 0.6863 - accuracy: 0.7083 Epoch 27/100 1457/1457 - 0s - loss: 0.6888 - accuracy: 0.7056 Epoch 28/100 1457/1457 - 0s - loss: 0.6825 - accuracy: 0.7220 Epoch 29/100 1457/1457 - 0s - loss: 0.6698 - accuracy: 0.7282 Epoch 30/100 1457/1457 - 0s - loss: 0.6718 - accuracy: 0.7172 Epoch 31/100 1457/1457 - 0s - loss: 0.6718 - accuracy: 0.7186 Epoch 32/100 1457/1457 - 0s - loss: 0.6644 - accuracy: 0.7056 Epoch 33/100 1457/1457 - 0s - loss: 0.6617 - accuracy: 0.7213 Epoch 34/100 1457/1457 - 0s - loss: 0.6555 - accuracy: 0.7316 Epoch 35/100 1457/1457 - 0s - loss: 0.6530 - accuracy: 0.7200 Epoch 36/100 1457/1457 - 0s - loss: 0.6518 - accuracy: 0.7323 Epoch 37/100 1457/1457 - 0s - loss: 0.6558 - accuracy: 0.7076 Epoch 38/100 1457/1457 - 0s - loss: 0.6485 - accuracy: 0.7241 Epoch 39/100 1457/1457 - 0s - loss: 0.6557 - accuracy: 0.7179 Epoch 40/100 1457/1457 - 0s - loss: 0.6411 - accuracy: 0.7275 Epoch 41/100 1457/1457 - 0s - loss: 0.6428 - accuracy: 0.7310 Epoch 42/100 1457/1457 - 0s - loss: 0.6362 - accuracy: 0.7289 Epoch 43/100 1457/1457 - 0s - loss: 0.6319 - accuracy: 0.7351 Epoch 44/100 1457/1457 - 0s - loss: 0.6406 - accuracy: 0.7261 Epoch 45/100 1457/1457 - 0s - loss: 0.6253 - accuracy: 0.7399 Epoch 46/100 1457/1457 - 0s - loss: 0.6274 - accuracy: 0.7344 Epoch 47/100 1457/1457 - 0s - loss: 0.6283 - accuracy: 0.7351 Epoch 48/100 1457/1457 - 0s - loss: 0.6249 - accuracy: 0.7303 Epoch 49/100 1457/1457 - 0s - loss: 0.6237 - accuracy: 0.7275 Epoch 50/100 1457/1457 - 0s - loss: 0.6186 - accuracy: 0.7323 Epoch 51/100 1457/1457 - 0s - loss: 0.6182 - accuracy: 0.7378 Epoch 52/100 1457/1457 - 0s - loss: 0.6156 - accuracy: 0.7371 Epoch 53/100 1457/1457 - 0s - loss: 0.6101 - accuracy: 0.7481 Epoch 54/100 1457/1457 - 0s - loss: 0.6075 - accuracy: 0.7378 Epoch 55/100 1457/1457 - 0s - loss: 0.6111 - accuracy: 0.7364 Epoch 56/100 1457/1457 - 0s - loss: 0.6018 - accuracy: 0.7515 Epoch 57/100 1457/1457 - 0s - loss: 0.6099 - accuracy: 0.7289 Epoch 58/100 1457/1457 - 0s - loss: 0.6042 - accuracy: 0.7378 Epoch 59/100 1457/1457 - 0s - loss: 0.6000 - accuracy: 0.7461 Epoch 60/100 1457/1457 - 0s - loss: 0.5947 - accuracy: 0.7454 Epoch 61/100 1457/1457 - 0s - loss: 0.5946 - accuracy: 0.7522 Epoch 62/100 1457/1457 - 0s - loss: 0.6010 - accuracy: 0.7385 Epoch 63/100 1457/1457 - 0s - loss: 0.5965 - accuracy: 0.7509 Epoch 64/100 1457/1457 - 0s - loss: 0.5917 - accuracy: 0.7515 Epoch 65/100 1457/1457 - 0s - loss: 0.5910 - accuracy: 0.7529 Epoch 66/100 1457/1457 - 0s - loss: 0.5805 - accuracy: 0.7543 Epoch 67/100 1457/1457 - 0s - loss: 0.5782 - accuracy: 0.7577 Epoch 68/100 1457/1457 - 0s - loss: 0.5840 - accuracy: 0.7495 Epoch 69/100 1457/1457 - 0s - loss: 0.5732 - accuracy: 0.7509 Epoch 70/100 1457/1457 - 0s - loss: 0.5740 - accuracy: 0.7481 Epoch 71/100 1457/1457 - 0s - loss: 0.5873 - accuracy: 0.7447 Epoch 72/100 1457/1457 - 0s - loss: 0.5735 - accuracy: 0.7488 Epoch 73/100 1457/1457 - 0s - loss: 0.5697 - accuracy: 0.7543 Epoch 74/100 1457/1457 - 0s - loss: 0.5725 - accuracy: 0.7474 Epoch 75/100 1457/1457 - 0s - loss: 0.5678 - accuracy: 0.7543 Epoch 76/100 1457/1457 - 0s - loss: 0.5681 - accuracy: 0.7577 Epoch 77/100 1457/1457 - 0s - loss: 0.5718 - accuracy: 0.7495 Epoch 78/100 1457/1457 - 0s - loss: 0.5578 - accuracy: 0.7612 Epoch 79/100 1457/1457 - 0s - loss: 0.5639 - accuracy: 0.7529 Epoch 80/100 1457/1457 - 0s - loss: 0.5633 - accuracy: 0.7570 Epoch 81/100 1457/1457 - 0s - loss: 0.5645 - accuracy: 0.7605 Epoch 82/100 1457/1457 - 0s - loss: 0.5534 - accuracy: 0.7701 Epoch 83/100 1457/1457 - 0s - loss: 0.5549 - accuracy: 0.7625 Epoch 84/100 1457/1457 - 0s - loss: 0.5519 - accuracy: 0.7666 Epoch 85/100 1457/1457 - 0s - loss: 0.5523 - accuracy: 0.7646 Epoch 86/100 1457/1457 - 0s - loss: 0.5497 - accuracy: 0.7660 Epoch 87/100 1457/1457 - 0s - loss: 0.5469 - accuracy: 0.7701 Epoch 88/100 1457/1457 - 0s - loss: 0.5429 - accuracy: 0.7694 Epoch 89/100 1457/1457 - 0s - loss: 0.5469 - accuracy: 0.7618 Epoch 90/100 1457/1457 - 0s - loss: 0.5437 - accuracy: 0.7660 Epoch 91/100 1457/1457 - 0s - loss: 0.5320 - accuracy: 0.7728 Epoch 92/100 1457/1457 - 0s - loss: 0.5354 - accuracy: 0.7646 Epoch 93/100 1457/1457 - 0s - loss: 0.5334 - accuracy: 0.7776 Epoch 94/100 1457/1457 - 0s - loss: 0.5312 - accuracy: 0.7749 Epoch 95/100 1457/1457 - 0s - loss: 0.5352 - accuracy: 0.7632 Epoch 96/100 1457/1457 - 0s - loss: 0.5376 - accuracy: 0.7687 Epoch 97/100 1457/1457 - 0s - loss: 0.5300 - accuracy: 0.7721 Epoch 98/100 1457/1457 - 0s - loss: 0.5282 - accuracy: 0.7769 Epoch 99/100 1457/1457 - 0s - loss: 0.5236 - accuracy: 0.7817 Epoch 100/100 1457/1457 - 0s - loss: 0.5214 - accuracy: 0.7728 ###Markdown Quantify our Trained Model ###Code model_loss, model_accuracy = deep_model.evaluate(X_test_scaled, y_test_categorical, verbose=2) print(f"Loss: {model_loss}, Accuracy: {model_accuracy}") ###Output 486/1 - 0s - loss: 1.0845 - accuracy: 0.6584 Loss: 0.9257818293669586, Accuracy: 0.6584362387657166 ###Markdown Make Predictions ###Code # Use the first 10 test data values to make a prediction and compare it to the actual labels. encoded_predictions = deep_model.predict_classes(X_test_scaled[:10]) prediction_labels = label_encoder.inverse_transform(encoded_predictions) print(f"Predicted classes: {prediction_labels}") print(f"Actual Labels: {list(y_test[:10])}") ###Output Predicted classes: [Interval(348340.0, 449000.0, closed='right') Interval(449000.0, 609000.0, closed='right') Interval(449000.0, 609000.0, closed='right') Interval(348340.0, 449000.0, closed='right') Interval(348340.0, 449000.0, closed='right') Interval(825000.0, 4495000.0, closed='right') Interval(609000.0, 825000.0, closed='right') Interval(449000.0, 609000.0, closed='right') Interval(825000.0, 4495000.0, closed='right') Interval(449000.0, 609000.0, closed='right')] Actual Labels: [Interval(123499.999, 348340.0, closed='right'), Interval(449000.0, 609000.0, closed='right'), Interval(348340.0, 449000.0, closed='right'), Interval(123499.999, 348340.0, closed='right'), Interval(449000.0, 609000.0, closed='right'), Interval(825000.0, 4495000.0, closed='right'), Interval(609000.0, 825000.0, closed='right'), Interval(825000.0, 4495000.0, closed='right'), Interval(825000.0, 4495000.0, closed='right'), Interval(449000.0, 609000.0, closed='right')] ###Markdown Save the trained model ###Code # Save the model deep_model.save("housing_model_trained.h5") ###Output _____no_output_____ ###Markdown Test the saved model, scaler, and label encoder ###Code # Load the model, scaler and label encoder. model = load_model("housing_model_trained.h5") scaler = load("minmax_scaler.bin") label_encoder = load("label_encoder.bin") # Input data for testing. input_data = np.array(np.array([X.iloc[0]])) X.iloc[0] encoded_predictions = model.predict_classes(scaler.transform(input_data)) prediction_labels = label_encoder.inverse_transform(encoded_predictions) print(f"{prediction_labels[0].left}, {prediction_labels[0].right}") ###Output 123499.999, 348340.0
intermediate_importing_data_in_python/1_importing_data_from_the_internet.ipynb
###Markdown Importing flat files from the web: your turn!You are about to import your first file from the web! The flat file you will import will be `'winequality-red.csv'` from the University of California, Irvine's [Machine Learning repository](http://archive.ics.uci.edu/ml/index.html). The flat file contains tabular data of physiochemical properties of red wine, such as pH, alcohol content and citric acid content, along with wine quality rating.The URL of the file is```'https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/datasets/winequality-red.csv'```After you import it, you'll check your working directory to confirm that it is there and then you'll load it into a `pandas` DataFrame.Instructions- Import the function `urlretrieve` from the subpackage `urllib.request`.- Assign the URL of the file to the variable `url`.- Use the function `urlretrieve()` to save the file locally as `'winequality-red.csv'`.- Execute the remaining code to load `'winequality-red.csv'` in a pandas DataFrame and to print its head. ###Code # Import package from urllib.request import urlretrieve # Import pandas import pandas as pd # Assign url of file: url url = 'https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/datasets/winequality-red.csv' # Save file locally urlretrieve(url, 'winequality-red.csv') # Read file into a DataFrame and print its head df = pd.read_csv('winequality-red.csv', sep=';') df.head() ###Output _____no_output_____ ###Markdown Opening and reading flat files from the webYou have just imported a file from the web, saved it locally and loaded it into a DataFrame. If you just wanted to load a file from the web into a DataFrame without first saving it locally, you can do that easily using `pandas`. In particular, you can use the function `pd.read_csv()` with the URL as the first argument and the separator `sep` as the second argument.The URL of the file, once again, is```'https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/datasets/winequality-red.csv'```Instructions- Assign the URL of the file to the variable `url`.- Read file into a DataFrame `df` using `pd.read_csv()`, recalling that the separator in the file is `';'`.- Print the head of the DataFrame `df`.- Execute the rest of the code to plot histogram of the first feature in the DataFrame `df`. ###Code # Import packages import matplotlib.pyplot as plt import pandas as pd # Assign url of file: url url = 'https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/datasets/winequality-red.csv' # Read file into a DataFrame: df df = pd.read_csv(url, sep=';') # Print the head of the DataFrame print(df.head()) # Plot first column of df pd.DataFrame.hist(df.iloc[:, 0:1]) plt.xlabel('fixed acidity (g(tartaric acid)/dm$^3$)') plt.ylabel('count') plt.show() ###Output fixed acidity volatile acidity citric acid residual sugar chlorides \ 0 7.4 0.70 0.00 1.9 0.076 1 7.8 0.88 0.00 2.6 0.098 2 7.8 0.76 0.04 2.3 0.092 3 11.2 0.28 0.56 1.9 0.075 4 7.4 0.70 0.00 1.9 0.076 free sulfur dioxide total sulfur dioxide density pH sulphates \ 0 11.0 34.0 0.9978 3.51 0.56 1 25.0 67.0 0.9968 3.20 0.68 2 15.0 54.0 0.9970 3.26 0.65 3 17.0 60.0 0.9980 3.16 0.58 4 11.0 34.0 0.9978 3.51 0.56 alcohol quality 0 9.4 5 1 9.8 5 2 9.8 5 3 9.8 6 4 9.4 5 ###Markdown Importing non-flat files from the webCongrats! You've just loaded a flat file from the web into a DataFrame without first saving it locally using the `pandas` function `pd.read_csv()`. This function is super cool because it has close relatives that allow you to load all types of files, not only flat ones. In this interactive exercise, you'll use `pd.read_excel()` to import an Excel spreadsheet.The URL of the spreadsheet is```'http://s3.amazonaws.com/assets.datacamp.com/course/importing_data_into_r/latitude.xls'```Your job is to use `pd.read_excel()` to read in all of its sheets, print the sheet names and then print the head of the first sheet _using its name, not its index_.Note that the output of `pd.read_excel()` is a Python dictionary with sheet names as keys and corresponding DataFrames as corresponding values.Instructions- Assign the URL of the file to the variable `url`.- Read the file in `url` into a dictionary `xls` using `pd.read_excel()` recalling that, in order to import all sheets you need to pass `None` to the argument `sheet_name`.- Print the names of the sheets in the Excel spreadsheet; these will be the keys of the dictionary `xls`.- Print the head of the first sheet _using the sheet name, not the index of the sheet_! The sheet name is `'1700'`. ###Code # Import package import pandas as pd # Assign url of file: url url = 'http://s3.amazonaws.com/assets.datacamp.com/course/importing_data_into_r/latitude.xls' # Read in all sheets of Excel file: xls xls = pd.read_excel(url, sheet_name=None) # Print the sheetnames print(xls.keys()) # Print the head of the first sheet (using its name, NOT its index) print(xls['1700'].head()) ###Output dict_keys(['1700', '1900']) country 1700 0 Afghanistan 34.565000 1 Akrotiri and Dhekelia 34.616667 2 Albania 41.312000 3 Algeria 36.720000 4 American Samoa -14.307000 ###Markdown Performing HTTP requests in Python using urllibNow that you know the basics behind HTTP GET requests, it's time to perform some of your own. In this interactive exercise, you will ping our very own DataCamp servers to perform a GET request to extract information from the first coding exercise of this course, `"https://campus.datacamp.com/courses/1606/4135?ex=2"`.In the next exercise, you'll extract the HTML itself. Right now, however, you are going to package and send the request and then catch the response.Instructions- Import the functions `urlopen` and `Request` from the subpackage `urllib.request`.- Package the request to the url `"https://campus.datacamp.com/courses/1606/4135?ex=2"` using the function `Request()` and assign it to `request`.- Send the request and catch the response in the variable `response` with the function `urlopen()`.- Run the rest of the code to see the datatype of `response` and to close the connection! ###Code # Import packages from urllib.request import urlopen, Request # Specify the url url = 'https://campus.datacamp.com/courses/1606/4135?ex=2' # This packages the request: request request = Request(url) # Sends the request and catches the response: response response = urlopen(request) # Print the datatype of response print(type(response)) # Be polite and close the response! response.close() ###Output <class 'http.client.HTTPResponse'> ###Markdown Printing HTTP request results in Python using urllibYou have just packaged and sent a GET request to `"https://campus.datacamp.com/courses/1606/4135?ex=2"` and then caught the response. You saw that such a response is a `http.client.HTTPResponse` object. The question remains: what can you do with this response?Well, as it came from an HTML page, you could _read_ it to extract the HTML and, in fact, such a `http.client.HTTPResponse` object has an associated `read()` method. In this exercise, you'll build on your previous great work to extract the response and print the HTML.Instructions- Send the request and catch the `response` in the variable response with the function `urlopen()`, as in the previous exercise.- Extract the response using the `read()` method and store the result in the variable `html`.- Print the string `html`.- Hit submit to perform all of the above and to close the response: be tidy! ###Code # Import packages from urllib.request import urlopen, Request # Specify the url url = 'https://campus.datacamp.com/courses/1606/4135?ex=2' # This packages the request request = Request(url) # Sends the request and catches the response: response response = urlopen(request) # Extract the response: html html = response.read() # Print the html print(html) # Be polite and close the response! response.close() ###Output b'<!doctype html><html lang="en"><head><link rel="apple-touch-icon-precomposed" sizes="57x57" href="/apple-touch-icon-57x57.png"><link rel="apple-touch-icon-precomposed" sizes="114x114" href="/apple-touch-icon-114x114.png"><link rel="apple-touch-icon-precomposed" sizes="72x72" href="/apple-touch-icon-72x72.png"><link rel="apple-touch-icon-precomposed" sizes="144x144" href="/apple-touch-icon-144x144.png"><link rel="apple-touch-icon-precomposed" sizes="60x60" href="/apple-touch-icon-60x60.png"><link rel="apple-touch-icon-precomposed" sizes="120x120" href="/apple-touch-icon-120x120.png"><link rel="apple-touch-icon-precomposed" sizes="76x76" href="/apple-touch-icon-76x76.png"><link rel="apple-touch-icon-precomposed" sizes="152x152" href="/apple-touch-icon-152x152.png"><link rel="icon" type="image/png" href="/favicon.ico"><link rel="icon" type="image/png" href="/favicon-196x196.png" sizes="196x196"><link rel="icon" type="image/png" href="/favicon-96x96.png" sizes="96x96"><link rel="icon" type="image/png" href="/favicon-32x32.png" sizes="32x32"><link rel="icon" type="image/png" href="/favicon-16x16.png" sizes="16x16"><link rel="icon" type="image/png" href="/favicon-128.png" sizes="128x128"><meta name="application-name" content="DataCamp"><meta name="msapplication-TileColor" content="#FFFFFF"><meta name="msapplication-TileImage" content="/mstile-144x144.png"><meta name="msapplication-square70x70logo" content="/mstile-70x70.png"><meta name="msapplication-square150x150logo" content="/mstile-150x150.png"><meta name="msapplication-wide310x150logo" content="/mstile-310x150.png"><meta name="msapplication-square310x310logo" content="/mstile-310x310.png"><link href="/static/css/main.9ce3aa4a.css" rel="stylesheet"><title data-react-helmet="true">Importing flat files from the web: your turn! | Python</title><link data-react-helmet="true" rel="canonical" href="https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=2"><meta data-react-helmet="true" charset="utf-8"><meta data-react-helmet="true" http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"><meta data-react-helmet="true" name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"><meta data-react-helmet="true" name="fragment" content="!"><meta data-react-helmet="true" name="keywords" content="R, Python, Data analysis, interactive, learning"><meta data-react-helmet="true" name="description" content="Here is an example of Importing flat files from the web: your turn!: You are about to import your first file from the web! The flat file you will import will be &apos;winequality-red."><meta data-react-helmet="true" name="twitter:card" content="summary"><meta data-react-helmet="true" name="twitter:site" content="@DataCamp"><meta data-react-helmet="true" name="twitter:title" content="Importing flat files from the web: your turn! | Python"><meta data-react-helmet="true" name="twitter:description" content="Here is an example of Importing flat files from the web: your turn!: You are about to import your first file from the web! The flat file you will import will be &apos;winequality-red."><meta data-react-helmet="true" name="twitter:creator" content="@DataCamp"><meta data-react-helmet="true" name="twitter:image:src" content="/public/assets/images/var/twitter_share.png"><meta data-react-helmet="true" name="twitter:domain" content="www.datacamp.com"><meta data-react-helmet="true" property="og:title" content="Importing flat files from the web: your turn! | Python"><meta data-react-helmet="true" property="og:image" content="/public/assets/images/var/linkedin_share.png"><meta data-react-helmet="true" name="google-signin-clientid" content="892114885437-01a7plbsu1b2vobuhvnckmmanhb58h3a.apps.googleusercontent.com"><meta data-react-helmet="true" name="google-signin-scope" content="email profile"><meta data-react-helmet="true" name="google-signin-cookiepolicy" content="single_host_origin"><script data-react-helmet="true" async="true" src="https://compliance.datacamp.com/base.js"></script><script data-react-helmet="true">\n var dataLayerContent = {\n gtm_version: 2,\n };\n if (typeof window[\'dataLayer\'] === \'undefined\') {\n window[\'dataLayer\'] = [dataLayerContent];\n } else {\n window[\'dataLayer\'].push(dataLayerContent);\n }\n </script><script async src=\'/cdn-cgi/bm/cv/669835187/api.js\'></script></head><body><script>window.PRELOADED_STATE = "[&quot;~#iR&quot;,[&quot;^ &quot;,&quot;n&quot;,&quot;StateRecord&quot;,&quot;v&quot;,[&quot;^ &quot;,&quot;backendSession&quot;,[&quot;~#iOM&quot;,[&quot;status&quot;,[&quot;^2&quot;,[&quot;code&quot;,&quot;none&quot;,&quot;text&quot;,&quot;&quot;]],&quot;isInitSession&quot;,false,&quot;message&quot;,null]],&quot;boot&quot;,[&quot;^0&quot;,[&quot;^ &quot;,&quot;n&quot;,&quot;BootStateRecord&quot;,&quot;v&quot;,[&quot;^ &quot;,&quot;bootState&quot;,&quot;PRE_BOOTED&quot;,&quot;error&quot;,null]]],&quot;chapter&quot;,[&quot;^2&quot;,[&quot;current&quot;,[&quot;^2&quot;,[&quot;badge_uncompleted_url&quot;,&quot;https://assets.datacamp.com/production/default/badges/missing_unc.png&quot;,&quot;number&quot;,1,&quot;number_of_videos&quot;,3,&quot;slug&quot;,&quot;importing-data-from-the-internet-1&quot;,&quot;last_updated_on&quot;,&quot;06/11/2020&quot;,&quot;title_meta&quot;,null,&quot;nb_exercises&quot;,12,&quot;free_preview&quot;,true,&quot;slides_link&quot;,&quot;https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/slides/chapter1.pdf&quot;,&quot;title&quot;,&quot;Importing data from the Internet&quot;,&quot;xp&quot;,1050,&quot;id&quot;,4135,&quot;exercises&quot;,[&quot;~#iL&quot;,[[&quot;^2&quot;,[&quot;type&quot;,&quot;VideoExercise&quot;,&quot;title&quot;,&quot;Importing flat files from the web&quot;,&quot;aggregate_xp&quot;,50,&quot;number&quot;,1,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=1&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Importing flat files from the web: your turn!&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,2,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=2&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Opening and reading flat files from the web&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,3,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=3&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Importing non-flat files from the web&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,4,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=4&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;VideoExercise&quot;,&quot;title&quot;,&quot;HTTP requests to import files from the web&quot;,&quot;aggregate_xp&quot;,50,&quot;number&quot;,5,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=5&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Performing HTTP requests in Python using urllib&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,6,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=6&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Printing HTTP request results in Python using urllib&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,7,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=7&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Performing HTTP requests in Python using requests&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,8,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=8&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;VideoExercise&quot;,&quot;title&quot;,&quot;Scraping the web in Python&quot;,&quot;aggregate_xp&quot;,50,&quot;number&quot;,9,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=9&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Parsing HTML with BeautifulSoup&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,10,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=10&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Turning a webpage into data using BeautifulSoup: getting the text&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,11,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=11&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Turning a webpage into data using BeautifulSoup: getting the hyperlinks&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,12,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=12&quot;]]]],&quot;description&quot;,&quot;The web is a rich source of data from which you can extract various types of insights and findings. In this chapter, you will learn how to get data from the web, whether it is stored in files or in HTML. You&#39;ll also learn the basics of scraping and parsing web data.&quot;,&quot;badge_completed_url&quot;,&quot;https://assets.datacamp.com/production/default/badges/missing.png&quot;]]]],&quot;contentAuthorization&quot;,[&quot;^ &quot;],&quot;course&quot;,[&quot;^2&quot;,[&quot;difficulty_level&quot;,1,&quot;reduced_outline&quot;,null,&quot;marketing_video&quot;,&quot;&quot;,&quot;active_image&quot;,&quot;course-1606-master:506759a234ec905a9377923e00ae7511-20201106185628118&quot;,&quot;author_field&quot;,null,&quot;chapters&quot;,[&quot;^7&quot;,[[&quot;^2&quot;,[&quot;badge_uncompleted_url&quot;,&quot;https://assets.datacamp.com/production/default/badges/missing_unc.png&quot;,&quot;number&quot;,1,&quot;number_of_videos&quot;,3,&quot;slug&quot;,&quot;importing-data-from-the-internet-1&quot;,&quot;last_updated_on&quot;,&quot;06/11/2020&quot;,&quot;title_meta&quot;,null,&quot;nb_exercises&quot;,12,&quot;free_preview&quot;,true,&quot;slides_link&quot;,&quot;https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/slides/chapter1.pdf&quot;,&quot;title&quot;,&quot;Importing data from the Internet&quot;,&quot;xp&quot;,1050,&quot;id&quot;,4135,&quot;exercises&quot;,[&quot;^7&quot;,[[&quot;^2&quot;,[&quot;type&quot;,&quot;VideoExercise&quot;,&quot;title&quot;,&quot;Importing flat files from the web&quot;,&quot;aggregate_xp&quot;,50,&quot;number&quot;,1,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=1&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Importing flat files from the web: your turn!&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,2,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=2&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Opening and reading flat files from the web&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,3,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=3&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Importing non-flat files from the web&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,4,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=4&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;VideoExercise&quot;,&quot;title&quot;,&quot;HTTP requests to import files from the web&quot;,&quot;aggregate_xp&quot;,50,&quot;number&quot;,5,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=5&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Performing HTTP requests in Python using urllib&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,6,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=6&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Printing HTTP request results in Python using urllib&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,7,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=7&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Performing HTTP requests in Python using requests&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,8,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=8&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;VideoExercise&quot;,&quot;title&quot;,&quot;Scraping the web in Python&quot;,&quot;aggregate_xp&quot;,50,&quot;number&quot;,9,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=9&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Parsing HTML with BeautifulSoup&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,10,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=10&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Turning a webpage into data using BeautifulSoup: getting the text&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,11,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=11&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Turning a webpage into data using BeautifulSoup: getting the hyperlinks&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,12,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=12&quot;]]]],&quot;description&quot;,&quot;The web is a rich source of data from which you can extract various types of insights and findings. In this chapter, you will learn how to get data from the web, whether it is stored in files or in HTML. You&#39;ll also learn the basics of scraping and parsing web data.&quot;,&quot;badge_completed_url&quot;,&quot;https://assets.datacamp.com/production/default/badges/missing.png&quot;]],[&quot;^2&quot;,[&quot;badge_uncompleted_url&quot;,&quot;https://assets.datacamp.com/production/default/badges/missing_unc.png&quot;,&quot;number&quot;,2,&quot;number_of_videos&quot;,2,&quot;slug&quot;,&quot;interacting-with-apis-to-import-data-from-the-web-2&quot;,&quot;last_updated_on&quot;,&quot;06/11/2020&quot;,&quot;title_meta&quot;,null,&quot;nb_exercises&quot;,9,&quot;free_preview&quot;,null,&quot;slides_link&quot;,&quot;https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/slides/chapter2.pdf&quot;,&quot;title&quot;,&quot;Interacting with APIs to import data from the web&quot;,&quot;xp&quot;,650,&quot;id&quot;,4136,&quot;exercises&quot;,[&quot;^7&quot;,[[&quot;^2&quot;,[&quot;type&quot;,&quot;VideoExercise&quot;,&quot;title&quot;,&quot;Introduction to APIs and JSONs&quot;,&quot;aggregate_xp&quot;,50,&quot;number&quot;,1,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/interacting-with-apis-to-import-data-from-the-web-2?ex=1&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;PureMultipleChoiceExercise&quot;,&quot;title&quot;,&quot;Pop quiz: What exactly is a JSON?&quot;,&quot;aggregate_xp&quot;,50,&quot;number&quot;,2,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/interacting-with-apis-to-import-data-from-the-web-2?ex=2&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Loading and exploring a JSON&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,3,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/interacting-with-apis-to-import-data-from-the-web-2?ex=3&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;MultipleChoiceExercise&quot;,&quot;title&quot;,&quot;Pop quiz: Exploring your JSON&quot;,&quot;aggregate_xp&quot;,50,&quot;number&quot;,4,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/interacting-with-apis-to-import-data-from-the-web-2?ex=4&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;VideoExercise&quot;,&quot;title&quot;,&quot;APIs and interacting with the world wide web&quot;,&quot;aggregate_xp&quot;,50,&quot;number&quot;,5,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/interacting-with-apis-to-import-data-from-the-web-2?ex=5&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;PureMultipleChoiceExercise&quot;,&quot;title&quot;,&quot;Pop quiz: What&#39;s an API?&quot;,&quot;aggregate_xp&quot;,50,&quot;number&quot;,6,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/interacting-with-apis-to-import-data-from-the-web-2?ex=6&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;API requests&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,7,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/interacting-with-apis-to-import-data-from-the-web-2?ex=7&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;JSON\xe2\x80\x93from the web to Python&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,8,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/interacting-with-apis-to-import-data-from-the-web-2?ex=8&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Checking out the Wikipedia API&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,9,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/interacting-with-apis-to-import-data-from-the-web-2?ex=9&quot;]]]],&quot;description&quot;,&quot;In this chapter, you will gain a deeper understanding of how to import data from the web. You will learn the basics of extracting data from APIs, gain insight on the importance of APIs, and practice extracting data by diving into the OMDB and Library of Congress APIs.&quot;,&quot;badge_completed_url&quot;,&quot;https://assets.datacamp.com/production/default/badges/missing.png&quot;]],[&quot;^2&quot;,[&quot;badge_uncompleted_url&quot;,&quot;https://assets.datacamp.com/production/default/badges/missing_unc.png&quot;,&quot;number&quot;,3,&quot;number_of_videos&quot;,2,&quot;slug&quot;,&quot;diving-deep-into-the-twitter-api&quot;,&quot;last_updated_on&quot;,&quot;06/11/2020&quot;,&quot;title_meta&quot;,null,&quot;nb_exercises&quot;,8,&quot;free_preview&quot;,null,&quot;slides_link&quot;,&quot;https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/slides/chapter3.pdf&quot;,&quot;title&quot;,&quot;Diving deep into the Twitter API&quot;,&quot;xp&quot;,700,&quot;id&quot;,4140,&quot;exercises&quot;,[&quot;^7&quot;,[[&quot;^2&quot;,[&quot;type&quot;,&quot;VideoExercise&quot;,&quot;title&quot;,&quot;The Twitter API and Authentication&quot;,&quot;aggregate_xp&quot;,50,&quot;number&quot;,1,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/diving-deep-into-the-twitter-api?ex=1&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;API Authentication&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,2,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/diving-deep-into-the-twitter-api?ex=2&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Streaming tweets&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,3,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/diving-deep-into-the-twitter-api?ex=3&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Load and explore your Twitter data&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,4,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/diving-deep-into-the-twitter-api?ex=4&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Twitter data to DataFrame&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,5,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/diving-deep-into-the-twitter-api?ex=5&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;A little bit of Twitter text analysis&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,6,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/diving-deep-into-the-twitter-api?ex=6&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;NormalExercise&quot;,&quot;title&quot;,&quot;Plotting your Twitter data&quot;,&quot;aggregate_xp&quot;,100,&quot;number&quot;,7,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/diving-deep-into-the-twitter-api?ex=7&quot;]],[&quot;^2&quot;,[&quot;type&quot;,&quot;VideoExercise&quot;,&quot;title&quot;,&quot;Final Thoughts&quot;,&quot;aggregate_xp&quot;,50,&quot;number&quot;,8,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/diving-deep-into-the-twitter-api?ex=8&quot;]]]],&quot;description&quot;,&quot;In this chapter, you will consolidate your knowledge of interacting with APIs in a deep dive into the Twitter streaming API. You&#39;ll learn how to stream real-time Twitter data, and how to analyze and visualize it.&quot;,&quot;badge_completed_url&quot;,&quot;https://assets.datacamp.com/production/default/badges/missing.png&quot;]]]],&quot;time_needed&quot;,null,&quot;author_image&quot;,&quot;https://assets.datacamp.com/production/course_1606/author_images/author_image_course_1606_20200310-1-lgdj4c?1583853939&quot;,&quot;tracks&quot;,[&quot;^7&quot;,[[&quot;^2&quot;,[&quot;path&quot;,&quot;/tracks/data-analyst-with-python&quot;,&quot;title_with_subtitle&quot;,&quot;Data Analyst with Python&quot;]],[&quot;^2&quot;,[&quot;path&quot;,&quot;/tracks/data-scientist-with-python&quot;,&quot;title_with_subtitle&quot;,&quot;Data Scientist with Python&quot;]],[&quot;^2&quot;,[&quot;path&quot;,&quot;/tracks/personalized-data-scientist-with-python&quot;,&quot;title_with_subtitle&quot;,&quot;Data Scientist with Python&quot;]],[&quot;^2&quot;,[&quot;path&quot;,&quot;/tracks/importing-cleaning-data-with-python&quot;,&quot;title_with_subtitle&quot;,&quot;Importing &amp; Cleaning Data with Python&quot;]]]],&quot;runtime_config&quot;,null,&quot;lti_only&quot;,false,&quot;image_url&quot;,&quot;https://assets.datacamp.com/production/course_1606/shields/thumb/shield_image_course_1606_20200310-1-17hkmhz?1583853940&quot;,&quot;topic_id&quot;,8,&quot;slug&quot;,&quot;intermediate-importing-data-in-python&quot;,&quot;last_updated_on&quot;,&quot;06/04/2021&quot;,&quot;paid&quot;,true,&quot;collaborators&quot;,[&quot;^7&quot;,[[&quot;^2&quot;,[&quot;avatar_url&quot;,&quot;https://assets.datacamp.com/users/avatars/000/382/294/square/francis-photo.jpg?1471980001&quot;,&quot;full_name&quot;,&quot;Francisco Castro&quot;]]]],&quot;time_needed_in_hours&quot;,2,&quot;technology_id&quot;,2,&quot;university&quot;,null,&quot;archived_at&quot;,null,&quot;state&quot;,&quot;live&quot;,&quot;author_bio&quot;,null,&quot;should_cache&quot;,true,&quot;sharing_links&quot;,[&quot;^2&quot;,[&quot;twitter&quot;,&quot;http://bit.ly/1eWTMJh&quot;,&quot;facebook&quot;,&quot;http://bit.ly/1iS42Do&quot;]],&quot;instructors&quot;,[&quot;^7&quot;,[[&quot;^2&quot;,[&quot;id&quot;,301837,&quot;marketing_biography&quot;,&quot;Data Scientist at DataCamp&quot;,&quot;biography&quot;,&quot;Hugo is a data scientist, educator, writer and podcaster at DataCamp. His main interests are promoting data &amp; AI literacy, helping to spread data skills through organizations and society and doing amateur stand up comedy in NYC. If you want to know what he likes to talk about, definitely check out DataFramed, the DataCamp podcast, which he hosts and produces: https://www.datacamp.com/community/podcast&quot;,&quot;avatar_url&quot;,&quot;https://assets.datacamp.com/users/avatars/000/301/837/square/hugoaboutpic.jpg?1493154678&quot;,&quot;full_name&quot;,&quot;Hugo Bowne-Anderson&quot;,&quot;instructor_path&quot;,&quot;/instructors/hugobowne&quot;]]]],&quot;seo_title&quot;,&quot;Intermediate Importing Data in Python&quot;,&quot;title&quot;,&quot;Intermediate Importing Data in Python&quot;,&quot;xp&quot;,2400,&quot;image_thumbnail_url&quot;,&quot;https://assets.datacamp.com/production/course_1606/shields/thumb_home/shield_image_course_1606_20200310-1-17hkmhz?1583853940&quot;,&quot;short_description&quot;,&quot;Improve your Python data importing skills and learn to work with web and API data.&quot;,&quot;nb_of_subscriptions&quot;,111907,&quot;seo_description&quot;,&quot;Further improve your Python data importing skills and learn to work with more web and API data.&quot;,&quot;type&quot;,&quot;datacamp&quot;,&quot;link&quot;,&quot;https://www.datacamp.com/courses/intermediate-importing-data-in-python&quot;,&quot;id&quot;,1606,&quot;datasets&quot;,[&quot;^7&quot;,[[&quot;^2&quot;,[&quot;asset_url&quot;,&quot;https://assets.datacamp.com/production/repositories/488/datasets/b422ace2fceada7b569e0ba3e8d833fddc684c4d/latitude.xls&quot;,&quot;name&quot;,&quot;Latitudes (XLS)&quot;]],[&quot;^2&quot;,[&quot;asset_url&quot;,&quot;https://assets.datacamp.com/production/repositories/488/datasets/3ef452f83a91556ea4284624b969392c0506fb33/tweets3.txt&quot;,&quot;name&quot;,&quot;Tweets&quot;]],[&quot;^2&quot;,[&quot;asset_url&quot;,&quot;https://assets.datacamp.com/production/repositories/488/datasets/013936d2700e2d00207ec42100d448c23692eb6f/winequality-red.csv&quot;,&quot;name&quot;,&quot;Red wine quality&quot;]]]],&quot;description&quot;,&quot;As a data scientist, you will need to clean data, wrangle and munge it, visualize it, build predictive models and interpret these models. Before you can do so, however, you will need to know how to get data into Python. In the prequel to this course, you learned many ways to import data into Python: from flat files such as .txt and .csv; from files native to other software such as Excel spreadsheets, Stata, SAS, and MATLAB files; and from relational databases such as SQLite and PostgreSQL. In this course, you&#39;ll extend this knowledge base by learning to import data from the web and by pulling data from Application Programming Interfaces\xe2\x80\x94 APIs\xe2\x80\x94such as the Twitter streaming API, which allows us to stream real-time tweets.&quot;,&quot;prerequisites&quot;,[&quot;^7&quot;,[[&quot;^2&quot;,[&quot;path&quot;,&quot;/courses/introduction-to-importing-data-in-python&quot;,&quot;title&quot;,&quot;Introduction to Importing Data in Python&quot;]]]],&quot;original_image_url&quot;,&quot;https://assets.datacamp.com/production/course_1606/shields/original/shield_image_course_1606_20200310-1-17hkmhz?1583853940&quot;,&quot;programming_language&quot;,&quot;python&quot;,&quot;external_slug&quot;,&quot;intermediate-importing-data-in-python&quot;]],&quot;exercises&quot;,[&quot;^2&quot;,[&quot;current&quot;,1,&quot;all&quot;,[&quot;^7&quot;,[[&quot;^2&quot;,[&quot;sample_code&quot;,&quot;&quot;,&quot;sct&quot;,&quot;&quot;,&quot;aspect_ratio&quot;,56.25,&quot;instructions&quot;,null,&quot;externalId&quot;,990668,&quot;question&quot;,&quot;&quot;,&quot;hint&quot;,null,&quot;possible_answers&quot;,[&quot;^7&quot;,[]],&quot;runtime_config&quot;,null,&quot;number&quot;,1,&quot;video_hls&quot;,null,&quot;randomNumber&quot;,0.9009897811570702,&quot;chapter_id&quot;,4135,&quot;assignment&quot;,null,&quot;feedbacks&quot;,[&quot;^7&quot;,[]],&quot;attachments&quot;,null,&quot;version&quot;,&quot;v0&quot;,&quot;title&quot;,&quot;Importing flat files from the web&quot;,&quot;xp&quot;,50,&quot;language&quot;,&quot;python&quot;,&quot;pre_exercise_code&quot;,&quot;&quot;,&quot;solution&quot;,&quot;&quot;,&quot;type&quot;,&quot;VideoExercise&quot;,&quot;id&quot;,990668,&quot;projector_key&quot;,&quot;course_1606_59604c018a6e132016cd26144a12fee0&quot;,&quot;video_link&quot;,null,&quot;key&quot;,&quot;e36457c7ed&quot;,&quot;course_id&quot;,1606]],[&quot;^2&quot;,[&quot;sample_code&quot;,&quot;# Import package\\\\nfrom ____ import ____\\\\n\\\\n# Import pandas\\\\nimport pandas as pd\\\\n\\\\n# Assign url of file: url\\\\n\\\\n\\\\n# Save file locally\\\\n\\\\n\\\\n# Read file into a DataFrame and print its head\\\\ndf = pd.read_csv(&#39;winequality-red.csv&#39;, sep=&#39;;&#39;)\\\\nprint(df.head())&quot;,&quot;sct&quot;,&quot;Ex().has_import(\\\\&quot;urllib.request.urlretrieve\\\\&quot;)\\\\nEx().has_import(\\\\&quot;pandas\\\\&quot;)\\\\nEx().check_object(\\\\&quot;url\\\\&quot;).has_equal_value()\\\\nEx().check_function(\\\\&quot;urllib.request.urlretrieve\\\\&quot;).multi(\\\\n check_args(0).has_equal_value(),\\\\n check_args(1).has_equal_value()\\\\n)\\\\nEx().check_correct(\\\\n check_object(\\\\&quot;df\\\\&quot;).has_equal_value(),\\\\n check_function(\\\\&quot;pandas.read_csv\\\\&quot;).multi(\\\\n check_args(0).has_equal_value(),\\\\n check_args(1).has_equal_value()\\\\n )\\\\n)\\\\nEx().has_printout(0)\\\\nsuccess_msg(\\\\&quot;Awesome!\\\\&quot;)\\\\n&quot;,&quot;instructions&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Import the function &lt;code&gt;urlretrieve&lt;/code&gt; from the subpackage &lt;code&gt;urllib.request&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Assign the URL of the file to the variable &lt;code&gt;url&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Use the function &lt;code&gt;urlretrieve()&lt;/code&gt; to save the file locally as &lt;code&gt;&#39;winequality-red.csv&#39;&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Execute the remaining code to load &lt;code&gt;&#39;winequality-red.csv&#39;&lt;/code&gt; in a pandas DataFrame and to print its head to the shell.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;externalId&quot;,42707,&quot;question&quot;,&quot;&quot;,&quot;hint&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;To import a function &lt;code&gt;y&lt;/code&gt; from a subpackage &lt;code&gt;x&lt;/code&gt;, execute &lt;code&gt;from x import y&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;This one&#39;s a long URL. Make sure you typed it in correctly!&lt;/li&gt;\\\\n&lt;li&gt;Pass the &lt;em&gt;url&lt;/em&gt; to import (in the &lt;code&gt;url&lt;/code&gt; object you defined) as the first argument and the &lt;em&gt;filename&lt;/em&gt; for saving the file locally as the second argument to &lt;code&gt;urlretrieve()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;You don&#39;t have to change the code for loading &lt;code&gt;&#39;winequality-red.csv&#39;&lt;/code&gt; and printing its head.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;possible_answers&quot;,[&quot;^7&quot;,[]],&quot;number&quot;,2,&quot;user&quot;,[&quot;^2&quot;,[&quot;isHintShown&quot;,false,&quot;editorTabs&quot;,[&quot;^2&quot;,[&quot;files/script.py&quot;,[&quot;^2&quot;,[&quot;title&quot;,&quot;script.py&quot;,&quot;isSolution&quot;,false,&quot;props&quot;,[&quot;^2&quot;,[&quot;active&quot;,true,&quot;isClosable&quot;,false,&quot;code&quot;,null,&quot;extra&quot;,[&quot;^2&quot;,[]]]]]]]],&quot;outputMarkdownTabs&quot;,[&quot;^2&quot;,[]],&quot;markdown&quot;,[&quot;^2&quot;,[&quot;titles&quot;,[&quot;^7&quot;,[&quot;Knit PDF&quot;,&quot;Knit HTML&quot;]],&quot;activeTitle&quot;,&quot;Knit HTML&quot;]],&quot;currentXp&quot;,100,&quot;graphicalTabs&quot;,[&quot;^2&quot;,[&quot;plot&quot;,[&quot;^2&quot;,[&quot;extraClass&quot;,&quot;animation--flash&quot;,&quot;title&quot;,&quot;Plots&quot;,&quot;props&quot;,[&quot;^2&quot;,[&quot;sources&quot;,[&quot;^7&quot;,[]],&quot;currentIndex&quot;,0]],&quot;dimension&quot;,[&quot;^2&quot;,[&quot;isRealSize&quot;,false,&quot;width&quot;,1,&quot;height&quot;,1]]]],&quot;html&quot;,[&quot;^2&quot;,[&quot;extraClass&quot;,&quot;animation--flash&quot;,&quot;title&quot;,&quot;HTML Viewer&quot;,&quot;props&quot;,[&quot;^2&quot;,[&quot;sources&quot;,[&quot;^7&quot;,[]],&quot;currentIndex&quot;,0]]]]]],&quot;feedbackMessages&quot;,[&quot;^7&quot;,[]],&quot;lastSubmittedCode&quot;,null,&quot;ltiStatus&quot;,[&quot;^2&quot;,[]],&quot;lastSubmitActiveEditorTab&quot;,null,&quot;consoleSqlTabs&quot;,[&quot;^2&quot;,[&quot;query_result&quot;,[&quot;^2&quot;,[&quot;extraClass&quot;,&quot;&quot;,&quot;title&quot;,&quot;query result&quot;,&quot;props&quot;,[&quot;^2&quot;,[&quot;active&quot;,true,&quot;isNotView&quot;,true,&quot;message&quot;,&quot;No query executed yet...&quot;]]]]]],&quot;consoleTabs&quot;,[&quot;^2&quot;,[&quot;console&quot;,[&quot;^2&quot;,[&quot;title&quot;,&quot;IPython Shell&quot;,&quot;props&quot;,[&quot;^2&quot;,[&quot;active&quot;,true]],&quot;dimension&quot;,[&quot;^2&quot;,[&quot;cols&quot;,400]]]],&quot;slides&quot;,[&quot;^2&quot;,[&quot;title&quot;,&quot;Slides&quot;,&quot;props&quot;,[&quot;^2&quot;,[&quot;active&quot;,false]]]]]],&quot;inputMarkdownTabs&quot;,[&quot;^2&quot;,[]],&quot;consoleObjectViewTabs&quot;,[&quot;^2&quot;,[]]]],&quot;randomNumber&quot;,0.3505292251150971,&quot;assignment&quot;,&quot;&lt;p&gt;You are about to import your first file from the web! The flat file you will import will be &lt;code&gt;&#39;winequality-red.csv&#39;&lt;/code&gt; from the University of California, Irvine&#39;s &lt;a href=\\\\&quot;http://archive.ics.uci.edu/ml/index.html\\\\&quot;&gt;Machine Learning repository&lt;/a&gt;. The flat file contains tabular data of physiochemical properties of red wine, such as pH, alcohol content and citric acid content, along with wine quality rating.&lt;/p&gt;\\\\n&lt;p&gt;The URL of the file is&lt;/p&gt;\\\\n&lt;pre&gt;&lt;code&gt;&#39;https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/datasets/winequality-red.csv&#39;\\\\n&lt;/code&gt;&lt;/pre&gt;\\\\n&lt;p&gt;After you import it, you&#39;ll check your working directory to confirm that it is there and then you&#39;ll load it into a &lt;code&gt;pandas&lt;/code&gt; DataFrame.&lt;/p&gt;&quot;,&quot;feedbacks&quot;,[&quot;^7&quot;,[]],&quot;attachments&quot;,null,&quot;title&quot;,&quot;Importing flat files from the web: your turn!&quot;,&quot;xp&quot;,100,&quot;language&quot;,&quot;python&quot;,&quot;pre_exercise_code&quot;,&quot;&quot;,&quot;solution&quot;,&quot;# Import package\\\\nfrom urllib.request import urlretrieve\\\\n\\\\n# Import pandas\\\\nimport pandas as pd\\\\n\\\\n# Assign url of file: url\\\\nurl = &#39;https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/datasets/winequality-red.csv&#39;\\\\n\\\\n# Save file locally\\\\nurlretrieve(url, &#39;winequality-red.csv&#39;)\\\\n\\\\n# Read file into a DataFrame and print its head\\\\ndf = pd.read_csv(&#39;winequality-red.csv&#39;, sep=&#39;;&#39;)\\\\nprint(df.head())&quot;,&quot;type&quot;,&quot;NormalExercise&quot;,&quot;id&quot;,42707]],[&quot;^2&quot;,[&quot;sample_code&quot;,&quot;# Import packages\\\\nimport matplotlib.pyplot as plt\\\\nimport pandas as pd\\\\n\\\\n# Assign url of file: url\\\\n\\\\n\\\\n# Read file into a DataFrame: df\\\\n\\\\n\\\\n# Print the head of the DataFrame\\\\nprint(____)\\\\n\\\\n# Plot first column of df\\\\npd.DataFrame.hist(df.ix[:, 0:1])\\\\nplt.xlabel(&#39;fixed acidity (g(tartaric acid)/dm$^3$)&#39;)\\\\nplt.ylabel(&#39;count&#39;)\\\\nplt.show()\\\\n&quot;,&quot;sct&quot;,&quot;Ex().has_import(\\\\&quot;matplotlib.pyplot\\\\&quot;)\\\\nEx().has_import(\\\\&quot;pandas\\\\&quot;)\\\\nEx().check_object(\\\\&quot;url\\\\&quot;).has_equal_value()\\\\nEx().check_correct(\\\\n check_object(\\\\&quot;df\\\\&quot;).has_equal_value(),\\\\n check_function(\\\\&quot;pandas.read_csv\\\\&quot;).multi(\\\\n check_args(0).has_equal_value(),\\\\n check_args(1).has_equal_value()\\\\n )\\\\n)\\\\nEx().has_printout(0)\\\\nEx().check_function(\\\\&quot;pandas.DataFrame.hist\\\\&quot;).check_args(0).has_equal_value()\\\\nEx().check_function(\\\\&quot;matplotlib.pyplot.show\\\\&quot;)\\\\n\\\\nsuccess_msg(\\\\&quot;Awesome!\\\\&quot;)\\\\n&quot;,&quot;instructions&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Assign the URL of the file to the variable &lt;code&gt;url&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Read file into a DataFrame &lt;code&gt;df&lt;/code&gt; using &lt;code&gt;pd.read_csv()&lt;/code&gt;, recalling that the separator in the file is &lt;code&gt;&#39;;&#39;&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Print the head of the DataFrame &lt;code&gt;df&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Execute the rest of the code to plot histogram of the first feature in the DataFrame &lt;code&gt;df&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;externalId&quot;,42708,&quot;question&quot;,&quot;&quot;,&quot;hint&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Make sure you typed the URL correctly!&lt;/li&gt;\\\\n&lt;li&gt;Pass the &lt;em&gt;url&lt;/em&gt; (the &lt;code&gt;url&lt;/code&gt; object you defined) as the first argument and the &lt;em&gt;separator&lt;/em&gt; as the second argument to &lt;code&gt;pd.read_csv()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;The &lt;em&gt;head&lt;/em&gt; of a DataFrame can be accessed by using &lt;code&gt;head()&lt;/code&gt; on the DataFrame.&lt;/li&gt;\\\\n&lt;li&gt;You don&#39;t have to change any of the code for plotting the histograms.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;possible_answers&quot;,[&quot;^7&quot;,[]],&quot;number&quot;,3,&quot;randomNumber&quot;,0.10077051694782435,&quot;assignment&quot;,&quot;&lt;p&gt;You have just imported a file from the web, saved it locally and loaded it into a DataFrame. If you just wanted to load a file from the web into a DataFrame without first saving it locally, you can do that easily using &lt;code&gt;pandas&lt;/code&gt;. In particular, you can use the function &lt;code&gt;pd.read_csv()&lt;/code&gt; with the URL as the first argument and the separator &lt;code&gt;sep&lt;/code&gt; as the second argument.&lt;/p&gt;\\\\n&lt;p&gt;The URL of the file, once again, is&lt;/p&gt;\\\\n&lt;pre&gt;&lt;code&gt;&#39;https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/datasets/winequality-red.csv&#39;\\\\n&lt;/code&gt;&lt;/pre&gt;&quot;,&quot;feedbacks&quot;,[&quot;^7&quot;,[]],&quot;attachments&quot;,null,&quot;title&quot;,&quot;Opening and reading flat files from the web&quot;,&quot;xp&quot;,100,&quot;language&quot;,&quot;python&quot;,&quot;pre_exercise_code&quot;,&quot;&quot;,&quot;solution&quot;,&quot;# Import packages\\\\nimport matplotlib.pyplot as plt\\\\nimport pandas as pd\\\\n\\\\n# Assign url of file: url\\\\nurl = &#39;https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/datasets/winequality-red.csv&#39;\\\\n\\\\n# Read file into a DataFrame: df\\\\ndf = pd.read_csv(url, sep=&#39;;&#39;)\\\\n\\\\n# Print the head of the DataFrame\\\\nprint(df.head())\\\\n\\\\n# Plot first column of df\\\\npd.DataFrame.hist(df.ix[:, 0:1])\\\\nplt.xlabel(&#39;fixed acidity (g(tartaric acid)/dm$^3$)&#39;)\\\\nplt.ylabel(&#39;count&#39;)\\\\nplt.show()\\\\n&quot;,&quot;type&quot;,&quot;NormalExercise&quot;,&quot;id&quot;,42708]],[&quot;^2&quot;,[&quot;sample_code&quot;,&quot;# Import package\\\\nimport pandas as pd\\\\n\\\\n# Assign url of file: url\\\\n\\\\n\\\\n# Read in all sheets of Excel file: xls\\\\n\\\\n\\\\n# Print the sheetnames to the shell\\\\n\\\\n\\\\n# Print the head of the first sheet (using its name, NOT its index)\\\\n\\\\n&quot;,&quot;sct&quot;,&quot;Ex().has_import(&#39;pandas&#39;)\\\\nEx().check_correct(\\\\n has_printout(0),\\\\n multi(\\\\n check_correct(\\\\n check_object(&#39;xls&#39;).is_instance(dict),\\\\n check_correct(\\\\n check_function(&#39;pandas.read_excel&#39;).multi(\\\\n check_args(0).has_equal_value(),\\\\n check_args(&#39;sheet_name&#39;).has_equal_value()\\\\n ),\\\\n check_object(&#39;url&#39;).has_equal_value()\\\\n )\\\\n )\\\\n )\\\\n)\\\\nEx().has_printout(1)\\\\nsuccess_msg(\\\\&quot;Awesome!\\\\&quot;)&quot;,&quot;instructions&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Assign the URL of the file to the variable &lt;code&gt;url&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Read the file in &lt;code&gt;url&lt;/code&gt; into a dictionary &lt;code&gt;xls&lt;/code&gt; using &lt;code&gt;pd.read_excel()&lt;/code&gt; recalling that, in order to import all sheets you need to pass &lt;code&gt;None&lt;/code&gt; to the argument &lt;code&gt;sheet_name&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Print the names of the sheets in the Excel spreadsheet; these will be the keys of the dictionary &lt;code&gt;xls&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Print the head of the first sheet &lt;em&gt;using the sheet name, not the index of the sheet&lt;/em&gt;! The sheet name is &lt;code&gt;&#39;1700&#39;&lt;/code&gt;&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;externalId&quot;,42709,&quot;question&quot;,&quot;&quot;,&quot;hint&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Make sure you typed in the URL correctly!&lt;/li&gt;\\\\n&lt;li&gt;Pass the &lt;em&gt;url&lt;/em&gt; (the &lt;code&gt;url&lt;/code&gt; object you defined) as the first argument and &lt;code&gt;sheet_name&lt;/code&gt; with its corresponding value as the second argument to &lt;code&gt;pd.read_excel()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;The &lt;em&gt;keys&lt;/em&gt; of a dictionary can be accessed by using &lt;code&gt;keys()&lt;/code&gt; on the dictionary.&lt;/li&gt;\\\\n&lt;li&gt;You can access a sheet using the format: &lt;em&gt;dictionary&lt;/em&gt;&lt;strong&gt;[&lt;/strong&gt;&lt;em&gt;sheet name or index&lt;/em&gt;&lt;strong&gt;]&lt;/strong&gt;.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;possible_answers&quot;,[&quot;^7&quot;,[]],&quot;number&quot;,4,&quot;randomNumber&quot;,0.7419977198305243,&quot;assignment&quot;,&quot;&lt;p&gt;Congrats! You&#39;ve just loaded a flat file from the web into a DataFrame without first saving it locally using the &lt;code&gt;pandas&lt;/code&gt; function &lt;code&gt;pd.read_csv()&lt;/code&gt;. This function is super cool because it has close relatives that allow you to load all types of files, not only flat ones. In this interactive exercise, you&#39;ll use &lt;code&gt;pd.read_excel()&lt;/code&gt; to import an Excel spreadsheet.&lt;/p&gt;\\\\n&lt;p&gt;The URL of the spreadsheet is&lt;/p&gt;\\\\n&lt;pre&gt;&lt;code&gt;&#39;http://s3.amazonaws.com/assets.datacamp.com/course/importing_data_into_r/latitude.xls&#39;\\\\n&lt;/code&gt;&lt;/pre&gt;\\\\n&lt;p&gt;Your job is to use &lt;code&gt;pd.read_excel()&lt;/code&gt; to read in all of its sheets, print the sheet names and then print the head of the first sheet &lt;em&gt;using its name, not its index&lt;/em&gt;.&lt;/p&gt;\\\\n&lt;p&gt;Note that the output of &lt;code&gt;pd.read_excel()&lt;/code&gt; is a Python dictionary with sheet names as keys and corresponding DataFrames as corresponding values.&lt;/p&gt;&quot;,&quot;feedbacks&quot;,[&quot;^7&quot;,[]],&quot;attachments&quot;,null,&quot;title&quot;,&quot;Importing non-flat files from the web&quot;,&quot;xp&quot;,100,&quot;language&quot;,&quot;python&quot;,&quot;pre_exercise_code&quot;,&quot;&quot;,&quot;solution&quot;,&quot;# Import package\\\\nimport pandas as pd\\\\n\\\\n# Assign url of file: url\\\\nurl = &#39;http://s3.amazonaws.com/assets.datacamp.com/course/importing_data_into_r/latitude.xls&#39;\\\\n\\\\n# Read in all sheets of Excel file: xls\\\\nxls = pd.read_excel(url, sheet_name=None)\\\\n\\\\n# Print the sheetnames to the shell\\\\nprint(xls.keys())\\\\n\\\\n# Print the head of the first sheet (using its name, NOT its index)\\\\nprint(xls[&#39;1700&#39;].head())&quot;,&quot;type&quot;,&quot;NormalExercise&quot;,&quot;id&quot;,42709]],[&quot;^2&quot;,[&quot;sample_code&quot;,&quot;&quot;,&quot;sct&quot;,&quot;&quot;,&quot;aspect_ratio&quot;,56.25,&quot;instructions&quot;,null,&quot;externalId&quot;,990669,&quot;question&quot;,&quot;&quot;,&quot;hint&quot;,null,&quot;possible_answers&quot;,[&quot;^7&quot;,[]],&quot;runtime_config&quot;,null,&quot;number&quot;,5,&quot;video_hls&quot;,null,&quot;randomNumber&quot;,0.9433112374621455,&quot;chapter_id&quot;,4135,&quot;assignment&quot;,null,&quot;feedbacks&quot;,[&quot;^7&quot;,[]],&quot;attachments&quot;,null,&quot;version&quot;,&quot;v0&quot;,&quot;title&quot;,&quot;HTTP requests to import files from the web&quot;,&quot;xp&quot;,50,&quot;language&quot;,&quot;python&quot;,&quot;pre_exercise_code&quot;,&quot;&quot;,&quot;solution&quot;,&quot;&quot;,&quot;type&quot;,&quot;VideoExercise&quot;,&quot;id&quot;,990669,&quot;projector_key&quot;,&quot;course_1606_9d15ae176be1800b996f7869a82b8087&quot;,&quot;video_link&quot;,null,&quot;key&quot;,&quot;e480d1fdcf&quot;,&quot;course_id&quot;,1606]],[&quot;^2&quot;,[&quot;sample_code&quot;,&quot;# Import packages\\\\n\\\\n\\\\n# Specify the url\\\\nurl = \\\\&quot;https://campus.datacamp.com/courses/1606/4135?ex=2\\\\&quot;\\\\n\\\\n# This packages the request: request\\\\n\\\\n\\\\n# Sends the request and catches the response: response\\\\n\\\\n\\\\n# Print the datatype of response\\\\nprint(type(response))\\\\n\\\\n# Be polite and close the response!\\\\nresponse.close()\\\\n&quot;,&quot;sct&quot;,&quot;\\\\n# Test: import urlopen, Request\\\\nimport_msg = \\\\&quot;Did you correctly import the required packages?\\\\&quot;\\\\nEx().has_import(\\\\n \\\\&quot;urllib.request.urlopen\\\\&quot;,\\\\n not_imported_msg=import_msg\\\\n)\\\\nEx().has_import(\\\\n \\\\&quot;urllib.request.Request\\\\&quot;,\\\\n not_imported_msg=import_msg\\\\n)\\\\n\\\\n# Test: Predefined code\\\\npredef_msg = \\\\&quot;You don&#39;t have to change any of the predefined code.\\\\&quot;\\\\nEx().check_object(\\\\&quot;url\\\\&quot;, missing_msg=predef_msg).has_equal_value(incorrect_msg = predef_msg)\\\\n\\\\n# Test: call to Request() and &#39;request&#39; variable\\\\nEx().check_function(\\\\&quot;urllib.request.Request\\\\&quot;).check_args(0).has_equal_value()\\\\nEx().check_object(\\\\&quot;request\\\\&quot;)\\\\n \\\\n# Test: call to urlopen() and &#39;response&#39; variable\\\\nEx().check_function(\\\\&quot;urllib.request.urlopen\\\\&quot;).check_args(0).has_equal_ast()\\\\nEx().check_object(\\\\&quot;response\\\\&quot;),\\\\n\\\\n# Test: Predefined code\\\\nEx().has_printout(0)\\\\nEx().check_function(\\\\&quot;response.close\\\\&quot;)\\\\n\\\\nsuccess_msg(\\\\&quot;Awesome!\\\\&quot;)\\\\n&quot;,&quot;instructions&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Import the functions &lt;code&gt;urlopen&lt;/code&gt; and &lt;code&gt;Request&lt;/code&gt; from the subpackage &lt;code&gt;urllib.request&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Package the request to the url &lt;code&gt;\\\\&quot;https://campus.datacamp.com/courses/1606/4135?ex=2\\\\&quot;&lt;/code&gt; using the function &lt;code&gt;Request()&lt;/code&gt; and assign it to &lt;code&gt;request&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Send the request and catch the response in the variable &lt;code&gt;response&lt;/code&gt; with the function &lt;code&gt;urlopen()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Run the rest of the code to see the datatype of &lt;code&gt;response&lt;/code&gt; and to close the connection!&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;externalId&quot;,42711,&quot;question&quot;,&quot;&quot;,&quot;hint&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;To import two functions in one line, import the first function as usual and add a comma &lt;code&gt;,&lt;/code&gt; followed by the second function.&lt;/li&gt;\\\\n&lt;li&gt;Pass the &lt;em&gt;url&lt;/em&gt; (already in the &lt;code&gt;url&lt;/code&gt; object defined) as an argument to &lt;code&gt;Request()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Pass &lt;code&gt;request&lt;/code&gt; as an argument to &lt;code&gt;urlopen()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;You don&#39;t have to modify the code for printing the datatype of &lt;code&gt;response&lt;/code&gt; and closing the connection.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;possible_answers&quot;,[&quot;^7&quot;,[]],&quot;number&quot;,6,&quot;randomNumber&quot;,0.025326719030948963,&quot;assignment&quot;,&quot;&lt;p&gt;Now that you know the basics behind HTTP GET requests, it&#39;s time to perform some of your own. In this interactive exercise, you will ping our very own DataCamp servers to perform a GET request to extract information from the first coding exercise of this course, &lt;code&gt;\\\\&quot;https://campus.datacamp.com/courses/1606/4135?ex=2\\\\&quot;&lt;/code&gt;.&lt;/p&gt;\\\\n&lt;p&gt;In the next exercise, you&#39;ll extract the HTML itself. Right now, however, you are going to package and send the request and then catch the response.&lt;/p&gt;&quot;,&quot;feedbacks&quot;,[&quot;^7&quot;,[]],&quot;attachments&quot;,null,&quot;title&quot;,&quot;Performing HTTP requests in Python using urllib&quot;,&quot;xp&quot;,100,&quot;language&quot;,&quot;python&quot;,&quot;pre_exercise_code&quot;,&quot;&quot;,&quot;solution&quot;,&quot;# Import packages\\\\nfrom urllib.request import urlopen, Request\\\\n\\\\n# Specify the url\\\\nurl = \\\\&quot;https://campus.datacamp.com/courses/1606/4135?ex=2\\\\&quot;\\\\n\\\\n# This packages the request: request\\\\nrequest = Request(url)\\\\n\\\\n# Sends the request and catches the response: response\\\\nresponse = urlopen(request)\\\\n\\\\n# Print the datatype of response\\\\nprint(type(response))\\\\n\\\\n# Be polite and close the response!\\\\nresponse.close()\\\\n&quot;,&quot;type&quot;,&quot;NormalExercise&quot;,&quot;id&quot;,42711]],[&quot;^2&quot;,[&quot;sample_code&quot;,&quot;# Import packages\\\\nfrom urllib.request import urlopen, Request\\\\n\\\\n# Specify the url\\\\nurl = \\\\&quot;https://campus.datacamp.com/courses/1606/4135?ex=2\\\\&quot;\\\\n\\\\n# This packages the request\\\\nrequest = Request(url)\\\\n\\\\n# Sends the request and catches the response: response\\\\n\\\\n\\\\n# Extract the response: html\\\\n\\\\n\\\\n# Print the html\\\\n\\\\n\\\\n# Be polite and close the response!\\\\nresponse.close()&quot;,&quot;sct&quot;,&quot;\\\\n# Test: Predefined code\\\\npredef_msg = \\\\&quot;You don&#39;t have to change any of the predefined code.\\\\&quot;\\\\nEx().has_import(\\\\n \\\\&quot;urllib.request.urlopen\\\\&quot;,\\\\n not_imported_msg=predef_msg\\\\n)\\\\n\\\\nEx().has_import(\\\\n \\\\&quot;urllib.request.Request\\\\&quot;,\\\\n not_imported_msg=predef_msg\\\\n)\\\\n\\\\nEx().check_object(\\\\&quot;url\\\\&quot;).has_equal_value()\\\\n\\\\n# Test: call to Request() and &#39;request&#39; variable\\\\nEx().check_function(\\\\&quot;urllib.request.Request\\\\&quot;).check_args(0).has_equal_value()\\\\nEx().check_object(\\\\&quot;request\\\\&quot;)\\\\n\\\\n# Test: call to urlopen() and &#39;response&#39; variable\\\\nEx().check_function(\\\\&quot;urllib.request.urlopen\\\\&quot;).check_args(0).has_equal_ast()\\\\nEx().check_object(\\\\&quot;response\\\\&quot;)\\\\n\\\\n# Test: call to urlopen() and &#39;response&#39; variable\\\\nEx().check_function(\\\\&quot;response.read\\\\&quot;)\\\\nEx().check_object(\\\\&quot;html\\\\&quot;)\\\\n\\\\n# Test: call to print()\\\\nEx().check_function(&#39;print&#39;).check_args(0).has_equal_ast()\\\\n\\\\n# Test: Predefined code\\\\nEx().check_function(\\\\&quot;response.close\\\\&quot;)\\\\n\\\\nsuccess_msg(\\\\&quot;Awesome!\\\\&quot;)\\\\n&quot;,&quot;instructions&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Send the request and catch the response in the variable &lt;code&gt;response&lt;/code&gt; with the function &lt;code&gt;urlopen()&lt;/code&gt;, as in the previous exercise.&lt;/li&gt;\\\\n&lt;li&gt;Extract the response using the &lt;code&gt;read()&lt;/code&gt; method and store the result in the variable &lt;code&gt;html&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Print the string &lt;code&gt;html&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Hit submit to perform all of the above and to close the response: be tidy!&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;externalId&quot;,42712,&quot;question&quot;,&quot;&quot;,&quot;hint&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Pass &lt;code&gt;request&lt;/code&gt; as an argument to &lt;code&gt;urlopen()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Apply the method &lt;code&gt;read()&lt;/code&gt; to the response object &lt;code&gt;response&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Simply pass &lt;code&gt;html&lt;/code&gt; to the &lt;code&gt;print()&lt;/code&gt; function.&lt;/li&gt;\\\\n&lt;li&gt;You don&#39;t have to modify the code for closing the response.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;possible_answers&quot;,[&quot;^7&quot;,[]],&quot;number&quot;,7,&quot;randomNumber&quot;,0.4368582772187055,&quot;assignment&quot;,&quot;&lt;p&gt;You have just packaged and sent a GET request to &lt;code&gt;\\\\&quot;https://campus.datacamp.com/courses/1606/4135?ex=2\\\\&quot;&lt;/code&gt; and then caught the response. You saw that such a response is a &lt;code&gt;http.client.HTTPResponse&lt;/code&gt; object. The question remains: what can you do with this response?&lt;/p&gt;\\\\n&lt;p&gt;Well, as it came from an HTML page, you could &lt;em&gt;read&lt;/em&gt; it to extract the HTML and, in fact, such a &lt;code&gt;http.client.HTTPResponse&lt;/code&gt; object has an associated &lt;code&gt;read()&lt;/code&gt; method. In this exercise, you&#39;ll build on your previous great work to extract the response and print the HTML.&lt;/p&gt;&quot;,&quot;feedbacks&quot;,[&quot;^7&quot;,[]],&quot;attachments&quot;,null,&quot;title&quot;,&quot;Printing HTTP request results in Python using urllib&quot;,&quot;xp&quot;,100,&quot;language&quot;,&quot;python&quot;,&quot;pre_exercise_code&quot;,&quot;&quot;,&quot;solution&quot;,&quot;# Import packages\\\\nfrom urllib.request import urlopen, Request\\\\n\\\\n# Specify the url\\\\nurl = \\\\&quot;https://campus.datacamp.com/courses/1606/4135?ex=2\\\\&quot;\\\\n\\\\n# This packages the request\\\\nrequest = Request(url)\\\\n\\\\n# Sends the request and catches the response: response\\\\nresponse = urlopen(request)\\\\n\\\\n# Extract the response: html\\\\nhtml = response.read()\\\\n\\\\n# Print the html\\\\nprint(html)\\\\n\\\\n# Be polite and close the response!\\\\nresponse.close()&quot;,&quot;type&quot;,&quot;NormalExercise&quot;,&quot;id&quot;,42712]],[&quot;^2&quot;,[&quot;sample_code&quot;,&quot;# Import package\\\\n\\\\n\\\\n# Specify the url: url\\\\n\\\\n\\\\n# Packages the request, send the request and catch the response: r\\\\n\\\\n\\\\n# Extract the response: text\\\\n\\\\n\\\\n# Print the html\\\\nprint(text)&quot;,&quot;sct&quot;,&quot;\\\\n# Test: import requests\\\\nEx().has_import(\\\\&quot;requests\\\\&quot;)\\\\n\\\\n# Test: &#39;url&#39; variable\\\\nEx().check_object(\\\\&quot;url\\\\&quot;).has_equal_value()\\\\n\\\\n# Test: call to requests.get() and &#39;r&#39; variable\\\\nEx().check_function(\\\\&quot;requests.get\\\\&quot;).check_args(0).has_equal_value()\\\\nEx().check_object(\\\\&quot;r\\\\&quot;)\\\\n\\\\n# Test: &#39;text&#39; variable\\\\nEx().has_code(\\\\&quot;r.text\\\\&quot;, pattern = False, not_typed_msg=\\\\&quot;Have you used `r.text` to create `text`?\\\\&quot;)\\\\nEx().check_object(\\\\&quot;text\\\\&quot;)\\\\n\\\\n# Test: Predefined code\\\\nEx().check_function(&#39;print&#39;).check_args(0).has_equal_ast()\\\\n\\\\nsuccess_msg(\\\\&quot;Awesome!\\\\&quot;)\\\\n&quot;,&quot;instructions&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Import the package &lt;code&gt;requests&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Assign the URL of interest to the variable &lt;code&gt;url&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Package the request to the URL, send the request and catch the response with a single function &lt;code&gt;requests.get()&lt;/code&gt;, assigning the response to the variable &lt;code&gt;r&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Use the &lt;code&gt;text&lt;/code&gt; attribute of the object &lt;code&gt;r&lt;/code&gt; to return the HTML of the webpage as a string; store the result in a variable &lt;code&gt;text&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Hit submit to print the HTML of the webpage.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;externalId&quot;,42713,&quot;question&quot;,&quot;&quot;,&quot;hint&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;To import a package &lt;code&gt;x&lt;/code&gt;, execute &lt;code&gt;import x&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Did you type in the URL correctly?&lt;/li&gt;\\\\n&lt;li&gt;Pass the &lt;em&gt;url&lt;/em&gt; (the &lt;code&gt;url&lt;/code&gt; object you defined) as an argument to &lt;code&gt;requests.get()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;You can access the &lt;code&gt;text&lt;/code&gt; attribute of the object &lt;code&gt;r&lt;/code&gt; by executing &lt;code&gt;r.text&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;You don&#39;t have to modify the code for printing the HTML of the webpage.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;possible_answers&quot;,[&quot;^7&quot;,[]],&quot;number&quot;,8,&quot;randomNumber&quot;,0.3464698092388834,&quot;assignment&quot;,&quot;&lt;p&gt;Now that you&#39;ve got your head and hands around making HTTP requests using the urllib package, you&#39;re going to figure out how to do the same using the higher-level requests library. You&#39;ll once again be pinging DataCamp servers for their &lt;code&gt;\\\\&quot;http://www.datacamp.com/teach/documentation\\\\&quot;&lt;/code&gt; page.&lt;/p&gt;\\\\n&lt;p&gt;Note that unlike in the previous exercises using urllib, you don&#39;t have to close the connection when using requests!&lt;/p&gt;&quot;,&quot;feedbacks&quot;,[&quot;^7&quot;,[]],&quot;attachments&quot;,null,&quot;title&quot;,&quot;Performing HTTP requests in Python using requests&quot;,&quot;xp&quot;,100,&quot;language&quot;,&quot;python&quot;,&quot;pre_exercise_code&quot;,&quot;&quot;,&quot;solution&quot;,&quot;# Import package\\\\nimport requests\\\\n\\\\n# Specify the url: url\\\\nurl = \\\\&quot;http://www.datacamp.com/teach/documentation\\\\&quot;\\\\n\\\\n# Packages the request, send the request and catch the response: r\\\\nr = requests.get(url)\\\\n\\\\n# Extract the response: text\\\\ntext = r.text\\\\n\\\\n# Print the html\\\\nprint(text)&quot;,&quot;type&quot;,&quot;NormalExercise&quot;,&quot;id&quot;,42713]],[&quot;^2&quot;,[&quot;sample_code&quot;,&quot;&quot;,&quot;sct&quot;,&quot;&quot;,&quot;aspect_ratio&quot;,56.25,&quot;instructions&quot;,null,&quot;externalId&quot;,990670,&quot;question&quot;,&quot;&quot;,&quot;hint&quot;,null,&quot;possible_answers&quot;,[&quot;^7&quot;,[]],&quot;runtime_config&quot;,null,&quot;number&quot;,9,&quot;video_hls&quot;,null,&quot;randomNumber&quot;,0.8666582036246655,&quot;chapter_id&quot;,4135,&quot;assignment&quot;,null,&quot;feedbacks&quot;,[&quot;^7&quot;,[]],&quot;attachments&quot;,null,&quot;version&quot;,&quot;v0&quot;,&quot;title&quot;,&quot;Scraping the web in Python&quot;,&quot;xp&quot;,50,&quot;language&quot;,&quot;python&quot;,&quot;pre_exercise_code&quot;,&quot;&quot;,&quot;solution&quot;,&quot;&quot;,&quot;type&quot;,&quot;VideoExercise&quot;,&quot;id&quot;,990670,&quot;projector_key&quot;,&quot;course_1606_9d1f8a331d1200c7e1bdbfcaf3a7a491&quot;,&quot;video_link&quot;,null,&quot;key&quot;,&quot;da43858012&quot;,&quot;course_id&quot;,1606]],[&quot;^2&quot;,[&quot;sample_code&quot;,&quot;# Import packages\\\\nimport requests\\\\nfrom ____ import ____\\\\n\\\\n# Specify url: url\\\\n\\\\n\\\\n# Package the request, send the request and catch the response: r\\\\n\\\\n\\\\n# Extracts the response as html: html_doc\\\\n\\\\n\\\\n# Create a BeautifulSoup object from the HTML: soup\\\\n\\\\n\\\\n# Prettify the BeautifulSoup object: pretty_soup\\\\n\\\\n\\\\n# Print the response\\\\nprint(pretty_soup)&quot;,&quot;sct&quot;,&quot;# Test: Predefined code\\\\npredef_msg = \\\\&quot;You don&#39;t have to change any of the predefined code.\\\\&quot;\\\\nEx().has_import(\\\\n \\\\&quot;requests\\\\&quot;,\\\\n not_imported_msg=predef_msg\\\\n)\\\\n\\\\n# Test: import BeautifulSoup\\\\nimport_msg = \\\\&quot;Did you correctly import the required packages?\\\\&quot;\\\\nEx().has_import(\\\\n \\\\&quot;bs4.BeautifulSoup\\\\&quot;,\\\\n not_imported_msg=import_msg\\\\n)\\\\n\\\\n# Test: &#39;url&#39; variable\\\\nEx().check_object(\\\\&quot;url\\\\&quot;).has_equal_value()\\\\n\\\\n# Test: call to requests.get() and &#39;r&#39; variable\\\\nEx().check_function(\\\\&quot;requests.get\\\\&quot;).check_args(0).has_equal_value()\\\\nEx().check_object(\\\\&quot;r\\\\&quot;)\\\\n\\\\n\\\\n# Test: &#39;html_doc&#39; variable\\\\nEx().check_correct(\\\\n check_object(\\\\&quot;html_doc\\\\&quot;).has_equal_value(),\\\\n has_code(\\\\&quot;r.text\\\\&quot;, pattern = False, not_typed_msg=\\\\&quot;Have you used `r.text` to create `html_doc`?\\\\&quot;)\\\\n)\\\\n\\\\n# Test: call to BeautifulSoup() and &#39;soup&#39; variable\\\\nEx().check_correct(\\\\n check_object(\\\\&quot;soup\\\\&quot;).has_equal_value(),\\\\n check_function(\\\\&quot;bs4.BeautifulSoup\\\\&quot;).check_args(0).has_equal_value()\\\\n )\\\\n\\\\n# Test: call to prettify() and &#39;pretty_soup&#39; variable\\\\nEx().check_correct(\\\\n check_object(\\\\&quot;pretty_soup\\\\&quot;).has_equal_value(),\\\\n check_function(\\\\&quot;soup.prettify\\\\&quot;)\\\\n )\\\\n\\\\n# Test: Predefined code\\\\nEx().has_printout(0)\\\\n\\\\nsuccess_msg(\\\\&quot;Awesome!\\\\&quot;)\\\\n&quot;,&quot;instructions&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Import the function &lt;code&gt;BeautifulSoup&lt;/code&gt; from the package &lt;code&gt;bs4&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Assign the URL of interest to the variable &lt;code&gt;url&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Package the request to the URL, send the request and catch the response with a single function &lt;code&gt;requests.get()&lt;/code&gt;, assigning the response to the variable &lt;code&gt;r&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Use the &lt;code&gt;text&lt;/code&gt; attribute of the object &lt;code&gt;r&lt;/code&gt; to return the HTML of the webpage as a string; store the result in a variable &lt;code&gt;html_doc&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Create a BeautifulSoup object &lt;code&gt;soup&lt;/code&gt; from the resulting HTML using the function &lt;code&gt;BeautifulSoup()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Use the method &lt;code&gt;prettify()&lt;/code&gt; on &lt;code&gt;soup&lt;/code&gt; and assign the result to &lt;code&gt;pretty_soup&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Hit submit to print to prettified HTML to your shell!&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;externalId&quot;,42715,&quot;question&quot;,&quot;&quot;,&quot;hint&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;To import a function &lt;code&gt;y&lt;/code&gt; from a package &lt;code&gt;x&lt;/code&gt;, execute &lt;code&gt;from x import y&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Check the URL to make sure that you typed it in correctly.&lt;/li&gt;\\\\n&lt;li&gt;Pass the &lt;em&gt;url&lt;/em&gt; (the &lt;code&gt;url&lt;/code&gt; object you defined) as an argument to &lt;code&gt;requests.get()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;You can access the &lt;code&gt;text&lt;/code&gt; attribute of the object &lt;code&gt;r&lt;/code&gt; by executing &lt;code&gt;r.text&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Pass the extracted &lt;em&gt;HTML&lt;/em&gt; as an argument to &lt;code&gt;BeautifulSoup()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;To use the &lt;code&gt;prettify()&lt;/code&gt; method on the BeautifulSoup object &lt;code&gt;soup&lt;/code&gt;, execute &lt;code&gt;soup.prettify()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;You don&#39;t have to modify the code to print the prettified HTML.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;possible_answers&quot;,[&quot;^7&quot;,[]],&quot;number&quot;,10,&quot;randomNumber&quot;,0.2142961690812859,&quot;assignment&quot;,&quot;&lt;p&gt;In this interactive exercise, you&#39;ll learn how to use the BeautifulSoup package to &lt;em&gt;parse&lt;/em&gt;, &lt;em&gt;prettify&lt;/em&gt; and &lt;em&gt;extract&lt;/em&gt; information from HTML. You&#39;ll scrape the data from the webpage of Guido van Rossum, Python&#39;s very own &lt;a href=\\\\&quot;https://en.wikipedia.org/wiki/Benevolent_dictator_for_life\\\\&quot;&gt;Benevolent Dictator for Life&lt;/a&gt;. In the following exercises, you&#39;ll prettify the HTML and then extract the text and the hyperlinks.&lt;/p&gt;\\\\n&lt;p&gt;The URL of interest is &lt;code&gt;url = &#39;https://www.python.org/~guido/&#39;&lt;/code&gt;.&lt;/p&gt;&quot;,&quot;feedbacks&quot;,[&quot;^7&quot;,[]],&quot;attachments&quot;,null,&quot;title&quot;,&quot;Parsing HTML with BeautifulSoup&quot;,&quot;xp&quot;,100,&quot;language&quot;,&quot;python&quot;,&quot;pre_exercise_code&quot;,&quot;&quot;,&quot;solution&quot;,&quot;# Import packages\\\\nimport requests\\\\nfrom bs4 import BeautifulSoup\\\\n\\\\n# Specify url: url\\\\nurl = &#39;https://www.python.org/~guido/&#39;\\\\n\\\\n# Package the request, send the request and catch the response: r\\\\nr = requests.get(url)\\\\n\\\\n# Extracts the response as html: html_doc\\\\nhtml_doc = r.text\\\\n\\\\n# Create a BeautifulSoup object from the HTML: soup\\\\nsoup = BeautifulSoup(html_doc)\\\\n\\\\n# Prettify the BeautifulSoup object: pretty_soup\\\\npretty_soup = soup.prettify()\\\\n\\\\n# Print the response\\\\nprint(pretty_soup)&quot;,&quot;type&quot;,&quot;NormalExercise&quot;,&quot;id&quot;,42715]],[&quot;^2&quot;,[&quot;sample_code&quot;,&quot;# Import packages\\\\nimport requests\\\\nfrom bs4 import BeautifulSoup\\\\n\\\\n# Specify url: url\\\\nurl = &#39;https://www.python.org/~guido/&#39;\\\\n\\\\n# Package the request, send the request and catch the response: r\\\\nr = requests.get(url)\\\\n\\\\n# Extract the response as html: html_doc\\\\nhtml_doc = r.text\\\\n\\\\n# Create a BeautifulSoup object from the HTML: soup\\\\n\\\\n\\\\n# Get the title of Guido&#39;s webpage: guido_title\\\\n\\\\n\\\\n# Print the title of Guido&#39;s webpage to the shell\\\\n\\\\n\\\\n# Get Guido&#39;s text: guido_text\\\\n\\\\n\\\\n# Print Guido&#39;s text to the shell\\\\nprint(guido_text)&quot;,&quot;sct&quot;,&quot;# Test: Predefined code\\\\npredef_msg = \\\\&quot;You don&#39;t have to change any of the predefined code.\\\\&quot;\\\\nEx().has_import(\\\\n \\\\&quot;requests\\\\&quot;,\\\\n not_imported_msg=predef_msg\\\\n)\\\\n\\\\n# Test: import BeautifulSoup\\\\nEx().has_import(\\\\n \\\\&quot;bs4.BeautifulSoup\\\\&quot;,\\\\n not_imported_msg=predef_msg\\\\n)\\\\n\\\\n# Test: &#39;url&#39; variable\\\\nEx().check_object(\\\\&quot;url\\\\&quot;).has_equal_value()\\\\n\\\\n# Test: call to requests.get() and &#39;r&#39; variable\\\\nEx().check_function(\\\\&quot;requests.get\\\\&quot;).check_args(0).has_equal_value()\\\\nEx().check_object(\\\\&quot;r\\\\&quot;)\\\\n\\\\n\\\\n# Test: &#39;html_doc&#39; variable\\\\nEx().check_correct(\\\\n check_object(\\\\&quot;html_doc\\\\&quot;).has_equal_value(),\\\\n has_code(\\\\&quot;r.text\\\\&quot;, pattern = False, not_typed_msg=\\\\&quot;Have you used `r.text` to create `html_doc`?\\\\&quot;)\\\\n)\\\\n\\\\n# Test: call to BeautifulSoup() and &#39;soup&#39; variable\\\\nEx().check_correct(\\\\n check_object(\\\\&quot;soup\\\\&quot;).has_equal_value(),\\\\n check_function(\\\\&quot;bs4.BeautifulSoup\\\\&quot;).check_args(0).has_equal_value()\\\\n )\\\\n\\\\n# Test: &#39;guido_title&#39; variable\\\\nEx().check_correct(\\\\n check_object(\\\\&quot;guido_title\\\\&quot;).has_equal_value(),\\\\n has_code(\\\\&quot;soup.title\\\\&quot;, pattern = False, not_typed_msg=\\\\&quot;Have you used `soup.title` to create `guido_title`?\\\\&quot;)\\\\n)\\\\n\\\\n# Test: call to print()\\\\nEx().has_printout(0)\\\\n\\\\n# Test: call to soup.get_text() and &#39;guido_text&#39; variable\\\\nEx().check_correct(\\\\n check_object(\\\\&quot;guido_text\\\\&quot;).has_equal_value(),\\\\n check_function(\\\\&quot;soup.get_text\\\\&quot;)\\\\n )\\\\n\\\\n# Test: Predefined code\\\\nEx().has_printout(1)\\\\n\\\\nsuccess_msg(\\\\&quot;Awesome!\\\\&quot;)\\\\n&quot;,&quot;instructions&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;In the sample code, the HTML response object &lt;code&gt;html_doc&lt;/code&gt; has already been created: your first task is to Soupify it using the function &lt;code&gt;BeautifulSoup()&lt;/code&gt; and to assign the resulting soup to the variable &lt;code&gt;soup&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Extract the title from the HTML soup &lt;code&gt;soup&lt;/code&gt; using the attribute &lt;code&gt;title&lt;/code&gt; and assign the result to &lt;code&gt;guido_title&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Print the title of Guido&#39;s webpage to the shell using the &lt;code&gt;print()&lt;/code&gt; function.&lt;/li&gt;\\\\n&lt;li&gt;Extract the text from the HTML soup &lt;code&gt;soup&lt;/code&gt; using the method &lt;code&gt;get_text()&lt;/code&gt; and assign to &lt;code&gt;guido_text&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Hit submit to print the text from Guido&#39;s webpage to the shell.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;externalId&quot;,42716,&quot;question&quot;,&quot;&quot;,&quot;hint&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Pass the &lt;em&gt;HTML response object&lt;/em&gt; as an argument to &lt;code&gt;BeautifulSoup()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;You can access the &lt;code&gt;title&lt;/code&gt; attribute of the object &lt;code&gt;soup&lt;/code&gt; by executing &lt;code&gt;soup.title&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;The object that contains the title of Guido&#39;s webpage is &lt;code&gt;guido_title&lt;/code&gt;; pass this as an argument to &lt;code&gt;print()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Use the method &lt;code&gt;get_text()&lt;/code&gt; on the HTML soup &lt;code&gt;soup&lt;/code&gt; by executing &lt;code&gt;soup.get_text()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;You don&#39;t have to modify the code to print the text from Guido&#39;s webpage.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;possible_answers&quot;,[&quot;^7&quot;,[]],&quot;number&quot;,11,&quot;randomNumber&quot;,0.4857854755758062,&quot;assignment&quot;,&quot;&lt;p&gt;As promised, in the following exercises, you&#39;ll learn the basics of extracting information from HTML soup. In this exercise, you&#39;ll figure out how to extract the text from the BDFL&#39;s webpage, along with printing the webpage&#39;s title.&lt;/p&gt;&quot;,&quot;feedbacks&quot;,[&quot;^7&quot;,[]],&quot;attachments&quot;,null,&quot;title&quot;,&quot;Turning a webpage into data using BeautifulSoup: getting the text&quot;,&quot;xp&quot;,100,&quot;language&quot;,&quot;python&quot;,&quot;pre_exercise_code&quot;,&quot;&quot;,&quot;solution&quot;,&quot;# Import packages\\\\nimport requests\\\\nfrom bs4 import BeautifulSoup\\\\n\\\\n# Specify url: url\\\\nurl = &#39;https://www.python.org/~guido/&#39;\\\\n\\\\n# Package the request, send the request and catch the response: r\\\\nr = requests.get(url)\\\\n\\\\n# Extract the response as html: html_doc\\\\nhtml_doc = r.text\\\\n\\\\n# Create a BeautifulSoup object from the HTML: soup\\\\nsoup = BeautifulSoup(html_doc)\\\\n\\\\n# Get the title of Guido&#39;s webpage: guido_title\\\\nguido_title = soup.title\\\\n\\\\n# Print the title of Guido&#39;s webpage to the shell\\\\nprint(guido_title)\\\\n\\\\n# Get Guido&#39;s text: guido_text\\\\nguido_text = soup.get_text()\\\\n\\\\n# Print Guido&#39;s text to the shell\\\\nprint(guido_text)&quot;,&quot;type&quot;,&quot;NormalExercise&quot;,&quot;id&quot;,42716]],[&quot;^2&quot;,[&quot;sample_code&quot;,&quot;# Import packages\\\\nimport requests\\\\nfrom bs4 import BeautifulSoup\\\\n\\\\n# Specify url\\\\nurl = &#39;https://www.python.org/~guido/&#39;\\\\n\\\\n# Package the request, send the request and catch the response: r\\\\nr = requests.get(url)\\\\n\\\\n# Extracts the response as html: html_doc\\\\nhtml_doc = r.text\\\\n\\\\n# create a BeautifulSoup object from the HTML: soup\\\\nsoup = BeautifulSoup(html_doc)\\\\n\\\\n# Print the title of Guido&#39;s webpage\\\\nprint(soup.title)\\\\n\\\\n# Find all &#39;a&#39; tags (which define hyperlinks): a_tags\\\\n\\\\n\\\\n# Print the URLs to the shell\\\\nfor ____ in ____:\\\\n ____&quot;,&quot;sct&quot;,&quot;predef_msg = \\\\&quot;You don&#39;t have to change any of the predefined code.\\\\&quot;\\\\nEx().has_import(\\\\&quot;requests\\\\&quot;)\\\\nEx().has_import(\\\\&quot;bs4.BeautifulSoup\\\\&quot;)\\\\nEx().check_object(\\\\&quot;url\\\\&quot;).has_equal_value(incorrect_msg = predef_msg)\\\\nEx().check_function(\\\\&quot;requests.get\\\\&quot;).check_args(0).has_equal_ast()\\\\nEx().check_object(\\\\&quot;html_doc\\\\&quot;).has_equal_value(incorrect_msg = predef_msg)\\\\nEx().check_object(\\\\&quot;soup\\\\&quot;).has_equal_value(incorrect_msg = predef_msg)\\\\nEx().has_printout(0)\\\\n\\\\nEx().check_correct(\\\\n check_object(\\\\&quot;a_tags\\\\&quot;),\\\\n check_function(\\\\&quot;soup.find_all\\\\&quot;).check_args(0).has_equal_value()\\\\n)\\\\nEx().check_for_loop().multi(\\\\n check_iter().has_equal_value(incorrect_msg = \\\\&quot;You have to iterate over `a_tags`\\\\&quot;),\\\\n check_body().set_context(&#39;&lt;a href=\\\\&quot;pics.html\\\\&quot;&gt;&lt;img border=\\\\&quot;0\\\\&quot; src=\\\\&quot;images/IMG_2192.jpg\\\\&quot;/&gt;&lt;/a&gt;&#39;).check_function(\\\\&quot;print\\\\&quot;).check_args(0).check_function(\\\\&quot;link.get\\\\&quot;).check_args(0).has_equal_value()\\\\n )\\\\n\\\\nsuccess_msg(\\\\&quot;Awesome!\\\\&quot;)&quot;,&quot;instructions&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Use the method &lt;code&gt;find_all()&lt;/code&gt; to find all hyperlinks in &lt;code&gt;soup&lt;/code&gt;, remembering that hyperlinks are defined by the HTML tag &lt;code&gt;&amp;lt;a&amp;gt;&lt;/code&gt; but passed to &lt;code&gt;find_all()&lt;/code&gt; without angle brackets; store the result in the variable &lt;code&gt;a_tags&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;The variable &lt;code&gt;a_tags&lt;/code&gt; is a results set: your job now is to enumerate over it, using a &lt;code&gt;for&lt;/code&gt; loop and to print the actual URLs of the hyperlinks; to do this, for every element &lt;code&gt;link&lt;/code&gt; in &lt;code&gt;a_tags&lt;/code&gt;, you want to &lt;code&gt;print()&lt;/code&gt; &lt;code&gt;link.get(&#39;href&#39;)&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;externalId&quot;,42717,&quot;question&quot;,&quot;&quot;,&quot;hint&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Pass the &lt;em&gt;HTML tag&lt;/em&gt; to find (without the angle brackets &lt;code&gt;&amp;lt;&amp;gt;&lt;/code&gt;) as a string argument to &lt;code&gt;find_all()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Recall that the &lt;code&gt;for&lt;/code&gt; loop recipe is: &lt;code&gt;for&lt;/code&gt; &lt;em&gt;loop variable&lt;/em&gt; &lt;code&gt;in&lt;/code&gt; &lt;em&gt;results set&lt;/em&gt;&lt;code&gt;:&lt;/code&gt;. Don&#39;t forget to pass &lt;code&gt;link.get(&#39;href&#39;)&lt;/code&gt; as an argument to &lt;code&gt;print()&lt;/code&gt; inside the &lt;code&gt;for&lt;/code&gt; loop body.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;possible_answers&quot;,[&quot;^7&quot;,[]],&quot;number&quot;,12,&quot;randomNumber&quot;,0.8156043842203349,&quot;assignment&quot;,&quot;&lt;p&gt;In this exercise, you&#39;ll figure out how to extract the URLs of the hyperlinks from the BDFL&#39;s webpage. In the process, you&#39;ll become close friends with the soup method &lt;code&gt;find_all()&lt;/code&gt;.&lt;/p&gt;&quot;,&quot;feedbacks&quot;,[&quot;^7&quot;,[]],&quot;attachments&quot;,null,&quot;title&quot;,&quot;Turning a webpage into data using BeautifulSoup: getting the hyperlinks&quot;,&quot;xp&quot;,100,&quot;language&quot;,&quot;python&quot;,&quot;pre_exercise_code&quot;,&quot;&quot;,&quot;solution&quot;,&quot;# Import packages\\\\nimport requests\\\\nfrom bs4 import BeautifulSoup\\\\n\\\\n# Specify url\\\\nurl = &#39;https://www.python.org/~guido/&#39;\\\\n\\\\n# Package the request, send the request and catch the response: r\\\\nr = requests.get(url)\\\\n\\\\n# Extracts the response as html: html_doc\\\\nhtml_doc = r.text\\\\n\\\\n# create a BeautifulSoup object from the HTML: soup\\\\nsoup = BeautifulSoup(html_doc)\\\\n\\\\n# Print the title of Guido&#39;s webpage\\\\nprint(soup.title)\\\\n\\\\n# Find all &#39;a&#39; tags (which define hyperlinks): a_tags\\\\na_tags = soup.find_all(&#39;a&#39;)\\\\n\\\\n# Print the URLs to the shell\\\\nfor link in a_tags:\\\\n print(link.get(&#39;href&#39;))&quot;,&quot;type&quot;,&quot;NormalExercise&quot;,&quot;id&quot;,42717]]]],&quot;canRateChapter&quot;,false,&quot;isChapterCompleted&quot;,false]],&quot;location&quot;,[&quot;^2&quot;,[&quot;current&quot;,[&quot;^2&quot;,[&quot;pathname&quot;,&quot;/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1&quot;,&quot;query&quot;,[&quot;^2&quot;,[&quot;ex&quot;,&quot;2&quot;]]]],&quot;canonical&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=2&quot;,&quot;before&quot;,[&quot;^2&quot;,[&quot;pathname&quot;,&quot;/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1&quot;,&quot;query&quot;,[&quot;^2&quot;,[&quot;ex&quot;,&quot;2&quot;]]]]]],&quot;mobilePopup&quot;,[&quot;^2&quot;,[]],&quot;onboardingMilestones&quot;,[&quot;^ &quot;,&quot;isStarted&quot;,false,&quot;isActive&quot;,true,&quot;step&quot;,0],&quot;preFetchedData&quot;,[&quot;^0&quot;,[&quot;^ &quot;,&quot;n&quot;,&quot;PreFetchedDataStateRecord&quot;,&quot;v&quot;,[&quot;^ &quot;,&quot;^9&quot;,[&quot;^0&quot;,[&quot;^ &quot;,&quot;n&quot;,&quot;PreFetchedRequestRecord&quot;,&quot;v&quot;,[&quot;^ &quot;,&quot;status&quot;,&quot;SUCCESS&quot;,&quot;data&quot;,[&quot;^ &quot;,&quot;id&quot;,1606,&quot;title&quot;,&quot;Intermediate Importing Data in Python&quot;,&quot;description&quot;,&quot;As a data scientist, you will need to clean data, wrangle and munge it, visualize it, build predictive models and interpret these models. Before you can do so, however, you will need to know how to get data into Python. In the prequel to this course, you learned many ways to import data into Python: from flat files such as .txt and .csv; from files native to other software such as Excel spreadsheets, Stata, SAS, and MATLAB files; and from relational databases such as SQLite and PostgreSQL. In this course, you&#39;ll extend this knowledge base by learning to import data from the web and by pulling data from Application Programming Interfaces\xe2\x80\x94 APIs\xe2\x80\x94such as the Twitter streaming API, which allows us to stream real-time tweets.&quot;,&quot;short_description&quot;,&quot;Improve your Python data importing skills and learn to work with web and API data.&quot;,&quot;author_field&quot;,null,&quot;author_bio&quot;,null,&quot;author_image&quot;,&quot;https://assets.datacamp.com/production/course_1606/author_images/author_image_course_1606_20200310-1-lgdj4c?1583853939&quot;,&quot;nb_of_subscriptions&quot;,111907,&quot;slug&quot;,&quot;intermediate-importing-data-in-python&quot;,&quot;image_url&quot;,&quot;https://assets.datacamp.com/production/course_1606/shields/thumb/shield_image_course_1606_20200310-1-17hkmhz?1583853940&quot;,&quot;image_thumbnail_url&quot;,&quot;https://assets.datacamp.com/production/course_1606/shields/thumb_home/shield_image_course_1606_20200310-1-17hkmhz?1583853940&quot;,&quot;last_updated_on&quot;,&quot;06/04/2021&quot;,&quot;link&quot;,&quot;https://www.datacamp.com/courses/intermediate-importing-data-in-python&quot;,&quot;should_cache&quot;,true,&quot;type&quot;,&quot;datacamp&quot;,&quot;difficulty_level&quot;,1,&quot;state&quot;,&quot;live&quot;,&quot;university&quot;,null,&quot;sharing_links&quot;,[&quot;^ &quot;,&quot;twitter&quot;,&quot;http://bit.ly/1eWTMJh&quot;,&quot;facebook&quot;,&quot;http://bit.ly/1iS42Do&quot;],&quot;marketing_video&quot;,&quot;&quot;,&quot;programming_language&quot;,&quot;python&quot;,&quot;paid&quot;,true,&quot;time_needed&quot;,null,&quot;xp&quot;,2400,&quot;topic_id&quot;,8,&quot;technology_id&quot;,2,&quot;reduced_outline&quot;,null,&quot;runtime_config&quot;,null,&quot;lti_only&quot;,false,&quot;instructors&quot;,[[&quot;^ &quot;,&quot;id&quot;,301837,&quot;marketing_biography&quot;,&quot;Data Scientist at DataCamp&quot;,&quot;biography&quot;,&quot;Hugo is a data scientist, educator, writer and podcaster at DataCamp. His main interests are promoting data &amp; AI literacy, helping to spread data skills through organizations and society and doing amateur stand up comedy in NYC. If you want to know what he likes to talk about, definitely check out DataFramed, the DataCamp podcast, which he hosts and produces: https://www.datacamp.com/community/podcast&quot;,&quot;avatar_url&quot;,&quot;https://assets.datacamp.com/users/avatars/000/301/837/square/hugoaboutpic.jpg?1493154678&quot;,&quot;full_name&quot;,&quot;Hugo Bowne-Anderson&quot;,&quot;instructor_path&quot;,&quot;/instructors/hugobowne&quot;]],&quot;collaborators&quot;,[[&quot;^ &quot;,&quot;^18&quot;,&quot;https://assets.datacamp.com/users/avatars/000/382/294/square/francis-photo.jpg?1471980001&quot;,&quot;^19&quot;,&quot;Francisco Castro&quot;]],&quot;datasets&quot;,[[&quot;^ &quot;,&quot;asset_url&quot;,&quot;https://assets.datacamp.com/production/repositories/488/datasets/b422ace2fceada7b569e0ba3e8d833fddc684c4d/latitude.xls&quot;,&quot;name&quot;,&quot;Latitudes (XLS)&quot;],[&quot;^ &quot;,&quot;^1=&quot;,&quot;https://assets.datacamp.com/production/repositories/488/datasets/3ef452f83a91556ea4284624b969392c0506fb33/tweets3.txt&quot;,&quot;^1&gt;&quot;,&quot;Tweets&quot;],[&quot;^ &quot;,&quot;^1=&quot;,&quot;https://assets.datacamp.com/production/repositories/488/datasets/013936d2700e2d00207ec42100d448c23692eb6f/winequality-red.csv&quot;,&quot;^1&gt;&quot;,&quot;Red wine quality&quot;]],&quot;tracks&quot;,[[&quot;^ &quot;,&quot;path&quot;,&quot;/tracks/data-analyst-with-python&quot;,&quot;title_with_subtitle&quot;,&quot;Data Analyst with Python&quot;],[&quot;^ &quot;,&quot;^1@&quot;,&quot;/tracks/data-scientist-with-python&quot;,&quot;^1A&quot;,&quot;Data Scientist with Python&quot;],[&quot;^ &quot;,&quot;^1@&quot;,&quot;/tracks/personalized-data-scientist-with-python&quot;,&quot;^1A&quot;,&quot;Data Scientist with Python&quot;],[&quot;^ &quot;,&quot;^1@&quot;,&quot;/tracks/importing-cleaning-data-with-python&quot;,&quot;^1A&quot;,&quot;Importing &amp; Cleaning Data with Python&quot;]],&quot;prerequisites&quot;,[[&quot;^ &quot;,&quot;^1@&quot;,&quot;/courses/introduction-to-importing-data-in-python&quot;,&quot;^D&quot;,&quot;Introduction to Importing Data in Python&quot;]],&quot;time_needed_in_hours&quot;,2,&quot;seo_title&quot;,&quot;Intermediate Importing Data in Python&quot;,&quot;seo_description&quot;,&quot;Further improve your Python data importing skills and learn to work with more web and API data.&quot;,&quot;archived_at&quot;,null,&quot;original_image_url&quot;,&quot;https://assets.datacamp.com/production/course_1606/shields/original/shield_image_course_1606_20200310-1-17hkmhz?1583853940&quot;,&quot;external_slug&quot;,&quot;intermediate-importing-data-in-python&quot;,&quot;chapters&quot;,[[&quot;^ &quot;,&quot;id&quot;,4135,&quot;title_meta&quot;,null,&quot;^D&quot;,&quot;Importing data from the Internet&quot;,&quot;^E&quot;,&quot;The web is a rich source of data from which you can extract various types of insights and findings. In this chapter, you will learn how to get data from the web, whether it is stored in files or in HTML. You&#39;ll also learn the basics of scraping and parsing web data.&quot;,&quot;number&quot;,1,&quot;^K&quot;,&quot;importing-data-from-the-internet-1&quot;,&quot;nb_exercises&quot;,12,&quot;badge_completed_url&quot;,&quot;https://assets.datacamp.com/production/default/badges/missing.png&quot;,&quot;badge_uncompleted_url&quot;,&quot;https://assets.datacamp.com/production/default/badges/missing_unc.png&quot;,&quot;^N&quot;,&quot;06/11/2020&quot;,&quot;slides_link&quot;,&quot;https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/slides/chapter1.pdf&quot;,&quot;free_preview&quot;,true,&quot;xp&quot;,1050,&quot;number_of_videos&quot;,3,&quot;^:&quot;,[[&quot;^ &quot;,&quot;^Q&quot;,&quot;VideoExercise&quot;,&quot;^D&quot;,&quot;Importing flat files from the web&quot;,&quot;aggregate_xp&quot;,50,&quot;^1K&quot;,1,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=1&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Importing flat files from the web: your turn!&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,2,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=2&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Opening and reading flat files from the web&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,3,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=3&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Importing non-flat files from the web&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,4,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=4&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;VideoExercise&quot;,&quot;^D&quot;,&quot;HTTP requests to import files from the web&quot;,&quot;^1R&quot;,50,&quot;^1K&quot;,5,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=5&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Performing HTTP requests in Python using urllib&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,6,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=6&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Printing HTTP request results in Python using urllib&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,7,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=7&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Performing HTTP requests in Python using requests&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,8,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=8&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;VideoExercise&quot;,&quot;^D&quot;,&quot;Scraping the web in Python&quot;,&quot;^1R&quot;,50,&quot;^1K&quot;,9,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=9&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Parsing HTML with BeautifulSoup&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,10,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=10&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Turning a webpage into data using BeautifulSoup: getting the text&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,11,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=11&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Turning a webpage into data using BeautifulSoup: getting the hyperlinks&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,12,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=12&quot;]]],[&quot;^ &quot;,&quot;id&quot;,4136,&quot;^1J&quot;,null,&quot;^D&quot;,&quot;Interacting with APIs to import data from the web&quot;,&quot;^E&quot;,&quot;In this chapter, you will gain a deeper understanding of how to import data from the web. You will learn the basics of extracting data from APIs, gain insight on the importance of APIs, and practice extracting data by diving into the OMDB and Library of Congress APIs.&quot;,&quot;^1K&quot;,2,&quot;^K&quot;,&quot;interacting-with-apis-to-import-data-from-the-web-2&quot;,&quot;^1L&quot;,9,&quot;^1M&quot;,&quot;https://assets.datacamp.com/production/default/badges/missing.png&quot;,&quot;^1N&quot;,&quot;https://assets.datacamp.com/production/default/badges/missing_unc.png&quot;,&quot;^N&quot;,&quot;06/11/2020&quot;,&quot;^1O&quot;,&quot;https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/slides/chapter2.pdf&quot;,&quot;^1P&quot;,null,&quot;xp&quot;,650,&quot;^1Q&quot;,2,&quot;^:&quot;,[[&quot;^ &quot;,&quot;^Q&quot;,&quot;VideoExercise&quot;,&quot;^D&quot;,&quot;Introduction to APIs and JSONs&quot;,&quot;^1R&quot;,50,&quot;^1K&quot;,1,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/interacting-with-apis-to-import-data-from-the-web-2?ex=1&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;PureMultipleChoiceExercise&quot;,&quot;^D&quot;,&quot;Pop quiz: What exactly is a JSON?&quot;,&quot;^1R&quot;,50,&quot;^1K&quot;,2,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/interacting-with-apis-to-import-data-from-the-web-2?ex=2&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Loading and exploring a JSON&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,3,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/interacting-with-apis-to-import-data-from-the-web-2?ex=3&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;MultipleChoiceExercise&quot;,&quot;^D&quot;,&quot;Pop quiz: Exploring your JSON&quot;,&quot;^1R&quot;,50,&quot;^1K&quot;,4,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/interacting-with-apis-to-import-data-from-the-web-2?ex=4&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;VideoExercise&quot;,&quot;^D&quot;,&quot;APIs and interacting with the world wide web&quot;,&quot;^1R&quot;,50,&quot;^1K&quot;,5,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/interacting-with-apis-to-import-data-from-the-web-2?ex=5&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;PureMultipleChoiceExercise&quot;,&quot;^D&quot;,&quot;Pop quiz: What&#39;s an API?&quot;,&quot;^1R&quot;,50,&quot;^1K&quot;,6,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/interacting-with-apis-to-import-data-from-the-web-2?ex=6&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;API requests&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,7,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/interacting-with-apis-to-import-data-from-the-web-2?ex=7&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;JSON\xe2\x80\x93from the web to Python&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,8,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/interacting-with-apis-to-import-data-from-the-web-2?ex=8&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Checking out the Wikipedia API&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,9,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/interacting-with-apis-to-import-data-from-the-web-2?ex=9&quot;]]],[&quot;^ &quot;,&quot;id&quot;,4140,&quot;^1J&quot;,null,&quot;^D&quot;,&quot;Diving deep into the Twitter API&quot;,&quot;^E&quot;,&quot;In this chapter, you will consolidate your knowledge of interacting with APIs in a deep dive into the Twitter streaming API. You&#39;ll learn how to stream real-time Twitter data, and how to analyze and visualize it.&quot;,&quot;^1K&quot;,3,&quot;^K&quot;,&quot;diving-deep-into-the-twitter-api&quot;,&quot;^1L&quot;,8,&quot;^1M&quot;,&quot;https://assets.datacamp.com/production/default/badges/missing.png&quot;,&quot;^1N&quot;,&quot;https://assets.datacamp.com/production/default/badges/missing_unc.png&quot;,&quot;^N&quot;,&quot;06/11/2020&quot;,&quot;^1O&quot;,&quot;https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/slides/chapter3.pdf&quot;,&quot;^1P&quot;,null,&quot;xp&quot;,700,&quot;^1Q&quot;,2,&quot;^:&quot;,[[&quot;^ &quot;,&quot;^Q&quot;,&quot;VideoExercise&quot;,&quot;^D&quot;,&quot;The Twitter API and Authentication&quot;,&quot;^1R&quot;,50,&quot;^1K&quot;,1,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/diving-deep-into-the-twitter-api?ex=1&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;API Authentication&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,2,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/diving-deep-into-the-twitter-api?ex=2&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Streaming tweets&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,3,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/diving-deep-into-the-twitter-api?ex=3&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Load and explore your Twitter data&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,4,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/diving-deep-into-the-twitter-api?ex=4&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Twitter data to DataFrame&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,5,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/diving-deep-into-the-twitter-api?ex=5&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;A little bit of Twitter text analysis&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,6,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/diving-deep-into-the-twitter-api?ex=6&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Plotting your Twitter data&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,7,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/diving-deep-into-the-twitter-api?ex=7&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;VideoExercise&quot;,&quot;^D&quot;,&quot;Final Thoughts&quot;,&quot;^1R&quot;,50,&quot;^1K&quot;,8,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/diving-deep-into-the-twitter-api?ex=8&quot;]]]]]]]],&quot;^6&quot;,[&quot;^0&quot;,[&quot;^ &quot;,&quot;n&quot;,&quot;PreFetchedRequestRecord&quot;,&quot;v&quot;,[&quot;^ &quot;,&quot;^B&quot;,&quot;SUCCESS&quot;,&quot;^C&quot;,[&quot;^ &quot;,&quot;id&quot;,4135,&quot;^1J&quot;,null,&quot;^D&quot;,&quot;Importing data from the Internet&quot;,&quot;^E&quot;,&quot;The web is a rich source of data from which you can extract various types of insights and findings. In this chapter, you will learn how to get data from the web, whether it is stored in files or in HTML. You&#39;ll also learn the basics of scraping and parsing web data.&quot;,&quot;^1K&quot;,1,&quot;^K&quot;,&quot;importing-data-from-the-internet-1&quot;,&quot;^1L&quot;,12,&quot;^1M&quot;,&quot;https://assets.datacamp.com/production/default/badges/missing.png&quot;,&quot;^1N&quot;,&quot;https://assets.datacamp.com/production/default/badges/missing_unc.png&quot;,&quot;^N&quot;,&quot;06/11/2020&quot;,&quot;^1O&quot;,&quot;https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/slides/chapter1.pdf&quot;,&quot;^1P&quot;,true,&quot;xp&quot;,1050,&quot;^1Q&quot;,3,&quot;^:&quot;,[[&quot;^ &quot;,&quot;^Q&quot;,&quot;VideoExercise&quot;,&quot;^D&quot;,&quot;Importing flat files from the web&quot;,&quot;^1R&quot;,50,&quot;^1K&quot;,1,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=1&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Importing flat files from the web: your turn!&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,2,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=2&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Opening and reading flat files from the web&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,3,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=3&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Importing non-flat files from the web&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,4,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=4&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;VideoExercise&quot;,&quot;^D&quot;,&quot;HTTP requests to import files from the web&quot;,&quot;^1R&quot;,50,&quot;^1K&quot;,5,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=5&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Performing HTTP requests in Python using urllib&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,6,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=6&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Printing HTTP request results in Python using urllib&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,7,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=7&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Performing HTTP requests in Python using requests&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,8,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=8&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;VideoExercise&quot;,&quot;^D&quot;,&quot;Scraping the web in Python&quot;,&quot;^1R&quot;,50,&quot;^1K&quot;,9,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=9&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Parsing HTML with BeautifulSoup&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,10,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=10&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Turning a webpage into data using BeautifulSoup: getting the text&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,11,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=11&quot;],[&quot;^ &quot;,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^D&quot;,&quot;Turning a webpage into data using BeautifulSoup: getting the hyperlinks&quot;,&quot;^1R&quot;,100,&quot;^1K&quot;,12,&quot;url&quot;,&quot;https://campus.datacamp.com/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=12&quot;]]]]]],&quot;^:&quot;,[&quot;^0&quot;,[&quot;^ &quot;,&quot;n&quot;,&quot;PreFetchedRequestRecord&quot;,&quot;v&quot;,[&quot;^ &quot;,&quot;^B&quot;,&quot;SUCCESS&quot;,&quot;^C&quot;,[[&quot;^ &quot;,&quot;id&quot;,990668,&quot;^Q&quot;,&quot;VideoExercise&quot;,&quot;assignment&quot;,null,&quot;^D&quot;,&quot;Importing flat files from the web&quot;,&quot;sample_code&quot;,&quot;&quot;,&quot;instructions&quot;,null,&quot;^1K&quot;,1,&quot;sct&quot;,&quot;&quot;,&quot;pre_exercise_code&quot;,&quot;&quot;,&quot;solution&quot;,&quot;&quot;,&quot;hint&quot;,null,&quot;attachments&quot;,null,&quot;xp&quot;,50,&quot;possible_answers&quot;,[],&quot;feedbacks&quot;,[],&quot;question&quot;,&quot;&quot;,&quot;video_link&quot;,null,&quot;video_hls&quot;,null,&quot;aspect_ratio&quot;,56.25,&quot;projector_key&quot;,&quot;course_1606_59604c018a6e132016cd26144a12fee0&quot;,&quot;key&quot;,&quot;e36457c7ed&quot;,&quot;language&quot;,&quot;python&quot;,&quot;course_id&quot;,1606,&quot;chapter_id&quot;,4135,&quot;^13&quot;,null,&quot;version&quot;,&quot;v0&quot;,&quot;randomNumber&quot;,0.9009897811570702,&quot;externalId&quot;,990668],[&quot;^ &quot;,&quot;id&quot;,42707,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^1S&quot;,&quot;&lt;p&gt;You are about to import your first file from the web! The flat file you will import will be &lt;code&gt;&#39;winequality-red.csv&#39;&lt;/code&gt; from the University of California, Irvine&#39;s &lt;a href=\\\\&quot;http://archive.ics.uci.edu/ml/index.html\\\\&quot;&gt;Machine Learning repository&lt;/a&gt;. The flat file contains tabular data of physiochemical properties of red wine, such as pH, alcohol content and citric acid content, along with wine quality rating.&lt;/p&gt;\\\\n&lt;p&gt;The URL of the file is&lt;/p&gt;\\\\n&lt;pre&gt;&lt;code&gt;&#39;https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/datasets/winequality-red.csv&#39;\\\\n&lt;/code&gt;&lt;/pre&gt;\\\\n&lt;p&gt;After you import it, you&#39;ll check your working directory to confirm that it is there and then you&#39;ll load it into a &lt;code&gt;pandas&lt;/code&gt; DataFrame.&lt;/p&gt;&quot;,&quot;^D&quot;,&quot;Importing flat files from the web: your turn!&quot;,&quot;^1T&quot;,&quot;# Import package\\\\nfrom ____ import ____\\\\n\\\\n# Import pandas\\\\nimport pandas as pd\\\\n\\\\n# Assign url of file: url\\\\n\\\\n\\\\n# Save file locally\\\\n\\\\n\\\\n# Read file into a DataFrame and print its head\\\\ndf = pd.read_csv(&#39;winequality-red.csv&#39;, sep=&#39;;&#39;)\\\\nprint(df.head())&quot;,&quot;^1U&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Import the function &lt;code&gt;urlretrieve&lt;/code&gt; from the subpackage &lt;code&gt;urllib.request&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Assign the URL of the file to the variable &lt;code&gt;url&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Use the function &lt;code&gt;urlretrieve()&lt;/code&gt; to save the file locally as &lt;code&gt;&#39;winequality-red.csv&#39;&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Execute the remaining code to load &lt;code&gt;&#39;winequality-red.csv&#39;&lt;/code&gt; in a pandas DataFrame and to print its head to the shell.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;^1K&quot;,2,&quot;sct&quot;,&quot;Ex().has_import(\\\\&quot;urllib.request.urlretrieve\\\\&quot;)\\\\nEx().has_import(\\\\&quot;pandas\\\\&quot;)\\\\nEx().check_object(\\\\&quot;url\\\\&quot;).has_equal_value()\\\\nEx().check_function(\\\\&quot;urllib.request.urlretrieve\\\\&quot;).multi(\\\\n check_args(0).has_equal_value(),\\\\n check_args(1).has_equal_value()\\\\n)\\\\nEx().check_correct(\\\\n check_object(\\\\&quot;df\\\\&quot;).has_equal_value(),\\\\n check_function(\\\\&quot;pandas.read_csv\\\\&quot;).multi(\\\\n check_args(0).has_equal_value(),\\\\n check_args(1).has_equal_value()\\\\n )\\\\n)\\\\nEx().has_printout(0)\\\\nsuccess_msg(\\\\&quot;Awesome!\\\\&quot;)\\\\n&quot;,&quot;^1V&quot;,&quot;&quot;,&quot;^1W&quot;,&quot;# Import package\\\\nfrom urllib.request import urlretrieve\\\\n\\\\n# Import pandas\\\\nimport pandas as pd\\\\n\\\\n# Assign url of file: url\\\\nurl = &#39;https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/datasets/winequality-red.csv&#39;\\\\n\\\\n# Save file locally\\\\nurlretrieve(url, &#39;winequality-red.csv&#39;)\\\\n\\\\n# Read file into a DataFrame and print its head\\\\ndf = pd.read_csv(&#39;winequality-red.csv&#39;, sep=&#39;;&#39;)\\\\nprint(df.head())&quot;,&quot;^1X&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;To import a function &lt;code&gt;y&lt;/code&gt; from a subpackage &lt;code&gt;x&lt;/code&gt;, execute &lt;code&gt;from x import y&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;This one&#39;s a long URL. Make sure you typed it in correctly!&lt;/li&gt;\\\\n&lt;li&gt;Pass the &lt;em&gt;url&lt;/em&gt; to import (in the &lt;code&gt;url&lt;/code&gt; object you defined) as the first argument and the &lt;em&gt;filename&lt;/em&gt; for saving the file locally as the second argument to &lt;code&gt;urlretrieve()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;You don&#39;t have to change the code for loading &lt;code&gt;&#39;winequality-red.csv&#39;&lt;/code&gt; and printing its head.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;^1Y&quot;,null,&quot;xp&quot;,100,&quot;^1Z&quot;,[],&quot;^1[&quot;,[],&quot;^20&quot;,&quot;&quot;,&quot;^25&quot;,&quot;python&quot;,&quot;^29&quot;,0.3505292251150971,&quot;^2:&quot;,42707],[&quot;^ &quot;,&quot;id&quot;,42708,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^1S&quot;,&quot;&lt;p&gt;You have just imported a file from the web, saved it locally and loaded it into a DataFrame. If you just wanted to load a file from the web into a DataFrame without first saving it locally, you can do that easily using &lt;code&gt;pandas&lt;/code&gt;. In particular, you can use the function &lt;code&gt;pd.read_csv()&lt;/code&gt; with the URL as the first argument and the separator &lt;code&gt;sep&lt;/code&gt; as the second argument.&lt;/p&gt;\\\\n&lt;p&gt;The URL of the file, once again, is&lt;/p&gt;\\\\n&lt;pre&gt;&lt;code&gt;&#39;https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/datasets/winequality-red.csv&#39;\\\\n&lt;/code&gt;&lt;/pre&gt;&quot;,&quot;^D&quot;,&quot;Opening and reading flat files from the web&quot;,&quot;^1T&quot;,&quot;# Import packages\\\\nimport matplotlib.pyplot as plt\\\\nimport pandas as pd\\\\n\\\\n# Assign url of file: url\\\\n\\\\n\\\\n# Read file into a DataFrame: df\\\\n\\\\n\\\\n# Print the head of the DataFrame\\\\nprint(____)\\\\n\\\\n# Plot first column of df\\\\npd.DataFrame.hist(df.ix[:, 0:1])\\\\nplt.xlabel(&#39;fixed acidity (g(tartaric acid)/dm$^3$)&#39;)\\\\nplt.ylabel(&#39;count&#39;)\\\\nplt.show()\\\\n&quot;,&quot;^1U&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Assign the URL of the file to the variable &lt;code&gt;url&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Read file into a DataFrame &lt;code&gt;df&lt;/code&gt; using &lt;code&gt;pd.read_csv()&lt;/code&gt;, recalling that the separator in the file is &lt;code&gt;&#39;;&#39;&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Print the head of the DataFrame &lt;code&gt;df&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Execute the rest of the code to plot histogram of the first feature in the DataFrame &lt;code&gt;df&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;^1K&quot;,3,&quot;sct&quot;,&quot;Ex().has_import(\\\\&quot;matplotlib.pyplot\\\\&quot;)\\\\nEx().has_import(\\\\&quot;pandas\\\\&quot;)\\\\nEx().check_object(\\\\&quot;url\\\\&quot;).has_equal_value()\\\\nEx().check_correct(\\\\n check_object(\\\\&quot;df\\\\&quot;).has_equal_value(),\\\\n check_function(\\\\&quot;pandas.read_csv\\\\&quot;).multi(\\\\n check_args(0).has_equal_value(),\\\\n check_args(1).has_equal_value()\\\\n )\\\\n)\\\\nEx().has_printout(0)\\\\nEx().check_function(\\\\&quot;pandas.DataFrame.hist\\\\&quot;).check_args(0).has_equal_value()\\\\nEx().check_function(\\\\&quot;matplotlib.pyplot.show\\\\&quot;)\\\\n\\\\nsuccess_msg(\\\\&quot;Awesome!\\\\&quot;)\\\\n&quot;,&quot;^1V&quot;,&quot;&quot;,&quot;^1W&quot;,&quot;# Import packages\\\\nimport matplotlib.pyplot as plt\\\\nimport pandas as pd\\\\n\\\\n# Assign url of file: url\\\\nurl = &#39;https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/datasets/winequality-red.csv&#39;\\\\n\\\\n# Read file into a DataFrame: df\\\\ndf = pd.read_csv(url, sep=&#39;;&#39;)\\\\n\\\\n# Print the head of the DataFrame\\\\nprint(df.head())\\\\n\\\\n# Plot first column of df\\\\npd.DataFrame.hist(df.ix[:, 0:1])\\\\nplt.xlabel(&#39;fixed acidity (g(tartaric acid)/dm$^3$)&#39;)\\\\nplt.ylabel(&#39;count&#39;)\\\\nplt.show()\\\\n&quot;,&quot;^1X&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Make sure you typed the URL correctly!&lt;/li&gt;\\\\n&lt;li&gt;Pass the &lt;em&gt;url&lt;/em&gt; (the &lt;code&gt;url&lt;/code&gt; object you defined) as the first argument and the &lt;em&gt;separator&lt;/em&gt; as the second argument to &lt;code&gt;pd.read_csv()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;The &lt;em&gt;head&lt;/em&gt; of a DataFrame can be accessed by using &lt;code&gt;head()&lt;/code&gt; on the DataFrame.&lt;/li&gt;\\\\n&lt;li&gt;You don&#39;t have to change any of the code for plotting the histograms.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;^1Y&quot;,null,&quot;xp&quot;,100,&quot;^1Z&quot;,[],&quot;^1[&quot;,[],&quot;^20&quot;,&quot;&quot;,&quot;^25&quot;,&quot;python&quot;,&quot;^29&quot;,0.10077051694782435,&quot;^2:&quot;,42708],[&quot;^ &quot;,&quot;id&quot;,42709,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^1S&quot;,&quot;&lt;p&gt;Congrats! You&#39;ve just loaded a flat file from the web into a DataFrame without first saving it locally using the &lt;code&gt;pandas&lt;/code&gt; function &lt;code&gt;pd.read_csv()&lt;/code&gt;. This function is super cool because it has close relatives that allow you to load all types of files, not only flat ones. In this interactive exercise, you&#39;ll use &lt;code&gt;pd.read_excel()&lt;/code&gt; to import an Excel spreadsheet.&lt;/p&gt;\\\\n&lt;p&gt;The URL of the spreadsheet is&lt;/p&gt;\\\\n&lt;pre&gt;&lt;code&gt;&#39;http://s3.amazonaws.com/assets.datacamp.com/course/importing_data_into_r/latitude.xls&#39;\\\\n&lt;/code&gt;&lt;/pre&gt;\\\\n&lt;p&gt;Your job is to use &lt;code&gt;pd.read_excel()&lt;/code&gt; to read in all of its sheets, print the sheet names and then print the head of the first sheet &lt;em&gt;using its name, not its index&lt;/em&gt;.&lt;/p&gt;\\\\n&lt;p&gt;Note that the output of &lt;code&gt;pd.read_excel()&lt;/code&gt; is a Python dictionary with sheet names as keys and corresponding DataFrames as corresponding values.&lt;/p&gt;&quot;,&quot;^D&quot;,&quot;Importing non-flat files from the web&quot;,&quot;^1T&quot;,&quot;# Import package\\\\nimport pandas as pd\\\\n\\\\n# Assign url of file: url\\\\n\\\\n\\\\n# Read in all sheets of Excel file: xls\\\\n\\\\n\\\\n# Print the sheetnames to the shell\\\\n\\\\n\\\\n# Print the head of the first sheet (using its name, NOT its index)\\\\n\\\\n&quot;,&quot;^1U&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Assign the URL of the file to the variable &lt;code&gt;url&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Read the file in &lt;code&gt;url&lt;/code&gt; into a dictionary &lt;code&gt;xls&lt;/code&gt; using &lt;code&gt;pd.read_excel()&lt;/code&gt; recalling that, in order to import all sheets you need to pass &lt;code&gt;None&lt;/code&gt; to the argument &lt;code&gt;sheet_name&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Print the names of the sheets in the Excel spreadsheet; these will be the keys of the dictionary &lt;code&gt;xls&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Print the head of the first sheet &lt;em&gt;using the sheet name, not the index of the sheet&lt;/em&gt;! The sheet name is &lt;code&gt;&#39;1700&#39;&lt;/code&gt;&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;^1K&quot;,4,&quot;sct&quot;,&quot;Ex().has_import(&#39;pandas&#39;)\\\\nEx().check_correct(\\\\n has_printout(0),\\\\n multi(\\\\n check_correct(\\\\n check_object(&#39;xls&#39;).is_instance(dict),\\\\n check_correct(\\\\n check_function(&#39;pandas.read_excel&#39;).multi(\\\\n check_args(0).has_equal_value(),\\\\n check_args(&#39;sheet_name&#39;).has_equal_value()\\\\n ),\\\\n check_object(&#39;url&#39;).has_equal_value()\\\\n )\\\\n )\\\\n )\\\\n)\\\\nEx().has_printout(1)\\\\nsuccess_msg(\\\\&quot;Awesome!\\\\&quot;)&quot;,&quot;^1V&quot;,&quot;&quot;,&quot;^1W&quot;,&quot;# Import package\\\\nimport pandas as pd\\\\n\\\\n# Assign url of file: url\\\\nurl = &#39;http://s3.amazonaws.com/assets.datacamp.com/course/importing_data_into_r/latitude.xls&#39;\\\\n\\\\n# Read in all sheets of Excel file: xls\\\\nxls = pd.read_excel(url, sheet_name=None)\\\\n\\\\n# Print the sheetnames to the shell\\\\nprint(xls.keys())\\\\n\\\\n# Print the head of the first sheet (using its name, NOT its index)\\\\nprint(xls[&#39;1700&#39;].head())&quot;,&quot;^1X&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Make sure you typed in the URL correctly!&lt;/li&gt;\\\\n&lt;li&gt;Pass the &lt;em&gt;url&lt;/em&gt; (the &lt;code&gt;url&lt;/code&gt; object you defined) as the first argument and &lt;code&gt;sheet_name&lt;/code&gt; with its corresponding value as the second argument to &lt;code&gt;pd.read_excel()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;The &lt;em&gt;keys&lt;/em&gt; of a dictionary can be accessed by using &lt;code&gt;keys()&lt;/code&gt; on the dictionary.&lt;/li&gt;\\\\n&lt;li&gt;You can access a sheet using the format: &lt;em&gt;dictionary&lt;/em&gt;&lt;strong&gt;[&lt;/strong&gt;&lt;em&gt;sheet name or index&lt;/em&gt;&lt;strong&gt;]&lt;/strong&gt;.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;^1Y&quot;,null,&quot;xp&quot;,100,&quot;^1Z&quot;,[],&quot;^1[&quot;,[],&quot;^20&quot;,&quot;&quot;,&quot;^25&quot;,&quot;python&quot;,&quot;^29&quot;,0.7419977198305243,&quot;^2:&quot;,42709],[&quot;^ &quot;,&quot;id&quot;,990669,&quot;^Q&quot;,&quot;VideoExercise&quot;,&quot;^1S&quot;,null,&quot;^D&quot;,&quot;HTTP requests to import files from the web&quot;,&quot;^1T&quot;,&quot;&quot;,&quot;^1U&quot;,null,&quot;^1K&quot;,5,&quot;sct&quot;,&quot;&quot;,&quot;^1V&quot;,&quot;&quot;,&quot;^1W&quot;,&quot;&quot;,&quot;^1X&quot;,null,&quot;^1Y&quot;,null,&quot;xp&quot;,50,&quot;^1Z&quot;,[],&quot;^1[&quot;,[],&quot;^20&quot;,&quot;&quot;,&quot;^21&quot;,null,&quot;^22&quot;,null,&quot;^23&quot;,56.25,&quot;^24&quot;,&quot;course_1606_9d15ae176be1800b996f7869a82b8087&quot;,&quot;key&quot;,&quot;e480d1fdcf&quot;,&quot;^25&quot;,&quot;python&quot;,&quot;^26&quot;,1606,&quot;^27&quot;,4135,&quot;^13&quot;,null,&quot;^28&quot;,&quot;v0&quot;,&quot;^29&quot;,0.9433112374621455,&quot;^2:&quot;,990669],[&quot;^ &quot;,&quot;id&quot;,42711,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^1S&quot;,&quot;&lt;p&gt;Now that you know the basics behind HTTP GET requests, it&#39;s time to perform some of your own. In this interactive exercise, you will ping our very own DataCamp servers to perform a GET request to extract information from the first coding exercise of this course, &lt;code&gt;\\\\&quot;https://campus.datacamp.com/courses/1606/4135?ex=2\\\\&quot;&lt;/code&gt;.&lt;/p&gt;\\\\n&lt;p&gt;In the next exercise, you&#39;ll extract the HTML itself. Right now, however, you are going to package and send the request and then catch the response.&lt;/p&gt;&quot;,&quot;^D&quot;,&quot;Performing HTTP requests in Python using urllib&quot;,&quot;^1T&quot;,&quot;# Import packages\\\\n\\\\n\\\\n# Specify the url\\\\nurl = \\\\&quot;https://campus.datacamp.com/courses/1606/4135?ex=2\\\\&quot;\\\\n\\\\n# This packages the request: request\\\\n\\\\n\\\\n# Sends the request and catches the response: response\\\\n\\\\n\\\\n# Print the datatype of response\\\\nprint(type(response))\\\\n\\\\n# Be polite and close the response!\\\\nresponse.close()\\\\n&quot;,&quot;^1U&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Import the functions &lt;code&gt;urlopen&lt;/code&gt; and &lt;code&gt;Request&lt;/code&gt; from the subpackage &lt;code&gt;urllib.request&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Package the request to the url &lt;code&gt;\\\\&quot;https://campus.datacamp.com/courses/1606/4135?ex=2\\\\&quot;&lt;/code&gt; using the function &lt;code&gt;Request()&lt;/code&gt; and assign it to &lt;code&gt;request&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Send the request and catch the response in the variable &lt;code&gt;response&lt;/code&gt; with the function &lt;code&gt;urlopen()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Run the rest of the code to see the datatype of &lt;code&gt;response&lt;/code&gt; and to close the connection!&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;^1K&quot;,6,&quot;sct&quot;,&quot;\\\\n# Test: import urlopen, Request\\\\nimport_msg = \\\\&quot;Did you correctly import the required packages?\\\\&quot;\\\\nEx().has_import(\\\\n \\\\&quot;urllib.request.urlopen\\\\&quot;,\\\\n not_imported_msg=import_msg\\\\n)\\\\nEx().has_import(\\\\n \\\\&quot;urllib.request.Request\\\\&quot;,\\\\n not_imported_msg=import_msg\\\\n)\\\\n\\\\n# Test: Predefined code\\\\npredef_msg = \\\\&quot;You don&#39;t have to change any of the predefined code.\\\\&quot;\\\\nEx().check_object(\\\\&quot;url\\\\&quot;, missing_msg=predef_msg).has_equal_value(incorrect_msg = predef_msg)\\\\n\\\\n# Test: call to Request() and &#39;request&#39; variable\\\\nEx().check_function(\\\\&quot;urllib.request.Request\\\\&quot;).check_args(0).has_equal_value()\\\\nEx().check_object(\\\\&quot;request\\\\&quot;)\\\\n \\\\n# Test: call to urlopen() and &#39;response&#39; variable\\\\nEx().check_function(\\\\&quot;urllib.request.urlopen\\\\&quot;).check_args(0).has_equal_ast()\\\\nEx().check_object(\\\\&quot;response\\\\&quot;),\\\\n\\\\n# Test: Predefined code\\\\nEx().has_printout(0)\\\\nEx().check_function(\\\\&quot;response.close\\\\&quot;)\\\\n\\\\nsuccess_msg(\\\\&quot;Awesome!\\\\&quot;)\\\\n&quot;,&quot;^1V&quot;,&quot;&quot;,&quot;^1W&quot;,&quot;# Import packages\\\\nfrom urllib.request import urlopen, Request\\\\n\\\\n# Specify the url\\\\nurl = \\\\&quot;https://campus.datacamp.com/courses/1606/4135?ex=2\\\\&quot;\\\\n\\\\n# This packages the request: request\\\\nrequest = Request(url)\\\\n\\\\n# Sends the request and catches the response: response\\\\nresponse = urlopen(request)\\\\n\\\\n# Print the datatype of response\\\\nprint(type(response))\\\\n\\\\n# Be polite and close the response!\\\\nresponse.close()\\\\n&quot;,&quot;^1X&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;To import two functions in one line, import the first function as usual and add a comma &lt;code&gt;,&lt;/code&gt; followed by the second function.&lt;/li&gt;\\\\n&lt;li&gt;Pass the &lt;em&gt;url&lt;/em&gt; (already in the &lt;code&gt;url&lt;/code&gt; object defined) as an argument to &lt;code&gt;Request()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Pass &lt;code&gt;request&lt;/code&gt; as an argument to &lt;code&gt;urlopen()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;You don&#39;t have to modify the code for printing the datatype of &lt;code&gt;response&lt;/code&gt; and closing the connection.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;^1Y&quot;,null,&quot;xp&quot;,100,&quot;^1Z&quot;,[],&quot;^1[&quot;,[],&quot;^20&quot;,&quot;&quot;,&quot;^25&quot;,&quot;python&quot;,&quot;^29&quot;,0.025326719030948963,&quot;^2:&quot;,42711],[&quot;^ &quot;,&quot;id&quot;,42712,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^1S&quot;,&quot;&lt;p&gt;You have just packaged and sent a GET request to &lt;code&gt;\\\\&quot;https://campus.datacamp.com/courses/1606/4135?ex=2\\\\&quot;&lt;/code&gt; and then caught the response. You saw that such a response is a &lt;code&gt;http.client.HTTPResponse&lt;/code&gt; object. The question remains: what can you do with this response?&lt;/p&gt;\\\\n&lt;p&gt;Well, as it came from an HTML page, you could &lt;em&gt;read&lt;/em&gt; it to extract the HTML and, in fact, such a &lt;code&gt;http.client.HTTPResponse&lt;/code&gt; object has an associated &lt;code&gt;read()&lt;/code&gt; method. In this exercise, you&#39;ll build on your previous great work to extract the response and print the HTML.&lt;/p&gt;&quot;,&quot;^D&quot;,&quot;Printing HTTP request results in Python using urllib&quot;,&quot;^1T&quot;,&quot;# Import packages\\\\nfrom urllib.request import urlopen, Request\\\\n\\\\n# Specify the url\\\\nurl = \\\\&quot;https://campus.datacamp.com/courses/1606/4135?ex=2\\\\&quot;\\\\n\\\\n# This packages the request\\\\nrequest = Request(url)\\\\n\\\\n# Sends the request and catches the response: response\\\\n\\\\n\\\\n# Extract the response: html\\\\n\\\\n\\\\n# Print the html\\\\n\\\\n\\\\n# Be polite and close the response!\\\\nresponse.close()&quot;,&quot;^1U&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Send the request and catch the response in the variable &lt;code&gt;response&lt;/code&gt; with the function &lt;code&gt;urlopen()&lt;/code&gt;, as in the previous exercise.&lt;/li&gt;\\\\n&lt;li&gt;Extract the response using the &lt;code&gt;read()&lt;/code&gt; method and store the result in the variable &lt;code&gt;html&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Print the string &lt;code&gt;html&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Hit submit to perform all of the above and to close the response: be tidy!&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;^1K&quot;,7,&quot;sct&quot;,&quot;\\\\n# Test: Predefined code\\\\npredef_msg = \\\\&quot;You don&#39;t have to change any of the predefined code.\\\\&quot;\\\\nEx().has_import(\\\\n \\\\&quot;urllib.request.urlopen\\\\&quot;,\\\\n not_imported_msg=predef_msg\\\\n)\\\\n\\\\nEx().has_import(\\\\n \\\\&quot;urllib.request.Request\\\\&quot;,\\\\n not_imported_msg=predef_msg\\\\n)\\\\n\\\\nEx().check_object(\\\\&quot;url\\\\&quot;).has_equal_value()\\\\n\\\\n# Test: call to Request() and &#39;request&#39; variable\\\\nEx().check_function(\\\\&quot;urllib.request.Request\\\\&quot;).check_args(0).has_equal_value()\\\\nEx().check_object(\\\\&quot;request\\\\&quot;)\\\\n\\\\n# Test: call to urlopen() and &#39;response&#39; variable\\\\nEx().check_function(\\\\&quot;urllib.request.urlopen\\\\&quot;).check_args(0).has_equal_ast()\\\\nEx().check_object(\\\\&quot;response\\\\&quot;)\\\\n\\\\n# Test: call to urlopen() and &#39;response&#39; variable\\\\nEx().check_function(\\\\&quot;response.read\\\\&quot;)\\\\nEx().check_object(\\\\&quot;html\\\\&quot;)\\\\n\\\\n# Test: call to print()\\\\nEx().check_function(&#39;print&#39;).check_args(0).has_equal_ast()\\\\n\\\\n# Test: Predefined code\\\\nEx().check_function(\\\\&quot;response.close\\\\&quot;)\\\\n\\\\nsuccess_msg(\\\\&quot;Awesome!\\\\&quot;)\\\\n&quot;,&quot;^1V&quot;,&quot;&quot;,&quot;^1W&quot;,&quot;# Import packages\\\\nfrom urllib.request import urlopen, Request\\\\n\\\\n# Specify the url\\\\nurl = \\\\&quot;https://campus.datacamp.com/courses/1606/4135?ex=2\\\\&quot;\\\\n\\\\n# This packages the request\\\\nrequest = Request(url)\\\\n\\\\n# Sends the request and catches the response: response\\\\nresponse = urlopen(request)\\\\n\\\\n# Extract the response: html\\\\nhtml = response.read()\\\\n\\\\n# Print the html\\\\nprint(html)\\\\n\\\\n# Be polite and close the response!\\\\nresponse.close()&quot;,&quot;^1X&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Pass &lt;code&gt;request&lt;/code&gt; as an argument to &lt;code&gt;urlopen()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Apply the method &lt;code&gt;read()&lt;/code&gt; to the response object &lt;code&gt;response&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Simply pass &lt;code&gt;html&lt;/code&gt; to the &lt;code&gt;print()&lt;/code&gt; function.&lt;/li&gt;\\\\n&lt;li&gt;You don&#39;t have to modify the code for closing the response.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;^1Y&quot;,null,&quot;xp&quot;,100,&quot;^1Z&quot;,[],&quot;^1[&quot;,[],&quot;^20&quot;,&quot;&quot;,&quot;^25&quot;,&quot;python&quot;,&quot;^29&quot;,0.4368582772187055,&quot;^2:&quot;,42712],[&quot;^ &quot;,&quot;id&quot;,42713,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^1S&quot;,&quot;&lt;p&gt;Now that you&#39;ve got your head and hands around making HTTP requests using the urllib package, you&#39;re going to figure out how to do the same using the higher-level requests library. You&#39;ll once again be pinging DataCamp servers for their &lt;code&gt;\\\\&quot;http://www.datacamp.com/teach/documentation\\\\&quot;&lt;/code&gt; page.&lt;/p&gt;\\\\n&lt;p&gt;Note that unlike in the previous exercises using urllib, you don&#39;t have to close the connection when using requests!&lt;/p&gt;&quot;,&quot;^D&quot;,&quot;Performing HTTP requests in Python using requests&quot;,&quot;^1T&quot;,&quot;# Import package\\\\n\\\\n\\\\n# Specify the url: url\\\\n\\\\n\\\\n# Packages the request, send the request and catch the response: r\\\\n\\\\n\\\\n# Extract the response: text\\\\n\\\\n\\\\n# Print the html\\\\nprint(text)&quot;,&quot;^1U&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Import the package &lt;code&gt;requests&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Assign the URL of interest to the variable &lt;code&gt;url&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Package the request to the URL, send the request and catch the response with a single function &lt;code&gt;requests.get()&lt;/code&gt;, assigning the response to the variable &lt;code&gt;r&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Use the &lt;code&gt;text&lt;/code&gt; attribute of the object &lt;code&gt;r&lt;/code&gt; to return the HTML of the webpage as a string; store the result in a variable &lt;code&gt;text&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Hit submit to print the HTML of the webpage.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;^1K&quot;,8,&quot;sct&quot;,&quot;\\\\n# Test: import requests\\\\nEx().has_import(\\\\&quot;requests\\\\&quot;)\\\\n\\\\n# Test: &#39;url&#39; variable\\\\nEx().check_object(\\\\&quot;url\\\\&quot;).has_equal_value()\\\\n\\\\n# Test: call to requests.get() and &#39;r&#39; variable\\\\nEx().check_function(\\\\&quot;requests.get\\\\&quot;).check_args(0).has_equal_value()\\\\nEx().check_object(\\\\&quot;r\\\\&quot;)\\\\n\\\\n# Test: &#39;text&#39; variable\\\\nEx().has_code(\\\\&quot;r.text\\\\&quot;, pattern = False, not_typed_msg=\\\\&quot;Have you used `r.text` to create `text`?\\\\&quot;)\\\\nEx().check_object(\\\\&quot;text\\\\&quot;)\\\\n\\\\n# Test: Predefined code\\\\nEx().check_function(&#39;print&#39;).check_args(0).has_equal_ast()\\\\n\\\\nsuccess_msg(\\\\&quot;Awesome!\\\\&quot;)\\\\n&quot;,&quot;^1V&quot;,&quot;&quot;,&quot;^1W&quot;,&quot;# Import package\\\\nimport requests\\\\n\\\\n# Specify the url: url\\\\nurl = \\\\&quot;http://www.datacamp.com/teach/documentation\\\\&quot;\\\\n\\\\n# Packages the request, send the request and catch the response: r\\\\nr = requests.get(url)\\\\n\\\\n# Extract the response: text\\\\ntext = r.text\\\\n\\\\n# Print the html\\\\nprint(text)&quot;,&quot;^1X&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;To import a package &lt;code&gt;x&lt;/code&gt;, execute &lt;code&gt;import x&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Did you type in the URL correctly?&lt;/li&gt;\\\\n&lt;li&gt;Pass the &lt;em&gt;url&lt;/em&gt; (the &lt;code&gt;url&lt;/code&gt; object you defined) as an argument to &lt;code&gt;requests.get()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;You can access the &lt;code&gt;text&lt;/code&gt; attribute of the object &lt;code&gt;r&lt;/code&gt; by executing &lt;code&gt;r.text&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;You don&#39;t have to modify the code for printing the HTML of the webpage.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;^1Y&quot;,null,&quot;xp&quot;,100,&quot;^1Z&quot;,[],&quot;^1[&quot;,[],&quot;^20&quot;,&quot;&quot;,&quot;^25&quot;,&quot;python&quot;,&quot;^29&quot;,0.3464698092388834,&quot;^2:&quot;,42713],[&quot;^ &quot;,&quot;id&quot;,990670,&quot;^Q&quot;,&quot;VideoExercise&quot;,&quot;^1S&quot;,null,&quot;^D&quot;,&quot;Scraping the web in Python&quot;,&quot;^1T&quot;,&quot;&quot;,&quot;^1U&quot;,null,&quot;^1K&quot;,9,&quot;sct&quot;,&quot;&quot;,&quot;^1V&quot;,&quot;&quot;,&quot;^1W&quot;,&quot;&quot;,&quot;^1X&quot;,null,&quot;^1Y&quot;,null,&quot;xp&quot;,50,&quot;^1Z&quot;,[],&quot;^1[&quot;,[],&quot;^20&quot;,&quot;&quot;,&quot;^21&quot;,null,&quot;^22&quot;,null,&quot;^23&quot;,56.25,&quot;^24&quot;,&quot;course_1606_9d1f8a331d1200c7e1bdbfcaf3a7a491&quot;,&quot;key&quot;,&quot;da43858012&quot;,&quot;^25&quot;,&quot;python&quot;,&quot;^26&quot;,1606,&quot;^27&quot;,4135,&quot;^13&quot;,null,&quot;^28&quot;,&quot;v0&quot;,&quot;^29&quot;,0.8666582036246655,&quot;^2:&quot;,990670],[&quot;^ &quot;,&quot;id&quot;,42715,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^1S&quot;,&quot;&lt;p&gt;In this interactive exercise, you&#39;ll learn how to use the BeautifulSoup package to &lt;em&gt;parse&lt;/em&gt;, &lt;em&gt;prettify&lt;/em&gt; and &lt;em&gt;extract&lt;/em&gt; information from HTML. You&#39;ll scrape the data from the webpage of Guido van Rossum, Python&#39;s very own &lt;a href=\\\\&quot;https://en.wikipedia.org/wiki/Benevolent_dictator_for_life\\\\&quot;&gt;Benevolent Dictator for Life&lt;/a&gt;. In the following exercises, you&#39;ll prettify the HTML and then extract the text and the hyperlinks.&lt;/p&gt;\\\\n&lt;p&gt;The URL of interest is &lt;code&gt;url = &#39;https://www.python.org/~guido/&#39;&lt;/code&gt;.&lt;/p&gt;&quot;,&quot;^D&quot;,&quot;Parsing HTML with BeautifulSoup&quot;,&quot;^1T&quot;,&quot;# Import packages\\\\nimport requests\\\\nfrom ____ import ____\\\\n\\\\n# Specify url: url\\\\n\\\\n\\\\n# Package the request, send the request and catch the response: r\\\\n\\\\n\\\\n# Extracts the response as html: html_doc\\\\n\\\\n\\\\n# Create a BeautifulSoup object from the HTML: soup\\\\n\\\\n\\\\n# Prettify the BeautifulSoup object: pretty_soup\\\\n\\\\n\\\\n# Print the response\\\\nprint(pretty_soup)&quot;,&quot;^1U&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Import the function &lt;code&gt;BeautifulSoup&lt;/code&gt; from the package &lt;code&gt;bs4&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Assign the URL of interest to the variable &lt;code&gt;url&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Package the request to the URL, send the request and catch the response with a single function &lt;code&gt;requests.get()&lt;/code&gt;, assigning the response to the variable &lt;code&gt;r&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Use the &lt;code&gt;text&lt;/code&gt; attribute of the object &lt;code&gt;r&lt;/code&gt; to return the HTML of the webpage as a string; store the result in a variable &lt;code&gt;html_doc&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Create a BeautifulSoup object &lt;code&gt;soup&lt;/code&gt; from the resulting HTML using the function &lt;code&gt;BeautifulSoup()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Use the method &lt;code&gt;prettify()&lt;/code&gt; on &lt;code&gt;soup&lt;/code&gt; and assign the result to &lt;code&gt;pretty_soup&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Hit submit to print to prettified HTML to your shell!&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;^1K&quot;,10,&quot;sct&quot;,&quot;# Test: Predefined code\\\\npredef_msg = \\\\&quot;You don&#39;t have to change any of the predefined code.\\\\&quot;\\\\nEx().has_import(\\\\n \\\\&quot;requests\\\\&quot;,\\\\n not_imported_msg=predef_msg\\\\n)\\\\n\\\\n# Test: import BeautifulSoup\\\\nimport_msg = \\\\&quot;Did you correctly import the required packages?\\\\&quot;\\\\nEx().has_import(\\\\n \\\\&quot;bs4.BeautifulSoup\\\\&quot;,\\\\n not_imported_msg=import_msg\\\\n)\\\\n\\\\n# Test: &#39;url&#39; variable\\\\nEx().check_object(\\\\&quot;url\\\\&quot;).has_equal_value()\\\\n\\\\n# Test: call to requests.get() and &#39;r&#39; variable\\\\nEx().check_function(\\\\&quot;requests.get\\\\&quot;).check_args(0).has_equal_value()\\\\nEx().check_object(\\\\&quot;r\\\\&quot;)\\\\n\\\\n\\\\n# Test: &#39;html_doc&#39; variable\\\\nEx().check_correct(\\\\n check_object(\\\\&quot;html_doc\\\\&quot;).has_equal_value(),\\\\n has_code(\\\\&quot;r.text\\\\&quot;, pattern = False, not_typed_msg=\\\\&quot;Have you used `r.text` to create `html_doc`?\\\\&quot;)\\\\n)\\\\n\\\\n# Test: call to BeautifulSoup() and &#39;soup&#39; variable\\\\nEx().check_correct(\\\\n check_object(\\\\&quot;soup\\\\&quot;).has_equal_value(),\\\\n check_function(\\\\&quot;bs4.BeautifulSoup\\\\&quot;).check_args(0).has_equal_value()\\\\n )\\\\n\\\\n# Test: call to prettify() and &#39;pretty_soup&#39; variable\\\\nEx().check_correct(\\\\n check_object(\\\\&quot;pretty_soup\\\\&quot;).has_equal_value(),\\\\n check_function(\\\\&quot;soup.prettify\\\\&quot;)\\\\n )\\\\n\\\\n# Test: Predefined code\\\\nEx().has_printout(0)\\\\n\\\\nsuccess_msg(\\\\&quot;Awesome!\\\\&quot;)\\\\n&quot;,&quot;^1V&quot;,&quot;&quot;,&quot;^1W&quot;,&quot;# Import packages\\\\nimport requests\\\\nfrom bs4 import BeautifulSoup\\\\n\\\\n# Specify url: url\\\\nurl = &#39;https://www.python.org/~guido/&#39;\\\\n\\\\n# Package the request, send the request and catch the response: r\\\\nr = requests.get(url)\\\\n\\\\n# Extracts the response as html: html_doc\\\\nhtml_doc = r.text\\\\n\\\\n# Create a BeautifulSoup object from the HTML: soup\\\\nsoup = BeautifulSoup(html_doc)\\\\n\\\\n# Prettify the BeautifulSoup object: pretty_soup\\\\npretty_soup = soup.prettify()\\\\n\\\\n# Print the response\\\\nprint(pretty_soup)&quot;,&quot;^1X&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;To import a function &lt;code&gt;y&lt;/code&gt; from a package &lt;code&gt;x&lt;/code&gt;, execute &lt;code&gt;from x import y&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Check the URL to make sure that you typed it in correctly.&lt;/li&gt;\\\\n&lt;li&gt;Pass the &lt;em&gt;url&lt;/em&gt; (the &lt;code&gt;url&lt;/code&gt; object you defined) as an argument to &lt;code&gt;requests.get()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;You can access the &lt;code&gt;text&lt;/code&gt; attribute of the object &lt;code&gt;r&lt;/code&gt; by executing &lt;code&gt;r.text&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Pass the extracted &lt;em&gt;HTML&lt;/em&gt; as an argument to &lt;code&gt;BeautifulSoup()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;To use the &lt;code&gt;prettify()&lt;/code&gt; method on the BeautifulSoup object &lt;code&gt;soup&lt;/code&gt;, execute &lt;code&gt;soup.prettify()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;You don&#39;t have to modify the code to print the prettified HTML.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;^1Y&quot;,null,&quot;xp&quot;,100,&quot;^1Z&quot;,[],&quot;^1[&quot;,[],&quot;^20&quot;,&quot;&quot;,&quot;^25&quot;,&quot;python&quot;,&quot;^29&quot;,0.2142961690812859,&quot;^2:&quot;,42715],[&quot;^ &quot;,&quot;id&quot;,42716,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^1S&quot;,&quot;&lt;p&gt;As promised, in the following exercises, you&#39;ll learn the basics of extracting information from HTML soup. In this exercise, you&#39;ll figure out how to extract the text from the BDFL&#39;s webpage, along with printing the webpage&#39;s title.&lt;/p&gt;&quot;,&quot;^D&quot;,&quot;Turning a webpage into data using BeautifulSoup: getting the text&quot;,&quot;^1T&quot;,&quot;# Import packages\\\\nimport requests\\\\nfrom bs4 import BeautifulSoup\\\\n\\\\n# Specify url: url\\\\nurl = &#39;https://www.python.org/~guido/&#39;\\\\n\\\\n# Package the request, send the request and catch the response: r\\\\nr = requests.get(url)\\\\n\\\\n# Extract the response as html: html_doc\\\\nhtml_doc = r.text\\\\n\\\\n# Create a BeautifulSoup object from the HTML: soup\\\\n\\\\n\\\\n# Get the title of Guido&#39;s webpage: guido_title\\\\n\\\\n\\\\n# Print the title of Guido&#39;s webpage to the shell\\\\n\\\\n\\\\n# Get Guido&#39;s text: guido_text\\\\n\\\\n\\\\n# Print Guido&#39;s text to the shell\\\\nprint(guido_text)&quot;,&quot;^1U&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;In the sample code, the HTML response object &lt;code&gt;html_doc&lt;/code&gt; has already been created: your first task is to Soupify it using the function &lt;code&gt;BeautifulSoup()&lt;/code&gt; and to assign the resulting soup to the variable &lt;code&gt;soup&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Extract the title from the HTML soup &lt;code&gt;soup&lt;/code&gt; using the attribute &lt;code&gt;title&lt;/code&gt; and assign the result to &lt;code&gt;guido_title&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Print the title of Guido&#39;s webpage to the shell using the &lt;code&gt;print()&lt;/code&gt; function.&lt;/li&gt;\\\\n&lt;li&gt;Extract the text from the HTML soup &lt;code&gt;soup&lt;/code&gt; using the method &lt;code&gt;get_text()&lt;/code&gt; and assign to &lt;code&gt;guido_text&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Hit submit to print the text from Guido&#39;s webpage to the shell.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;^1K&quot;,11,&quot;sct&quot;,&quot;# Test: Predefined code\\\\npredef_msg = \\\\&quot;You don&#39;t have to change any of the predefined code.\\\\&quot;\\\\nEx().has_import(\\\\n \\\\&quot;requests\\\\&quot;,\\\\n not_imported_msg=predef_msg\\\\n)\\\\n\\\\n# Test: import BeautifulSoup\\\\nEx().has_import(\\\\n \\\\&quot;bs4.BeautifulSoup\\\\&quot;,\\\\n not_imported_msg=predef_msg\\\\n)\\\\n\\\\n# Test: &#39;url&#39; variable\\\\nEx().check_object(\\\\&quot;url\\\\&quot;).has_equal_value()\\\\n\\\\n# Test: call to requests.get() and &#39;r&#39; variable\\\\nEx().check_function(\\\\&quot;requests.get\\\\&quot;).check_args(0).has_equal_value()\\\\nEx().check_object(\\\\&quot;r\\\\&quot;)\\\\n\\\\n\\\\n# Test: &#39;html_doc&#39; variable\\\\nEx().check_correct(\\\\n check_object(\\\\&quot;html_doc\\\\&quot;).has_equal_value(),\\\\n has_code(\\\\&quot;r.text\\\\&quot;, pattern = False, not_typed_msg=\\\\&quot;Have you used `r.text` to create `html_doc`?\\\\&quot;)\\\\n)\\\\n\\\\n# Test: call to BeautifulSoup() and &#39;soup&#39; variable\\\\nEx().check_correct(\\\\n check_object(\\\\&quot;soup\\\\&quot;).has_equal_value(),\\\\n check_function(\\\\&quot;bs4.BeautifulSoup\\\\&quot;).check_args(0).has_equal_value()\\\\n )\\\\n\\\\n# Test: &#39;guido_title&#39; variable\\\\nEx().check_correct(\\\\n check_object(\\\\&quot;guido_title\\\\&quot;).has_equal_value(),\\\\n has_code(\\\\&quot;soup.title\\\\&quot;, pattern = False, not_typed_msg=\\\\&quot;Have you used `soup.title` to create `guido_title`?\\\\&quot;)\\\\n)\\\\n\\\\n# Test: call to print()\\\\nEx().has_printout(0)\\\\n\\\\n# Test: call to soup.get_text() and &#39;guido_text&#39; variable\\\\nEx().check_correct(\\\\n check_object(\\\\&quot;guido_text\\\\&quot;).has_equal_value(),\\\\n check_function(\\\\&quot;soup.get_text\\\\&quot;)\\\\n )\\\\n\\\\n# Test: Predefined code\\\\nEx().has_printout(1)\\\\n\\\\nsuccess_msg(\\\\&quot;Awesome!\\\\&quot;)\\\\n&quot;,&quot;^1V&quot;,&quot;&quot;,&quot;^1W&quot;,&quot;# Import packages\\\\nimport requests\\\\nfrom bs4 import BeautifulSoup\\\\n\\\\n# Specify url: url\\\\nurl = &#39;https://www.python.org/~guido/&#39;\\\\n\\\\n# Package the request, send the request and catch the response: r\\\\nr = requests.get(url)\\\\n\\\\n# Extract the response as html: html_doc\\\\nhtml_doc = r.text\\\\n\\\\n# Create a BeautifulSoup object from the HTML: soup\\\\nsoup = BeautifulSoup(html_doc)\\\\n\\\\n# Get the title of Guido&#39;s webpage: guido_title\\\\nguido_title = soup.title\\\\n\\\\n# Print the title of Guido&#39;s webpage to the shell\\\\nprint(guido_title)\\\\n\\\\n# Get Guido&#39;s text: guido_text\\\\nguido_text = soup.get_text()\\\\n\\\\n# Print Guido&#39;s text to the shell\\\\nprint(guido_text)&quot;,&quot;^1X&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Pass the &lt;em&gt;HTML response object&lt;/em&gt; as an argument to &lt;code&gt;BeautifulSoup()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;You can access the &lt;code&gt;title&lt;/code&gt; attribute of the object &lt;code&gt;soup&lt;/code&gt; by executing &lt;code&gt;soup.title&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;The object that contains the title of Guido&#39;s webpage is &lt;code&gt;guido_title&lt;/code&gt;; pass this as an argument to &lt;code&gt;print()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Use the method &lt;code&gt;get_text()&lt;/code&gt; on the HTML soup &lt;code&gt;soup&lt;/code&gt; by executing &lt;code&gt;soup.get_text()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;You don&#39;t have to modify the code to print the text from Guido&#39;s webpage.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;^1Y&quot;,null,&quot;xp&quot;,100,&quot;^1Z&quot;,[],&quot;^1[&quot;,[],&quot;^20&quot;,&quot;&quot;,&quot;^25&quot;,&quot;python&quot;,&quot;^29&quot;,0.4857854755758062,&quot;^2:&quot;,42716],[&quot;^ &quot;,&quot;id&quot;,42717,&quot;^Q&quot;,&quot;NormalExercise&quot;,&quot;^1S&quot;,&quot;&lt;p&gt;In this exercise, you&#39;ll figure out how to extract the URLs of the hyperlinks from the BDFL&#39;s webpage. In the process, you&#39;ll become close friends with the soup method &lt;code&gt;find_all()&lt;/code&gt;.&lt;/p&gt;&quot;,&quot;^D&quot;,&quot;Turning a webpage into data using BeautifulSoup: getting the hyperlinks&quot;,&quot;^1T&quot;,&quot;# Import packages\\\\nimport requests\\\\nfrom bs4 import BeautifulSoup\\\\n\\\\n# Specify url\\\\nurl = &#39;https://www.python.org/~guido/&#39;\\\\n\\\\n# Package the request, send the request and catch the response: r\\\\nr = requests.get(url)\\\\n\\\\n# Extracts the response as html: html_doc\\\\nhtml_doc = r.text\\\\n\\\\n# create a BeautifulSoup object from the HTML: soup\\\\nsoup = BeautifulSoup(html_doc)\\\\n\\\\n# Print the title of Guido&#39;s webpage\\\\nprint(soup.title)\\\\n\\\\n# Find all &#39;a&#39; tags (which define hyperlinks): a_tags\\\\n\\\\n\\\\n# Print the URLs to the shell\\\\nfor ____ in ____:\\\\n ____&quot;,&quot;^1U&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Use the method &lt;code&gt;find_all()&lt;/code&gt; to find all hyperlinks in &lt;code&gt;soup&lt;/code&gt;, remembering that hyperlinks are defined by the HTML tag &lt;code&gt;&amp;lt;a&amp;gt;&lt;/code&gt; but passed to &lt;code&gt;find_all()&lt;/code&gt; without angle brackets; store the result in the variable &lt;code&gt;a_tags&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;The variable &lt;code&gt;a_tags&lt;/code&gt; is a results set: your job now is to enumerate over it, using a &lt;code&gt;for&lt;/code&gt; loop and to print the actual URLs of the hyperlinks; to do this, for every element &lt;code&gt;link&lt;/code&gt; in &lt;code&gt;a_tags&lt;/code&gt;, you want to &lt;code&gt;print()&lt;/code&gt; &lt;code&gt;link.get(&#39;href&#39;)&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;^1K&quot;,12,&quot;sct&quot;,&quot;predef_msg = \\\\&quot;You don&#39;t have to change any of the predefined code.\\\\&quot;\\\\nEx().has_import(\\\\&quot;requests\\\\&quot;)\\\\nEx().has_import(\\\\&quot;bs4.BeautifulSoup\\\\&quot;)\\\\nEx().check_object(\\\\&quot;url\\\\&quot;).has_equal_value(incorrect_msg = predef_msg)\\\\nEx().check_function(\\\\&quot;requests.get\\\\&quot;).check_args(0).has_equal_ast()\\\\nEx().check_object(\\\\&quot;html_doc\\\\&quot;).has_equal_value(incorrect_msg = predef_msg)\\\\nEx().check_object(\\\\&quot;soup\\\\&quot;).has_equal_value(incorrect_msg = predef_msg)\\\\nEx().has_printout(0)\\\\n\\\\nEx().check_correct(\\\\n check_object(\\\\&quot;a_tags\\\\&quot;),\\\\n check_function(\\\\&quot;soup.find_all\\\\&quot;).check_args(0).has_equal_value()\\\\n)\\\\nEx().check_for_loop().multi(\\\\n check_iter().has_equal_value(incorrect_msg = \\\\&quot;You have to iterate over `a_tags`\\\\&quot;),\\\\n check_body().set_context(&#39;&lt;a href=\\\\&quot;pics.html\\\\&quot;&gt;&lt;img border=\\\\&quot;0\\\\&quot; src=\\\\&quot;images/IMG_2192.jpg\\\\&quot;/&gt;&lt;/a&gt;&#39;).check_function(\\\\&quot;print\\\\&quot;).check_args(0).check_function(\\\\&quot;link.get\\\\&quot;).check_args(0).has_equal_value()\\\\n )\\\\n\\\\nsuccess_msg(\\\\&quot;Awesome!\\\\&quot;)&quot;,&quot;^1V&quot;,&quot;&quot;,&quot;^1W&quot;,&quot;# Import packages\\\\nimport requests\\\\nfrom bs4 import BeautifulSoup\\\\n\\\\n# Specify url\\\\nurl = &#39;https://www.python.org/~guido/&#39;\\\\n\\\\n# Package the request, send the request and catch the response: r\\\\nr = requests.get(url)\\\\n\\\\n# Extracts the response as html: html_doc\\\\nhtml_doc = r.text\\\\n\\\\n# create a BeautifulSoup object from the HTML: soup\\\\nsoup = BeautifulSoup(html_doc)\\\\n\\\\n# Print the title of Guido&#39;s webpage\\\\nprint(soup.title)\\\\n\\\\n# Find all &#39;a&#39; tags (which define hyperlinks): a_tags\\\\na_tags = soup.find_all(&#39;a&#39;)\\\\n\\\\n# Print the URLs to the shell\\\\nfor link in a_tags:\\\\n print(link.get(&#39;href&#39;))&quot;,&quot;^1X&quot;,&quot;&lt;ul&gt;\\\\n&lt;li&gt;Pass the &lt;em&gt;HTML tag&lt;/em&gt; to find (without the angle brackets &lt;code&gt;&amp;lt;&amp;gt;&lt;/code&gt;) as a string argument to &lt;code&gt;find_all()&lt;/code&gt;.&lt;/li&gt;\\\\n&lt;li&gt;Recall that the &lt;code&gt;for&lt;/code&gt; loop recipe is: &lt;code&gt;for&lt;/code&gt; &lt;em&gt;loop variable&lt;/em&gt; &lt;code&gt;in&lt;/code&gt; &lt;em&gt;results set&lt;/em&gt;&lt;code&gt;:&lt;/code&gt;. Don&#39;t forget to pass &lt;code&gt;link.get(&#39;href&#39;)&lt;/code&gt; as an argument to &lt;code&gt;print()&lt;/code&gt; inside the &lt;code&gt;for&lt;/code&gt; loop body.&lt;/li&gt;\\\\n&lt;/ul&gt;&quot;,&quot;^1Y&quot;,null,&quot;xp&quot;,100,&quot;^1Z&quot;,[],&quot;^1[&quot;,[],&quot;^20&quot;,&quot;&quot;,&quot;^25&quot;,&quot;python&quot;,&quot;^29&quot;,0.8156043842203349,&quot;^2:&quot;,42717]]]]],&quot;activeImage&quot;,[&quot;^0&quot;,[&quot;^ &quot;,&quot;n&quot;,&quot;PreFetchedRequestRecord&quot;,&quot;v&quot;,[&quot;^ &quot;,&quot;^B&quot;,&quot;SUCCESS&quot;,&quot;^C&quot;,&quot;course-1606-master:506759a234ec905a9377923e00ae7511-20201106185628118&quot;]]],&quot;sharedImage&quot;,[&quot;^0&quot;,[&quot;^ &quot;,&quot;n&quot;,&quot;PreFetchedRequestRecord&quot;,&quot;v&quot;,[&quot;^ &quot;,&quot;^B&quot;,&quot;NOT_FETCHED&quot;,&quot;^C&quot;,null]]]]]],&quot;settings&quot;,[&quot;^2&quot;,[&quot;uiTheme&quot;,&quot;DARK&quot;,&quot;feedbackRatingStatus&quot;,&quot;NONE&quot;]],&quot;streakInfo&quot;,[&quot;^ &quot;,&quot;^Q&quot;,&quot;StreakUnknown&quot;],&quot;systemStatus&quot;,[&quot;^2&quot;,[&quot;indicator&quot;,&quot;none&quot;,&quot;description&quot;,&quot;No status has been fetched from the Status Page.&quot;]],&quot;user&quot;,[&quot;^2&quot;,[&quot;status&quot;,&quot;not_initiate&quot;,&quot;settings&quot;,[&quot;^2&quot;,[]]]]]]]";</script><div id="root"><div class="theme progress-indicator--visible"><style data-emotion="css 1hudkvy">.css-1hudkvy{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;height:50px;padding-left:10px;padding-right:10px;position:relative;z-index:15;background-color:#f7f3eb;}</style><header data-cy="header-container" class="css-1hudkvy"><style data-emotion="css 1rr4qq7">.css-1rr4qq7{-webkit-flex:1;-ms-flex:1;flex:1;}</style><div class="css-1rr4qq7"><style data-emotion="css 15v52cw">.css-15v52cw{padding:6px;border:0;border-width:0;}</style><style data-emotion="css 19aisx0">.css-19aisx0{padding:6px;border:0;border-width:0;}</style><style data-emotion="css hrkvlq">.css-hrkvlq{-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;border:none;border-radius:4px;border-style:solid;border-width:2px;cursor:pointer;display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;position:relative;-webkit-text-decoration:none;text-decoration:none;text-transform:capitalize;-webkit-transition:0.15s;transition:0.15s;vertical-align:baseline;white-space:nowrap;background-color:transparent;border-color:#05192d;color:#05192d;padding:14px;padding:6px;border:0;border-width:0;}.css-hrkvlq:active{-webkit-transform:perspective(1px) scale(0.975);-moz-transform:perspective(1px) scale(0.975);-ms-transform:perspective(1px) scale(0.975);transform:perspective(1px) scale(0.975);}.css-hrkvlq:disabled,.css-hrkvlq:hover:disabled,.css-hrkvlq:active:disabled{-webkit-transform:none;-moz-transform:none;-ms-transform:none;transform:none;}.css-hrkvlq:focus{outline:0;}.css-hrkvlq:hover{background-color:rgba(5, 25, 45, 0.15);border-color:#05192d;color:#05192d;}</style><a class="css-hrkvlq" href="https://www.datacamp.com" data-cy="header-logo"><svg height="28" viewbox="0 0 173 36" width="134.55555555555554" aria-hidden="true" color="currentColor" size="18" title=""><g fill="none" fill-rule="evenodd"><path d="M42.56 27.1a5.694 5.694 0 110-11.39 5.694 5.694 0 010 11.39m5.704-20.623v8.853a8.334 8.334 0 100 12.148v1.836h2.632V6.477h-2.632zm73.28 20.622a5.694 5.694 0 110-11.389 5.694 5.694 0 010 11.39m8.333-5.695v-8.247h-2.63v2.172a8.334 8.334 0 100 12.148v1.836h2.631v-7.91h-.001zm20.987-7.634a1.296 1.296 0 011.109-.622h.507c1.075 0 1.947.872 1.947 1.947v14.218h-2.686V17.269c-1.239 2-5.674 9.25-7.003 11.424a1.296 1.296 0 01-1.108.62h-.548a1.298 1.298 0 01-1.298-1.297V17.238a1909.582 1909.582 0 00-7.31 11.954l-.074.122h-2.574v-16.16h2.684v.033l-.062 11.147 6.438-10.56a1.3 1.3 0 011.11-.622h.51c1.073 0 1.944.869 1.947 1.942 0 2.972.014 8.383.014 9.17l6.397-10.493zm-37.92 12.541a8.331 8.331 0 11.21-9.502l-2.524 1.312a5.533 5.533 0 10-.379 6.88l2.693 1.31zm51.542.8a5.693 5.693 0 01-5.68-5.352v-.682a5.694 5.694 0 115.684 6.036m0-14.028a8.298 8.298 0 00-5.684 2.24v-2.168h-2.632V35.91h2.632v-8.4a8.333 8.333 0 105.684-14.425M75.277 15.68v9.938c0 .589.478 1.067 1.067 1.067h3.064v2.629h-3.062a3.7 3.7 0 01-3.696-3.696l-.01-9.938h-2.838v-2.56h2.838V8.702h2.635v4.428h4.672v2.55h-4.67zm12.757 11.418a5.694 5.694 0 110-11.39 5.694 5.694 0 010 11.39m5.702-13.941v2.173a8.334 8.334 0 100 12.148v1.836h2.632v-16.16l-2.632.003zM60.285 27.099a5.694 5.694 0 110-11.389 5.694 5.694 0 010 11.39m5.702-13.942v2.172a8.334 8.334 0 100 12.148v1.836h2.63v-16.16l-2.63.004z" fill="#05192d"/><path d="M11.7 8.514v8.332L2.857 21.89V3.44l8.841 5.074zm2.86 17.507v-7.51l11.84-6.757-2.88-1.65-8.96 5.112V7.68a1.44 1.44 0 00-.718-1.242L3.056.256A2.066 2.066 0 000 2.07v21.184a2.067 2.067 0 002.971 1.866l.082-.042 8.64-4.932v6.72c.002.513.276.987.721 1.243L23.502 34.4l2.88-1.651L14.56 26.02z" fill="#05192d"/></g></svg></a></div><div><div class="dc-nav-course__container"><style data-emotion="css 1nxd4b6">.css-1nxd4b6{border:0;height:36px;-webkit-box-pack:initial;-ms-flex-pack:initial;-webkit-justify-content:initial;justify-content:initial;}</style><nav class="dc-nav-course css-1nxd4b6"><style data-emotion="css ftus1d">.css-ftus1d{z-index:1;border-width:2px;border-radius:4px 0px 0px 4px;}</style><style data-emotion="css 1xsr0ms">.css-1xsr0ms{-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;border:none;border-radius:4px;border-style:solid;border-width:2px;cursor:pointer;display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;position:relative;-webkit-text-decoration:none;text-decoration:none;text-transform:capitalize;-webkit-transition:0.15s;transition:0.15s;vertical-align:baseline;white-space:nowrap;background-color:transparent;border-color:#05192d;color:#05192d;padding:8px;z-index:1;border-width:2px;border-radius:4px 0px 0px 4px;}.css-1xsr0ms:active{-webkit-transform:perspective(1px) scale(0.975);-moz-transform:perspective(1px) scale(0.975);-ms-transform:perspective(1px) scale(0.975);transform:perspective(1px) scale(0.975);}.css-1xsr0ms:disabled,.css-1xsr0ms:hover:disabled,.css-1xsr0ms:active:disabled{-webkit-transform:none;-moz-transform:none;-ms-transform:none;transform:none;}.css-1xsr0ms:focus{outline:0;}.css-1xsr0ms:hover{background-color:rgba(5, 25, 45, 0.15);border-color:#05192d;color:#05192d;}</style><a aria-label="Go to previous exercise" class="css-1xsr0ms" href="/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=1" data-cy="header-previous"><svg viewbox="0 0 18 18" aria-hidden="true" height="18" role="img" width="18"><path fill="currentColor" d="M4.42 8L16 7.998a1 1 0 010 2L4.41 10l3.285 3.296a.998.998 0 11-1.417 1.41l-4.93-4.948A.998.998 0 011.36 8.23l4.933-4.938a1 1 0 011.414 0c.39.391.39 1.025 0 1.416L4.42 7.999z" fill-rule="evenodd"/></svg></a><style data-emotion="css 96nxkt">.css-96nxkt{border-radius:0;margin:0 -2px;border-width:2px;}</style><style data-emotion="css 1mmqwql">.css-1mmqwql{-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;border:none;border-radius:4px;border-style:solid;border-width:2px;cursor:pointer;display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;position:relative;-webkit-text-decoration:none;text-decoration:none;text-transform:capitalize;-webkit-transition:0.15s;transition:0.15s;vertical-align:baseline;white-space:nowrap;background-color:transparent;border-color:#05192d;color:#05192d;padding:0 15px;border-radius:0;margin:0 -2px;border-width:2px;}.css-1mmqwql:active{-webkit-transform:perspective(1px) scale(0.975);-moz-transform:perspective(1px) scale(0.975);-ms-transform:perspective(1px) scale(0.975);transform:perspective(1px) scale(0.975);}.css-1mmqwql:disabled,.css-1mmqwql:hover:disabled,.css-1mmqwql:active:disabled{-webkit-transform:none;-moz-transform:none;-ms-transform:none;transform:none;}.css-1mmqwql:focus{outline:0;}.css-1mmqwql:hover{background-color:rgba(5, 25, 45, 0.15);border-color:#05192d;color:#05192d;}</style><button class="css-1mmqwql" type="button" data-cy="header-outline"><svg viewbox="0 0 18 18" aria-hidden="true" height="18" role="img" width="18"><path fill="currentColor" d="M4 6a1 1 0 110-2h10a1 1 0 010 2H4zm0 4a1 1 0 110-2h10a1 1 0 010 2H4zm0 4a1 1 0 010-2h10a1 1 0 010 2H4z" fill-rule="evenodd"/></svg><style data-emotion="css umljpx">.css-umljpx{font-size:16px;line-height:32px;color:#05192d;font-weight:bold;margin-left:8px;}</style><style data-emotion="css x8hx3d">.css-x8hx3d{-webkit-font-smoothing:antialiased;color:rgb(5, 25, 45);font-family:Studio-Feixen-Sans,Arial;font-style:normal;font-size:16px;font-weight:400;font-size:16px;line-height:32px;color:#05192d;font-weight:bold;margin-left:8px;}</style><span class="css-x8hx3d">Course Outline</span></button><style data-emotion="css q5k7z8">.css-q5k7z8{z-index:1;border-width:2px;border-radius:0px 4px 4px 0px;}</style><style data-emotion="css 4ww6px">.css-4ww6px{-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;border:none;border-radius:4px;border-style:solid;border-width:2px;cursor:pointer;display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;position:relative;-webkit-text-decoration:none;text-decoration:none;text-transform:capitalize;-webkit-transition:0.15s;transition:0.15s;vertical-align:baseline;white-space:nowrap;background-color:transparent;border-color:#05192d;color:#05192d;padding:8px;z-index:1;border-width:2px;border-radius:0px 4px 4px 0px;}.css-4ww6px:active{-webkit-transform:perspective(1px) scale(0.975);-moz-transform:perspective(1px) scale(0.975);-ms-transform:perspective(1px) scale(0.975);transform:perspective(1px) scale(0.975);}.css-4ww6px:disabled,.css-4ww6px:hover:disabled,.css-4ww6px:active:disabled{-webkit-transform:none;-moz-transform:none;-ms-transform:none;transform:none;}.css-4ww6px:focus{outline:0;}.css-4ww6px:hover{background-color:rgba(5, 25, 45, 0.15);border-color:#05192d;color:#05192d;}</style><a aria-label="Go to next exercise" class="css-4ww6px" href="/courses/intermediate-importing-data-in-python/importing-data-from-the-internet-1?ex=3" data-cy="header-next"><svg viewbox="0 0 18 18" aria-hidden="true" height="18" role="img" width="18"><path fill="currentColor" d="M13.58 10L2 10.002a1 1 0 010-2L13.59 8l-3.285-3.296a.998.998 0 111.417-1.41l4.93 4.948a.998.998 0 01-.012 1.527l-4.933 4.938a1 1 0 01-1.414 0 1.002 1.002 0 010-1.416l3.287-3.29z" fill-rule="evenodd"/></svg></a></nav></div></div><style data-emotion="css 1dskn3o">.css-1dskn3o{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex:1;-ms-flex:1;flex:1;-webkit-box-pack:end;-ms-flex-pack:end;-webkit-justify-content:flex-end;justify-content:flex-end;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}</style><nav class="css-1dskn3o"><div data-cy="header-session" class="dc-u-fx dc-u-fx-aic dc-u-mr-8"><svg viewbox="0 0 18 18" aria-hidden="false" height="18" role="img" width="18"><title>Session Ready</title><path fill="#03ef62" d="M9 18A9 9 0 119 0a9 9 0 010 18z" fill-rule="evenodd"/></svg></div><style data-emotion="css 1tjot0g">.css-1tjot0g{border:none;color:#05192d;}</style><style data-emotion="css k7j8uv">.css-k7j8uv{-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;border:none;border-radius:4px;border-style:solid;border-width:2px;cursor:pointer;display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;position:relative;-webkit-text-decoration:none;text-decoration:none;text-transform:capitalize;-webkit-transition:0.15s;transition:0.15s;vertical-align:baseline;white-space:nowrap;background-color:transparent;border-color:#05192d;color:#05192d;padding:8px;border:none;color:#05192d;}.css-k7j8uv:active{-webkit-transform:perspective(1px) scale(0.975);-moz-transform:perspective(1px) scale(0.975);-ms-transform:perspective(1px) scale(0.975);transform:perspective(1px) scale(0.975);}.css-k7j8uv:disabled,.css-k7j8uv:hover:disabled,.css-k7j8uv:active:disabled{-webkit-transform:none;-moz-transform:none;-ms-transform:none;transform:none;}.css-k7j8uv:focus{outline:0;}.css-k7j8uv:hover{background-color:rgba(5, 25, 45, 0.15);border-color:#05192d;color:#05192d;}</style><button aria-label="Show Video" class="css-k7j8uv" type="button" data-cy="header-video"><svg viewbox="0 0 18 18" aria-hidden="true" height="18" role="img" width="18"><path fill="currentColor" d="M13 6.3l3.331-2.998A1 1 0 0118 4.045v9.91a1 1 0 01-1.669.743L13 11.7V14c0 .552-.485 1-1.083 1H1.083C.485 15 0 14.552 0 14V4c0-.552.485-1 1.083-1h10.834C12.515 3 13 3.448 13 4v2.3zm0 2.69v.02l3 2.7V6.29l-3 2.7zM2 5v8h9V5H2z" fill-rule="evenodd"/></svg></button><button aria-label="Show Slides" class="css-k7j8uv" type="button" data-cy="header-slides"><svg viewbox="0 0 18 18" aria-hidden="true" height="18" role="img" width="18"><path fill="currentColor" d="M14 9.004H9.996a2 2 0 01-2-2V2H4v14h10V9.004zm1.828-2.815A1.938 1.938 0 0116 7v9a2 2 0 01-2 2H4a2 2 0 01-2-2V2a2 2 0 012-2h5.003a2 2 0 011.415.586l4.997 5a2 2 0 01.413.603zm-1.832.815l-4-4v4h4z" fill-rule="evenodd"/></svg></button><button aria-label="Provide Feedback" class="css-k7j8uv" type="button" data-cy="header-issue" data-test-id="header-report-issue-button"><svg viewbox="0 0 18 18" aria-hidden="true" height="18" role="img" width="18"><path fill="currentColor" d="M9 16A7 7 0 109 2a7 7 0 000 14zm0 2A9 9 0 119 0a9 9 0 010 18zm0-4a1 1 0 110-2 1 1 0 010 2zM8 5a1 1 0 112 0v5a1 1 0 01-2 0V5z" fill-rule="evenodd"/></svg></button></nav></header><main class="exercise-area"><div data-cy="server-side-loader-placeholder"><aside class="exercise--sidebar" style="width:40%"><div class="exercise--sidebar-content"><div class="listview__outer"><div class="listview__inner"><div class="listview__section"><div><div role="button" class="listview__header"><div class="exercise--sidebar-header"><h5 class="dc-panel__title"><svg aria-label="exercise icon" class="dc-icon-exercise dc-u-color-navy dc-u-mr-8" fill="currentColor" height="12" role="Img" width="12"><use xlink:href="/static/media/symbols.e369b265.svg#exercise"/></svg>Exercise</h5></div></div></div><div class="listview__content"><div class="exercise--assignment exercise--typography"><h1 class="exercise--title">Importing flat files from the web: your turn!</h1><div class><p>You are about to import your first file from the web! The flat file you will import will be <code>&apos;winequality-red.csv&apos;</code> from the University of California, Irvine&apos;s <a href="http://archive.ics.uci.edu/ml/index.html">Machine Learning repository</a>. The flat file contains tabular data of physiochemical properties of red wine, such as pH, alcohol content and citric acid content, along with wine quality rating.</p>\n<p>The URL of the file is</p>\n<pre><code>&apos;https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/datasets/winequality-red.csv&apos;\n</code></pre>\n<p>After you import it, you&apos;ll check your working directory to confirm that it is there and then you&apos;ll load it into a <code>pandas</code> DataFrame.</p></div></div></div></div><div class="listview__section" style="min-height:calc(100% - 33px)"><div><div role="button" class="listview__header"><div class="exercise--sidebar-header"><h5 class="dc-panel__title"><svg aria-label="checkmark_circle icon" class="dc-icon-checkmark_circle dc-u-color-navy dc-u-mr-8" fill="currentColor" height="12" role="Img" width="12"><use xlink:href="/static/media/symbols.e369b265.svg#checkmark_circle"/></svg>Instructions</h5><style data-emotion="css ye8hc5">.css-ye8hc5{border-radius:4px;display:inline-block;text-transform:uppercase;background-color:#fcce0d;color:#05192d;font-size:14px;line-height:18px;padding-left:4px;padding-right:4px;}</style><style data-emotion="css 1qmgwl8">.css-1qmgwl8{-webkit-font-smoothing:antialiased;color:rgb(5, 25, 45);font-family:Studio-Feixen-Sans,Arial;font-style:normal;font-weight:800;line-height:16px;border-radius:4px;display:inline-block;text-transform:uppercase;background-color:#fcce0d;color:#05192d;font-size:14px;line-height:18px;padding-left:4px;padding-right:4px;}</style><strong class="css-1qmgwl8">100 XP</strong></div></div></div><div class="listview__content"><div><div class><div class="exercise--instructions exercise--typography"><div class="exercise--instructions__content"><ul>\n<li>Import the function <code>urlretrieve</code> from the subpackage <code>urllib.request</code>.</li>\n<li>Assign the URL of the file to the variable <code>url</code>.</li>\n<li>Use the function <code>urlretrieve()</code> to save the file locally as <code>&apos;winequality-red.csv&apos;</code>.</li>\n<li>Execute the remaining code to load <code>&apos;winequality-red.csv&apos;</code> in a pandas DataFrame and to print its head to the shell.</li>\n</ul></div><div style="margin:16px -15px 0"><section class="dc-sct-feedback" tabindex="-1"><div></div><nav class="dc-sct-feedback__nav"><ul class="dc-sct-feedback__tab-list"></ul><style data-emotion="css 1ms4xsv">.css-1ms4xsv{-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;border:none;border-radius:4px;border-style:solid;border-width:2px;cursor:pointer;display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;position:relative;-webkit-text-decoration:none;text-decoration:none;text-transform:capitalize;-webkit-transition:0.15s;transition:0.15s;vertical-align:baseline;white-space:nowrap;background-color:transparent;border-color:#05192d;color:#05192d;padding:0 15px;}.css-1ms4xsv:active{-webkit-transform:perspective(1px) scale(0.975);-moz-transform:perspective(1px) scale(0.975);-ms-transform:perspective(1px) scale(0.975);transform:perspective(1px) scale(0.975);}.css-1ms4xsv:disabled,.css-1ms4xsv:hover:disabled,.css-1ms4xsv:active:disabled{-webkit-transform:none;-moz-transform:none;-ms-transform:none;transform:none;}.css-1ms4xsv:focus{outline:0;}.css-1ms4xsv:hover{background-color:rgba(5, 25, 45, 0.15);border-color:#05192d;color:#05192d;}</style><button class="css-1ms4xsv" type="button" data-cy="exercise-show-hint"><svg viewbox="0 0 18 18" aria-hidden="true" height="18" role="img" width="18"><path fill="currentColor" d="M9 0a7 7 0 014.95 11.95l-.001-.001c-.794.795-.949 1.1-.949 2.051a1 1 0 01-2 0c0-1.548.396-2.325 1.535-3.467l.04-.037a5 5 0 10-7.11.037C6.605 11.675 7 12.453 7 14a1 1 0 01-2 0c0-.951-.155-1.256-.949-2.051A7 7 0 019 0zm0 7a1 1 0 011 1v6a1 1 0 01-2 0V8a1 1 0 011-1zm0 11c-1.657 0-3-.895-3-2h6c0 1.105-1.343 2-3 2z" fill-rule="evenodd"/></svg><style data-emotion="css umljpx">.css-umljpx{font-size:16px;line-height:32px;color:#05192d;font-weight:bold;margin-left:8px;}</style><style data-emotion="css x8hx3d">.css-x8hx3d{-webkit-font-smoothing:antialiased;color:rgb(5, 25, 45);font-family:Studio-Feixen-Sans,Arial;font-style:normal;font-size:16px;font-weight:400;font-size:16px;line-height:32px;color:#05192d;font-weight:bold;margin-left:8px;}</style><span class="css-x8hx3d">Take Hint (-30 XP)</span></button></nav></section></div></div></div></div></div></div></div></div></div></aside><section class="exercise--content" style="width:60%"><div class="exercise-waiting"><div class="global-spinner dc-u-fx-jcc dc-u-fx"><style data-emotion="css 1eqmq6c">.css-1eqmq6c{width:70px;}</style><div class="css-1eqmq6c"></div></div><noscript></noscript></div></section></div><style data-emotion="css dhfy3a 7y8jxc 14w24v3 1yuhvjn">.css-dhfy3a{-webkit-animation-name:animation-2ijyvo;animation-name:animation-2ijyvo;-webkit-animation-timing-function:cubic-bezier(0.23, 1, 0.32, 1);animation-timing-function:cubic-bezier(0.23, 1, 0.32, 1);}@-webkit-keyframes animation-2ijyvo{50%{opacity:1;}from{opacity:0;-webkit-transform:scale3d(0.3, 0.3, 0.3);-moz-transform:scale3d(0.3, 0.3, 0.3);-ms-transform:scale3d(0.3, 0.3, 0.3);transform:scale3d(0.3, 0.3, 0.3);}}@keyframes animation-2ijyvo{50%{opacity:1;}from{opacity:0;-webkit-transform:scale3d(0.3, 0.3, 0.3);-moz-transform:scale3d(0.3, 0.3, 0.3);-ms-transform:scale3d(0.3, 0.3, 0.3);transform:scale3d(0.3, 0.3, 0.3);}}.css-7y8jxc{-webkit-animation-name:animation-1phn0oq;animation-name:animation-1phn0oq;-webkit-animation-timing-function:cubic-bezier(0.755, 0.05, 0.855, 0.06);animation-timing-function:cubic-bezier(0.755, 0.05, 0.855, 0.06);}@-webkit-keyframes animation-1phn0oq{50%{opacity:0;-webkit-transform:scale3d(0.3, 0.3, 0.3);-moz-transform:scale3d(0.3, 0.3, 0.3);-ms-transform:scale3d(0.3, 0.3, 0.3);transform:scale3d(0.3, 0.3, 0.3);}from{opacity:1;}to{opacity:0;}}@keyframes animation-1phn0oq{50%{opacity:0;-webkit-transform:scale3d(0.3, 0.3, 0.3);-moz-transform:scale3d(0.3, 0.3, 0.3);-ms-transform:scale3d(0.3, 0.3, 0.3);transform:scale3d(0.3, 0.3, 0.3);}from{opacity:1;}to{opacity:0;}}.css-14w24v3{left:50%;position:fixed;top:0;-webkit-transform:translateX(-50%);-moz-transform:translateX(-50%);-ms-transform:translateX(-50%);transform:translateX(-50%);z-index:999;}.css-14w24v3 .Toastify__progress-bar{-webkit-animation:animation-qqoh2i linear 1;animation:animation-qqoh2i linear 1;}@-webkit-keyframes animation-qqoh2i{0%{-webkit-transform:scaleX(1);-moz-transform:scaleX(1);-ms-transform:scaleX(1);transform:scaleX(1);}100%{-webkit-transform:scaleX(0);-moz-transform:scaleX(0);-ms-transform:scaleX(0);transform:scaleX(0);}}@keyframes animation-qqoh2i{0%{-webkit-transform:scaleX(1);-moz-transform:scaleX(1);-ms-transform:scaleX(1);transform:scaleX(1);}100%{-webkit-transform:scaleX(0);-moz-transform:scaleX(0);-ms-transform:scaleX(0);transform:scaleX(0);}}.css-1yuhvjn{margin-top:16px;}</style><div class="Toastify"></div></main><div class="exercise-footer"><ul data-cy="progress-container" class="dc-progress-indicator"><li class="dc-progress-indicator__item"><a href="javascript:void(0)" class="dc-progress-indicator__bar"><div class="dc-progress-indicator__fill" style="width:0%"></div></a></li><li class="dc-progress-indicator__item"><a href="javascript:void(0)" class="dc-progress-indicator__bar"><div class="dc-progress-indicator__fill" style="width:0%"></div></a></li><li class="dc-progress-indicator__item"><a href="javascript:void(0)" class="dc-progress-indicator__bar"><div class="dc-progress-indicator__fill" style="width:0%"></div></a></li></ul></div><style data-emotion="css zs9gal 13qqqtf 728dx5 1d9ftqx atcdtd 728dx5 d3v9zr">.css-zs9gal{opacity:1!important;-webkit-transform:none!important;-moz-transform:none!important;-ms-transform:none!important;transform:none!important;}.css-13qqqtf{-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;min-width:0;opacity:0;outline:none;position:relative;-webkit-transform:scale(0.5);-moz-transform:scale(0.5);-ms-transform:scale(0.5);transform:scale(0.5);-webkit-transition:0.4s cubic-bezier(0.19, 1, 0.22, 1);transition:0.4s cubic-bezier(0.19, 1, 0.22, 1);box-sizing:border-box;max-height:100%;padding:8px;width:496px;}.css-728dx5{opacity:0!important;}.css-1d9ftqx{opacity:1!important;}.css-atcdtd{-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;background-color:rgba(5, 25, 45, 0.8);bottom:0;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;left:0;opacity:0;position:fixed;right:0;top:0;-webkit-transition:opacity 0.6s cubic-bezier(0.19, 1, 0.22, 1);transition:opacity 0.6s cubic-bezier(0.19, 1, 0.22, 1);z-index:900;}.css-d3v9zr{overflow:hidden;}</style></div></div><script>window.MathJax={options:{ignoreHtmlClass:"tex2jax_ignore",processHtmlClass:"tex2jax_process"},tex:{autoload:{color:[],colorV2:["color"]},packages:{"[+]":["noerrors"]}},loader:{load:["[tex]/noerrors"]}}</script><script src="/mathjax@3/es5/tex-chtml.js" id="MathJax-script"></script><script src="/static/js/main.1826b417.js"></script><script type="text/javascript">(function(){window[\'__CF$cv$params\']={r:\'63bce5bf3cc309dc\',m:\'b452418c5a18fa911d74a740398aa9f2f7b0ccd1-1617731834-1800-AZmJAkanMrQXZHZ1EUiM1+1B8q5CqNtto0aHuVQac5RQIVtxATwvAh4K/u6KDpFiK6FpPDmyx5spxziICEQ5lF0lkYPeRP+ojojiTz/Owk7nCIQzh1WDaknc5TdS33d/Zch5EnVvqjgxK+73Vumaf80=\',s:[0xe6eaa96af6,0x67ed0a6de7],}})();</script></body></html>' ###Markdown Performing HTTP requests in Python using requestsNow that you've got your head and hands around making HTTP requests using the urllib package, you're going to figure out how to do the same using the higher-level requests library. You'll once again be pinging DataCamp servers for their `"http://www.datacamp.com/teach/documentation"` page.Note that unlike in the previous exercises using urllib, you don't have to close the connection when using requests!Instructions- Import the package `requests`.- Assign the URL of interest to the variable `url`.- Package the request to the URL, send the request and catch the response with a single function `requests.get()`, assigning the response to the variable `r`.- Use the `text` attribute of the object `r` to return the HTML of the webpage as a string; store the result in a variable `text`.- Print the HTML of the webpage. ###Code # Import package import requests # Specify the url: url url = "http://www.datacamp.com/teach/documentation" # Packages the request, send the request and catch the response: r r = requests.get(url) # Extract the response: text text = r.text # Print the html print(text) ###Output <!DOCTYPE html> <!--[if lt IE 7]> <html class="no-js ie6 oldie" lang="en-US"> <![endif]--> <!--[if IE 7]> <html class="no-js ie7 oldie" lang="en-US"> <![endif]--> <!--[if IE 8]> <html class="no-js ie8 oldie" lang="en-US"> <![endif]--> <!--[if gt IE 8]><!--> <html class="no-js" lang="en-US"> <!--<![endif]--> <head> <title>Attention Required! | Cloudflare</title> <meta name="captcha-bypass" id="captcha-bypass" /> <meta charset="UTF-8" /> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta http-equiv="X-UA-Compatible" content="IE=Edge,chrome=1" /> <meta name="robots" content="noindex, nofollow" /> <meta name="viewport" content="width=device-width,initial-scale=1" /> <link rel="stylesheet" id="cf_styles-css" href="/cdn-cgi/styles/cf.errors.css" type="text/css" media="screen,projection" /> <!--[if lt IE 9]><link rel="stylesheet" id='cf_styles-ie-css' href="/cdn-cgi/styles/cf.errors.ie.css" type="text/css" media="screen,projection" /><![endif]--> <style type="text/css">body{margin:0;padding:0}</style> <!--[if gte IE 10]><!--> <script> if (!navigator.cookieEnabled) { window.addEventListener('DOMContentLoaded', function () { var cookieEl = document.getElementById('cookie-alert'); cookieEl.style.display = 'block'; }) } </script> <!--<![endif]--> <script type="text/javascript"> //<![CDATA[ (function(){ window._cf_chl_opt={ cvId: "2", cType: "interactive", cNounce: "76769", cRay: "63bcf46adad1f85b", cHash: "7289b1cc5170183", cFPWv: "g", cTTimeMs: "4000", cLt: "n", cRq: { ru: "aHR0cDovL3d3dy5kYXRhY2FtcC5jb20vdGVhY2gvZG9jdW1lbnRhdGlvbg==", ra: "cHl0aG9uLXJlcXVlc3RzLzIuMjIuMA==", rm: "R0VU", d: "XX3I+KfcVUS7jO8+4ZCfi0beX2DrtoG6ZDPAc3CZ7aJ7luaxz2Zc6laWB8Gc9l7LAisUwZixTqThD+J8/VgHa1lBymdrxijezQuL97L4yI9BQvfedWUwYCW99DY3zWwqPbG6gFEc4+QyPac1q3Ggcyepy+KMjP1cIW5WfzBHRIGJVlliTjbmomAJnenwKnOLycJevjMQzWB2eQs0e5UTAB9HR1LbIjGUoc7Vso3otLUsQshvyU9VyyFy7D7yn/ql74jTD5kqovkNpcLwnUBtKOkCU19vv3v3MTyzgYzle+YZ2wytaBLFoSo9me7YHljX+is3HPrkjczk4tr9d8viER3nJugCj0U2wmM9qMZkfhl/Xjve+atFMV5HnRlkFJTJPAqVkBFiHvyhsxcbXVvCV0DYgBnTh7R1A+ZsmGOOUOd6kwFBzawG/UH66Ol9oxuFi4WyBanev/JJ/kLF0qyw+0MgkOd19KJZFhQesOWgJv9+PThNP7jGCJb74o817wHEJDybn4Ih/8TGLSbjouVfj3eLsA/mLO6689I+qhm98BodZNf7bj0ul+r8DTkpEqaDxDc3l2NA4yY2xRUyCLd6DduXCgBCHErw0PClVOK+SJxx8lcUu4PETX7nbqM7EHU+41iE0C5FevSeBmxrjrIaRNgKHcHQ4HZuqhxYeMc7vuZBSW0ZGtWO8OBnm2xBg/vv+TUXIqxYkIqKTTCpYluMJigrjonJ9h6qTOlkyhk+R259YiCYbwDDqPDohvaMNRmKqkBuyzJCuznNepAS9IS/GmUNL916TbbFsqv9GYP6olD0bapetDHZ4HJMAd1JAeR90zX+cOV/VZsZeEKgBAxANcj3OewTyKvK/fZZWFPLxrIxRtPMeTq6CamEYSC/jzJZLYYONl4UTFVdpUO5J2QauQ==", t: "MTYxNzczMjQzNS42NzQwMDA=", m: "Hy8h7rd0hP/vkKdMCw5LqQEWxtV/qKm6jrp53/yGze0=", i1: "P0y8aEXkoGUrdvlL+Klb6g==", i2: "/xcwZZzy9M8SzYRAhQrtCA==", uh: "JnPNhFrP9JDZz++jrWFNK99fEBZafo8DSm+TpH36hUY=", hh: "rAZnIHiyrNuZ60h9aAZNML8izDilqmOSNuCtac1WqPs=", } }; }()); //]]> </script> <style type="text/css"> #cf-wrapper #spinner {width:69px; margin: auto;} #cf-wrapper #cf-please-wait{text-align:center} .attribution {margin-top: 32px;} .bubbles { background-color: #f58220; width:20px; height: 20px; margin:2px; border-radius:100%; display:inline-block; } #cf-wrapper #challenge-form { padding-top:25px; padding-bottom:25px; } #cf-hcaptcha-container { text-align:center;} #cf-hcaptcha-container iframe { display: inline-block;} @keyframes fader { 0% {opacity: 0.2;} 50% {opacity: 1.0;} 100% {opacity: 0.2;} } #cf-wrapper #cf-bubbles { width:69px; } @-webkit-keyframes fader { 0% {opacity: 0.2;} 50% {opacity: 1.0;} 100% {opacity: 0.2;} } #cf-bubbles > .bubbles { animation: fader 1.6s infinite;} #cf-bubbles > .bubbles:nth-child(2) { animation-delay: .2s;} #cf-bubbles > .bubbles:nth-child(3) { animation-delay: .4s;} </style> </head> <body> <div id="cf-wrapper"> <div class="cf-alert cf-alert-error cf-cookie-error" id="cookie-alert" data-translate="enable_cookies">Please enable cookies.</div> <div id="cf-error-details" class="cf-error-details-wrapper"> <div class="cf-wrapper cf-header cf-error-overview"> <h1 data-translate="challenge_headline">One more step</h1> <h2 class="cf-subheadline"><span data-translate="complete_sec_check">Please complete the security check to access</span> www.datacamp.com</h2> </div> <div class="cf-section cf-highlight cf-captcha-container"> <div class="cf-wrapper"> <div class="cf-columns two"> <div class="cf-column"> <div class="cf-highlight-inverse cf-form-stacked"> <form class="challenge-form interactive-form" id="challenge-form" action="/teach/documentation?__cf_chl_captcha_tk__=5e607b13fd15e7ff6afac0618f7b8453b4d9fc00-1617732435-0-AQuMrR-eu0LgCnc0nzQiNd1V1pqj3_X03byUOnUOga8_y1wWbxjYlT3qOa1IdbhpydTJSwaCGrDPbz93uGk9SJjWj1NiMhVbFIUPxRtBrH0O_8GrCOl-3g30Y-7nrenkjswqPrOsjgfwuavwARwoOix_SovtEJjYDdtDzEH1jpg7BDbI6jSKLm3ZZGn-LV4brWtysfX6QWFkCv4KNdySm4BJohFJXcAyqmeBpuZWAeWxKrqwSVOAeGXrkm-ezDLa7mJio02ZE9yal5MtED_mIymjWVJrEs-Muhe2ziLZ5lJDLzxDwxIK5PZz97-TLbreC7dsfijcO-xSsmwTofdFpzdJGLai36ahKjEfLXWm0o0VIr5Zn7ebrtFg7CogECXMwvSRWA7tTXnA4KszDX_yfQ_ZDXvF4uOk72BCVNoAPg6aepFZkDW6CDi2tdjcdVoT_cwoN-A40RZsE4_2826xKvWjdzC8qrUsJTLpN-UYbr0_hvRpfDBJb8KderJUmujG2n1ZUu-RUvzKy448ZF1t_ybUcCTyRj8nS2duVQHtzCEo9nPfgRW6bKrtb9X929rkQnWOE6LG8M8SeGk4VuSvofQ3GpCn6Vpl-Y5o6zLVd-ZPpUh6WTBBksrVPHzgseR8Pzqk_XyXsigS3Q_qEbmcImZnOH8zhnQlJh3y_s4L-rConr8mkPRQuoz4QP2VQ_GUvQ" method="POST" enctype="application/x-www-form-urlencoded"> <div id='cf-please-wait'> <div id='spinner'> <div id="cf-bubbles"> <div class="bubbles"></div> <div class="bubbles"></div> <div class="bubbles"></div> </div> </div> <p data-translate="please_wait" id="cf-spinner-please-wait">Please stand by, while we are checking your browser...</p> <p data-translate="redirecting" id="cf-spinner-redirecting" style="display:none">Redirecting...</p> </div> <input type="hidden" name="r" value="5a894e825ac29fc261840b9acb389e3d689cb42a-1617732435-0-AaMwjRia0xfPpodn12dDdURW8YLDftbTyWs0JzG4MiJ8ajowP9/FxlmI02p/XQ3OIgPpHmwklnB6vreWAb+096mdTx3heHnnU+GufGr8p6va+KmHI+iktLFPeO3qn4jQowXWB8ho4ESZx5VsL6Rmglc+xi5xzuSSSozde4hvv+4ILbL/hsbumBg+i95/2dZYtYGVmxF5dxyuJqI1bI1/LS1ibvgowx8mdlgbPnMVyizSk2z0+Gtb+nurI7dcud1aB9EqEome2z+LtOMqTxKggE4VaQIlMTp5RSOXc8wpwGf1j64AsN+NrdgMTlYcyTuvo2hiapul2pcNm4c/3ulhtDYfRNOvj3s0E3/lD+aCh7macXAIFFtsFsqZmShS1KkiJE5vcVbQ71mrGQNwgHxhIAmx7GyKxpaFHJHIcrrW06HrUa4Snm+hiiKfwjC7NQdb7/EZEPtVIogbyJM1w/BXa3ErRdHPZnjPAheaFIrAt/xkg9L8iTDGrHh1aqK7yghSeuHJ20JLd5UZYRRHU+VGknfC8GQauHYijbrCuMDPLqI+q2VTmL7RXpPqQdazKl8AhA=="> <input type="hidden" name="cf_captcha_kind" value="h"> <input type="hidden" name="vc" value="ed15498576f1947ba32eee53833faef4"> <noscript id="cf-captcha-bookmark" class="cf-captcha-info"> <h1 data-translate="turn_on_js" style="color:#bd2426;">Please turn JavaScript on and reload the page.</h1> </noscript> <div id="no-cookie-warning" class="cookie-warning" data-translate="turn_on_cookies" style="display:none"> <p data-translate="turn_on_cookies" style="color:#bd2426;">Please enable Cookies and reload the page.</p> </div> <script type="text/javascript"> //<![CDATA[ var a = function() {try{return !!window.addEventListener} catch(e) {return !1} }, b = function(b, c) {a() ? document.addEventListener("DOMContentLoaded", b, c) : document.attachEvent("onreadystatechange", b)}; b(function(){ var cookiesEnabled=(navigator.cookieEnabled)? true : false; if(!cookiesEnabled){ var q = document.getElementById('no-cookie-warning');q.style.display = 'block'; } }); //]]> </script> <div id="trk_captcha_js" style="background-image:url('/cdn-cgi/images/trace/captcha/nojs/h/transparent.gif?ray=63bcf46adad1f85b')"></div> </form> <script type="text/javascript"> //<![CDATA[ (function(){ var isIE = /(MSIE|Trident\/|Edge\/)/i.test(window.navigator.userAgent); var trkjs = isIE ? new Image() : document.createElement('img'); trkjs.setAttribute("src", "/cdn-cgi/images/trace/captcha/js/transparent.gif?ray=63bcf46adad1f85b"); trkjs.id = "trk_captcha_js"; trkjs.setAttribute("alt", ""); document.body.appendChild(trkjs); var cpo=document.createElement('script'); cpo.type='text/javascript'; cpo.src="/cdn-cgi/challenge-platform/h/g/orchestrate/captcha/v1?ray=63bcf46adad1f85b"; document.getElementsByTagName('head')[0].appendChild(cpo); }()); //]]> </script> </div> </div> <div class="cf-column"> <div class="cf-screenshot-container"> <span class="cf-no-screenshot"></span> </div> </div> </div> </div> </div> <div class="cf-section cf-wrapper"> <div class="cf-columns two"> <div class="cf-column"> <h2 data-translate="why_captcha_headline">Why do I have to complete a CAPTCHA?</h2> <p data-translate="why_captcha_detail">Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.</p> </div> <div class="cf-column"> <h2 data-translate="resolve_captcha_headline">What can I do to prevent this in the future?</h2> <p data-translate="resolve_captcha_antivirus">If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.</p> <p data-translate="resolve_captcha_network">If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.</p> </div> </div> </div> <div class="cf-error-footer cf-wrapper w-240 lg:w-full py-10 sm:py-4 sm:px-8 mx-auto text-center sm:text-left border-solid border-0 border-t border-gray-300"> <p class="text-13"> <span class="cf-footer-item sm:block sm:mb-1">Cloudflare Ray ID: <strong class="font-semibold">63bcf46adad1f85b</strong></span> <span class="cf-footer-separator sm:hidden">&bull;</span> <span class="cf-footer-item sm:block sm:mb-1"><span>Your IP</span>: 177.34.108.76</span> <span class="cf-footer-separator sm:hidden">&bull;</span> <span class="cf-footer-item sm:block sm:mb-1"><span>Performance &amp; security by</span> <a rel="noopener noreferrer" href="https://www.cloudflare.com/5xx-error-landing" id="brand_link" target="_blank">Cloudflare</a></span> </p> </div><!-- /.error-footer --> </div> </div> <script type="text/javascript"> window._cf_translation = {}; </script> </body> </html> ###Markdown Parsing HTML with BeautifulSoupIn this interactive exercise, you'll learn how to use the BeautifulSoup package to _parse_, _prettify_ and _extract_ information from HTML. You'll scrape the data from the webpage of Guido van Rossum, Python's very own [Benevolent Dictator for Life](https://en.wikipedia.org/wiki/Benevolent_dictator_for_life). In the following exercises, you'll prettify the HTML and then extract the text and the hyperlinks.The URL of interest is `url = 'https://www.python.org/~guido/'`.Instructions- Import the function `BeautifulSoup` from the package `bs4`.- Assign the URL of interest to the variable `url`.- Package the request to the URL, send the request and catch the response with a single function `requests.get()`, assigning the response to the variable `r`.- Use the `text` attribute of the object `r` to return the HTML of the webpage as a string; store the result in a variable `html_doc`.- Create a BeautifulSoup object `soup` from the resulting HTML using the function `BeautifulSoup()`.- Use the method `prettify()` on `soup` and assign the result to `pretty_soup`.- Print the prettified HTML! ###Code # Import packages import requests from bs4 import BeautifulSoup # Specify url: url url = 'https://www.python.org/~guido/' # Package the request, send the request and catch the response: r r = requests.get(url) # Extracts the response as html: html_doc html_doc = r.text # Create a BeautifulSoup object from the HTML: soup soup = BeautifulSoup(html_doc) # Prettify the BeautifulSoup object: pretty_soup pretty_soup = soup.prettify() # Print the response print(pretty_soup) ###Output <html> <head> <title> Guido's Personal Home Page </title> </head> <body bgcolor="#FFFFFF" text="#000000"> <!-- Built from main --> <h1> <a href="pics.html"> <img border="0" src="images/IMG_2192.jpg"/> </a> Guido van Rossum - Personal Home Page <a href="pics.html"> <img border="0" height="216" src="images/guido-headshot-2019.jpg" width="270"/> </a> </h1> <p> <a href="http://www.washingtonpost.com/wp-srv/business/longterm/microsoft/stories/1998/raymond120398.htm"> <i> "Gawky and proud of it." </i> </a> </p> <h3> <a href="images/df20000406.jpg"> Who I Am </a> </h3> <p> Read my <a href="http://neopythonic.blogspot.com/2016/04/kings-day-speech.html"> "King's Day Speech" </a> for some inspiration. </p> <p> I am the author of the <a href="http://www.python.org"> Python </a> programming language. See also my <a href="Resume.html"> resume </a> and my <a href="Publications.html"> publications list </a> , a <a href="bio.html"> brief bio </a> , assorted <a href="http://legacy.python.org/doc/essays/"> writings </a> , <a href="http://legacy.python.org/doc/essays/ppt/"> presentations </a> and <a href="interviews.html"> interviews </a> (all about Python), some <a href="pics.html"> pictures of me </a> , <a href="http://neopythonic.blogspot.com"> my new blog </a> , and my <a href="http://www.artima.com/weblogs/index.jsp?blogger=12088"> old blog </a> on Artima.com. I am <a href="https://twitter.com/gvanrossum"> @gvanrossum </a> on Twitter. </p> <p> I am retired, working on personal projects (and maybe a book). I have worked for Dropbox, Google, Elemental Security, Zope Corporation, BeOpen.com, CNRI, CWI, and SARA. (See my <a href="Resume.html"> resume </a> .) I created Python while at CWI. </p> <h3> How to Reach Me </h3> <p> You can send email for me to guido (at) python.org. I read everything sent there, but I receive too much email to respond to everything. </p> <h3> My Name </h3> <p> My name often poses difficulties for Americans. </p> <p> <b> Pronunciation: </b> in Dutch, the "G" in Guido is a hard G, pronounced roughly like the "ch" in Scottish "loch". (Listen to the <a href="guido.au"> sound clip </a> .) However, if you're American, you may also pronounce it as the Italian "Guido". I'm not too worried about the associations with mob assassins that some people have. :-) </p> <p> <b> Spelling: </b> my last name is two words, and I'd like to keep it that way, the spelling on some of my credit cards notwithstanding. Dutch spelling rules dictate that when used in combination with my first name, "van" is not capitalized: "Guido van Rossum". But when my last name is used alone to refer to me, it is capitalized, for example: "As usual, Van Rossum was right." </p> <p> <b> Alphabetization: </b> in America, I show up in the alphabet under "V". But in Europe, I show up under "R". And some of my friends put me under "G" in their address book... </p> <h3> More Hyperlinks </h3> <ul> <li> Here's a collection of <a href="http://legacy.python.org/doc/essays/"> essays </a> relating to Python that I've written, including the foreword I wrote for Mark Lutz' book "Programming Python". <p> </p> </li> <li> I own the official <a href="images/license.jpg"> <img align="center" border="0" height="75" src="images/license_thumb.jpg" width="100"/> Python license. </a> <p> </p> </li> </ul> <h3> The Audio File Formats FAQ </h3> <p> I was the original creator and maintainer of the Audio File Formats FAQ. It is now maintained by Chris Bagwell at <a href="http://www.cnpbagwell.com/audio-faq"> http://www.cnpbagwell.com/audio-faq </a> . And here is a link to <a href="http://sox.sourceforge.net/"> SOX </a> , to which I contributed some early code. </p> <hr/> <a href="images/internetdog.gif"> "On the Internet, nobody knows you're a dog." </a> <hr/> </body> </html> ###Markdown Turning a webpage into data using BeautifulSoup: getting the textAs promised, in the following exercises, you'll learn the basics of extracting information from HTML soup. In this exercise, you'll figure out how to extract the text from the BDFL's webpage, along with printing the webpage's title.Instructions- In the sample code, the HTML response object `html_doc` has already been created: your first task is to Soupify it using the function `BeautifulSoup()` and to assign the resulting soup to the variable `soup`.- Extract the title from the HTML soup `soup` using the attribute `title` and assign the result to `guido_title`.- Print the title of Guido's webpage using the `print()` function.- Extract the text from the HTML soup `soup` using the method `get_text()` and assign to `guido_text`.- Print the text from Guido's webpage. ###Code # Import packages import requests from bs4 import BeautifulSoup # Specify url: url url = 'https://www.python.org/~guido/' # Package the request, send the request and catch the response: r r = requests.get(url) # Extract the response as html: html_doc html_doc = r.text # Create a BeautifulSoup object from the HTML: soup soup = BeautifulSoup(html_doc) # Get the title of Guido's webpage: guido_title guido_title = soup.title # Print the title of Guido's webpage to the shell print(guido_title) # Get Guido's text: guido_text guido_text = soup.text # Print Guido's text to the shell print(guido_text) ###Output <title>Guido's Personal Home Page</title> Guido's Personal Home Page Guido van Rossum - Personal Home Page "Gawky and proud of it." Who I Am Read my "King's Day Speech" for some inspiration. I am the author of the Python programming language. See also my resume and my publications list, a brief bio, assorted writings, presentations and interviews (all about Python), some pictures of me, my new blog, and my old blog on Artima.com. I am @gvanrossum on Twitter. I am retired, working on personal projects (and maybe a book). I have worked for Dropbox, Google, Elemental Security, Zope Corporation, BeOpen.com, CNRI, CWI, and SARA. (See my resume.) I created Python while at CWI. How to Reach Me You can send email for me to guido (at) python.org. I read everything sent there, but I receive too much email to respond to everything. My Name My name often poses difficulties for Americans. Pronunciation: in Dutch, the "G" in Guido is a hard G, pronounced roughly like the "ch" in Scottish "loch". (Listen to the sound clip.) However, if you're American, you may also pronounce it as the Italian "Guido". I'm not too worried about the associations with mob assassins that some people have. :-) Spelling: my last name is two words, and I'd like to keep it that way, the spelling on some of my credit cards notwithstanding. Dutch spelling rules dictate that when used in combination with my first name, "van" is not capitalized: "Guido van Rossum". But when my last name is used alone to refer to me, it is capitalized, for example: "As usual, Van Rossum was right." Alphabetization: in America, I show up in the alphabet under "V". But in Europe, I show up under "R". And some of my friends put me under "G" in their address book... More Hyperlinks Here's a collection of essays relating to Python that I've written, including the foreword I wrote for Mark Lutz' book "Programming Python". I own the official Python license. The Audio File Formats FAQ I was the original creator and maintainer of the Audio File Formats FAQ. It is now maintained by Chris Bagwell at http://www.cnpbagwell.com/audio-faq. And here is a link to SOX, to which I contributed some early code. "On the Internet, nobody knows you're a dog." ###Markdown Turning a webpage into data using BeautifulSoup: getting the hyperlinksIn this exercise, you'll figure out how to extract the URLs of the hyperlinks from the BDFL's webpage. In the process, you'll become close friends with the soup method `find_all()`.Instructions- Use the method `find_all()` to find all hyperlinks in `soup`, remembering that hyperlinks are defined by the HTML tag `` but passed to `find_all()` without angle brackets; store the result in the variable `a_tags`.- The variable `a_tags` is a results set: your job now is to enumerate over it, using a `for` loop and to print the actual URLs of the hyperlinks; to do this, for every element `link` in `a_tags`, you want to `print()` `link.get('href')`. ###Code # Import packages import requests from bs4 import BeautifulSoup # Specify url url = 'https://www.python.org/~guido/' # Package the request, send the request and catch the response: r r = requests.get(url) # Extracts the response as html: html_doc html_doc = r.text # create a BeautifulSoup object from the HTML: soup soup = BeautifulSoup(html_doc) # Print the title of Guido's webpage print(soup.title) # Find all 'a' tags (which define hyperlinks): a_tags a_tags = soup.find_all('a') # Print the URLs to the shell for link in a_tags: print(link.get('href')) ###Output <title>Guido's Personal Home Page</title> pics.html pics.html http://www.washingtonpost.com/wp-srv/business/longterm/microsoft/stories/1998/raymond120398.htm images/df20000406.jpg http://neopythonic.blogspot.com/2016/04/kings-day-speech.html http://www.python.org Resume.html Publications.html bio.html http://legacy.python.org/doc/essays/ http://legacy.python.org/doc/essays/ppt/ interviews.html pics.html http://neopythonic.blogspot.com http://www.artima.com/weblogs/index.jsp?blogger=12088 https://twitter.com/gvanrossum Resume.html guido.au http://legacy.python.org/doc/essays/ images/license.jpg http://www.cnpbagwell.com/audio-faq http://sox.sourceforge.net/ images/internetdog.gif
imdb-tensorflow.ipynb
###Markdown ###Code import tensorflow as tf print(tf.__version__) import tensorflow_datasets as tfds imdb, info = tfds.load("imdb_reviews", with_info = True, as_supervised = True) import numpy as np train_data, test_data = imdb['train'], imdb['test'] training_sentences = [] training_labels = [] testing_sentences = [] testing_labels = [] for s, l in train_data: training_sentences.append(str(s.numpy())) training_labels.append(l.numpy()) for s, l in test_data: testing_sentences.append(str(s.numpy())) testing_labels.append(l.numpy()) #hyperparameters vocab_size = 10000 embedding_dim = 16 max_length = 120 trunc_type = 'post' oov_tok = '<OOV>' from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences tokenizer = Tokenizer(num_words = vocab_size, oov_token = oov_tok) tokenizer.fit_on_texts(training_sentences) word_index = tokenizer.word_index sequences = tokenizer.texts_to_sequences(training_sentences) padded = pad_sequences(sequences, maxlen = max_length, truncating = trunc_type) testing_sequences = tokenizer.texts_to_sequences(testing_sentences) testing_padded = pad_sequences(testing_sequences, maxlen = max_length) #model model = tf.keras.Sequential([ tf.keras.layers.Embedding(vocab_size, embedding_dim, input_length = max_length), #key to text sentiment analysis tf.keras.layers.Flatten(), tf.keras.layers.Dense(6, activation = 'relu'), tf.keras.layers.Dense(1, activation = 'sigmoid') ]) model.compile(loss = 'binary_crossentropy', optimizer = 'adam', metrics = ['accuracy']) model.summary() ###Output Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= embedding (Embedding) (None, 120, 16) 160000 flatten (Flatten) (None, 1920) 0 dense (Dense) (None, 6) 11526 dense_1 (Dense) (None, 1) 7 ================================================================= Total params: 171,533 Trainable params: 171,533 Non-trainable params: 0 _________________________________________________________________
scikit-learn/plot_cluster_iris.ipynb
###Markdown K-means ClusteringThe plots display firstly what a K-means algorithm would yieldusing three clusters. It is then shown what the effect of a badinitialization is on the classification process:By setting n_init to only 1 (default is 10), the amount oftimes that the algorithm will be run with different centroidseeds is reduced.The next plot displays what using eight clusters would deliverand finally the ground truth. ###Code print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt # Though the following import is not directly being used, it is required # for 3D projection to work from mpl_toolkits.mplot3d import Axes3D from sklearn.cluster import KMeans from sklearn import datasets np.random.seed(5) iris = datasets.load_iris() X = iris.data y = iris.target estimators = [('k_means_iris_8', KMeans(n_clusters=8)), ('k_means_iris_3', KMeans(n_clusters=3)), ('k_means_iris_bad_init', KMeans(n_clusters=3, n_init=1, init='random'))] fignum = 1 titles = ['8 clusters', '3 clusters', '3 clusters, bad initialization'] for name, est in estimators: fig = plt.figure(fignum, figsize=(4, 3)) ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) est.fit(X) labels = est.labels_ ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=labels.astype(np.float), edgecolor='k') ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') ax.set_title(titles[fignum - 1]) ax.dist = 12 fignum = fignum + 1 # Plot the ground truth fig = plt.figure(fignum, figsize=(4, 3)) ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]: ax.text3D(X[y == label, 3].mean(), X[y == label, 0].mean(), X[y == label, 2].mean() + 2, name, horizontalalignment='center', bbox=dict(alpha=.2, edgecolor='w', facecolor='w')) # Reorder the labels to have colors matching the cluster results y = np.choose(y, [1, 2, 0]).astype(np.float) ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y, edgecolor='k') ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') ax.set_title('Ground Truth') ax.dist = 12 fig.show() ###Output _____no_output_____ ###Markdown K-means ClusteringThe plots display firstly what a K-means algorithm would yieldusing three clusters. It is then shown what the effect of a badinitialization is on the classification process:By setting n_init to only 1 (default is 10), the amount oftimes that the algorithm will be run with different centroidseeds is reduced.The next plot displays what using eight clusters would deliverand finally the ground truth. ###Code print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt # Though the following import is not directly being used, it is required # for 3D projection to work from mpl_toolkits.mplot3d import Axes3D from sklearn.cluster import KMeans from sklearn import datasets np.random.seed(5) iris = datasets.load_iris() X = iris.data y = iris.target estimators = [('k_means_iris_8', KMeans(n_clusters=8)), ('k_means_iris_3', KMeans(n_clusters=3)), ('k_means_iris_bad_init', KMeans(n_clusters=3, n_init=1, init='random'))] fignum = 1 titles = ['8 clusters', '3 clusters', '3 clusters, bad initialization'] for name, est in estimators: fig = plt.figure(fignum, figsize=(4, 3)) ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) est.fit(X) labels = est.labels_ ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=labels.astype(np.float), edgecolor='k') ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') ax.set_title(titles[fignum - 1]) ax.dist = 12 fignum = fignum + 1 # Plot the ground truth fig = plt.figure(fignum, figsize=(4, 3)) ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]: ax.text3D(X[y == label, 3].mean(), X[y == label, 0].mean(), X[y == label, 2].mean() + 2, name, horizontalalignment='center', bbox=dict(alpha=.2, edgecolor='w', facecolor='w')) # Reorder the labels to have colors matching the cluster results y = np.choose(y, [1, 2, 0]).astype(np.float) ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y, edgecolor='k') ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') ax.set_title('Ground Truth') ax.dist = 12 fig.show() ###Output _____no_output_____
notebooks/ImageLighting&Denoising.ipynb
###Markdown Median filtering ###Code img = cv2.imread("myImage.jpg") # img2 = cv2.medianBlur(img,5) # compare = np.concatenate((img,img2),axis=1) # cv2.imshow('img',compare) # cv2.waitKey(0) # cv2.destroyAllWindows ###Output _____no_output_____ ###Markdown CLAHE contrast improvement.Trying median filtering after CLAHE=> No observable effect on myImage.jpg; need more images to test. ###Code # gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # lab = cv2.cvtColor(img,cv2.COLOR_BGR2LAB) # l,a,b = cv2.split(lab) # # clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8)) # # cl = clahe.apply(l) # # limg = cv2.merge((cl,a,b)) # # final = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR) # #Try median filtering to remove noise # final = cv2.medianBlur(lab,5) # invert_L = cv2.bitwise_not(final) #invert lightness # composed = cv2.addWeighted(gray, 0.75, invert_L, 0.25, 0) def light_removing(img) : gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB) L = lab[:,:,0] med_L = cv2.medianBlur(L,5) #median filter invert_L = cv2.bitwise_not(med_L) #invert lightness composed = cv2.addWeighted(gray, 0.75, invert_L, 0.25, 0) return composed compare = np.concatenate((img, light_removing(img)),axis=1) cv2.imshow('img',compare) cv2.waitKey(0) cv2.destroyWindow('img') ###Output _____no_output_____
prediction/pred_data-driven_lr.ipynb
###Markdown IntroductionIn this notebook, we'll evaluate classifiers performing forward and reverse inference using data from neuroimaging articles. *Forward inference* classifiers predict which brain structures were reported in activation coordinate data using the mental functions discussed in article texts. *Reverse inference* classifiers use the same data but flip the inputs and labels, predicting the mental functions in article texts from brain structures in the coordinate data. Classifiers were trained on 12,708 articles, tuned on a validation set of 3,603 articles, and will be evaluated on held-out test set of 1,816 articles. Classifiers are multilayer neural networks implemented in PyTorch. All classifiers were trained with ReLU activation functions, 8 layers, and the Adam solver over 500 iterations. The learning rate, weight decay, and number of units per hidden layer were selected based on validation set ROC-AUC.Evaluation metrics include the following:1. **ROC-AUC**, which captures the trade-off between true positive rate (TPR) and false positive rate (FPR).2. **F1 score**, which captures the trade-off between precision and recall (the latter of which is equivalent to the TPR). ###Code import pandas as pd import numpy as np np.random.seed(42) import sys sys.path.append("..") import utilities, evaluation %matplotlib inline framework = "data-driven" suffix = "" # Suffix for term lists clf = "_lr" # Classification by logistic regression n_iter = 1000 # Iterations for bootstrap and null distributions alpha = 0.001 # Significance levels for plotting dtm_version = 190325 # Version of the document-term matrix ###Output _____no_output_____ ###Markdown Train the classifiers ###Code from logistic_regression import prediction prediction.train_classifier(framework, "forward", clf=clf, dtm_version=dtm_version, in_path="", out_path="logistic_regression/") prediction.train_classifier(framework, "reverse", clf=clf, dtm_version=dtm_version, in_path="", out_path="logistic_regression/") ###Output _____no_output_____ ###Markdown Load data for evaluation Brain activation coordinates ###Code act_bin = utilities.load_coordinates() print("Document N={}, Structure N={}".format( act_bin.shape[0], act_bin.shape[1])) ###Output Document N=18155, Structure N=118 ###Markdown Document-term matrix ###Code dtm_bin = utilities.load_doc_term_matrix(version=190325, binarize=True) print("Document N={}, Term N={}".format( dtm_bin.shape[0], dtm_bin.shape[1])) ###Output Document N=18155, Term N=4107 ###Markdown Framework contents ###Code lists, circuits = utilities.load_framework(framework, suffix=suffix, clf=clf) ###Output _____no_output_____ ###Markdown Term list scores ###Code scores = utilities.score_lists(lists, dtm_bin) ###Output _____no_output_____ ###Markdown Load classifier fits ###Code import pickle from sklearn.linear_model import LogisticRegression from sklearn.multiclass import OneVsRestClassifier from sklearn.metrics import roc_auc_score from sklearn.model_selection import ParameterSampler directions = ["forward", "reverse"] fit = {} for direction in directions: filename = "logistic_regression/fits/{}_{}.p".format(framework, direction) fit[direction] = pickle.load(open(filename, 'rb')) print("-"*50 + "\n{} INFERENCE CLASSIFIER\n".format(direction.upper()) + "-"*50) print(fit[direction]) print("") ###Output -------------------------------------------------- FORWARD INFERENCE CLASSIFIER -------------------------------------------------- OneVsRestClassifier(estimator=LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=1000, multi_class='warn', n_jobs=None, penalty='l1', random_state=42, solver='liblinear', tol=1e-10, verbose=0, warm_start=False), n_jobs=None) -------------------------------------------------- REVERSE INFERENCE CLASSIFIER -------------------------------------------------- OneVsRestClassifier(estimator=LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=1000, multi_class='warn', n_jobs=None, penalty='l1', random_state=42, solver='liblinear', tol=1e-10, verbose=0, warm_start=False), n_jobs=None) ###Markdown Load the test set ###Code test = [int(pmid.strip()) for pmid in open("../data/splits/test.txt")] m = len(test) print("Test N={}".format(m)) ###Output Test N=1816 ###Markdown Load the palette ###Code from style import style palette = {"forward": [], "reverse": style.palettes[framework]} domains = list(circuits.columns) print(domains) for structure in act_bin.columns: dom_idx = np.argmax(circuits.loc[structure].values) color = palette["reverse"][dom_idx] palette["forward"].append(color) ###Output _____no_output_____ ###Markdown Plot ROC and PR curves Forward inference ###Code d = "forward" pred_probs = fit[d].predict_proba(scores.loc[test]) labels = act_bin.loc[test].values ###Output _____no_output_____ ###Markdown ROC curves ###Code fpr, tpr = evaluation.compute_roc(labels, pred_probs) evaluation.plot_curves("roc", framework, d, fpr, tpr, palette[d], opacity=0.4, path="logistic_regression/") ###Output _____no_output_____ ###Markdown PR curves ###Code precision, recall = evaluation.compute_prc(labels, pred_probs) evaluation.plot_curves("prc", framework, d, recall, precision, palette[d], diag=False, opacity=0.4, path="logistic_regression/") ###Output _____no_output_____ ###Markdown Reverse inference ###Code d = "reverse" pred_probs = fit[d].predict_proba(act_bin.loc[test].values) labels = scores.loc[test].values ###Output _____no_output_____ ###Markdown ROC curves ###Code fpr, tpr = evaluation.compute_roc(labels, pred_probs) evaluation.plot_curves("roc", framework, d, fpr, tpr, palette[d], opacity=0.65, path="logistic_regression/") ###Output _____no_output_____ ###Markdown PR curves ###Code precision, recall = evaluation.compute_prc(labels, pred_probs) evaluation.plot_curves("prc", framework, d, recall, precision, palette[d], diag=False, opacity=0.65, path="logistic_regression/") ###Output _____no_output_____ ###Markdown Compute evaluation metrics Observed values ###Code from sklearn.metrics import roc_auc_score, f1_score X = {"forward": scores.loc[test].values, "reverse": act_bin.loc[test].values} Y = {"forward": act_bin.loc[test].values, "reverse": scores.loc[test].values} pred_probs = {d: fit[d].predict_proba(X[d]) for d in directions} preds = {d: 1 * (pred_probs[d] > 0.5) for d in directions} obs = {d: {} for d in directions} for d in directions: obs[d]["rocauc"] = evaluation.compute_eval_metric(Y[d], pred_probs[d], roc_auc_score) obs[d]["f1"] = evaluation.compute_eval_metric(Y[d], preds[d], f1_score) ###Output _____no_output_____ ###Markdown Bootstrap distributions ###Code import os boot = {d: {} for d in directions} for d in directions: print("{}".format(d.title())) boot[d]["rocauc"] = np.empty((len(obs[d]["rocauc"]), n_iter)) boot[d]["f1"] = np.empty((len(obs[d]["f1"]), n_iter)) rocauc_file = "logistic_regression/data/rocauc_boot_{}_{}_{}iter.csv".format(framework, d, n_iter) if os.path.isfile(rocauc_file): boot[d]["rocauc"] = pd.read_csv(rocauc_file, index_col=0, header=0).values print("\tLoaded ROC-AUC from file") else: print("ROC-AUC") for n in range(n_iter): samp = np.random.choice(range(m), size=m, replace=True) boot[d]["rocauc"][:,n] = evaluation.compute_eval_metric(Y[d][samp,:], pred_probs[d][samp,:], roc_auc_score) if n % (n_iter/10) == 0: print("\tIteration {}".format(n)) f1_file = "logistic_regression/data/f1_boot_{}_{}_{}iter.csv".format(framework, d, n_iter) if os.path.isfile(f1_file): boot[d]["f1"] = pd.read_csv(f1_file, index_col=0, header=0).values print("\tLoaded F1 from file") else: print("F1") for n in range(n_iter): samp = np.random.choice(range(m), size=m, replace=True) boot[d]["f1"][:,n] = evaluation.compute_eval_metric(Y[d][samp,:], preds[d][samp,:], f1_score) if n % (n_iter/10) == 0: print("\tIteration {}".format(n)) print("") ###Output Forward Loaded ROC-AUC from file Loaded F1 from file Reverse Loaded ROC-AUC from file Loaded F1 from file ###Markdown Null distributions ###Code null = {d: {} for d in directions} for d in directions: print("{}".format(d.title())) null[d]["rocauc"] = np.empty((len(obs[d]["rocauc"]), n_iter)) null[d]["f1"] = np.empty((len(obs[d]["f1"]), n_iter)) rocauc_file = "logistic_regression/data/rocauc_null_{}_{}_{}iter.csv".format(framework, d, n_iter) if os.path.isfile(rocauc_file): null[d]["rocauc"] = pd.read_csv(rocauc_file, index_col=0, header=0).values print("\tLoaded ROC-AUC from file") else: print("ROC-AUC") for n in range(n_iter): shuf = np.random.choice(range(m), size=m, replace=False) null[d]["rocauc"][:,n] = evaluation.compute_eval_metric(Y[d][shuf,:], pred_probs[d], roc_auc_score) if n % (n_iter/10) == 0: print("\tIteration {}".format(n)) f1_file = "logistic_regression/data/f1_null_{}_{}_{}iter.csv".format(framework, d, n_iter) if os.path.isfile(f1_file): null[d]["f1"] = pd.read_csv(f1_file, index_col=0, header=0).values print("\tLoaded F1 from file") else: print("F1") for n in range(n_iter): shuf = np.random.choice(range(m), size=m, replace=False) null[d]["f1"][:,n] = evaluation.compute_eval_metric(Y[d][shuf,:], preds[d], f1_score) if n % (n_iter/10) == 0: print("\tIteration {}".format(n)) print("") ###Output Forward Loaded ROC-AUC from file Loaded F1 from file Reverse Loaded ROC-AUC from file Loaded F1 from file ###Markdown Null confidence intervals ###Code interval = 0.999 idx_lower = int((1.0-interval)*n_iter) idx_upper = int(interval*n_iter) metric_labels = ["rocauc", "f1"] null_ci = {d: {} for d in directions} for metric in metric_labels: for d in directions: dist = null[d][metric] n_clf = dist.shape[0] null_ci[d][metric] = {} null_ci[d][metric]["lower"] = [sorted(dist[i,:])[idx_lower] for i in range(n_clf)] null_ci[d][metric]["upper"] = [sorted(dist[i,:])[idx_upper] for i in range(n_clf)] null_ci[d][metric]["mean"] = [np.mean(dist[i,:]) for i in range(n_clf)] ###Output _____no_output_____ ###Markdown Perform hypothesis testing ###Code from statsmodels.stats.multitest import multipletests p = {d: {} for d in directions} for metric in metric_labels: for d in directions: dist = null[d][metric] n_clf = dist.shape[0] p[d][metric] = [np.sum(dist[i,:] >= obs[d][metric][i]) / float(n_iter) for i in range(n_clf)] fdr = {d: {} for d in directions} for metric in metric_labels: for d in directions: fdr[d][metric] = multipletests(p[d][metric], method="fdr_bh")[1] ###Output _____no_output_____ ###Markdown Plot evaluation metrics Forward inference ###Code struct_labels = pd.read_csv("../data/brain/labels.csv", index_col=None) struct_labels.index = struct_labels["PREPROCESSED"] struct_labels = struct_labels.loc[act_bin.columns, "ABBREVIATION"].values d = "forward" metric = "rocauc" evaluation.plot_eval_metric(metric, framework, d, obs[d][metric], boot[d][metric], null_ci[d][metric], fdr[d][metric], palette[d], labels=struct_labels, dx=0.375, dxs=0.55, figsize=(13, 3.2), ylim=[0.4, 0.8], alphas=[alpha], path="logistic_regression/") metric = "f1" evaluation.plot_eval_metric(metric, framework, d, obs[d][metric], boot[d][metric], null_ci[d][metric], fdr[d][metric], palette[d], labels=struct_labels, dx=0.375, dxs=0.55, figsize=(13, 3.2), ylim=[0.3, 0.7], alphas=[alpha], path="logistic_regression/") ###Output _____no_output_____ ###Markdown Reverse inference ###Code d = "reverse" metric = "rocauc" evaluation.plot_eval_metric(metric, framework, d, obs[d][metric], boot[d][metric], null_ci[d][metric], fdr[d][metric], palette[d], labels=[], dx=0.375, dxs=0.11, figsize=(3.6, 3.2), ylim=[0.4, 0.8], alphas=[alpha], path="logistic_regression/") metric = "f1" evaluation.plot_eval_metric(metric, framework, d, obs[d][metric], boot[d][metric], null_ci[d][metric], fdr[d][metric], palette[d], labels=[], dx=0.375, dxs=0.11, figsize=(3.6, 3.2), ylim=[0.3, 0.7], alphas=[alpha], path="logistic_regression/") ###Output _____no_output_____ ###Markdown Export metric distributions ###Code labels = {"forward": act_bin.columns, "reverse": domains} for metric in metric_labels: for d in directions: for dist, dic in zip(["boot", "null"], [boot, null]): df = pd.DataFrame(dic[d][metric], index=labels[d], columns=range(n_iter)) df.to_csv("logistic_regression/data/{}_{}_{}_{}_{}iter.csv".format( metric, dist, framework, d, n_iter)) obs_df = pd.Series(obs[d][metric], index=labels[d]) obs_df.to_csv("logistic_regression/data/{}_obs_{}_{}.csv".format(metric, framework, d)) ###Output /anaconda3/envs/ontol/lib/python3.6/site-packages/ipykernel_launcher.py:9: FutureWarning: The signature of `Series.to_csv` was aligned to that of `DataFrame.to_csv`, and argument 'header' will change its default value from False to True: please pass an explicit value to suppress this warning. if __name__ == '__main__': ###Markdown Compare to neural networks Load neural network fits ###Code import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import torch.optim as optim torch.manual_seed(42) from neural_network.prediction import Net opt_epochs = 500 # Epochs used to optimize the classifier hyperparameters train_epochs = 1000 # Epochs used to train the classifier fit_nn = {} for direction in directions: hyperparams = pd.read_csv("neural_network/data/params_{}_{}_{}epochs.csv".format(framework, direction, opt_epochs), header=None, index_col=0) h = {str(label): float(value) for label, value in hyperparams.iterrows()} state_dict = torch.load("neural_network/fits/{}_{}_{}epochs.pt".format(framework, direction, train_epochs)) layers = list(state_dict.keys()) n_input = state_dict[layers[0]].shape[1] n_output = state_dict[layers[-2]].shape[0] fit_nn[direction] = Net(n_input=n_input, n_output=n_output, n_hid=int(h["n_hid"]), p_dropout=h["p_dropout"]) fit_nn[direction].load_state_dict(state_dict) print("-"*50 + "\n{} INFERENCE CLASSIFIER\n".format(direction.upper()) + "-"*50) print(fit_nn[direction]) print("") ###Output -------------------------------------------------- FORWARD INFERENCE CLASSIFIER -------------------------------------------------- Net( (fc1): Linear(in_features=6, out_features=125, bias=True) (bn1): BatchNorm1d(125, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (dropout1): Dropout(p=0.1) (fc2): Linear(in_features=125, out_features=125, bias=True) (bn2): BatchNorm1d(125, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (dropout2): Dropout(p=0.1) (fc3): Linear(in_features=125, out_features=125, bias=True) (bn3): BatchNorm1d(125, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (dropout3): Dropout(p=0.1) (fc4): Linear(in_features=125, out_features=125, bias=True) (bn4): BatchNorm1d(125, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (dropout4): Dropout(p=0.1) (fc5): Linear(in_features=125, out_features=125, bias=True) (bn5): BatchNorm1d(125, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (dropout5): Dropout(p=0.1) (fc6): Linear(in_features=125, out_features=125, bias=True) (bn6): BatchNorm1d(125, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (dropout6): Dropout(p=0.1) (fc7): Linear(in_features=125, out_features=125, bias=True) (bn7): BatchNorm1d(125, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (dropout7): Dropout(p=0.1) (fc8): Linear(in_features=125, out_features=118, bias=True) ) -------------------------------------------------- REVERSE INFERENCE CLASSIFIER -------------------------------------------------- Net( (fc1): Linear(in_features=118, out_features=100, bias=True) (bn1): BatchNorm1d(100, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (dropout1): Dropout(p=0.3) (fc2): Linear(in_features=100, out_features=100, bias=True) (bn2): BatchNorm1d(100, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (dropout2): Dropout(p=0.3) (fc3): Linear(in_features=100, out_features=100, bias=True) (bn3): BatchNorm1d(100, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (dropout3): Dropout(p=0.3) (fc4): Linear(in_features=100, out_features=100, bias=True) (bn4): BatchNorm1d(100, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (dropout4): Dropout(p=0.3) (fc5): Linear(in_features=100, out_features=100, bias=True) (bn5): BatchNorm1d(100, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (dropout5): Dropout(p=0.3) (fc6): Linear(in_features=100, out_features=100, bias=True) (bn6): BatchNorm1d(100, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (dropout6): Dropout(p=0.3) (fc7): Linear(in_features=100, out_features=100, bias=True) (bn7): BatchNorm1d(100, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (dropout7): Dropout(p=0.3) (fc8): Linear(in_features=100, out_features=6, bias=True) ) ###Markdown Load neural network evaluation data ###Code boot_nn = {d: {} for d in directions} for d in directions: boot_nn[d]["rocauc"] = pd.read_csv("neural_network/data/rocauc_boot_{}_{}_{}iter.csv".format(framework, d, n_iter), index_col=0, header=0).values boot_nn[d]["f1"] = pd.read_csv("neural_network/data/f1_boot_{}_{}_{}iter.csv".format(framework, d, n_iter), index_col=0, header=0).values ###Output _____no_output_____ ###Markdown Export classifier comparison ###Code lower_i = int(0.001 * n_iter) upper_i = int(0.999 * n_iter) for metric in metric_labels: for d in directions: dist = boot[d][metric] - boot_nn[d][metric] dist = [sorted(row) for row in dist] lower_CI = [row[lower_i] for row in dist] upper_CI = [row[upper_i] for row in dist] df = pd.DataFrame({"CI_LOWER": lower_CI, "CI_UPPER": upper_CI}) df.to_csv("data/{}_lr-nn_{}_{}.csv".format(metric, framework, d), index=None) ###Output _____no_output_____